1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_dir2_priv.h" 29 #include "xfs_attr.h" 30 #include "xfs_reflink.h" 31 #include "xfs_ag.h" 32 #include "scrub/scrub.h" 33 #include "scrub/common.h" 34 #include "scrub/trace.h" 35 #include "scrub/repair.h" 36 #include "scrub/health.h" 37 38 /* Common code for the metadata scrubbers. */ 39 40 /* 41 * Handling operational errors. 42 * 43 * The *_process_error() family of functions are used to process error return 44 * codes from functions called as part of a scrub operation. 45 * 46 * If there's no error, we return true to tell the caller that it's ok 47 * to move on to the next check in its list. 48 * 49 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 50 * caller that something bad happened, and we preserve *error so that 51 * the caller can return the *error up the stack to userspace. 52 * 53 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 54 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 55 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 56 * not via return codes. We return false to tell the caller that 57 * something bad happened. Since the error has been cleared, the caller 58 * will (presumably) return that zero and scrubbing will move on to 59 * whatever's next. 60 * 61 * ftrace can be used to record the precise metadata location and the 62 * approximate code location of the failed operation. 63 */ 64 65 /* Check for operational errors. */ 66 static bool 67 __xchk_process_error( 68 struct xfs_scrub *sc, 69 xfs_agnumber_t agno, 70 xfs_agblock_t bno, 71 int *error, 72 __u32 errflag, 73 void *ret_ip) 74 { 75 switch (*error) { 76 case 0: 77 return true; 78 case -EDEADLOCK: 79 case -ECHRNG: 80 /* Used to restart an op with deadlock avoidance. */ 81 trace_xchk_deadlock_retry( 82 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 83 sc->sm, *error); 84 break; 85 case -EFSBADCRC: 86 case -EFSCORRUPTED: 87 /* Note the badness but don't abort. */ 88 sc->sm->sm_flags |= errflag; 89 *error = 0; 90 fallthrough; 91 default: 92 trace_xchk_op_error(sc, agno, bno, *error, 93 ret_ip); 94 break; 95 } 96 return false; 97 } 98 99 bool 100 xchk_process_error( 101 struct xfs_scrub *sc, 102 xfs_agnumber_t agno, 103 xfs_agblock_t bno, 104 int *error) 105 { 106 return __xchk_process_error(sc, agno, bno, error, 107 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 108 } 109 110 bool 111 xchk_xref_process_error( 112 struct xfs_scrub *sc, 113 xfs_agnumber_t agno, 114 xfs_agblock_t bno, 115 int *error) 116 { 117 return __xchk_process_error(sc, agno, bno, error, 118 XFS_SCRUB_OFLAG_XFAIL, __return_address); 119 } 120 121 /* Check for operational errors for a file offset. */ 122 static bool 123 __xchk_fblock_process_error( 124 struct xfs_scrub *sc, 125 int whichfork, 126 xfs_fileoff_t offset, 127 int *error, 128 __u32 errflag, 129 void *ret_ip) 130 { 131 switch (*error) { 132 case 0: 133 return true; 134 case -EDEADLOCK: 135 case -ECHRNG: 136 /* Used to restart an op with deadlock avoidance. */ 137 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 138 break; 139 case -EFSBADCRC: 140 case -EFSCORRUPTED: 141 /* Note the badness but don't abort. */ 142 sc->sm->sm_flags |= errflag; 143 *error = 0; 144 fallthrough; 145 default: 146 trace_xchk_file_op_error(sc, whichfork, offset, *error, 147 ret_ip); 148 break; 149 } 150 return false; 151 } 152 153 bool 154 xchk_fblock_process_error( 155 struct xfs_scrub *sc, 156 int whichfork, 157 xfs_fileoff_t offset, 158 int *error) 159 { 160 return __xchk_fblock_process_error(sc, whichfork, offset, error, 161 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 162 } 163 164 bool 165 xchk_fblock_xref_process_error( 166 struct xfs_scrub *sc, 167 int whichfork, 168 xfs_fileoff_t offset, 169 int *error) 170 { 171 return __xchk_fblock_process_error(sc, whichfork, offset, error, 172 XFS_SCRUB_OFLAG_XFAIL, __return_address); 173 } 174 175 /* 176 * Handling scrub corruption/optimization/warning checks. 177 * 178 * The *_set_{corrupt,preen,warning}() family of functions are used to 179 * record the presence of metadata that is incorrect (corrupt), could be 180 * optimized somehow (preen), or should be flagged for administrative 181 * review but is not incorrect (warn). 182 * 183 * ftrace can be used to record the precise metadata location and 184 * approximate code location of the failed check. 185 */ 186 187 /* Record a block which could be optimized. */ 188 void 189 xchk_block_set_preen( 190 struct xfs_scrub *sc, 191 struct xfs_buf *bp) 192 { 193 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 194 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 195 } 196 197 /* 198 * Record an inode which could be optimized. The trace data will 199 * include the block given by bp if bp is given; otherwise it will use 200 * the block location of the inode record itself. 