xref: /linux/fs/xfs/scrub/alloc_repair.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_bit.h"
16 #include "xfs_log_format.h"
17 #include "xfs_trans.h"
18 #include "xfs_sb.h"
19 #include "xfs_alloc.h"
20 #include "xfs_alloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_inode.h"
24 #include "xfs_refcount.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_health.h"
27 #include "xfs_bmap.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ag.h"
30 #include "scrub/xfs_scrub.h"
31 #include "scrub/scrub.h"
32 #include "scrub/common.h"
33 #include "scrub/btree.h"
34 #include "scrub/trace.h"
35 #include "scrub/repair.h"
36 #include "scrub/bitmap.h"
37 #include "scrub/agb_bitmap.h"
38 #include "scrub/xfile.h"
39 #include "scrub/xfarray.h"
40 #include "scrub/newbt.h"
41 #include "scrub/reap.h"
42 
43 /*
44  * Free Space Btree Repair
45  * =======================
46  *
47  * The reverse mappings are supposed to record all space usage for the entire
48  * AG.  Therefore, we can recreate the free extent records in an AG by looking
49  * for gaps in the physical extents recorded in the rmapbt.  These records are
50  * staged in @free_records.  Identifying the gaps is more difficult on a
51  * reflink filesystem because rmap records are allowed to overlap.
52  *
53  * Because the final step of building a new index is to free the space used by
54  * the old index, repair needs to find that space.  Unfortunately, all
55  * structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
56  * the same rmapbt owner code (OWN_AG), so this is not straightforward.
57  *
58  * The scan of the reverse mapping information records the space used by OWN_AG
59  * in @old_allocbt_blocks, which (at this stage) is somewhat misnamed.  While
60  * walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
61  * record all visited rmap btree blocks and all blocks owned by the AGFL.
62  *
63  * After that is where the definitions of old_allocbt_blocks shifts.  This
64  * expression identifies possible former bnobt/cntbt blocks:
65  *
66  *	(OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
67  *
68  * Substituting from above definitions, that becomes:
69  *
70  *	old_allocbt_blocks & ~not_allocbt_blocks
71  *
72  * The OWN_AG bitmap itself isn't needed after this point, so what we really do
73  * instead is:
74  *
75  *	old_allocbt_blocks &= ~not_allocbt_blocks;
76  *
77  * After this point, @old_allocbt_blocks is a bitmap of alleged former
78  * bnobt/cntbt blocks.  The xagb_bitmap_disunion operation modifies its first
79  * parameter in place to avoid copying records around.
80  *
81  * Next, some of the space described by @free_records are diverted to the newbt
82  * reservation and used to format new btree blocks.  The remaining records are
83  * written to the new btree indices.  We reconstruct both bnobt and cntbt at
84  * the same time since we've already done all the work.
85  *
86  * We use the prefix 'xrep_abt' here because we regenerate both free space
87  * allocation btrees at the same time.
88  */
89 
90 struct xrep_abt {
91 	/* Blocks owned by the rmapbt or the agfl. */
92 	struct xagb_bitmap	not_allocbt_blocks;
93 
94 	/* All OWN_AG blocks. */
95 	struct xagb_bitmap	old_allocbt_blocks;
96 
97 	/*
98 	 * New bnobt information.  All btree block reservations are added to
99 	 * the reservation list in new_bnobt.
100 	 */
101 	struct xrep_newbt	new_bnobt;
102 
103 	/* new cntbt information */
104 	struct xrep_newbt	new_cntbt;
105 
106 	/* Free space extents. */
107 	struct xfarray		*free_records;
108 
109 	struct xfs_scrub	*sc;
110 
111 	/* Number of non-null records in @free_records. */
112 	uint64_t		nr_real_records;
113 
114 	/* get_records()'s position in the free space record array. */
115 	xfarray_idx_t		array_cur;
116 
117 	/*
118 	 * Next block we anticipate seeing in the rmap records.  If the next
119 	 * rmap record is greater than next_agbno, we have found unused space.
120 	 */
121 	xfs_agblock_t		next_agbno;
122 
123 	/* Number of free blocks in this AG. */
124 	xfs_agblock_t		nr_blocks;
125 
126 	/* Longest free extent we found in the AG. */
127 	xfs_agblock_t		longest;
128 };
129 
130 /* Set up to repair AG free space btrees. */
131 int
132 xrep_setup_ag_allocbt(
133 	struct xfs_scrub	*sc)
134 {
135 	struct xfs_group	*xg = pag_group(sc->sa.pag);
136 	unsigned int		busy_gen;
137 
138 	/*
139 	 * Make sure the busy extent list is clear because we can't put extents
140 	 * on there twice.
