1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_dir2_priv.h" 29 #include "xfs_attr.h" 30 #include "xfs_reflink.h" 31 #include "xfs_ag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "xfs_exchmaps.h" 35 #include "xfs_rtbitmap.h" 36 #include "scrub/scrub.h" 37 #include "scrub/common.h" 38 #include "scrub/trace.h" 39 #include "scrub/repair.h" 40 #include "scrub/health.h" 41 42 /* Common code for the metadata scrubbers. */ 43 44 /* 45 * Handling operational errors. 46 * 47 * The *_process_error() family of functions are used to process error return 48 * codes from functions called as part of a scrub operation. 49 * 50 * If there's no error, we return true to tell the caller that it's ok 51 * to move on to the next check in its list. 52 * 53 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 54 * caller that something bad happened, and we preserve *error so that 55 * the caller can return the *error up the stack to userspace. 56 * 57 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 58 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 59 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 60 * not via return codes. We return false to tell the caller that 61 * something bad happened. Since the error has been cleared, the caller 62 * will (presumably) return that zero and scrubbing will move on to 63 * whatever's next. 64 * 65 * ftrace can be used to record the precise metadata location and the 66 * approximate code location of the failed operation. 67 */ 68 69 /* Check for operational errors. */ 70 static bool 71 __xchk_process_error( 72 struct xfs_scrub *sc, 73 xfs_agnumber_t agno, 74 xfs_agblock_t bno, 75 int *error, 76 __u32 errflag, 77 void *ret_ip) 78 { 79 switch (*error) { 80 case 0: 81 return true; 82 case -EDEADLOCK: 83 case -ECHRNG: 84 /* Used to restart an op with deadlock avoidance. */ 85 trace_xchk_deadlock_retry( 86 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 87 sc->sm, *error); 88 break; 89 case -ECANCELED: 90 /* 91 * ECANCELED here means that the caller set one of the scrub 92 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit 93 * quickly. Set error to zero and do not continue. 94 */ 95 trace_xchk_op_error(sc, agno, bno, *error, ret_ip); 96 *error = 0; 97 break; 98 case -EFSBADCRC: 99 case -EFSCORRUPTED: 100 /* Note the badness but don't abort. */ 101 sc->sm->sm_flags |= errflag; 102 *error = 0; 103 fallthrough; 104 default: 105 trace_xchk_op_error(sc, agno, bno, *error, ret_ip); 106 break; 107 } 108 return false; 109 } 110 111 bool 112 xchk_process_error( 113 struct xfs_scrub *sc, 114 xfs_agnumber_t agno, 115 xfs_agblock_t bno, 116 int *error) 117 { 118 return __xchk_process_error(sc, agno, bno, error, 119 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 120 } 121 122 bool 123 xchk_xref_process_error( 124 struct xfs_scrub *sc, 125 xfs_agnumber_t agno, 126 xfs_agblock_t bno, 127 int *error) 128 { 129 return __xchk_process_error(sc, agno, bno, error, 130 XFS_SCRUB_OFLAG_XFAIL, __return_address); 131 } 132 133 /* Check for operational errors for a file offset. */ 134 static bool 135 __xchk_fblock_process_error( 136 struct xfs_scrub *sc, 137 int whichfork, 138 xfs_fileoff_t offset, 139 int *error, 140 __u32 errflag, 141 void *ret_ip) 142 { 143 switch (*error) { 144 case 0: 145 return true; 146 case -EDEADLOCK: 147 case -ECHRNG: 148 /* Used to restart an op with deadlock avoidance. */ 149 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 150 break; 151 case -ECANCELED: 152 /* 153 * ECANCELED here means that the caller set one of the scrub 154 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit 155 * quickly. Set error to zero and do not continue. 156 */ 157 trace_xchk_file_op_error(sc, whichfork, offset, *error, 158 ret_ip); 159 *error = 0; 160 break; 161 case -EFSBADCRC: 162 case -EFSCORRUPTED: 163 /* Note the badness but don't abort. */ 164 sc->sm->sm_flags |= errflag; 165 *error = 0; 166 fallthrough; 167 default: 168 trace_xchk_file_op_error(sc, whichfork, offset, *error, 169 ret_ip); 170 break; 171 } 172 return false; 173 } 174 175 bool 176 xchk_fblock_process_error( 177 struct xfs_scrub *sc, 178 int whichfork, 179 xfs_fileoff_t offset, 180 int *error) 181 { 182 return __xchk_fblock_process_error(sc, whichfork, offset, error, 183 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 184 } 185 186 bool 187 xchk_fblock_xref_process_error( 188 struct xfs_scrub *sc, 189 int whichfork, 190 xfs_fileoff_t offset, 191 int *error) 192 { 193 return __xchk_fblock_process_error(sc, whichfork, offset, error, 194 XFS_SCRUB_OFLAG_XFAIL, __return_address); 195 } 196 197 /* 198 * Handling scrub corruption/optimization/warning checks. 199 * 200 * The *_set_{corrupt,preen,warning}() family of functions are used to 201 * record the presence of metadata that is incorrect (corrupt), could be 202 * optimized somehow (preen), or should be flagged for administrative 203 * review but is not incorrect (warn). 204 * 205 * ftrace can be used to record the precise metadata location and 206 * approximate code location of the failed check. 