1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_attr.h" 29 #include "xfs_reflink.h" 30 #include "xfs_ag.h" 31 #include "scrub/scrub.h" 32 #include "scrub/common.h" 33 #include "scrub/trace.h" 34 #include "scrub/repair.h" 35 #include "scrub/health.h" 36 37 /* Common code for the metadata scrubbers. */ 38 39 /* 40 * Handling operational errors. 41 * 42 * The *_process_error() family of functions are used to process error return 43 * codes from functions called as part of a scrub operation. 44 * 45 * If there's no error, we return true to tell the caller that it's ok 46 * to move on to the next check in its list. 47 * 48 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 49 * caller that something bad happened, and we preserve *error so that 50 * the caller can return the *error up the stack to userspace. 51 * 52 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 53 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 54 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 55 * not via return codes. We return false to tell the caller that 56 * something bad happened. Since the error has been cleared, the caller 57 * will (presumably) return that zero and scrubbing will move on to 58 * whatever's next. 59 * 60 * ftrace can be used to record the precise metadata location and the 61 * approximate code location of the failed operation. 62 */ 63 64 /* Check for operational errors. */ 65 static bool 66 __xchk_process_error( 67 struct xfs_scrub *sc, 68 xfs_agnumber_t agno, 69 xfs_agblock_t bno, 70 int *error, 71 __u32 errflag, 72 void *ret_ip) 73 { 74 switch (*error) { 75 case 0: 76 return true; 77 case -EDEADLOCK: 78 /* Used to restart an op with deadlock avoidance. */ 79 trace_xchk_deadlock_retry( 80 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 81 sc->sm, *error); 82 break; 83 case -EFSBADCRC: 84 case -EFSCORRUPTED: 85 /* Note the badness but don't abort. */ 86 sc->sm->sm_flags |= errflag; 87 *error = 0; 88 fallthrough; 89 default: 90 trace_xchk_op_error(sc, agno, bno, *error, 91 ret_ip); 92 break; 93 } 94 return false; 95 } 96 97 bool 98 xchk_process_error( 99 struct xfs_scrub *sc, 100 xfs_agnumber_t agno, 101 xfs_agblock_t bno, 102 int *error) 103 { 104 return __xchk_process_error(sc, agno, bno, error, 105 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 106 } 107 108 bool 109 xchk_xref_process_error( 110 struct xfs_scrub *sc, 111 xfs_agnumber_t agno, 112 xfs_agblock_t bno, 113 int *error) 114 { 115 return __xchk_process_error(sc, agno, bno, error, 116 XFS_SCRUB_OFLAG_XFAIL, __return_address); 117 } 118 119 /* Check for operational errors for a file offset. */ 120 static bool 121 __xchk_fblock_process_error( 122 struct xfs_scrub *sc, 123 int whichfork, 124 xfs_fileoff_t offset, 125 int *error, 126 __u32 errflag, 127 void *ret_ip) 128 { 129 switch (*error) { 130 case 0: 131 return true; 132 case -EDEADLOCK: 133 /* Used to restart an op with deadlock avoidance. */ 134 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 135 break; 136 case -EFSBADCRC: 137 case -EFSCORRUPTED: 138 /* Note the badness but don't abort. */ 139 sc->sm->sm_flags |= errflag; 140 *error = 0; 141 fallthrough; 142 default: 143 trace_xchk_file_op_error(sc, whichfork, offset, *error, 144 ret_ip); 145 break; 146 } 147 return false; 148 } 149 150 bool 151 xchk_fblock_process_error( 152 struct xfs_scrub *sc, 153 int whichfork, 154 xfs_fileoff_t offset, 155 int *error) 156 { 157 return __xchk_fblock_process_error(sc, whichfork, offset, error, 158 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 159 } 160 161 bool 162 xchk_fblock_xref_process_error( 163 struct xfs_scrub *sc, 164 int whichfork, 165 xfs_fileoff_t offset, 166 int *error) 167 { 168 return __xchk_fblock_process_error(sc, whichfork, offset, error, 169 XFS_SCRUB_OFLAG_XFAIL, __return_address); 170 } 171 172 /* 173 * Handling scrub corruption/optimization/warning checks. 