141 	 */
142 	if (xfs_extent_busy_list_empty(xg, &busy_gen))
143 		return 0;
144 	return xfs_extent_busy_flush(sc->tp, xg, busy_gen, 0);
145 }
146 
147 /* Check for any obvious conflicts in the free extent. */
148 STATIC int
149 xrep_abt_check_free_ext(
150 	struct xfs_scrub	*sc,
151 	const struct xfs_alloc_rec_incore *rec)
152 {
153 	enum xbtree_recpacking	outcome;
154 	int			error;
155 
156 	if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
157 		return -EFSCORRUPTED;
158 
159 	/* Must not be an inode chunk. */
160 	error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
161 			rec->ar_startblock, rec->ar_blockcount, &outcome);
162 	if (error)
163 		return error;
164 	if (outcome != XBTREE_RECPACKING_EMPTY)
165 		return -EFSCORRUPTED;
166 
167 	/* Must not be shared or CoW staging. */
168 	if (sc->sa.refc_cur) {
169 		error = xfs_refcount_has_records(sc->sa.refc_cur,
170 				XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
171 				rec->ar_blockcount, &outcome);
172 		if (error)
173 			return error;
174 		if (outcome != XBTREE_RECPACKING_EMPTY)
175 			return -EFSCORRUPTED;
176 
177 		error = xfs_refcount_has_records(sc->sa.refc_cur,
178 				XFS_REFC_DOMAIN_COW, rec->ar_startblock,
179 				rec->ar_blockcount, &outcome);
180 		if (error)
181 			return error;
182 		if (outcome != XBTREE_RECPACKING_EMPTY)
183 			return -EFSCORRUPTED;
184 	}
185 
186 	return 0;
187 }
188 
189 /*
190  * Stash a free space record for all the space since the last bno we found
191  * all the way up to @end.
192  */
193 static int
194 xrep_abt_stash(
195 	struct xrep_abt		*ra,
196 	xfs_agblock_t		end)
197 {
198 	struct xfs_alloc_rec_incore arec = {
199 		.ar_startblock	= ra->next_agbno,
200 		.ar_blockcount	= end - ra->next_agbno,
201 	};
202 	struct xfs_scrub	*sc = ra->sc;
203 	int			error = 0;
204 
205 	if (xchk_should_terminate(sc, &error))
206 		return error;
207 
208 	error = xrep_abt_check_free_ext(ra->sc, &arec);
209 	if (error)
210 		return error;
211 
212 	trace_xrep_abt_found(sc->sa.pag, &arec);
213 
214 	error = xfarray_append(ra->free_records, &arec);
215 	if (error)
216 		return error;
217 
218 	ra->nr_blocks += arec.ar_blockcount;
219 	return 0;
220 }
221 
222 /* Record extents that aren't in use from gaps in the rmap records. */
223 STATIC int
224 xrep_abt_walk_rmap(
225 	struct xfs_btree_cur		*cur,
226 	const struct xfs_rmap_irec	*rec,
227 	void				*priv)
228 {
229 	struct xrep_abt			*ra = priv;
230 	int				error;
231 
232 	/* Record all the OWN_AG blocks... */
233 	if (rec->rm_owner == XFS_RMAP_OWN_AG) {
234 		error = xagb_bitmap_set(&ra->old_allocbt_blocks,
235 				rec->rm_startblock, rec->rm_blockcount);
236 		if (error)
237 			return error;
238 	}
239 
240 	/* ...and all the rmapbt blocks... */
241 	error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
242 	if (error)
243 		return error;
244 
245 	/* ...and all the free space. */
246 	if (rec->rm_startblock > ra->next_agbno) {
247 		error = xrep_abt_stash(ra, rec->rm_startblock);
248 		if (error)
249 			return error;
250 	}
251 
252 	/*
253 	 * rmap records can overlap on reflink filesystems, so project
254 	 * next_agbno as far out into the AG space as we currently know about.