207 */ 208 209 /* Record a block which could be optimized. */ 210 void 211 xchk_block_set_preen( 212 struct xfs_scrub *sc, 213 struct xfs_buf *bp) 214 { 215 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 216 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 217 } 218 219 /* 220 * Record an inode which could be optimized. The trace data will 221 * include the block given by bp if bp is given; otherwise it will use 222 * the block location of the inode record itself. 223 */ 224 void 225 xchk_ino_set_preen( 226 struct xfs_scrub *sc, 227 xfs_ino_t ino) 228 { 229 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 230 trace_xchk_ino_preen(sc, ino, __return_address); 231 } 232 233 /* Record something being wrong with the filesystem primary superblock. */ 234 void 235 xchk_set_corrupt( 236 struct xfs_scrub *sc) 237 { 238 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 239 trace_xchk_fs_error(sc, 0, __return_address); 240 } 241 242 /* Record a corrupt block. */ 243 void 244 xchk_block_set_corrupt( 245 struct xfs_scrub *sc, 246 struct xfs_buf *bp) 247 { 248 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 249 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 250 } 251 252 #ifdef CONFIG_XFS_QUOTA 253 /* Record a corrupt quota counter. */ 254 void 255 xchk_qcheck_set_corrupt( 256 struct xfs_scrub *sc, 257 unsigned int dqtype, 258 xfs_dqid_t id) 259 { 260 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 261 trace_xchk_qcheck_error(sc, dqtype, id, __return_address); 262 } 263 #endif 264 265 /* Record a corruption while cross-referencing. */ 266 void 267 xchk_block_xref_set_corrupt( 268 struct xfs_scrub *sc, 269 struct xfs_buf *bp) 270 { 271 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 272 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 273 } 274 275 /* 276 * Record a corrupt inode. The trace data will include the block given 277 * by bp if bp is given; otherwise it will use the block location of the 278 * inode record itself. 279 */ 280 void 281 xchk_ino_set_corrupt( 282 struct xfs_scrub *sc, 283 xfs_ino_t ino) 284 { 285 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 286 trace_xchk_ino_error(sc, ino, __return_address); 287 } 288 289 /* Record a corruption while cross-referencing with an inode. */ 290 void 291 xchk_ino_xref_set_corrupt( 292 struct xfs_scrub *sc, 293 xfs_ino_t ino) 294 { 295 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 296 trace_xchk_ino_error(sc, ino, __return_address); 297 } 298 299 /* Record corruption in a block indexed by a file fork. */ 300 void 301 xchk_fblock_set_corrupt( 302 struct xfs_scrub *sc, 303 int whichfork, 304 xfs_fileoff_t offset) 305 { 306 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 307 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 308 } 309 310 /* Record a corruption while cross-referencing a fork block. */ 311 void 312 xchk_fblock_xref_set_corrupt( 313 struct xfs_scrub *sc, 314 int whichfork, 315 xfs_fileoff_t offset) 316 { 317 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 318 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 319 } 320 321 /* 322 * Warn about inodes that need administrative review but is not 323 * incorrect. 324 */ 325 void 326 xchk_ino_set_warning( 327 struct xfs_scrub *sc, 328 xfs_ino_t ino) 329 { 330 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 331 trace_xchk_ino_warning(sc, ino, __return_address); 332 } 333 334 /* Warn about a block indexed by a file fork that needs review. */ 335 void 336 xchk_fblock_set_warning( 337 struct xfs_scrub *sc, 338 int whichfork, 339 xfs_fileoff_t offset) 340 { 341 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 342 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 343 } 344 345 /* Signal an incomplete scrub. */ 346 void 347 xchk_set_incomplete( 348 struct xfs_scrub *sc) 349 { 350 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 351 trace_xchk_incomplete(sc, __return_address); 352 } 353 354 /* 355 * rmap scrubbing -- compute the number of blocks with a given owner, 356 * at least according to the reverse mapping data. 357 */ 358 359 struct xchk_rmap_ownedby_info { 360 const struct xfs_owner_info *oinfo; 361 xfs_filblks_t *blocks; 362 }; 363 364 STATIC int 365 xchk_count_rmap_ownedby_irec( 366 struct xfs_btree_cur *cur, 367 const struct xfs_rmap_irec *rec, 368 void *priv) 369 { 370 struct xchk_rmap_ownedby_info *sroi = priv; 371 bool irec_attr; 372 bool oinfo_attr; 373 374 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 375 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 376 377 if (rec->rm_owner != sroi->oinfo->oi_owner) 378 return 0; 379 380 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 381 (*sroi->blocks) += rec->rm_blockcount; 382 383 return 0; 384 } 385 386 /* 387 * Calculate the number of blocks the rmap thinks are owned by something. 388 * The caller should pass us an rmapbt cursor. 