201 */ 202 void 203 xchk_ino_set_preen( 204 struct xfs_scrub *sc, 205 xfs_ino_t ino) 206 { 207 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 208 trace_xchk_ino_preen(sc, ino, __return_address); 209 } 210 211 /* Record something being wrong with the filesystem primary superblock. */ 212 void 213 xchk_set_corrupt( 214 struct xfs_scrub *sc) 215 { 216 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 217 trace_xchk_fs_error(sc, 0, __return_address); 218 } 219 220 /* Record a corrupt block. */ 221 void 222 xchk_block_set_corrupt( 223 struct xfs_scrub *sc, 224 struct xfs_buf *bp) 225 { 226 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 227 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 228 } 229 230 /* Record a corruption while cross-referencing. */ 231 void 232 xchk_block_xref_set_corrupt( 233 struct xfs_scrub *sc, 234 struct xfs_buf *bp) 235 { 236 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 237 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 238 } 239 240 /* 241 * Record a corrupt inode. The trace data will include the block given 242 * by bp if bp is given; otherwise it will use the block location of the 243 * inode record itself. 244 */ 245 void 246 xchk_ino_set_corrupt( 247 struct xfs_scrub *sc, 248 xfs_ino_t ino) 249 { 250 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 251 trace_xchk_ino_error(sc, ino, __return_address); 252 } 253 254 /* Record a corruption while cross-referencing with an inode. */ 255 void 256 xchk_ino_xref_set_corrupt( 257 struct xfs_scrub *sc, 258 xfs_ino_t ino) 259 { 260 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 261 trace_xchk_ino_error(sc, ino, __return_address); 262 } 263 264 /* Record corruption in a block indexed by a file fork. */ 265 void 266 xchk_fblock_set_corrupt( 267 struct xfs_scrub *sc, 268 int whichfork, 269 xfs_fileoff_t offset) 270 { 271 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 272 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 273 } 274 275 /* Record a corruption while cross-referencing a fork block. */ 276 void 277 xchk_fblock_xref_set_corrupt( 278 struct xfs_scrub *sc, 279 int whichfork, 280 xfs_fileoff_t offset) 281 { 282 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 283 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 284 } 285 286 /* 287 * Warn about inodes that need administrative review but is not 288 * incorrect. 289 */ 290 void 291 xchk_ino_set_warning( 292 struct xfs_scrub *sc, 293 xfs_ino_t ino) 294 { 295 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 296 trace_xchk_ino_warning(sc, ino, __return_address); 297 } 298 299 /* Warn about a block indexed by a file fork that needs review. */ 300 void 301 xchk_fblock_set_warning( 302 struct xfs_scrub *sc, 303 int whichfork, 304 xfs_fileoff_t offset) 305 { 306 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 307 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 308 } 309 310 /* Signal an incomplete scrub. */ 311 void 312 xchk_set_incomplete( 313 struct xfs_scrub *sc) 314 { 315 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 316 trace_xchk_incomplete(sc, __return_address); 317 } 318 319 /* 320 * rmap scrubbing -- compute the number of blocks with a given owner, 321 * at least according to the reverse mapping data. 322 */ 323 324 struct xchk_rmap_ownedby_info { 325 const struct xfs_owner_info *oinfo; 326 xfs_filblks_t *blocks; 327 }; 328 329 STATIC int 330 xchk_count_rmap_ownedby_irec( 331 struct xfs_btree_cur *cur, 332 const struct xfs_rmap_irec *rec, 333 void *priv) 334 { 335 struct xchk_rmap_ownedby_info *sroi = priv; 336 bool irec_attr; 337 bool oinfo_attr; 338 339 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 340 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 341 342 if (rec->rm_owner != sroi->oinfo->oi_owner) 343 return 0; 344 345 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 346 (*sroi->blocks) += rec->rm_blockcount; 347 348 return 0; 349 } 350 351 /* 352 * Calculate the number of blocks the rmap thinks are owned by something. 353 * The caller should pass us an rmapbt cursor. 354 */ 355 int 356 xchk_count_rmap_ownedby_ag( 357 struct xfs_scrub *sc, 358 struct xfs_btree_cur *cur, 359 const struct xfs_owner_info *oinfo, 360 xfs_filblks_t *blocks) 361 { 362 struct xchk_rmap_ownedby_info sroi = { 363 .oinfo = oinfo, 364 .blocks = blocks, 365 }; 366 367 *blocks = 0; 368 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 369 &sroi); 370 } 371 372 /* 373 * AG scrubbing 374 * 375 * These helpers facilitate locking an allocation group's header 376 * buffers, setting up cursors for all btrees that are present, and 377 * cleaning everything up once we're through. 