1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_attr.h" 27 #include "xfs_reflink.h" 28 #include "xfs_ag.h" 29 #include "scrub/scrub.h" 30 #include "scrub/common.h" 31 #include "scrub/trace.h" 32 #include "scrub/repair.h" 33 #include "scrub/health.h" 34 35 /* Common code for the metadata scrubbers. */ 36 37 /* 38 * Handling operational errors. 39 * 40 * The *_process_error() family of functions are used to process error return 41 * codes from functions called as part of a scrub operation. 42 * 43 * If there's no error, we return true to tell the caller that it's ok 44 * to move on to the next check in its list. 45 * 46 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 47 * caller that something bad happened, and we preserve *error so that 48 * the caller can return the *error up the stack to userspace. 49 * 50 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 51 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 52 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 53 * not via return codes. We return false to tell the caller that 54 * something bad happened. Since the error has been cleared, the caller 55 * will (presumably) return that zero and scrubbing will move on to 56 * whatever's next. 57 * 58 * ftrace can be used to record the precise metadata location and the 59 * approximate code location of the failed operation. 60 */ 61 62 /* Check for operational errors. */ 63 static bool 64 __xchk_process_error( 65 struct xfs_scrub *sc, 66 xfs_agnumber_t agno, 67 xfs_agblock_t bno, 68 int *error, 69 __u32 errflag, 70 void *ret_ip) 71 { 72 switch (*error) { 73 case 0: 74 return true; 75 case -EDEADLOCK: 76 /* Used to restart an op with deadlock avoidance. */ 77 trace_xchk_deadlock_retry( 78 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 79 sc->sm, *error); 80 break; 81 case -EFSBADCRC: 82 case -EFSCORRUPTED: 83 /* Note the badness but don't abort. */ 84 sc->sm->sm_flags |= errflag; 85 *error = 0; 86 fallthrough; 87 default: 88 trace_xchk_op_error(sc, agno, bno, *error, 89 ret_ip); 90 break; 91 } 92 return false; 93 } 94 95 bool 96 xchk_process_error( 97 struct xfs_scrub *sc, 98 xfs_agnumber_t agno, 99 xfs_agblock_t bno, 100 int *error) 101 { 102 return __xchk_process_error(sc, agno, bno, error, 103 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 104 } 105 106 bool 107 xchk_xref_process_error( 108 struct xfs_scrub *sc, 109 xfs_agnumber_t agno, 110 xfs_agblock_t bno, 111 int *error) 112 { 113 return __xchk_process_error(sc, agno, bno, error, 114 XFS_SCRUB_OFLAG_XFAIL, __return_address); 115 } 116 117 /* Check for operational errors for a file offset. */ 118 static bool 119 __xchk_fblock_process_error( 120 struct xfs_scrub *sc, 121 int whichfork, 122 xfs_fileoff_t offset, 123 int *error, 124 __u32 errflag, 125 void *ret_ip) 126 { 127 switch (*error) { 128 case 0: 129 return true; 130 case -EDEADLOCK: 131 /* Used to restart an op with deadlock avoidance. */ 132 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 133 break; 134 case -EFSBADCRC: 135 case -EFSCORRUPTED: 136 /* Note the badness but don't abort. */ 137 sc->sm->sm_flags |= errflag; 138 *error = 0; 139 fallthrough; 140 default: 141 trace_xchk_file_op_error(sc, whichfork, offset, *error, 142 ret_ip); 143 break; 144 } 145 return false; 146 } 147 148 bool 149 xchk_fblock_process_error( 150 struct xfs_scrub *sc, 151 int whichfork, 152 xfs_fileoff_t offset, 153 int *error) 154 { 155 return __xchk_fblock_process_error(sc, whichfork, offset, error, 156 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 157 } 158 159 bool 160 xchk_fblock_xref_process_error( 161 struct xfs_scrub *sc, 162 int whichfork, 163 xfs_fileoff_t offset, 164 int *error) 165 { 166 return __xchk_fblock_process_error(sc, whichfork, offset, error, 167 XFS_SCRUB_OFLAG_XFAIL, __return_address); 168 } 169 170 /* 171 * Handling scrub corruption/optimization/warning checks. 