389 */ 390 int 391 xchk_count_rmap_ownedby_ag( 392 struct xfs_scrub *sc, 393 struct xfs_btree_cur *cur, 394 const struct xfs_owner_info *oinfo, 395 xfs_filblks_t *blocks) 396 { 397 struct xchk_rmap_ownedby_info sroi = { 398 .oinfo = oinfo, 399 .blocks = blocks, 400 }; 401 402 *blocks = 0; 403 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 404 &sroi); 405 } 406 407 /* 408 * AG scrubbing 409 * 410 * These helpers facilitate locking an allocation group's header 411 * buffers, setting up cursors for all btrees that are present, and 412 * cleaning everything up once we're through. 413 */ 414 415 /* Decide if we want to return an AG header read failure. */ 416 static inline bool 417 want_ag_read_header_failure( 418 struct xfs_scrub *sc, 419 unsigned int type) 420 { 421 /* Return all AG header read failures when scanning btrees. */ 422 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 423 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 424 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 425 return true; 426 /* 427 * If we're scanning a given type of AG header, we only want to 428 * see read failures from that specific header. We'd like the 429 * other headers to cross-check them, but this isn't required. 430 */ 431 if (sc->sm->sm_type == type) 432 return true; 433 return false; 434 } 435 436 /* 437 * Grab the AG header buffers for the attached perag structure. 438 * 439 * The headers should be released by xchk_ag_free, but as a fail safe we attach 440 * all the buffers we grab to the scrub transaction so they'll all be freed 441 * when we cancel it. 442 */ 443 static inline int 444 xchk_perag_read_headers( 445 struct xfs_scrub *sc, 446 struct xchk_ag *sa) 447 { 448 int error; 449 450 error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp); 451 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 452 return error; 453 454 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); 455 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 456 return error; 457 458 return 0; 459 } 460 461 /* 462 * Grab the AG headers for the attached perag structure and wait for pending 463 * intents to drain. 464 */ 465 int 466 xchk_perag_drain_and_lock( 467 struct xfs_scrub *sc) 468 { 469 struct xchk_ag *sa = &sc->sa; 470 int error = 0; 471 472 ASSERT(sa->pag != NULL); 473 ASSERT(sa->agi_bp == NULL); 474 ASSERT(sa->agf_bp == NULL); 475 476 do { 477 if (xchk_should_terminate(sc, &error)) 478 return error; 479 480 error = xchk_perag_read_headers(sc, sa); 481 if (error) 482 return error; 483 484 /* 485 * If we've grabbed an inode for scrubbing then we assume that 486 * holding its ILOCK will suffice to coordinate with any intent 487 * chains involving this inode. 488 */ 489 if (sc->ip) 490 return 0; 491 492 /* 493 * Decide if this AG is quiet enough for all metadata to be 494 * consistent with each other. XFS allows the AG header buffer 495 * locks to cycle across transaction rolls while processing 496 * chains of deferred ops, which means that there could be 497 * other threads in the middle of processing a chain of 498 * deferred ops. For regular operations we are careful about 499 * ordering operations to prevent collisions between threads 500 * (which is why we don't need a per-AG lock), but scrub and 501 * repair have to serialize against chained operations. 502 * 503 * We just locked all the AG headers buffers; now take a look 504 * to see if there are any intents in progress. If there are, 505 * drop the AG headers and wait for the intents to drain. 506 * Since we hold all the AG header locks for the duration of 507 * the scrub, this is the only time we have to sample the 508 * intents counter; any threads increasing it after this point 509 * can't possibly be in the middle of a chain of AG metadata 510 * updates. 511 * 512 * Obviously, this should be slanted against scrub and in favor 513 * of runtime threads. 514 */ 515 if (!xfs_perag_intent_busy(sa->pag)) 516 return 0; 517 518 if (sa->agf_bp) { 519 xfs_trans_brelse(sc->tp, sa->agf_bp); 520 sa->agf_bp = NULL; 521 } 522 523 if (sa->agi_bp) { 524 xfs_trans_brelse(sc->tp, sa->agi_bp); 525 sa->agi_bp = NULL; 526 } 527 528 if (!(sc->flags & XCHK_FSGATES_DRAIN)) 529 return -ECHRNG; 530 error = xfs_perag_intent_drain(sa->pag); 531 if (error == -ERESTARTSYS) 532 error = -EINTR; 533 } while (!error); 534 535 return error; 536 } 537 538 /* 539 * Grab the per-AG structure, grab all AG header buffers, and wait until there 540 * aren't any pending intents. Returns -ENOENT if we can't grab the perag 541 * structure. 