174 * 175 * The *_set_{corrupt,preen,warning}() family of functions are used to 176 * record the presence of metadata that is incorrect (corrupt), could be 177 * optimized somehow (preen), or should be flagged for administrative 178 * review but is not incorrect (warn). 179 * 180 * ftrace can be used to record the precise metadata location and 181 * approximate code location of the failed check. 182 */ 183 184 /* Record a block which could be optimized. */ 185 void 186 xchk_block_set_preen( 187 struct xfs_scrub *sc, 188 struct xfs_buf *bp) 189 { 190 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 191 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 192 } 193 194 /* 195 * Record an inode which could be optimized. The trace data will 196 * include the block given by bp if bp is given; otherwise it will use 197 * the block location of the inode record itself. 198 */ 199 void 200 xchk_ino_set_preen( 201 struct xfs_scrub *sc, 202 xfs_ino_t ino) 203 { 204 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 205 trace_xchk_ino_preen(sc, ino, __return_address); 206 } 207 208 /* Record something being wrong with the filesystem primary superblock. */ 209 void 210 xchk_set_corrupt( 211 struct xfs_scrub *sc) 212 { 213 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 214 trace_xchk_fs_error(sc, 0, __return_address); 215 } 216 217 /* Record a corrupt block. */ 218 void 219 xchk_block_set_corrupt( 220 struct xfs_scrub *sc, 221 struct xfs_buf *bp) 222 { 223 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 224 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 225 } 226 227 /* Record a corruption while cross-referencing. */ 228 void 229 xchk_block_xref_set_corrupt( 230 struct xfs_scrub *sc, 231 struct xfs_buf *bp) 232 { 233 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 234 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 235 } 236 237 /* 238 * Record a corrupt inode. The trace data will include the block given 239 * by bp if bp is given; otherwise it will use the block location of the 240 * inode record itself. 241 */ 242 void 243 xchk_ino_set_corrupt( 244 struct xfs_scrub *sc, 245 xfs_ino_t ino) 246 { 247 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 248 trace_xchk_ino_error(sc, ino, __return_address); 249 } 250 251 /* Record a corruption while cross-referencing with an inode. */ 252 void 253 xchk_ino_xref_set_corrupt( 254 struct xfs_scrub *sc, 255 xfs_ino_t ino) 256 { 257 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 258 trace_xchk_ino_error(sc, ino, __return_address); 259 } 260 261 /* Record corruption in a block indexed by a file fork. */ 262 void 263 xchk_fblock_set_corrupt( 264 struct xfs_scrub *sc, 265 int whichfork, 266 xfs_fileoff_t offset) 267 { 268 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 269 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 270 } 271 272 /* Record a corruption while cross-referencing a fork block. */ 273 void 274 xchk_fblock_xref_set_corrupt( 275 struct xfs_scrub *sc, 276 int whichfork, 277 xfs_fileoff_t offset) 278 { 279 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 280 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 281 } 282 283 /* 284 * Warn about inodes that need administrative review but is not 285 * incorrect. 286 */ 287 void 288 xchk_ino_set_warning( 289 struct xfs_scrub *sc, 290 xfs_ino_t ino) 291 { 292 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 293 trace_xchk_ino_warning(sc, ino, __return_address); 294 } 295 296 /* Warn about a block indexed by a file fork that needs review. */ 297 void 298 xchk_fblock_set_warning( 299 struct xfs_scrub *sc, 300 int whichfork, 301 xfs_fileoff_t offset) 302 { 303 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 304 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 305 } 306 307 /* Signal an incomplete scrub. */ 308 void 309 xchk_set_incomplete( 310 struct xfs_scrub *sc) 311 { 312 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 313 trace_xchk_incomplete(sc, __return_address); 314 } 315 316 /* 317 * rmap scrubbing -- compute the number of blocks with a given owner, 318 * at least according to the reverse mapping