378 */ 379 380 /* Decide if we want to return an AG header read failure. */ 381 static inline bool 382 want_ag_read_header_failure( 383 struct xfs_scrub *sc, 384 unsigned int type) 385 { 386 /* Return all AG header read failures when scanning btrees. */ 387 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 388 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 389 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 390 return true; 391 /* 392 * If we're scanning a given type of AG header, we only want to 393 * see read failures from that specific header. We'd like the 394 * other headers to cross-check them, but this isn't required. 395 */ 396 if (sc->sm->sm_type == type) 397 return true; 398 return false; 399 } 400 401 /* 402 * Grab the AG header buffers for the attached perag structure. 403 * 404 * The headers should be released by xchk_ag_free, but as a fail safe we attach 405 * all the buffers we grab to the scrub transaction so they'll all be freed 406 * when we cancel it. 407 */ 408 static inline int 409 xchk_perag_read_headers( 410 struct xfs_scrub *sc, 411 struct xchk_ag *sa) 412 { 413 int error; 414 415 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp); 416 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 417 return error; 418 419 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); 420 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 421 return error; 422 423 return 0; 424 } 425 426 /* 427 * Grab the AG headers for the attached perag structure and wait for pending 428 * intents to drain. 429 */ 430 static int 431 xchk_perag_drain_and_lock( 432 struct xfs_scrub *sc) 433 { 434 struct xchk_ag *sa = &sc->sa; 435 int error = 0; 436 437 ASSERT(sa->pag != NULL); 438 ASSERT(sa->agi_bp == NULL); 439 ASSERT(sa->agf_bp == NULL); 440 441 do { 442 if (xchk_should_terminate(sc, &error)) 443 return error; 444 445 error = xchk_perag_read_headers(sc, sa); 446 if (error) 447 return error; 448 449 /* 450 * If we've grabbed an inode for scrubbing then we assume that 451 * holding its ILOCK will suffice to coordinate with any intent 452 * chains involving this inode. 453 */ 454 if (sc->ip) 455 return 0; 456 457 /* 458 * Decide if this AG is quiet enough for all metadata to be 459 * consistent with each other. XFS allows the AG header buffer 460 * locks to cycle across transaction rolls while processing 461 * chains of deferred ops, which means that there could be 462 * other threads in the middle of processing a chain of 463 * deferred ops. For regular operations we are careful about 464 * ordering operations to prevent collisions between threads 465 * (which is why we don't need a per-AG lock), but scrub and 466 * repair have to serialize against chained operations. 467 * 468 * We just locked all the AG headers buffers; now take a look 469 * to see if there are any intents in progress. If there are, 470 * drop the AG headers and wait for the intents to drain. 471 * Since we hold all the AG header locks for the duration of 472 * the scrub, this is the only time we have to sample the 473 * intents counter; any threads increasing it after this point 474 * can't possibly be in the middle of a chain of AG metadata 475 * updates. 476 * 477 * Obviously, this should be slanted against scrub and in favor 478 * of runtime threads. 479 */ 480 if (!xfs_perag_intent_busy(sa->pag)) 481 return 0; 482 483 if (sa->agf_bp) { 484 xfs_trans_brelse(sc->tp, sa->agf_bp); 485 sa->agf_bp = NULL; 486 } 487 488 if (sa->agi_bp) { 489 xfs_trans_brelse(sc->tp, sa->agi_bp); 490 sa->agi_bp = NULL; 491 } 492 493 if (!(sc->flags & XCHK_FSGATES_DRAIN)) 494 return -ECHRNG; 495 error = xfs_perag_intent_drain(sa->pag); 496 if (error == -ERESTARTSYS) 497 error = -EINTR; 498 } while (!error); 499 500 return error; 501 } 502 503 /* 504 * Grab the per-AG structure, grab all AG header buffers, and wait until there 505 * aren't any pending intents. Returns -ENOENT if we can't grab the perag 506 * structure. 507 */ 508 int 509 xchk_ag_read_headers( 510 struct xfs_scrub *sc, 511 xfs_agnumber_t agno, 512 struct xchk_ag *sa) 513 { 514 struct xfs_mount *mp = sc->mp; 515 516 ASSERT(!sa->pag); 517 sa->pag = xfs_perag_get(mp, agno); 518 if (!sa->pag) 519 return -ENOENT; 520 521 return xchk_perag_drain_and_lock(sc); 522 } 523 524 /* Release all the AG btree cursors. */ 525 void 526 xchk_ag_btcur_free( 527 struct xchk_ag *sa) 528 { 529 if (sa->refc_cur) 530 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 531 if (sa->rmap_cur) 532 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 533 if (sa->fino_cur) 534 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 535 if (sa->ino_cur) 536 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 537 if (sa->cnt_cur) 538 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 539 if (sa->bno_cur) 540 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 541 542 sa->refc_cur = NULL; 543 sa->rmap_cur = NULL; 544 sa->fino_cur = NULL; 545 sa->ino_cur = NULL; 546 sa->bno_cur = NULL; 547 sa->cnt_cur = NULL; 548 } 549 550 /* Initialize all the btree cursors for an AG. */ 551 void 552 xchk_ag_btcur_init( 553 struct xfs_scrub *sc, 554 struct xchk_ag *sa) 555 { 556 struct xfs_mount *mp = sc->mp; 557 558 if (sa->agf_bp && 559 