542 */ 543 int 544 xchk_ag_read_headers( 545 struct xfs_scrub *sc, 546 xfs_agnumber_t agno, 547 struct xchk_ag *sa) 548 { 549 struct xfs_mount *mp = sc->mp; 550 551 ASSERT(!sa->pag); 552 sa->pag = xfs_perag_get(mp, agno); 553 if (!sa->pag) 554 return -ENOENT; 555 556 return xchk_perag_drain_and_lock(sc); 557 } 558 559 /* Release all the AG btree cursors. */ 560 void 561 xchk_ag_btcur_free( 562 struct xchk_ag *sa) 563 { 564 if (sa->refc_cur) 565 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 566 if (sa->rmap_cur) 567 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 568 if (sa->fino_cur) 569 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 570 if (sa->ino_cur) 571 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 572 if (sa->cnt_cur) 573 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 574 if (sa->bno_cur) 575 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 576 577 sa->refc_cur = NULL; 578 sa->rmap_cur = NULL; 579 sa->fino_cur = NULL; 580 sa->ino_cur = NULL; 581 sa->bno_cur = NULL; 582 sa->cnt_cur = NULL; 583 } 584 585 /* Initialize all the btree cursors for an AG. */ 586 void 587 xchk_ag_btcur_init( 588 struct xfs_scrub *sc, 589 struct xchk_ag *sa) 590 { 591 struct xfs_mount *mp = sc->mp; 592 593 if (sa->agf_bp) { 594 /* Set up a bnobt cursor for cross-referencing. */ 595 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 596 sa->pag); 597 xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur, 598 XFS_SCRUB_TYPE_BNOBT); 599 600 /* Set up a cntbt cursor for cross-referencing. */ 601 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 602 sa->pag); 603 xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur, 604 XFS_SCRUB_TYPE_CNTBT); 605 606 /* Set up a rmapbt cursor for cross-referencing. */ 607 if (xfs_has_rmapbt(mp)) { 608 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, 609 sa->agf_bp, sa->pag); 610 xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur, 611 XFS_SCRUB_TYPE_RMAPBT); 612 } 613 614 /* Set up a refcountbt cursor for cross-referencing. */ 615 if (xfs_has_reflink(mp)) { 616 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 617 sa->agf_bp, sa->pag); 618 xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur, 619 XFS_SCRUB_TYPE_REFCNTBT); 620 } 621 } 622 623 if (sa->agi_bp) { 624 /* Set up a inobt cursor for cross-referencing. */ 625 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, 626 sa->agi_bp); 627 xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur, 628 XFS_SCRUB_TYPE_INOBT); 629 630 /* Set up a finobt cursor for cross-referencing. */ 631 if (xfs_has_finobt(mp)) { 632 sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp, 633 sa->agi_bp); 634 xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur, 635 XFS_SCRUB_TYPE_FINOBT); 636 } 637 } 638 } 639 640 /* Release the AG header context and btree cursors. */ 641 void 642 xchk_ag_free( 643 struct xfs_scrub *sc, 644 struct xchk_ag *sa) 645 { 646 xchk_ag_btcur_free(sa); 647 xrep_reset_perag_resv(sc); 648 if (sa->agf_bp) { 649 xfs_trans_brelse(sc->tp, sa->agf_bp); 650 sa->agf_bp = NULL; 651 } 652 if (sa->agi_bp) { 653 xfs_trans_brelse(sc->tp, sa->agi_bp); 654 sa->agi_bp = NULL; 655 } 656 if (sa->pag) { 657 xfs_perag_put(sa->pag); 658 sa->pag = NULL; 659 } 660 } 661 662 /* 663 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 664 * order. Locking order requires us to get the AGI before the AGF. We use the 665 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 666 * caller passes one in (bmap scrub) or we have to create a transaction 667 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 668 */ 669 int 670 xchk_ag_init( 671 struct xfs_scrub *sc, 672 xfs_agnumber_t agno, 673 struct xchk_ag *sa) 674 { 675 int error; 676 677 error = xchk_ag_read_headers(sc, agno, sa); 678 if (error) 679 return error; 680 681 xchk_ag_btcur_init(sc, sa); 682 return 0; 683 } 684 685 /* Per-scrubber setup functions */ 686 687 void 688 xchk_trans_cancel( 689 struct xfs_scrub *sc) 690 { 691 xfs_trans_cancel(sc->tp); 692 sc->tp = NULL; 693 } 694 695 int 696 xchk_trans_alloc_empty( 697 struct xfs_scrub *sc) 698 { 699 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 700 } 701 702 /* 703 * Grab an empty transaction so that we can re-grab locked buffers if 704 * one of our btrees turns out to be cyclic. 705 * 706 * If we're going to repair something, we need to ask for the largest possible 707 * log reservation so that we can handle the worst case scenario for metadata 708 * updates while rebuilding a metadata item. We also need to reserve as many 709 * blocks in the head transaction as we think we're going to need to rebuild 710 * the metadata object. 711 */ 712 int 713 xchk_trans_alloc( 714 struct xfs_scrub *sc, 715 uint resblks) 716 { 717 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 718 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 719 resblks, 0, 0, &sc->tp); 720 721 return xchk_trans_alloc_empty(sc); 722 } 723 724 /* Set us up with a transaction and an empty context. */ 725 int 726 xchk_setup_fs( 727 struct xfs_scrub *sc) 728 { 729 uint resblks; 730 731 resblks = xrep_calc_ag_resblks(sc); 732 return xchk_trans_alloc(sc, resblks); 733 } 734 735 /* Set us up with AG headers and btree cursors. */ 736 int 737 xchk_setup_ag_btree( 738 struct xfs_scrub *sc, 739 bool force_log) 740 { 741 struct xfs_mount *mp = sc->mp; 742 int error; 743 744 /* 745 * If the caller asks us to checkpont the log, do so. This 746 * expensive operation should be performed infrequently and only 747 * as a last resort. Any caller that sets force_log should 748 * document why they need to do so. 749 */ 750 if (force_log) { 751 error = xchk_checkpoint_log(mp); 752 if (error) 753 return error; 754 } 755 756 error = xchk_setup_fs(sc); 757 if (error) 758 return error; 759 760 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 761 } 762 763 /* Push everything out of the log onto disk. */ 764 int 765 xchk_checkpoint_log( 766 struct xfs_mount *mp) 767 { 768 int error; 769 770 error = xfs_log_force(mp, XFS_LOG_SYNC); 771 if (error) 772 return error; 773 xfs_ail_push_all_sync(mp->m_ail); 774 return 0; 775 } 776 777 /* Verify that an inode is allocated ondisk, then return its cached inode. */ 778 int 779 xchk_iget( 780 struct xfs_scrub *sc, 781 xfs_ino_t inum, 782 struct xfs_inode **ipp) 783 { 784 ASSERT(sc->tp != NULL); 785 786 return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp); 787 } 788 789 /* 790 * Try to grab an inode in a manner that avoids races with physical inode 791 * allocation. If we can't, return the locked AGI buffer so that the caller 792 * can single-step the loading process to see where things went wrong. 793 * Callers must have a valid scrub transaction. 794 * 795 * If the iget succeeds, return 0, a NULL AGI, and the inode. 796 * 797 * If the iget fails, return the error, the locked AGI, and a NULL inode. This 798 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are 799 * no longer allocated; or any other corruption or runtime error. 800 * 801 * If the AGI read fails, return the error, a NULL AGI, and NULL inode. 802 * 803 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode. 804 */ 805 int 806 xchk_iget_agi( 807 struct xfs_scrub *sc, 808 xfs_ino_t inum, 809 struct xfs_buf **agi_bpp, 810 struct xfs_inode **ipp) 811 { 812 struct xfs_mount *mp = sc->mp; 813 struct xfs_trans *tp = sc->tp; 814 struct xfs_perag *pag; 815 int error; 816 817 ASSERT(sc->tp != NULL); 818 819 again: 820 *agi_bpp = NULL; 821 *ipp = NULL; 822 error = 0; 823 824 if (xchk_should_terminate(sc, &error)) 825 return error; 826 827 /* 828 * Attach the AGI buffer to the scrub transaction to avoid deadlocks 829 * in the iget cache miss path. 830 */ 831 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 832 error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp); 833 xfs_perag_put(pag); 834 if (error) 835 return error; 836 837 error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0, 838 ipp); 839 if (error == -EAGAIN) { 840 /* 841 * The inode may be in core but temporarily unavailable and may 842 * require the AGI buffer before it can be returned. Drop the 843 * AGI buffer and retry the lookup. 844 * 845 * Incore lookup will fail with EAGAIN on a cache hit if the 846 * inode is queued to the inactivation list. The inactivation 847 * worker may remove the inode from the unlinked list and hence 848 * needs the AGI. 849 * 850 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN 851 * to allow inodegc to make progress and move the inode to 852 * IRECLAIMABLE state where xfs_iget will be able to return it 853 * again if it can lock the inode. 854 */ 855 xfs_trans_brelse(tp, *agi_bpp); 856 delay(1); 857 goto again; 858 } 859 if (error) 860 return error; 861 862 /* We got the inode, so we can release the AGI. */ 863 ASSERT(*ipp != NULL); 864 xfs_trans_brelse(tp, *agi_bpp); 865 *agi_bpp = NULL; 866 return 0; 867 } 868 869 #ifdef CONFIG_XFS_QUOTA 870 /* 871 * Try to attach dquots to this inode if we think we might want to repair it. 872 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be 873 * attached, a quotacheck will be scheduled. 874 */ 875 int 876 xchk_ino_dqattach( 877 struct xfs_scrub *sc) 878 { 879 ASSERT(sc->tp != NULL); 880 ASSERT(sc->ip != NULL); 881 882 if (!xchk_could_repair(sc)) 883 return 0; 884 885 return xrep_ino_dqattach(sc); 886 } 887 #endif 888 889 /* Install an inode that we opened by handle for scrubbing. */ 890 int 891 xchk_install_handle_inode( 892 struct xfs_scrub *sc, 893 struct xfs_inode *ip) 894 { 895 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 896 xchk_irele(sc, ip); 897 return -ENOENT; 898 } 899 900 sc->ip = ip; 901 return 0; 902 } 903 904 /* 905 * Install an already-referenced inode for scrubbing. Get our own reference to 906 * the inode to make disposal simpler. The inode must not be in I_FREEING or 907 * I_WILL_FREE state! 908 */ 909 int 910 xchk_install_live_inode( 911 struct xfs_scrub *sc, 912 struct xfs_inode *ip) 913 { 914 if (!igrab(VFS_I(ip))) { 915 xchk_ino_set_corrupt(sc, ip->i_ino); 916 return -EFSCORRUPTED; 917 } 918 919 sc->ip = ip; 920 return 0; 921 } 922 923 /* 924 * In preparation to scrub metadata structures that hang off of an inode, 925 * grab either the inode referenced in the scrub control structure or the 926 * inode passed in. If the inumber does not reference an allocated inode 927 * record, the function returns ENOENT to end the scrub early. The inode 928 * is not locked. 