172 * 173 * The *_set_{corrupt,preen,warning}() family of functions are used to 174 * record the presence of metadata that is incorrect (corrupt), could be 175 * optimized somehow (preen), or should be flagged for administrative 176 * review but is not incorrect (warn). 177 * 178 * ftrace can be used to record the precise metadata location and 179 * approximate code location of the failed check. 180 */ 181 182 /* Record a block which could be optimized. */ 183 void 184 xchk_block_set_preen( 185 struct xfs_scrub *sc, 186 struct xfs_buf *bp) 187 { 188 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 189 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 190 } 191 192 /* 193 * Record an inode which could be optimized. The trace data will 194 * include the block given by bp if bp is given; otherwise it will use 195 * the block location of the inode record itself. 196 */ 197 void 198 xchk_ino_set_preen( 199 struct xfs_scrub *sc, 200 xfs_ino_t ino) 201 { 202 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 203 trace_xchk_ino_preen(sc, ino, __return_address); 204 } 205 206 /* Record something being wrong with the filesystem primary superblock. */ 207 void 208 xchk_set_corrupt( 209 struct xfs_scrub *sc) 210 { 211 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 212 trace_xchk_fs_error(sc, 0, __return_address); 213 } 214 215 /* Record a corrupt block. */ 216 void 217 xchk_block_set_corrupt( 218 struct xfs_scrub *sc, 219 struct xfs_buf *bp) 220 { 221 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 222 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 223 } 224 225 /* Record a corruption while cross-referencing. */ 226 void 227 xchk_block_xref_set_corrupt( 228 struct xfs_scrub *sc, 229 struct xfs_buf *bp) 230 { 231 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 232 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 233 } 234 235 /* 236 * Record a corrupt inode. The trace data will include the block given 237 * by bp if bp is given; otherwise it will use the block location of the 238 * inode record itself. 239 */ 240 void 241 xchk_ino_set_corrupt( 242 struct xfs_scrub *sc, 243 xfs_ino_t ino) 244 { 245 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 246 trace_xchk_ino_error(sc, ino, __return_address); 247 } 248 249 /* Record a corruption while cross-referencing with an inode. */ 250 void 251 xchk_ino_xref_set_corrupt( 252 struct xfs_scrub *sc, 253 xfs_ino_t ino) 254 { 255 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 256 trace_xchk_ino_error(sc, ino, __return_address); 257 } 258 259 /* Record corruption in a block indexed by a file fork. */ 260 void 261 xchk_fblock_set_corrupt( 262 struct xfs_scrub *sc, 263 int whichfork, 264 xfs_fileoff_t offset) 265 { 266 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 267 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 268 } 269 270 /* Record a corruption while cross-referencing a fork block. */ 271 void 272 xchk_fblock_xref_set_corrupt( 273 struct xfs_scrub *sc, 274 int whichfork, 275 xfs_fileoff_t offset) 276 { 277 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 278 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 279 } 280 281 /* 282 * Warn about inodes that need administrative review but is not 283 * incorrect. 284 */ 285 void 286 xchk_ino_set_warning( 287 struct xfs_scrub *sc, 288 xfs_ino_t ino) 289 { 290 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 291 trace_xchk_ino_warning(sc, ino, __return_address); 292 } 293 294 /* Warn about a block indexed by a file fork that needs review. */ 295 void 296 xchk_fblock_set_warning( 297 struct xfs_scrub *sc, 298 int whichfork, 299 xfs_fileoff_t offset) 300 { 301 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 302 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 303 } 304 305 /* Signal an incomplete scrub. */ 306 void 307 xchk_set_incomplete( 308 struct xfs_scrub *sc) 309 { 310 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 311 trace_xchk_incomplete(sc, __return_address); 312 } 313 314 /* 315 * rmap scrubbing -- compute the number of blocks with a given owner, 316 * at least according to the reverse mapping data. 317 */ 318 319 struct xchk_rmap_ownedby_info { 320 const struct xfs_owner_info *oinfo; 321 xfs_filblks_t *blocks; 322 }; 323 324 STATIC int 325 xchk_count_rmap_ownedby_irec( 326 struct xfs_btree_cur *cur, 327 const struct xfs_rmap_irec *rec, 328 void *priv) 329 { 330 struct xchk_rmap_ownedby_info *sroi = priv; 331 bool irec_attr; 332 bool oinfo_attr; 333 334 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 335 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 336 337 if (rec->rm_owner != sroi->oinfo->oi_owner) 338 return 0; 339 340 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 341 (*sroi->blocks) += rec->rm_blockcount; 342 343 return 0; 344 } 345 346 /* 347 * Calculate the number of blocks the rmap thinks are owned by something. 348 * The caller should pass us an rmapbt cursor. 349 */ 350 int 351 xchk_count_rmap_ownedby_ag( 352 struct xfs_scrub *sc, 353 struct xfs_btree_cur *cur, 354 const struct xfs_owner_info *oinfo, 355 xfs_filblks_t *blocks) 356 { 357 struct xchk_rmap_ownedby_info sroi = { 358 .oinfo = oinfo, 359 .blocks = blocks, 360 }; 361 362 *blocks = 0; 363 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 364 &sroi); 365 } 366 367 /* 368 * AG scrubbing 369 * 370 * These helpers facilitate locking an allocation group's header 371 * buffers, setting up cursors for all btrees that are present, and 372 * cleaning everything up once we're through. 373 */ 374 375 /* Decide if we want to return an AG header read failure. */ 376 static inline bool 377 want_ag_read_header_failure( 378 struct xfs_scrub *sc, 379 unsigned int type) 380 { 381 /* Return all AG header read failures when scanning btrees. */ 382 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 383 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 384 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 385 return true; 386 /* 387 * If we're scanning a given type of AG header, we only want to 388 * see read failures from that specific header. We'd like the 389 * other headers to cross-check them, but this isn't required. 390 */ 391 if (sc->sm->sm_type == type) 392 return true; 393 return false; 394 } 395 396 /* 397 * Grab the perag structure and all the headers for an AG. 398 * 399 * The headers should be released by xchk_ag_free, but as a fail safe we attach 400 * all the buffers we grab to the scrub transaction so they'll all be freed 401 * when we cancel it. Returns ENOENT if we can't grab the perag structure. 402 */ 403 int 404 xchk_ag_read_headers( 405 struct xfs_scrub *sc, 406 xfs_agnumber_t agno, 407 struct xchk_ag *sa) 408 { 409 struct xfs_mount *mp = sc->mp; 410 int error; 411 412 ASSERT(!sa->pag); 413 sa->pag = xfs_perag_get(mp, agno); 414 if (!sa->pag) 415 return -ENOENT; 416 417 error = xfs_ialloc_read_agi(mp, sc->tp, agno, &sa->agi_bp); 418 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 419 return error; 420 421 error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, &sa->agf_bp); 422 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 423 return error; 424 425 error = xfs_alloc_read_agfl(mp, sc->tp, agno, &sa->agfl_bp); 426 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL)) 427 return error; 428 429 return 0; 430 } 431 432 /* Release all the AG btree cursors. */ 433 void 434 xchk_ag_btcur_free( 435 struct xchk_ag *sa) 436 { 437 if (sa->refc_cur) 438 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 439 if (sa->rmap_cur) 440 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 441 if (sa->fino_cur) 442 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 443 if (sa->ino_cur) 444 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 445 if (sa->cnt_cur) 446 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 447 if (sa->bno_cur) 448 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 449 450 sa->refc_cur = NULL; 451 sa->rmap_cur = NULL; 452 sa->fino_cur = NULL; 453 