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) { 560 /* Set up a bnobt cursor for cross-referencing. */ 561 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 562 sa->pag, XFS_BTNUM_BNO); 563 } 564 565 if (sa->agf_bp && 566 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) { 567 /* Set up a cntbt cursor for cross-referencing. */ 568 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 569 sa->pag, XFS_BTNUM_CNT); 570 } 571 572 /* Set up a inobt cursor for cross-referencing. */ 573 if (sa->agi_bp && 574 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) { 575 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp, 576 XFS_BTNUM_INO); 577 } 578 579 /* Set up a finobt cursor for cross-referencing. */ 580 if (sa->agi_bp && xfs_has_finobt(mp) && 581 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) { 582 sa->fino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp, 583 XFS_BTNUM_FINO); 584 } 585 586 /* Set up a rmapbt cursor for cross-referencing. */ 587 if (sa->agf_bp && xfs_has_rmapbt(mp) && 588 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) { 589 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 590 sa->pag); 591 } 592 593 /* Set up a refcountbt cursor for cross-referencing. */ 594 if (sa->agf_bp && xfs_has_reflink(mp) && 595 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) { 596 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 597 sa->agf_bp, sa->pag); 598 } 599 } 600 601 /* Release the AG header context and btree cursors. */ 602 void 603 xchk_ag_free( 604 struct xfs_scrub *sc, 605 struct xchk_ag *sa) 606 { 607 xchk_ag_btcur_free(sa); 608 xrep_reset_perag_resv(sc); 609 if (sa->agf_bp) { 610 xfs_trans_brelse(sc->tp, sa->agf_bp); 611 sa->agf_bp = NULL; 612 } 613 if (sa->agi_bp) { 614 xfs_trans_brelse(sc->tp, sa->agi_bp); 615 sa->agi_bp = NULL; 616 } 617 if (sa->pag) { 618 xfs_perag_put(sa->pag); 619 sa->pag = NULL; 620 } 621 } 622 623 /* 624 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 625 * order. Locking order requires us to get the AGI before the AGF. We use the 626 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 627 * caller passes one in (bmap scrub) or we have to create a transaction 628 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 629 */ 630 int 631 xchk_ag_init( 632 struct xfs_scrub *sc, 633 xfs_agnumber_t agno, 634 struct xchk_ag *sa) 635 { 636 int error; 637 638 error = xchk_ag_read_headers(sc, agno, sa); 639 if (error) 640 return error; 641 642 xchk_ag_btcur_init(sc, sa); 643 return 0; 644 } 645 646 /* Per-scrubber setup functions */ 647 648 void 649 xchk_trans_cancel( 650 struct xfs_scrub *sc) 651 { 652 xfs_trans_cancel(sc->tp); 653 sc->tp = NULL; 654 } 655 656 /* 657 * Grab an empty transaction so that we can re-grab locked buffers if 658 * one of our btrees turns out to be cyclic. 659 * 660 * If we're going to repair something, we need to ask for the largest possible 661 * log reservation so that we can handle the worst case scenario for metadata 662 * updates while rebuilding a metadata item. We also need to reserve as many 663 * blocks in the head transaction as we think we're going to need to rebuild 664 * the metadata object. 665 */ 666 int 667 xchk_trans_alloc( 668 struct xfs_scrub *sc, 669 uint resblks) 670 { 671 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 672 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 673 resblks, 0, 0, &sc->tp); 674 675 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 676 } 677 678 /* Set us up with a transaction and an empty context. */ 679 int 680 xchk_setup_fs( 681 struct xfs_scrub *sc) 682 { 683 uint resblks; 684 685 resblks = xrep_calc_ag_resblks(sc); 686 return xchk_trans_alloc(sc, resblks); 687 } 688 689 /* Set us up with AG headers and btree cursors. */ 690 int 691 xchk_setup_ag_btree( 692 struct xfs_scrub *sc, 693 bool force_log) 694 { 695 struct xfs_mount *mp = sc->mp; 696 int error; 697 698 /* 699 * If the caller asks us to checkpont the log, do so. This 700 * expensive operation should be performed infrequently and only 701 * as a last resort. Any caller that sets force_log should 702 * document why they need to do so. 703 */ 704 if (force_log) { 705 error = xchk_checkpoint_log(mp); 706 if (error) 707 return error; 708 } 709 710 error = xchk_setup_fs(sc); 711 if (error) 712 return error; 713 714 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 715 } 716 717 /* Push everything out of the log onto disk. */ 718 int 719 xchk_checkpoint_log( 720 struct xfs_mount *mp) 721 { 722 int error; 723 724 error = xfs_log_force(mp, XFS_LOG_SYNC); 725 if (error) 726 return error; 727 xfs_ail_push_all_sync(mp->m_ail); 728 return 0; 729 } 730 731 /* Verify that an inode is allocated ondisk, then return its cached inode. */ 732 int 733 xchk_iget( 734 struct xfs_scrub *sc, 735 xfs_ino_t inum, 736 struct xfs_inode **ipp) 737 { 738 ASSERT(sc->tp != NULL); 739 740 return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp); 741 } 742 743 /* 744 * Try to grab an inode in a manner that avoids races with physical inode 745 * allocation. If we can't, return the locked AGI buffer so that the caller 746 * can single-step the loading process to see where things went wrong. 