929 */ 930 int 931 xchk_iget_for_scrubbing( 932 struct xfs_scrub *sc) 933 { 934 struct xfs_imap imap; 935 struct xfs_mount *mp = sc->mp; 936 struct xfs_perag *pag; 937 struct xfs_buf *agi_bp; 938 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 939 struct xfs_inode *ip = NULL; 940 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino); 941 int error; 942 943 ASSERT(sc->tp == NULL); 944 945 /* We want to scan the inode we already had opened. */ 946 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) 947 return xchk_install_live_inode(sc, ip_in); 948 949 /* Reject internal metadata files and obviously bad inode numbers. */ 950 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 951 return -ENOENT; 952 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino)) 953 return -ENOENT; 954 955 /* Try a safe untrusted iget. */ 956 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip); 957 if (!error) 958 return xchk_install_handle_inode(sc, ip); 959 if (error == -ENOENT) 960 return error; 961 if (error != -EINVAL) 962 goto out_error; 963 964 /* 965 * EINVAL with IGET_UNTRUSTED probably means one of several things: 966 * userspace gave us an inode number that doesn't correspond to fs 967 * space; the inode btree lacks a record for this inode; or there is a 968 * record, and it says this inode is free. 969 * 970 * We want to look up this inode in the inobt to distinguish two 971 * scenarios: (1) the inobt says the inode is free, in which case 972 * there's nothing to do; and (2) the inobt says the inode is 973 * allocated, but loading it failed due to corruption. 974 * 975 * Allocate a transaction and grab the AGI to prevent inobt activity 976 * in this AG. Retry the iget in case someone allocated a new inode 977 * after the first iget failed. 978 */ 979 error = xchk_trans_alloc(sc, 0); 980 if (error) 981 goto out_error; 982 983 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip); 984 if (error == 0) { 985 /* Actually got the inode, so install it. */ 986 xchk_trans_cancel(sc); 987 return xchk_install_handle_inode(sc, ip); 988 } 989 if (error == -ENOENT) 990 goto out_gone; 991 if (error != -EINVAL) 992 goto out_cancel; 993 994 /* Ensure that we have protected against inode allocation/freeing. */ 995 if (agi_bp == NULL) { 996 ASSERT(agi_bp != NULL); 997 error = -ECANCELED; 998 goto out_cancel; 999 } 1000 1001 /* 1002 * Untrusted iget failed a second time. Let's try an inobt lookup. 1003 * If the inobt thinks this the inode neither can exist inside the 1004 * filesystem nor is allocated, return ENOENT to signal that the check 1005 * can be skipped. 1006 * 1007 * If the lookup returns corruption, we'll mark this inode corrupt and 1008 * exit to userspace. There's little chance of fixing anything until 1009 * the inobt is straightened out, but there's nothing we can do here. 1010 * 1011 * If the lookup encounters any other error, exit to userspace. 1012 * 1013 * If the lookup succeeds, something else must be very wrong in the fs 1014 * such that setting up the incore inode failed in some strange way. 1015 * Treat those as corruptions. 1016 */ 1017 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino)); 1018 if (!pag) { 1019 error = -EFSCORRUPTED; 1020 goto out_cancel; 1021 } 1022 1023 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap, 1024 XFS_IGET_UNTRUSTED); 1025 xfs_perag_put(pag); 1026 if (error == -EINVAL || error == -ENOENT) 1027 goto out_gone; 1028 if (!error) 1029 error = -EFSCORRUPTED; 1030 1031 out_cancel: 1032 xchk_trans_cancel(sc); 1033 out_error: 1034 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 1035 error, __return_address); 1036 return error; 1037 out_gone: 1038 /* The file is gone, so there's nothing to check. */ 1039 xchk_trans_cancel(sc); 1040 return -ENOENT; 1041 } 1042 1043 /* Release an inode, possibly dropping it in the process. */ 1044 void 1045 xchk_irele( 1046 struct xfs_scrub *sc, 1047 struct xfs_inode *ip) 1048 { 1049 if (sc->tp) { 1050 /* 1051 * If we are in a transaction, we /cannot/ drop the inode 1052 * ourselves, because the VFS will trigger writeback, which 1053 * can require a transaction. Clear DONTCACHE to force the 1054 * inode to the LRU, where someone else can take care of 1055 * dropping it. 1056 * 1057 * Note that when we grabbed our reference to the inode, it 1058 * could have had an active ref and DONTCACHE set if a sysadmin 1059 * is trying to coerce a change in file access mode. icache 1060 * hits do not clear DONTCACHE, so we must do it here. 1061 */ 1062 spin_lock(&VFS_I(ip)->i_lock); 1063 VFS_I(ip)->i_state &= ~I_DONTCACHE; 1064 spin_unlock(&VFS_I(ip)->i_lock); 1065 } 1066 1067 xfs_irele(ip); 1068 } 1069 1070 /* 1071 * Set us up to scrub metadata mapped by a file's fork. Callers must not use 1072 * this to operate on user-accessible regular file data because the MMAPLOCK is 1073 * not taken. 