data. 319 */ 320 321 struct xchk_rmap_ownedby_info { 322 const struct xfs_owner_info *oinfo; 323 xfs_filblks_t *blocks; 324 }; 325 326 STATIC int 327 xchk_count_rmap_ownedby_irec( 328 struct xfs_btree_cur *cur, 329 const struct xfs_rmap_irec *rec, 330 void *priv) 331 { 332 struct xchk_rmap_ownedby_info *sroi = priv; 333 bool irec_attr; 334 bool oinfo_attr; 335 336 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 337 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 338 339 if (rec->rm_owner != sroi->oinfo->oi_owner) 340 return 0; 341 342 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 343 (*sroi->blocks) += rec->rm_blockcount; 344 345 return 0; 346 } 347 348 /* 349 * Calculate the number of blocks the rmap thinks are owned by something. 350 * The caller should pass us an rmapbt cursor. 351 */ 352 int 353 xchk_count_rmap_ownedby_ag( 354 struct xfs_scrub *sc, 355 struct xfs_btree_cur *cur, 356 const struct xfs_owner_info *oinfo, 357 xfs_filblks_t *blocks) 358 { 359 struct xchk_rmap_ownedby_info sroi = { 360 .oinfo = oinfo, 361 .blocks = blocks, 362 }; 363 364 *blocks = 0; 365 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 366 &sroi); 367 } 368 369 /* 370 * AG scrubbing 371 * 372 * These helpers facilitate locking an allocation group's header 373 * buffers, setting up cursors for all btrees that are present, and 374 * cleaning everything up once we're through. 375 */ 376 377 /* Decide if we want to return an AG header read failure. */ 378 static inline bool 379 want_ag_read_header_failure( 380 struct xfs_scrub *sc, 381 unsigned int type) 382 { 383 /* Return all AG header read failures when scanning btrees. */ 384 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 385 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 386 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 387 return true; 388 /* 389 * If we're scanning a given type of AG header, we only want to 390 * see read failures from that specific header. We'd like the 391 * other headers to cross-check them, but this isn't required. 392 */ 393 if (sc->sm->sm_type == type) 394 return true; 395 return false; 396 } 397 398 /* 399 * Grab the perag structure and all the headers for an AG. 400 * 401 * The headers should be released by xchk_ag_free, but as a fail safe we attach 402 * all the buffers we grab to the scrub transaction so they'll all be freed 403 * when we cancel it. Returns ENOENT if we can't grab the perag structure. 404 */ 405 int 406 xchk_ag_read_headers( 407 struct xfs_scrub *sc, 408 xfs_agnumber_t agno, 409 struct xchk_ag *sa) 410 { 411 struct xfs_mount *mp = sc->mp; 412 int error; 413 414 ASSERT(!sa->pag); 415 sa->pag = xfs_perag_get(mp, agno); 416 if (!sa->pag) 417 return -ENOENT; 418 419 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp); 420 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 421 return error; 422 423 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); 424 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 425 return error; 426 427 return 0; 428 } 429 430 /* Release all the AG btree cursors. */ 431 void 432 xchk_ag_btcur_free( 433 struct xchk_ag *sa) 434 { 435 if (sa->refc_cur) 436 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 437 if (sa->rmap_cur) 438 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 439 if (sa->fino_cur) 440 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 441 if (sa->ino_cur) 442 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 443 if (sa->cnt_cur) 444 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 445 if (sa->bno_cur) 446 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 447 448 sa->refc_cur = NULL; 449 sa->rmap_cur = NULL; 450 sa->fino_cur = NULL; 451 sa->ino_cur = NULL; 452 sa->bno_cur = NULL; 453 sa->cnt_cur = NULL; 454 } 455 456 /* Initialize all the btree cursors for an AG. */ 457 void 458 xchk_ag_btcur_init( 459 struct xfs_scrub *sc, 460 struct xchk_ag *sa) 461 { 462 struct xfs_mount *mp = sc->mp; 463 464 if (sa->agf_bp && 465 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) { 