sa->ino_cur = NULL; 454 sa->bno_cur = NULL; 455 sa->cnt_cur = NULL; 456 } 457 458 /* Initialize all the btree cursors for an AG. */ 459 void 460 xchk_ag_btcur_init( 461 struct xfs_scrub *sc, 462 struct xchk_ag *sa) 463 { 464 struct xfs_mount *mp = sc->mp; 465 466 if (sa->agf_bp && 467 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) { 468 /* Set up a bnobt cursor for cross-referencing. */ 469 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 470 sa->pag, XFS_BTNUM_BNO); 471 } 472 473 if (sa->agf_bp && 474 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) { 475 /* Set up a cntbt cursor for cross-referencing. */ 476 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 477 sa->pag, XFS_BTNUM_CNT); 478 } 479 480 /* Set up a inobt cursor for cross-referencing. */ 481 if (sa->agi_bp && 482 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) { 483 sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 484 sa->pag, XFS_BTNUM_INO); 485 } 486 487 /* Set up a finobt cursor for cross-referencing. */ 488 if (sa->agi_bp && xfs_has_finobt(mp) && 489 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) { 490 sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 491 sa->pag, XFS_BTNUM_FINO); 492 } 493 494 /* Set up a rmapbt cursor for cross-referencing. */ 495 if (sa->agf_bp && xfs_has_rmapbt(mp) && 496 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) { 497 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 498 sa->pag); 499 } 500 501 /* Set up a refcountbt cursor for cross-referencing. */ 502 if (sa->agf_bp && xfs_has_reflink(mp) && 503 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) { 504 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 505 sa->agf_bp, sa->pag); 506 } 507 } 508 509 /* Release the AG header context and btree cursors. */ 510 void 511 xchk_ag_free( 512 struct xfs_scrub *sc, 513 struct xchk_ag *sa) 514 { 515 xchk_ag_btcur_free(sa); 516 if (sa->agfl_bp) { 517 xfs_trans_brelse(sc->tp, sa->agfl_bp); 518 sa->agfl_bp = NULL; 519 } 520 if (sa->agf_bp) { 521 xfs_trans_brelse(sc->tp, sa->agf_bp); 522 sa->agf_bp = NULL; 523 } 524 if (sa->agi_bp) { 525 xfs_trans_brelse(sc->tp, sa->agi_bp); 526 sa->agi_bp = NULL; 527 } 528 if (sa->pag) { 529 xfs_perag_put(sa->pag); 530 sa->pag = NULL; 531 } 532 } 533 534 /* 535 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 536 * order. Locking order requires us to get the AGI before the AGF. We use the 537 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 538 * caller passes one in (bmap scrub) or we have to create a transaction 539 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 540 */ 541 int 542 xchk_ag_init( 543 struct xfs_scrub *sc, 544 xfs_agnumber_t agno, 545 struct xchk_ag *sa) 546 { 547 int error; 548 549 error = xchk_ag_read_headers(sc, agno, sa); 550 if (error) 551 return error; 552 553 xchk_ag_btcur_init(sc, sa); 554 return 0; 555 } 556 557 /* Per-scrubber setup functions */ 558 559 /* 560 * Grab an empty transaction so that we can re-grab locked buffers if 561 * one of our btrees turns out to be cyclic. 562 * 563 * If we're going to repair something, we need to ask for the largest possible 564 * log reservation so that we can handle the worst case scenario for metadata 565 * updates while rebuilding a metadata item. We also need to reserve as many 566 * blocks in the head transaction as we think we're going to need to rebuild 567 * the metadata object. 