1074 */ 1075 int 1076 xchk_setup_inode_contents( 1077 struct xfs_scrub *sc, 1078 unsigned int resblks) 1079 { 1080 int error; 1081 1082 error = xchk_iget_for_scrubbing(sc); 1083 if (error) 1084 return error; 1085 1086 /* Lock the inode so the VFS cannot touch this file. */ 1087 xchk_ilock(sc, XFS_IOLOCK_EXCL); 1088 1089 error = xchk_trans_alloc(sc, resblks); 1090 if (error) 1091 goto out; 1092 1093 error = xchk_ino_dqattach(sc); 1094 if (error) 1095 goto out; 1096 1097 xchk_ilock(sc, XFS_ILOCK_EXCL); 1098 out: 1099 /* scrub teardown will unlock and release the inode for us */ 1100 return error; 1101 } 1102 1103 void 1104 xchk_ilock( 1105 struct xfs_scrub *sc, 1106 unsigned int ilock_flags) 1107 { 1108 xfs_ilock(sc->ip, ilock_flags); 1109 sc->ilock_flags |= ilock_flags; 1110 } 1111 1112 bool 1113 xchk_ilock_nowait( 1114 struct xfs_scrub *sc, 1115 unsigned int ilock_flags) 1116 { 1117 if (xfs_ilock_nowait(sc->ip, ilock_flags)) { 1118 sc->ilock_flags |= ilock_flags; 1119 return true; 1120 } 1121 1122 return false; 1123 } 1124 1125 void 1126 xchk_iunlock( 1127 struct xfs_scrub *sc, 1128 unsigned int ilock_flags) 1129 { 1130 sc->ilock_flags &= ~ilock_flags; 1131 xfs_iunlock(sc->ip, ilock_flags); 1132 } 1133 1134 /* 1135 * Predicate that decides if we need to evaluate the cross-reference check. 1136 * If there was an error accessing the cross-reference btree, just delete 1137 * the cursor and skip the check. 1138 */ 1139 bool 1140 xchk_should_check_xref( 1141 struct xfs_scrub *sc, 1142 int *error, 1143 struct xfs_btree_cur **curpp) 1144 { 1145 /* No point in xref if we already know we're corrupt. */ 1146 if (xchk_skip_xref(sc->sm)) 1147 return false; 1148 1149 if (*error == 0) 1150 return true; 1151 1152 if (curpp) { 1153 /* If we've already given up on xref, just bail out. */ 1154 if (!*curpp) 1155 return false; 1156 1157 /* xref error, delete cursor and bail out. */ 1158 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 1159 *curpp = NULL; 1160 } 1161 1162 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 1163 trace_xchk_xref_error(sc, *error, __return_address); 1164 1165 /* 1166 * Errors encountered during cross-referencing with another 1167 * data structure should not cause this scrubber to abort. 1168 */ 1169 *error = 0; 1170 return false; 1171 } 1172 1173 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 1174 void 1175 xchk_buffer_recheck( 1176 struct xfs_scrub *sc, 1177 struct xfs_buf *bp) 1178 { 1179 xfs_failaddr_t fa; 1180 1181 if (bp->b_ops == NULL) { 1182 xchk_block_set_corrupt(sc, bp); 1183 return; 1184 } 1185 if (bp->b_ops->verify_struct == NULL) { 1186 xchk_set_incomplete(sc); 1187 return; 1188 } 1189 fa = bp->b_ops->verify_struct(bp); 1190 if (!fa) 1191 return; 1192 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 1193 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 1194 } 1195 1196 static inline int 1197 xchk_metadata_inode_subtype( 1198 struct xfs_scrub *sc, 1199 unsigned int scrub_type) 1200 { 1201 struct xfs_scrub_subord *sub; 1202 int error; 1203 1204 sub = xchk_scrub_create_subord(sc, scrub_type); 1205 error = sub->sc.ops->scrub(&sub->sc); 1206 xchk_scrub_free_subord(sub); 1207 return error; 1208 } 1209 1210 /* 1211 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 1212 * pointed to by sc->ip and the ILOCK must be held. 1213 */ 1214 int 1215 xchk_metadata_inode_forks( 1216 struct xfs_scrub *sc) 1217 { 1218 bool shared; 1219 int error; 1220 1221 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 1222 return 0; 1223 1224 /* Check the inode record. */ 1225 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1226 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1227 return error; 1228 1229 /* Metadata inodes don't live on the rt device. */ 1230 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 1231 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1232 return 0; 1233 } 1234 1235 /* They should never participate in reflink. */ 1236 if (xfs_is_reflink_inode(sc->ip)) { 1237 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1238 return 0; 1239 } 1240 1241 /* They also should never have extended attributes. */ 1242 if (xfs_inode_hasattr(sc->ip)) { 1243 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1244 return 0; 1245 } 1246 1247 /* Invoke the data fork scrubber. */ 1248 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1249 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 1250 return error; 1251 1252 /* Look for incorrect shared blocks. */ 1253 if (xfs_has_reflink(sc->mp)) { 1254 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 1255 &shared); 1256 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 1257 &error)) 1258 return error; 1259 if (shared) 1260 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub 1268 * operation. Callers must not hold any locks that intersect with the CPU 1269 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs 1270 * to change kernel code. 1271 */ 1272 void 1273 xchk_fsgates_enable( 1274 struct xfs_scrub *sc, 1275 unsigned int scrub_fsgates) 1276 { 1277 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL)); 1278 ASSERT(!