747 * Callers must have a valid scrub transaction. 748 * 749 * If the iget succeeds, return 0, a NULL AGI, and the inode. 750 * 751 * If the iget fails, return the error, the locked AGI, and a NULL inode. This 752 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are 753 * no longer allocated; or any other corruption or runtime error. 754 * 755 * If the AGI read fails, return the error, a NULL AGI, and NULL inode. 756 * 757 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode. 758 */ 759 int 760 xchk_iget_agi( 761 struct xfs_scrub *sc, 762 xfs_ino_t inum, 763 struct xfs_buf **agi_bpp, 764 struct xfs_inode **ipp) 765 { 766 struct xfs_mount *mp = sc->mp; 767 struct xfs_trans *tp = sc->tp; 768 struct xfs_perag *pag; 769 int error; 770 771 ASSERT(sc->tp != NULL); 772 773 again: 774 *agi_bpp = NULL; 775 *ipp = NULL; 776 error = 0; 777 778 if (xchk_should_terminate(sc, &error)) 779 return error; 780 781 /* 782 * Attach the AGI buffer to the scrub transaction to avoid deadlocks 783 * in the iget cache miss path. 784 */ 785 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 786 error = xfs_ialloc_read_agi(pag, tp, agi_bpp); 787 xfs_perag_put(pag); 788 if (error) 789 return error; 790 791 error = xfs_iget(mp, tp, inum, 792 XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp); 793 if (error == -EAGAIN) { 794 /* 795 * The inode may be in core but temporarily unavailable and may 796 * require the AGI buffer before it can be returned. Drop the 797 * AGI buffer and retry the lookup. 798 * 799 * Incore lookup will fail with EAGAIN on a cache hit if the 800 * inode is queued to the inactivation list. The inactivation 801 * worker may remove the inode from the unlinked list and hence 802 * needs the AGI. 803 * 804 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN 805 * to allow inodegc to make progress and move the inode to 806 * IRECLAIMABLE state where xfs_iget will be able to return it 807 * again if it can lock the inode. 808 */ 809 xfs_trans_brelse(tp, *agi_bpp); 810 delay(1); 811 goto again; 812 } 813 if (error) 814 return error; 815 816 /* We got the inode, so we can release the AGI. */ 817 ASSERT(*ipp != NULL); 818 xfs_trans_brelse(tp, *agi_bpp); 819 *agi_bpp = NULL; 820 return 0; 821 } 822 823 #ifdef CONFIG_XFS_QUOTA 824 /* 825 * Try to attach dquots to this inode if we think we might want to repair it. 826 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be 827 * attached, a quotacheck will be scheduled. 828 */ 829 int 830 xchk_ino_dqattach( 831 struct xfs_scrub *sc) 832 { 833 ASSERT(sc->tp != NULL); 834 ASSERT(sc->ip != NULL); 835 836 if (!xchk_could_repair(sc)) 837 return 0; 838 839 return xrep_ino_dqattach(sc); 840 } 841 #endif 842 843 /* Install an inode that we opened by handle for scrubbing. */ 844 int 845 xchk_install_handle_inode( 846 struct xfs_scrub *sc, 847 struct xfs_inode *ip) 848 { 849 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 850 xchk_irele(sc, ip); 851 return -ENOENT; 852 } 853 854 sc->ip = ip; 855 return 0; 856 } 857 858 /* 859 * Install an already-referenced inode for scrubbing. Get our own reference to 860 * the inode to make disposal simpler. The inode must not be in I_FREEING or 861 * I_WILL_FREE state! 862 */ 863 int 864 xchk_install_live_inode( 865 struct xfs_scrub *sc, 866 struct xfs_inode *ip) 867 { 868 if (!igrab(VFS_I(ip))) { 869 xchk_ino_set_corrupt(sc, ip->i_ino); 870 return -EFSCORRUPTED; 871 } 872 873 sc->ip = ip; 874 return 0; 875 } 876 877 /* 878 * In preparation to scrub metadata structures that hang off of an inode, 879 * grab either the inode referenced in the scrub control structure or the 880 * inode passed in. If the inumber does not reference an allocated inode 881 * record, the function returns ENOENT to end the scrub early. The inode 882 * is not locked. 883 */ 884 int 885 xchk_iget_for_scrubbing( 886 struct xfs_scrub *sc) 887 { 888 struct xfs_imap imap; 889 struct xfs_mount *mp = sc->mp; 890 struct xfs_perag *pag; 891 struct xfs_buf *agi_bp; 892 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 893 struct xfs_inode *ip = NULL; 894 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino); 895 int error; 896 897 ASSERT(sc->tp == NULL); 898 899 /* We want to scan the inode we already had opened. */ 900 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) 901 return xchk_install_live_inode(sc, ip_in); 902 903 /* Reject internal metadata files and obviously bad inode numbers. */ 904 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 905 return -ENOENT; 906 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino)) 907 return -ENOENT; 908 909 /* Try a safe untrusted iget. */ 910 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip); 911 if (!error) 912 return xchk_install_handle_inode(sc, ip); 913 if (error == -ENOENT) 914 return error; 915 if (error != -EINVAL) 916 goto out_error; 917 918 /* 919 * EINVAL with IGET_UNTRUSTED probably means one of several things: 920 * userspace gave us an inode number that doesn't correspond to fs 921 * space; the inode btree lacks a record for this inode; or there is a 922 * record, and it says this inode is free. 923 * 924 * We want to look up this inode in the inobt to distinguish two 925 * scenarios: (1) the inobt says the inode is free, in which case 926 * there's nothing to do; and (2) the inobt says the inode is 927 * allocated, but loading it failed due to corruption. 