255 	 */
256 	ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
257 			rec->rm_startblock + rec->rm_blockcount);
258 	return 0;
259 }
260 
261 /* Collect an AGFL block for the not-to-release list. */
262 static int
263 xrep_abt_walk_agfl(
264 	struct xfs_mount	*mp,
265 	xfs_agblock_t		agbno,
266 	void			*priv)
267 {
268 	struct xrep_abt		*ra = priv;
269 
270 	return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
271 }
272 
273 /*
274  * Compare two free space extents by block number.  We want to sort in order of
275  * increasing block number.
276  */
277 static int
278 xrep_bnobt_extent_cmp(
279 	const void		*a,
280 	const void		*b)
281 {
282 	const struct xfs_alloc_rec_incore *ap = a;
283 	const struct xfs_alloc_rec_incore *bp = b;
284 
285 	if (ap->ar_startblock > bp->ar_startblock)
286 		return 1;
287 	else if (ap->ar_startblock < bp->ar_startblock)
288 		return -1;
289 	return 0;
290 }
291 
292 /*
293  * Re-sort the free extents by block number so that we can put the records into
294  * the bnobt in the correct order.  Make sure the records do not overlap in
295  * physical space.
296  */
297 STATIC int
298 xrep_bnobt_sort_records(
299 	struct xrep_abt			*ra)
300 {
301 	struct xfs_alloc_rec_incore	arec;
302 	xfarray_idx_t			cur = XFARRAY_CURSOR_INIT;
303 	xfs_agblock_t			next_agbno = 0;
304 	int				error;
305 
306 	error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
307 	if (error)
308 		return error;
309 
310 	while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
311 		if (arec.ar_startblock < next_agbno)
312 			return -EFSCORRUPTED;
313 
314 		next_agbno = arec.ar_startblock + arec.ar_blockcount;
315 	}
316 
317 	return error;
318 }
319 
320 /*
321  * Compare two free space extents by length and then block number.  We want
322  * to sort first in order of increasing length and then in order of increasing
323  * block number.
324  */
325 static int
326 xrep_cntbt_extent_cmp(
327 	const void			*a,
328 	const void			*b)
329 {
330 	const struct xfs_alloc_rec_incore *ap = a;
331 	const struct xfs_alloc_rec_incore *bp = b;
332 
333 	if (ap->ar_blockcount > bp->ar_blockcount)
334 		return 1;
335 	else if (ap->ar_blockcount < bp->ar_blockcount)
336 		return -1;
337 	return xrep_bnobt_extent_cmp(a, b);
338 }
339 
340 /*
341  * Sort the free extents by length so so that we can put the records into the
342  * cntbt in the correct order.  Don't let userspace kill us if we're resorting
343  * after allocating btree blocks.
344  */
345 STATIC int
346 xrep_cntbt_sort_records(
347 	struct xrep_abt			*ra,
348 	bool				is_resort)
349 {
350 	return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
351 			is_resort ? 0 : XFARRAY_SORT_KILLABLE);
352 }
353 
354 /*
355  * Iterate all reverse mappings to find (1) the gaps between rmap records (all
356  * unowned space), (2) the OWN_AG extents (which encompass the free space
357  * btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
358  * blocks.  The free space is (1) + (2) - (3) - (4).
359  */
360 STATIC int
361 xrep_abt_find_freespace(
362 	struct xrep_abt		*ra)
363 {
364 	struct xfs_scrub	*sc = ra->sc;
365 	struct xfs_mount	*mp = sc->mp;
366 	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
367 	struct xfs_buf		*agfl_bp;
368 	xfs_agblock_t		agend;
369 	int			error;
370 
371 	xagb_bitmap_init(&ra->not_allocbt_blocks);
372 
373 	xrep_ag_btcur_init(sc, &sc->sa);
374 
375 	/*
376 	 * Iterate all the reverse mappings to find gaps in the physical
377 	 * mappings, all the OWN_AG blocks, and all the rmapbt extents.