(sc->flags & scrub_fsgates)); 1279 1280 trace_xchk_fsgates_enable(sc, scrub_fsgates); 1281 1282 if (scrub_fsgates & XCHK_FSGATES_DRAIN) 1283 xfs_drain_wait_enable(); 1284 1285 if (scrub_fsgates & XCHK_FSGATES_QUOTA) 1286 xfs_dqtrx_hook_enable(); 1287 1288 if (scrub_fsgates & XCHK_FSGATES_DIRENTS) 1289 xfs_dir_hook_enable(); 1290 1291 if (scrub_fsgates & XCHK_FSGATES_RMAP) 1292 xfs_rmap_hook_enable(); 1293 1294 sc->flags |= scrub_fsgates; 1295 } 1296 1297 /* 1298 * Decide if this is this a cached inode that's also allocated. The caller 1299 * must hold a reference to an AG and the AGI buffer lock to prevent inodes 1300 * from being allocated or freed. 1301 * 1302 * Look up an inode by number in the given file system. If the inode number 1303 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA. 1304 * If the inode is being reclaimed, return -ENODATA because we know the inode 1305 * cache cannot be updating the ondisk metadata. 1306 * 1307 * Otherwise, the incore inode is the one we want, and it is either live, 1308 * somewhere in the inactivation machinery, or reclaimable. The inode is 1309 * allocated if i_mode is nonzero. In all three cases, the cached inode will 1310 * be more up to date than the ondisk inode buffer, so we must use the incore 1311 * i_mode. 1312 */ 1313 int 1314 xchk_inode_is_allocated( 1315 struct xfs_scrub *sc, 1316 xfs_agino_t agino, 1317 bool *inuse) 1318 { 1319 struct xfs_mount *mp = sc->mp; 1320 struct xfs_perag *pag = sc->sa.pag; 1321 xfs_ino_t ino; 1322 struct xfs_inode *ip; 1323 int error; 1324 1325 /* caller must hold perag reference */ 1326 if (pag == NULL) { 1327 ASSERT(pag != NULL); 1328 return -EINVAL; 1329 } 1330 1331 /* caller must have AGI buffer */ 1332 if (sc->sa.agi_bp == NULL) { 1333 ASSERT(sc->sa.agi_bp != NULL); 1334 return -EINVAL; 1335 } 1336 1337 /* reject inode numbers outside existing AGs */ 1338 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); 1339 if (!xfs_verify_ino(mp, ino)) 1340 return -EINVAL; 1341 1342 error = -ENODATA; 1343 rcu_read_lock(); 1344 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1345 if (!ip) { 1346 /* cache miss */ 1347 goto out_rcu; 1348 } 1349 1350 /* 1351 * If the inode number doesn't match, the incore inode got reused 1352 * during an RCU grace period and the radix tree hasn't been updated. 1353 * This isn't the inode we want. 1354 */ 1355 spin_lock(&ip->i_flags_lock); 1356 if (ip->i_ino != ino) 1357 goto out_skip; 1358 1359 trace_xchk_inode_is_allocated(ip); 1360 1361 /* 1362 * We have an incore inode that matches the inode we want, and the 1363 * caller holds the perag structure and the AGI buffer. Let's check 1364 * our assumptions below: 1365 */ 1366 1367 #ifdef DEBUG 1368 /* 1369 * (1) If the incore inode is live (i.e. referenced from the dcache), 1370 * it will not be INEW, nor will it be in the inactivation or reclaim 1371 * machinery. The ondisk inode had better be allocated. This is the 1372 * most trivial case. 1373 */ 1374 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE | 1375 XFS_INACTIVATING))) { 1376 /* live inode */ 1377 ASSERT(VFS_I(ip)->i_mode != 0); 1378 } 1379 1380 /* 1381 * If the incore inode is INEW, there are several possibilities: 1382 * 1383 * (2) For a file that is being created, note that we allocate the 1384 * ondisk inode before allocating, initializing, and adding the incore 1385 * inode to the radix tree. 1386 * 1387 * (3) If the incore inode is being recycled, the inode has to be 1388 * allocated because we don't allow freed inodes to be recycled. 1389 * Recycling doesn't touch i_mode. 1390 */ 1391 if (ip->i_flags & XFS_INEW) { 1392 /* created on disk already or recycling */ 1393 ASSERT(VFS_I(ip)->i_mode != 0); 1394 } 1395 1396 /* 1397 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but 1398 * inactivation has not started (!INACTIVATING), it is still allocated. 1399 */ 1400 if ((ip->i_flags & XFS_NEED_INACTIVE) && 1401 !(ip->i_flags & XFS_INACTIVATING)) { 1402 /* definitely before difree */ 1403 ASSERT(VFS_I(ip)->i_mode != 0); 1404 } 1405 #endif 1406 1407 /* 1408 * If the incore inode is undergoing inactivation (INACTIVATING), there 1409 * are two possibilities: 1410 * 1411 * (5) It is before the point where it would get freed ondisk, in which 1412 * case i_mode is still nonzero. 1413 * 1414 * (6) It has already been freed, in which case i_mode is zero. 1415 * 1416 * We don't take the ILOCK here, but difree and dialloc update the AGI, 1417 * and we've taken the AGI buffer lock, which prevents that from 1418 * happening. 1419 */ 1420 1421 /* 1422 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for 1423 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still 1424 * reflects the ondisk state. 1425 */ 1426 1427 /* 1428 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because 1429 * the flush code uses i_mode to format the ondisk inode. 1430 */ 1431 1432 /* 1433 * (9) If the inode is in IRECLAIM and was reachable via the radix 1434 * tree, it still has the same i_mode as it did before it entered 1435 * reclaim. The inode object is still alive because we hold the RCU 1436 * read lock. 1437 */ 1438 1439 *inuse = VFS_I(ip)->i_mode != 0; 1440 error = 0; 1441 1442 out_skip: 1443 spin_unlock(&ip->i_flags_lock); 1444 out_rcu: 1445 rcu_read_unlock(); 1446 return error; 1447 } 1448