928 * 929 * Allocate a transaction and grab the AGI to prevent inobt activity 930 * in this AG. Retry the iget in case someone allocated a new inode 931 * after the first iget failed. 932 */ 933 error = xchk_trans_alloc(sc, 0); 934 if (error) 935 goto out_error; 936 937 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip); 938 if (error == 0) { 939 /* Actually got the inode, so install it. */ 940 xchk_trans_cancel(sc); 941 return xchk_install_handle_inode(sc, ip); 942 } 943 if (error == -ENOENT) 944 goto out_gone; 945 if (error != -EINVAL) 946 goto out_cancel; 947 948 /* Ensure that we have protected against inode allocation/freeing. */ 949 if (agi_bp == NULL) { 950 ASSERT(agi_bp != NULL); 951 error = -ECANCELED; 952 goto out_cancel; 953 } 954 955 /* 956 * Untrusted iget failed a second time. Let's try an inobt lookup. 957 * If the inobt thinks this the inode neither can exist inside the 958 * filesystem nor is allocated, return ENOENT to signal that the check 959 * can be skipped. 960 * 961 * If the lookup returns corruption, we'll mark this inode corrupt and 962 * exit to userspace. There's little chance of fixing anything until 963 * the inobt is straightened out, but there's nothing we can do here. 964 * 965 * If the lookup encounters any other error, exit to userspace. 966 * 967 * If the lookup succeeds, something else must be very wrong in the fs 968 * such that setting up the incore inode failed in some strange way. 969 * Treat those as corruptions. 970 */ 971 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino)); 972 if (!pag) { 973 error = -EFSCORRUPTED; 974 goto out_cancel; 975 } 976 977 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap, 978 XFS_IGET_UNTRUSTED); 979 xfs_perag_put(pag); 980 if (error == -EINVAL || error == -ENOENT) 981 goto out_gone; 982 if (!error) 983 error = -EFSCORRUPTED; 984 985 out_cancel: 986 xchk_trans_cancel(sc); 987 out_error: 988 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 989 error, __return_address); 990 return error; 991 out_gone: 992 /* The file is gone, so there's nothing to check. */ 993 xchk_trans_cancel(sc); 994 return -ENOENT; 995 } 996 997 /* Release an inode, possibly dropping it in the process. */ 998 void 999 xchk_irele( 1000 struct xfs_scrub *sc, 1001 struct xfs_inode *ip) 1002 { 1003 if (current->journal_info != NULL) { 1004 ASSERT(current->journal_info == sc->tp); 1005 1006 /* 1007 * If we are in a transaction, we /cannot/ drop the inode 1008 * ourselves, because the VFS will trigger writeback, which 1009 * can require a transaction. Clear DONTCACHE to force the 1010 * inode to the LRU, where someone else can take care of 1011 * dropping it. 1012 * 1013 * Note that when we grabbed our reference to the inode, it 1014 * could have had an active ref and DONTCACHE set if a sysadmin 1015 * is trying to coerce a change in file access mode. icache 1016 * hits do not clear DONTCACHE, so we must do it here. 1017 */ 1018 spin_lock(&VFS_I(ip)->i_lock); 1019 VFS_I(ip)->i_state &= ~I_DONTCACHE; 1020 spin_unlock(&VFS_I(ip)->i_lock); 1021 } else if (atomic_read(&VFS_I(ip)->i_count) == 1) { 1022 /* 1023 * If this is the last reference to the inode and the caller 1024 * permits it, set DONTCACHE to avoid thrashing. 1025 */ 1026 d_mark_dontcache(VFS_I(ip)); 1027 } 1028 1029 xfs_irele(ip); 1030 } 1031 1032 /* 1033 * Set us up to scrub metadata mapped by a file's fork. Callers must not use 1034 * this to operate on user-accessible regular file data because the MMAPLOCK is 1035 * not taken. 1036 */ 1037 int 1038 xchk_setup_inode_contents( 1039 struct xfs_scrub *sc, 1040 unsigned int resblks) 1041 { 1042 int error; 1043 1044 error = xchk_iget_for_scrubbing(sc); 1045 if (error) 1046 return error; 1047 1048 /* Lock the inode so the VFS cannot touch this file. */ 1049 xchk_ilock(sc, XFS_IOLOCK_EXCL); 1050 1051 error = xchk_trans_alloc(sc, resblks); 1052 if (error) 1053 goto out; 1054 1055 error = xchk_ino_dqattach(sc); 1056 if (error) 1057 goto out; 1058 1059 xchk_ilock(sc, XFS_ILOCK_EXCL); 1060 out: 1061 /* scrub teardown will unlock and release the inode for us */ 1062 return error; 1063 } 1064 1065 void 1066 xchk_ilock( 1067 struct xfs_scrub *sc, 1068 unsigned int ilock_flags) 1069 { 1070 xfs_ilock(sc->ip, ilock_flags); 1071 sc->ilock_flags |= ilock_flags; 1072 } 1073 1074 bool 1075 xchk_ilock_nowait( 1076 struct xfs_scrub *sc, 1077 unsigned int ilock_flags) 1078 { 1079 if (xfs_ilock_nowait(sc->ip, ilock_flags)) { 1080 sc->ilock_flags |= ilock_flags; 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 void 1088 xchk_iunlock( 1089 struct xfs_scrub *sc, 1090 unsigned int ilock_flags) 1091 { 1092 sc->ilock_flags &= ~ilock_flags; 1093 xfs_iunlock(sc->ip, ilock_flags); 1094 } 1095 1096 /* 1097 * Predicate that decides if we need to evaluate the cross-reference check. 