378 	 */
379 	error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
380 	if (error)
381 		goto err;
382 
383 	/* Insert a record for space between the last rmap and EOAG. */
384 	agend = be32_to_cpu(agf->agf_length);
385 	if (ra->next_agbno < agend) {
386 		error = xrep_abt_stash(ra, agend);
387 		if (error)
388 			goto err;
389 	}
390 
391 	/* Collect all the AGFL blocks. */
392 	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
393 	if (error)
394 		goto err;
395 
396 	error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
397 	if (error)
398 		goto err_agfl;
399 
400 	/* Compute the old bnobt/cntbt blocks. */
401 	error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
402 			&ra->not_allocbt_blocks);
403 	if (error)
404 		goto err_agfl;
405 
406 	ra->nr_real_records = xfarray_length(ra->free_records);
407 err_agfl:
408 	xfs_trans_brelse(sc->tp, agfl_bp);
409 err:
410 	xchk_ag_btcur_free(&sc->sa);
411 	xagb_bitmap_destroy(&ra->not_allocbt_blocks);
412 	return error;
413 }
414 
415 /*
416  * We're going to use the observed free space records to reserve blocks for the
417  * new free space btrees, so we play an iterative game where we try to converge
418  * on the number of blocks we need:
419  *
420  * 1. Estimate how many blocks we'll need to store the records.
421  * 2. If the first free record has more blocks than we need, we're done.
422  *    We will have to re-sort the records prior to building the cntbt.
423  * 3. If that record has exactly the number of blocks we need, null out the
424  *    record.  We're done.
425  * 4. Otherwise, we still need more blocks.  Null out the record, subtract its
426  *    length from the number of blocks we need, and go back to step 1.
427  *
428  * Fortunately, we don't have to do any transaction work to play this game, so
429  * we don't have to tear down the staging cursors.
430  */
431 STATIC int
432 xrep_abt_reserve_space(
433 	struct xrep_abt		*ra,
434 	struct xfs_btree_cur	*bno_cur,
435 	struct xfs_btree_cur	*cnt_cur,
436 	bool			*needs_resort)
437 {
438 	struct xfs_scrub	*sc = ra->sc;
439 	xfarray_idx_t		record_nr;
440 	unsigned int		allocated = 0;
441 	int			error = 0;
442 
443 	record_nr = xfarray_length(ra->free_records) - 1;
444 	do {
445 		struct xfs_alloc_rec_incore arec;
446 		uint64_t		required;
447 		unsigned int		desired;
448 		unsigned int		len;
449 
450 		/* Compute how many blocks we'll need. */
451 		error = xfs_btree_bload_compute_geometry(cnt_cur,
452 				&ra->new_cntbt.bload, ra->nr_real_records);
453 		if (error)
454 			break;
455 
456 		error = xfs_btree_bload_compute_geometry(bno_cur,
457 				&ra->new_bnobt.bload, ra->nr_real_records);
458 		if (error)
459 			break;
460 
461 		/* How many btree blocks do we need to store all records? */
462 		required = ra->new_bnobt.bload.nr_blocks +
463 			   ra->new_cntbt.bload.nr_blocks;
464 		ASSERT(required < INT_MAX);
465 
466 		/* If we've reserved enough blocks, we're done. */
467 		if (allocated >= required)
468 			break;
469 
470 		desired = required - allocated;
471 
472 		/* We need space but there's none left; bye! */
473 		if (ra->nr_real_records == 0) {
474 			error = -ENOSPC;
475 			break;
476 		}
477 
478 		/* Grab the first record from the list. */
479 		error = xfarray_load(ra->free_records, record_nr, &arec);
480 		if (error)
481 			break;
482 
483 		ASSERT(arec.ar_blockcount <= UINT_MAX);
484 		len = min_t(unsigned int, arec.ar_blockcount, desired);
485 
486 		trace_xrep_newbt_alloc_ag_blocks(sc->sa.pag, arec.ar_startblock,
487 				len, XFS_RMAP_OWN_AG);
488 
489 		error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
490 				arec.ar_startblock, len);
491 		if (error)
492 			break;
493 		allocated += len;
494 		ra->nr_blocks -= len;
495 
496 		if (arec.ar_blockcount > desired) {
497 			/*
498 			 * Record has more space than we need.  The number of
499 			 * free records doesn't change, so shrink the free
500 			 * record, inform the caller that the records are no
501 			 * longer sorted by length, and exit.
502 			 */
503 			arec.ar_startblock += desired;
504 			arec.ar_blockcount -= desired;
505 			error = xfarray_store(ra->free_records, record_nr,
506 					&arec);
507 			if (error)
508 				break;
509 
510 			*needs_resort = true;
511 			return 0;
512 		}
513 
514 		/*
515 		 * We're going to use up the entire record, so unset it and
516 		 * move on to the next one.  This changes the number of free
517 		 * records (but doesn't break the sorting order), so we must
518 		 * go around the loop once more to re-run _bload_init.