466 /* Set up a bnobt cursor for cross-referencing. */ 467 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 468 sa->pag, XFS_BTNUM_BNO); 469 } 470 471 if (sa->agf_bp && 472 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) { 473 /* Set up a cntbt cursor for cross-referencing. */ 474 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 475 sa->pag, XFS_BTNUM_CNT); 476 } 477 478 /* Set up a inobt cursor for cross-referencing. */ 479 if (sa->agi_bp && 480 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) { 481 sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 482 sa->pag, XFS_BTNUM_INO); 483 } 484 485 /* Set up a finobt cursor for cross-referencing. */ 486 if (sa->agi_bp && xfs_has_finobt(mp) && 487 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) { 488 sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 489 sa->pag, XFS_BTNUM_FINO); 490 } 491 492 /* Set up a rmapbt cursor for cross-referencing. */ 493 if (sa->agf_bp && xfs_has_rmapbt(mp) && 494 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) { 495 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 496 sa->pag); 497 } 498 499 /* Set up a refcountbt cursor for cross-referencing. */ 500 if (sa->agf_bp && xfs_has_reflink(mp) && 501 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) { 502 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 503 sa->agf_bp, sa->pag); 504 } 505 } 506 507 /* Release the AG header context and btree cursors. */ 508 void 509 xchk_ag_free( 510 struct xfs_scrub *sc, 511 struct xchk_ag *sa) 512 { 513 xchk_ag_btcur_free(sa); 514 if (sa->agf_bp) { 515 xfs_trans_brelse(sc->tp, sa->agf_bp); 516 sa->agf_bp = NULL; 517 } 518 if (sa->agi_bp) { 519 xfs_trans_brelse(sc->tp, sa->agi_bp); 520 sa->agi_bp = NULL; 521 } 522 if (sa->pag) { 523 xfs_perag_put(sa->pag); 524 sa->pag = NULL; 525 } 526 } 527 528 /* 529 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 530 * order. Locking order requires us to get the AGI before the AGF. We use the 531 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 532 * caller passes one in (bmap scrub) or we have to create a transaction 533 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 534 */ 535 int 536 xchk_ag_init( 537 struct xfs_scrub *sc, 538 xfs_agnumber_t agno, 539 struct xchk_ag *sa) 540 { 541 int error; 542 543 error = xchk_ag_read_headers(sc, agno, sa); 544 if (error) 545 return error; 546 547 xchk_ag_btcur_init(sc, sa); 548 return 0; 549 } 550 551 /* Per-scrubber setup functions */ 552 553 /* 554 * Grab an empty transaction so that we can re-grab locked buffers if 555 * one of our btrees turns out to be cyclic. 556 * 557 * If we're going to repair something, we need to ask for the largest possible 558 * log reservation so that we can handle the worst case scenario for metadata 559 * updates while rebuilding a metadata item. We also need to reserve as many 560 * blocks in the head transaction as we think we're going to need to rebuild 561 * the metadata object. 562 */ 563 int 564 xchk_trans_alloc( 565 struct xfs_scrub *sc, 566 uint resblks) 567 { 568 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 569 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 570 resblks, 0, 0, &sc->tp); 571 572 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 573 } 574 575 /* Set us up with a transaction and an empty context. */ 576 int 577 xchk_setup_fs( 578 struct xfs_scrub *sc) 579 { 580 uint resblks; 581 582 resblks = xrep_calc_ag_resblks(sc); 583 return xchk_trans_alloc(sc, resblks); 584 } 585 586 /* Set us up with AG headers and btree cursors. */ 587 int 588 xchk_setup_ag_btree( 589 struct xfs_scrub *sc, 590 bool force_log) 591 { 592 struct xfs_mount *mp = sc->mp; 593 int error; 594 595 /* 596 * If the caller asks us to checkpont the log, do so. This 597 * expensive operation should be performed infrequently and only 598 * as a last resort. Any caller that sets force_log should 599 * document why they need to do so. 600 */ 601 if (force_log) { 602 error = xchk_checkpoint_log(mp); 