1098 * If there was an error accessing the cross-reference btree, just delete 1099 * the cursor and skip the check. 1100 */ 1101 bool 1102 xchk_should_check_xref( 1103 struct xfs_scrub *sc, 1104 int *error, 1105 struct xfs_btree_cur **curpp) 1106 { 1107 /* No point in xref if we already know we're corrupt. */ 1108 if (xchk_skip_xref(sc->sm)) 1109 return false; 1110 1111 if (*error == 0) 1112 return true; 1113 1114 if (curpp) { 1115 /* If we've already given up on xref, just bail out. */ 1116 if (!*curpp) 1117 return false; 1118 1119 /* xref error, delete cursor and bail out. */ 1120 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 1121 *curpp = NULL; 1122 } 1123 1124 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 1125 trace_xchk_xref_error(sc, *error, __return_address); 1126 1127 /* 1128 * Errors encountered during cross-referencing with another 1129 * data structure should not cause this scrubber to abort. 1130 */ 1131 *error = 0; 1132 return false; 1133 } 1134 1135 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 1136 void 1137 xchk_buffer_recheck( 1138 struct xfs_scrub *sc, 1139 struct xfs_buf *bp) 1140 { 1141 xfs_failaddr_t fa; 1142 1143 if (bp->b_ops == NULL) { 1144 xchk_block_set_corrupt(sc, bp); 1145 return; 1146 } 1147 if (bp->b_ops->verify_struct == NULL) { 1148 xchk_set_incomplete(sc); 1149 return; 1150 } 1151 fa = bp->b_ops->verify_struct(bp); 1152 if (!fa) 1153 return; 1154 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 1155 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 1156 } 1157 1158 static inline int 1159 xchk_metadata_inode_subtype( 1160 struct xfs_scrub *sc, 1161 unsigned int scrub_type) 1162 { 1163 __u32 smtype = sc->sm->sm_type; 1164 unsigned int sick_mask = sc->sick_mask; 1165 int error; 1166 1167 sc->sm->sm_type = scrub_type; 1168 1169 switch (scrub_type) { 1170 case XFS_SCRUB_TYPE_INODE: 1171 error = xchk_inode(sc); 1172 break; 1173 case XFS_SCRUB_TYPE_BMBTD: 1174 error = xchk_bmap_data(sc); 1175 break; 1176 default: 1177 ASSERT(0); 1178 error = -EFSCORRUPTED; 1179 break; 1180 } 1181 1182 sc->sick_mask = sick_mask; 1183 sc->sm->sm_type = smtype; 1184 return error; 1185 } 1186 1187 /* 1188 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 1189 * pointed to by sc->ip and the ILOCK must be held. 1190 */ 1191 int 1192 xchk_metadata_inode_forks( 1193 struct xfs_scrub *sc) 1194 { 1195 bool shared; 1196 int error; 1197 1198 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 1199 return 0; 1200 1201 /* Check the inode record. */ 1202 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1203 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1204 return error; 1205 1206 /* Metadata inodes don't live on the rt device. */ 1207 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 1208 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1209 return 0; 1210 } 1211 1212 /* They should never participate in reflink. */ 1213 if (xfs_is_reflink_inode(sc->ip)) { 1214 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1215 return 0; 1216 } 1217 1218 /* They also should never have extended attributes. */ 1219 if (xfs_inode_hasattr(sc->ip)) { 1220 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1221 return 0; 1222 } 1223 1224 /* Invoke the data fork scrubber. */ 1225 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1226 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1227 return error; 1228 1229 /* Look for incorrect shared blocks. */ 1230 if (xfs_has_reflink(sc->mp)) { 1231 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 1232 &shared); 1233 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 1234 &error)) 1235 return error; 1236 if (shared) 1237 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1238 } 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub 1245 * operation. Callers must not hold any locks that intersect with the CPU 1246 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs 1247 * to change kernel code. 1248 */ 1249 void 1250 xchk_fsgates_enable( 1251 struct xfs_scrub *sc, 1252 unsigned int scrub_fsgates) 1253 { 1254 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL)); 1255 ASSERT(!