568 */ 569 int 570 xchk_trans_alloc( 571 struct xfs_scrub *sc, 572 uint resblks) 573 { 574 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 575 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 576 resblks, 0, 0, &sc->tp); 577 578 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 579 } 580 581 /* Set us up with a transaction and an empty context. */ 582 int 583 xchk_setup_fs( 584 struct xfs_scrub *sc) 585 { 586 uint resblks; 587 588 resblks = xrep_calc_ag_resblks(sc); 589 return xchk_trans_alloc(sc, resblks); 590 } 591 592 /* Set us up with AG headers and btree cursors. */ 593 int 594 xchk_setup_ag_btree( 595 struct xfs_scrub *sc, 596 bool force_log) 597 { 598 struct xfs_mount *mp = sc->mp; 599 int error; 600 601 /* 602 * If the caller asks us to checkpont the log, do so. This 603 * expensive operation should be performed infrequently and only 604 * as a last resort. Any caller that sets force_log should 605 * document why they need to do so. 606 */ 607 if (force_log) { 608 error = xchk_checkpoint_log(mp); 609 if (error) 610 return error; 611 } 612 613 error = xchk_setup_fs(sc); 614 if (error) 615 return error; 616 617 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 618 } 619 620 /* Push everything out of the log onto disk. */ 621 int 622 xchk_checkpoint_log( 623 struct xfs_mount *mp) 624 { 625 int error; 626 627 error = xfs_log_force(mp, XFS_LOG_SYNC); 628 if (error) 629 return error; 630 xfs_ail_push_all_sync(mp->m_ail); 631 return 0; 632 } 633 634 /* 635 * Given an inode and the scrub control structure, grab either the 636 * inode referenced in the control structure or the inode passed in. 637 * The inode is not locked. 638 */ 639 int 640 xchk_get_inode( 641 struct xfs_scrub *sc) 642 { 643 struct xfs_imap imap; 644 struct xfs_mount *mp = sc->mp; 645 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 646 struct xfs_inode *ip = NULL; 647 int error; 648 649 /* We want to scan the inode we already had opened. */ 650 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) { 651 sc->ip = ip_in; 652 return 0; 653 } 654 655 /* Look up the inode, see if the generation number matches. */ 656 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 657 return -ENOENT; 658 error = xfs_iget(mp, NULL, sc->sm->sm_ino, 659 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip); 660 switch (error) { 661 case -ENOENT: 662 /* Inode doesn't exist, just bail out. */ 663 return error; 664 case 0: 665 /* Got an inode, continue. */ 666 break; 667 case -EINVAL: 668 /* 669 * -EINVAL with IGET_UNTRUSTED could mean one of several 670 * things: userspace gave us an inode number that doesn't 671 * correspond to fs space, or doesn't have an inobt entry; 672 * or it could simply mean that the inode buffer failed the 673 * read verifiers. 674 * 675 * Try just the inode mapping lookup -- if it succeeds, then 676 * the inode buffer verifier failed and something needs fixing. 677 * Otherwise, we really couldn't find it so tell userspace 678 * that it no longer exists. 679 */ 680 error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap, 681 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE); 682 if (error) 683 return -ENOENT; 684 error = -EFSCORRUPTED; 685 fallthrough; 686 default: 687 trace_xchk_op_error(sc, 688 XFS_INO_TO_AGNO(mp, sc->sm->sm_ino), 689 XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 690 error, __return_address); 691 return error; 692 } 693 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 694 xfs_irele(ip); 695 return -ENOENT; 696 } 697 698 sc->ip = ip; 699 return 0; 700 } 701 702 /* Set us up to scrub a file's contents. */ 703 int 704 xchk_setup_inode_contents( 705 struct xfs_scrub *sc, 706 unsigned int resblks) 707 { 708 int error; 709 710 error = xchk_get_inode(sc); 711 if (error) 712 return error; 713 714 /* Got the inode, lock it and we're ready to go. */ 715 sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 716 xfs_ilock(sc->ip, sc->ilock_flags); 717 error = xchk_trans_alloc(sc, resblks); 718 if (error) 719 goto out; 720 sc->ilock_flags |= XFS_ILOCK_EXCL; 721 xfs_ilock(sc->ip, XFS_ILOCK_EXCL); 722 723 out: 724 /* scrub teardown will unlock and release the inode for us */ 725 return error; 726 } 727 728 /* 729 * Predicate that decides if we need to evaluate the cross-reference check. 730 * If there was an error accessing the cross-reference btree, just delete 731 * the cursor and skip the check. 