603 if (error) 604 return error; 605 } 606 607 error = xchk_setup_fs(sc); 608 if (error) 609 return error; 610 611 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 612 } 613 614 /* Push everything out of the log onto disk. */ 615 int 616 xchk_checkpoint_log( 617 struct xfs_mount *mp) 618 { 619 int error; 620 621 error = xfs_log_force(mp, XFS_LOG_SYNC); 622 if (error) 623 return error; 624 xfs_ail_push_all_sync(mp->m_ail); 625 return 0; 626 } 627 628 /* 629 * Given an inode and the scrub control structure, grab either the 630 * inode referenced in the control structure or the inode passed in. 631 * The inode is not locked. 632 */ 633 int 634 xchk_get_inode( 635 struct xfs_scrub *sc) 636 { 637 struct xfs_imap imap; 638 struct xfs_mount *mp = sc->mp; 639 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 640 struct xfs_inode *ip = NULL; 641 int error; 642 643 /* We want to scan the inode we already had opened. */ 644 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) { 645 sc->ip = ip_in; 646 return 0; 647 } 648 649 /* Look up the inode, see if the generation number matches. */ 650 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 651 return -ENOENT; 652 error = xfs_iget(mp, NULL, sc->sm->sm_ino, 653 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip); 654 switch (error) { 655 case -ENOENT: 656 /* Inode doesn't exist, just bail out. */ 657 return error; 658 case 0: 659 /* Got an inode, continue. */ 660 break; 661 case -EINVAL: 662 /* 663 * -EINVAL with IGET_UNTRUSTED could mean one of several 664 * things: userspace gave us an inode number that doesn't 665 * correspond to fs space, or doesn't have an inobt entry; 666 * or it could simply mean that the inode buffer failed the 667 * read verifiers. 668 * 669 * Try just the inode mapping lookup -- if it succeeds, then 670 * the inode buffer verifier failed and something needs fixing. 671 * Otherwise, we really couldn't find it so tell userspace 672 * that it no longer exists. 673 */ 674 error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap, 675 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE); 676 if (error) 677 return -ENOENT; 678 error = -EFSCORRUPTED; 679 fallthrough; 680 default: 681 trace_xchk_op_error(sc, 682 XFS_INO_TO_AGNO(mp, sc->sm->sm_ino), 683 XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 684 error, __return_address); 685 return error; 686 } 687 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 688 xfs_irele(ip); 689 return -ENOENT; 690 } 691 692 sc->ip = ip; 693 return 0; 694 } 695 696 /* Set us up to scrub a file's contents. */ 697 int 698 xchk_setup_inode_contents( 699 struct xfs_scrub *sc, 700 unsigned int resblks) 701 { 702 int error; 703 704 error = xchk_get_inode(sc); 705 if (error) 706 return error; 707 708 /* Got the inode, lock it and we're ready to go. */ 709 sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 710 xfs_ilock(sc->ip, sc->ilock_flags); 711 error = xchk_trans_alloc(sc, resblks); 712 if (error) 713 goto out; 714 sc->ilock_flags |= XFS_ILOCK_EXCL; 715 xfs_ilock(sc->ip, XFS_ILOCK_EXCL); 716 717 out: 718 /* scrub teardown will unlock and release the inode for us */ 719 return error; 720 } 721 722 /* 723 * Predicate that decides if we need to evaluate the cross-reference check. 724 * If there was an error accessing the cross-reference btree, just delete 725 * the cursor and skip the check. 726 */ 727 bool 728 xchk_should_check_xref( 729 struct xfs_scrub *sc, 730 int *error, 731 struct xfs_btree_cur **curpp) 732 { 733 /* No point in xref if we already know we're corrupt. */ 734 if (xchk_skip_xref(sc->sm)) 735 return false; 736 737 if (*error == 0) 738 return true; 739 740 if (curpp) { 741 /* If we've already given up on xref, just bail out. */ 742 if (!*curpp) 743 return false; 744 745 /* xref error, delete cursor and bail out. */ 746 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 747 *curpp = NULL; 748 } 749 750 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 751 trace_xchk_xref_error(sc, *error, __return_address); 752 753 /* 754 * Errors encountered during cross-referencing with another 755 * data structure should not cause this scrubber to abort. 