(sc->flags & scrub_fsgates)); 1256 1257 trace_xchk_fsgates_enable(sc, scrub_fsgates); 1258 1259 if (scrub_fsgates & XCHK_FSGATES_DRAIN) 1260 xfs_drain_wait_enable(); 1261 1262 sc->flags |= scrub_fsgates; 1263 } 1264 1265 /* 1266 * Decide if this is this a cached inode that's also allocated. The caller 1267 * must hold a reference to an AG and the AGI buffer lock to prevent inodes 1268 * from being allocated or freed. 1269 * 1270 * Look up an inode by number in the given file system. If the inode number 1271 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA. 1272 * If the inode is being reclaimed, return -ENODATA because we know the inode 1273 * cache cannot be updating the ondisk metadata. 1274 * 1275 * Otherwise, the incore inode is the one we want, and it is either live, 1276 * somewhere in the inactivation machinery, or reclaimable. The inode is 1277 * allocated if i_mode is nonzero. In all three cases, the cached inode will 1278 * be more up to date than the ondisk inode buffer, so we must use the incore 1279 * i_mode. 1280 */ 1281 int 1282 xchk_inode_is_allocated( 1283 struct xfs_scrub *sc, 1284 xfs_agino_t agino, 1285 bool *inuse) 1286 { 1287 struct xfs_mount *mp = sc->mp; 1288 struct xfs_perag *pag = sc->sa.pag; 1289 xfs_ino_t ino; 1290 struct xfs_inode *ip; 1291 int error; 1292 1293 /* caller must hold perag reference */ 1294 if (pag == NULL) { 1295 ASSERT(pag != NULL); 1296 return -EINVAL; 1297 } 1298 1299 /* caller must have AGI buffer */ 1300 if (sc->sa.agi_bp == NULL) { 1301 ASSERT(sc->sa.agi_bp != NULL); 1302 return -EINVAL; 1303 } 1304 1305 /* reject inode numbers outside existing AGs */ 1306 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); 1307 if (!xfs_verify_ino(mp, ino)) 1308 return -EINVAL; 1309 1310 error = -ENODATA; 1311 rcu_read_lock(); 1312 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1313 if (!ip) { 1314 /* cache miss */ 1315 goto out_rcu; 1316 } 1317 1318 /* 1319 * If the inode number doesn't match, the incore inode got reused 1320 * during an RCU grace period and the radix tree hasn't been updated. 1321 * This isn't the inode we want. 1322 */ 1323 spin_lock(&ip->i_flags_lock); 1324 if (ip->i_ino != ino) 1325 goto out_skip; 1326 1327 trace_xchk_inode_is_allocated(ip); 1328 1329 /* 1330 * We have an incore inode that matches the inode we want, and the 1331 * caller holds the perag structure and the AGI buffer. Let's check 1332 * our assumptions below: 1333 */ 1334 1335 #ifdef DEBUG 1336 /* 1337 * (1) If the incore inode is live (i.e. referenced from the dcache), 1338 * it will not be INEW, nor will it be in the inactivation or reclaim 1339 * machinery. The ondisk inode had better be allocated. This is the 1340 * most trivial case. 1341 */ 1342 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE | 1343 XFS_INACTIVATING))) { 1344 /* live inode */ 1345 ASSERT(VFS_I(ip)->i_mode != 0); 1346 } 1347 1348 /* 1349 * If the incore inode is INEW, there are several possibilities: 1350 * 1351 * (2) For a file that is being created, note that we allocate the 1352 * ondisk inode before allocating, initializing, and adding the incore 1353 * inode to the radix tree. 1354 * 1355 * (3) If the incore inode is being recycled, the inode has to be 1356 * allocated because we don't allow freed inodes to be recycled. 1357 * Recycling doesn't touch i_mode. 1358 */ 1359 if (ip->i_flags & XFS_INEW) { 1360 /* created on disk already or recycling */ 1361 ASSERT(VFS_I(ip)->i_mode != 0); 1362 } 1363 1364 /* 1365 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but 1366 * inactivation has not started (!INACTIVATING), it is still allocated. 1367 */ 1368 if ((ip->i_flags & XFS_NEED_INACTIVE) && 1369 !(ip->i_flags & XFS_INACTIVATING)) { 1370 /* definitely before difree */ 1371 ASSERT(VFS_I(ip)->i_mode != 0); 1372 } 1373 #endif 1374 1375 /* 1376 * If the incore inode is undergoing inactivation (INACTIVATING), there 1377 * are two possibilities: 1378 * 1379 * (5) It is before the point where it would get freed ondisk, in which 1380 * case i_mode is still nonzero. 1381 * 1382 * (6) It has already been freed, in which case i_mode is zero. 1383 * 1384 * We don't take the ILOCK here, but difree and dialloc update the AGI, 1385 * and we've taken the AGI buffer lock, which prevents that from 1386 * happening. 1387 */ 1388 1389 /* 1390 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for 1391 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still 1392 * reflects the ondisk state. 1393 */ 1394 1395 /* 1396 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because 1397 * the flush code uses i_mode to format the ondisk inode. 1398 */ 1399 1400 /* 1401 * (9) If the inode is in IRECLAIM and was reachable via the radix 1402 * tree, it still has the same i_mode as it did before it entered 1403 * reclaim. The inode object is still alive because we hold the RCU 1404 * read lock. 1405 */ 1406 1407 *inuse = VFS_I(ip)->i_mode != 0; 1408 error = 0; 1409 1410 out_skip: 1411 spin_unlock(&ip->i_flags_lock); 1412 out_rcu: 1413 rcu_read_unlock(); 1414 return error; 1415 } 1416