732 */ 733 bool 734 xchk_should_check_xref( 735 struct xfs_scrub *sc, 736 int *error, 737 struct xfs_btree_cur **curpp) 738 { 739 /* No point in xref if we already know we're corrupt. */ 740 if (xchk_skip_xref(sc->sm)) 741 return false; 742 743 if (*error == 0) 744 return true; 745 746 if (curpp) { 747 /* If we've already given up on xref, just bail out. */ 748 if (!*curpp) 749 return false; 750 751 /* xref error, delete cursor and bail out. */ 752 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 753 *curpp = NULL; 754 } 755 756 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 757 trace_xchk_xref_error(sc, *error, __return_address); 758 759 /* 760 * Errors encountered during cross-referencing with another 761 * data structure should not cause this scrubber to abort. 762 */ 763 *error = 0; 764 return false; 765 } 766 767 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 768 void 769 xchk_buffer_recheck( 770 struct xfs_scrub *sc, 771 struct xfs_buf *bp) 772 { 773 xfs_failaddr_t fa; 774 775 if (bp->b_ops == NULL) { 776 xchk_block_set_corrupt(sc, bp); 777 return; 778 } 779 if (bp->b_ops->verify_struct == NULL) { 780 xchk_set_incomplete(sc); 781 return; 782 } 783 fa = bp->b_ops->verify_struct(bp); 784 if (!fa) 785 return; 786 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 787 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 788 } 789 790 /* 791 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 792 * pointed to by sc->ip and the ILOCK must be held. 793 */ 794 int 795 xchk_metadata_inode_forks( 796 struct xfs_scrub *sc) 797 { 798 __u32 smtype; 799 bool shared; 800 int error; 801 802 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 803 return 0; 804 805 /* Metadata inodes don't live on the rt device. */ 806 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 807 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 808 return 0; 809 } 810 811 /* They should never participate in reflink. */ 812 if (xfs_is_reflink_inode(sc->ip)) { 813 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 814 return 0; 815 } 816 817 /* They also should never have extended attributes. */ 818 if (xfs_inode_hasattr(sc->ip)) { 819 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 820 return 0; 821 } 822 823 /* Invoke the data fork scrubber. */ 824 smtype = sc->sm->sm_type; 825 sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD; 826 error = xchk_bmap_data(sc); 827 sc->sm->sm_type = smtype; 828 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 829 return error; 830 831 /* Look for incorrect shared blocks. */ 832 if (xfs_has_reflink(sc->mp)) { 833 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 834 &shared); 835 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 836 &error)) 837 return error; 838 if (shared) 839 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 840 } 841 842 return error; 843 } 844 845 /* 846 * Try to lock an inode in violation of the usual locking order rules. For 847 * example, trying to get the IOLOCK while in transaction context, or just 848 * plain breaking AG-order or inode-order inode locking rules. Either way, 849 * the only way to avoid an ABBA deadlock is to use trylock and back off if 850 * we can't. 851 */ 852 int 853 xchk_ilock_inverted( 854 struct xfs_inode *ip, 855 uint lock_mode) 856 { 857 int i; 858 859 for (i = 0; i < 20; i++) { 860 if (xfs_ilock_nowait(ip, lock_mode)) 861 return 0; 862 delay(1); 863 } 864 return -EDEADLOCK; 865 } 866 867 /* Pause background reaping of resources. */ 868 void 869 xchk_stop_reaping( 870 struct xfs_scrub *sc) 871 { 872 sc->flags |= XCHK_REAPING_DISABLED; 873 xfs_blockgc_stop(sc->mp); 874 xfs_inodegc_stop(sc->mp); 875 } 876 877 /* Restart background reaping of resources. */ 878 void 879 xchk_start_reaping( 880 struct xfs_scrub *sc) 881 { 882 /* 883 * Readonly filesystems do not perform inactivation or speculative 884 * preallocation, so there's no need to restart the workers. 885 */ 886 if (!xfs_is_readonly(sc->mp)) { 887 xfs_inodegc_start(sc->mp); 888 xfs_blockgc_start(sc->mp); 889 } 890 sc->flags &= ~XCHK_REAPING_DISABLED; 891 } 892