756 */ 757 *error = 0; 758 return false; 759 } 760 761 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 762 void 763 xchk_buffer_recheck( 764 struct xfs_scrub *sc, 765 struct xfs_buf *bp) 766 { 767 xfs_failaddr_t fa; 768 769 if (bp->b_ops == NULL) { 770 xchk_block_set_corrupt(sc, bp); 771 return; 772 } 773 if (bp->b_ops->verify_struct == NULL) { 774 xchk_set_incomplete(sc); 775 return; 776 } 777 fa = bp->b_ops->verify_struct(bp); 778 if (!fa) 779 return; 780 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 781 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 782 } 783 784 static inline int 785 xchk_metadata_inode_subtype( 786 struct xfs_scrub *sc, 787 unsigned int scrub_type) 788 { 789 __u32 smtype = sc->sm->sm_type; 790 int error; 791 792 sc->sm->sm_type = scrub_type; 793 794 switch (scrub_type) { 795 case XFS_SCRUB_TYPE_INODE: 796 error = xchk_inode(sc); 797 break; 798 case XFS_SCRUB_TYPE_BMBTD: 799 error = xchk_bmap_data(sc); 800 break; 801 default: 802 ASSERT(0); 803 error = -EFSCORRUPTED; 804 break; 805 } 806 807 sc->sm->sm_type = smtype; 808 return error; 809 } 810 811 /* 812 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 813 * pointed to by sc->ip and the ILOCK must be held. 814 */ 815 int 816 xchk_metadata_inode_forks( 817 struct xfs_scrub *sc) 818 { 819 bool shared; 820 int error; 821 822 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 823 return 0; 824 825 /* Check the inode record. */ 826 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 827 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 828 return error; 829 830 /* Metadata inodes don't live on the rt device. */ 831 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 832 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 833 return 0; 834 } 835 836 /* They should never participate in reflink. */ 837 if (xfs_is_reflink_inode(sc->ip)) { 838 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 839 return 0; 840 } 841 842 /* They also should never have extended attributes. */ 843 if (xfs_inode_hasattr(sc->ip)) { 844 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 845 return 0; 846 } 847 848 /* Invoke the data fork scrubber. */ 849 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 850 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 851 return error; 852 853 /* Look for incorrect shared blocks. */ 854 if (xfs_has_reflink(sc->mp)) { 855 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 856 &shared); 857 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 858 &error)) 859 return error; 860 if (shared) 861 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 862 } 863 864 return 0; 865 } 866 867 /* 868 * Try to lock an inode in violation of the usual locking order rules. For 869 * example, trying to get the IOLOCK while in transaction context, or just 870 * plain breaking AG-order or inode-order inode locking rules. Either way, 871 * the only way to avoid an ABBA deadlock is to use trylock and back off if 872 * we can't. 873 */ 874 int 875 xchk_ilock_inverted( 876 struct xfs_inode *ip, 877 uint lock_mode) 878 { 879 int i; 880 881 for (i = 0; i < 20; i++) { 882 if (xfs_ilock_nowait(ip, lock_mode)) 883 return 0; 884 delay(1); 885 } 886 return -EDEADLOCK; 887 } 888 889 /* Pause background reaping of resources. */ 890 void 891 xchk_stop_reaping( 892 struct xfs_scrub *sc) 893 { 894 sc->flags |= XCHK_REAPING_DISABLED; 895 xfs_blockgc_stop(sc->mp); 896 xfs_inodegc_stop(sc->mp); 897 } 898 899 /* Restart background reaping of resources. */ 900 void 901 xchk_start_reaping( 902 struct xfs_scrub *sc) 903 { 904 /* 905 * Readonly filesystems do not perform inactivation or speculative 906 * preallocation, so there's no need to restart the workers. 907 */ 908 if (!xfs_is_readonly(sc->mp)) { 909 xfs_inodegc_start(sc->mp); 910 xfs_blockgc_start(sc->mp); 911 } 912 sc->flags &= ~XCHK_REAPING_DISABLED; 913 } 914