519 		 */
520 		error = xfarray_unset(ra->free_records, record_nr);
521 		if (error)
522 			break;
523 		ra->nr_real_records--;
524 		record_nr--;
525 	} while (1);
526 
527 	return error;
528 }
529 
530 STATIC int
531 xrep_abt_dispose_one(
532 	struct xrep_abt		*ra,
533 	struct xrep_newbt_resv	*resv)
534 {
535 	struct xfs_scrub	*sc = ra->sc;
536 	struct xfs_perag	*pag = sc->sa.pag;
537 	xfs_agblock_t		free_agbno = resv->agbno + resv->used;
538 	xfs_extlen_t		free_aglen = resv->len - resv->used;
539 	int			error;
540 
541 	ASSERT(pag == resv->pag);
542 
543 	/* Add a deferred rmap for each extent we used. */
544 	if (resv->used > 0)
545 		xfs_rmap_alloc_extent(sc->tp, pag_agno(pag), resv->agbno,
546 				resv->used, XFS_RMAP_OWN_AG);
547 
548 	/*
549 	 * For each reserved btree block we didn't use, add it to the free
550 	 * space btree.  We didn't touch fdblocks when we reserved them, so
551 	 * we don't touch it now.
552 	 */
553 	if (free_aglen == 0)
554 		return 0;
555 
556 	trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
557 			ra->new_bnobt.oinfo.oi_owner);
558 
559 	error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
560 			&ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
561 	if (error)
562 		return error;
563 
564 	return xrep_defer_finish(sc);
565 }
566 
567 /*
568  * Deal with all the space we reserved.  Blocks that were allocated for the
569  * free space btrees need to have a (deferred) rmap added for the OWN_AG
570  * allocation, and blocks that didn't get used can be freed via the usual
571  * (deferred) means.
572  */
573 STATIC void
574 xrep_abt_dispose_reservations(
575 	struct xrep_abt		*ra,
576 	int			error)
577 {
578 	struct xrep_newbt_resv	*resv, *n;
579 
580 	if (error)
581 		goto junkit;
582 
583 	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
584 		error = xrep_abt_dispose_one(ra, resv);
585 		if (error)
586 			goto junkit;
587 	}
588 
589 junkit:
590 	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
591 		xfs_perag_put(resv->pag);
592 		list_del(&resv->list);
593 		kfree(resv);
594 	}
595 
596 	xrep_newbt_cancel(&ra->new_bnobt);
597 	xrep_newbt_cancel(&ra->new_cntbt);
598 }
599 
600 /* Retrieve free space data for bulk load. */
601 STATIC int
602 xrep_abt_get_records(
603 	struct xfs_btree_cur		*cur,
604 	unsigned int			idx,
605 	struct xfs_btree_block		*block,
606 	unsigned int			nr_wanted,
607 	void				*priv)
608 {
609 	struct xfs_alloc_rec_incore	*arec = &cur->bc_rec.a;
610 	struct xrep_abt			*ra = priv;
611 	union xfs_btree_rec		*block_rec;
612 	unsigned int			loaded;
613 	int				error;
614 
615 	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
616 		error = xfarray_load_next(ra->free_records, &ra->array_cur,
617 				arec);
618 		if (error)
619 			return error;
620 
621 		ra->longest = max(ra->longest, arec->ar_blockcount);
622 
623 		block_rec = xfs_btree_rec_addr(cur, idx, block);
624 		cur->bc_ops->init_rec_from_cur(cur, block_rec);
625 	}
626 
627 	return loaded;
628 }
629 
630 /* Feed one of the new btree blocks to the bulk loader. */
631 STATIC int
632 xrep_abt_claim_block(
633 	struct xfs_btree_cur	*cur,
634 	union xfs_btree_ptr	*ptr,
635 	void			*priv)
636 {
637 	struct xrep_abt		*ra = priv;
638 
639 	return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
640 }
641 
642 /*
643  * Reset the AGF counters to reflect the free space btrees that we just
644  * rebuilt, then reinitialize the per-AG data.
645  */
646 STATIC int
647 xrep_abt_reset_counters(
648 	struct xrep_abt		*ra)
649 {
650 	struct xfs_scrub	*sc = ra->sc;
651 	struct xfs_perag	*pag = sc->sa.pag;
652 	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
653 	unsigned int		freesp_btreeblks = 0;
654 
655 	/*
656 	 * Compute the contribution to agf_btreeblks for the new free space
657 	 * btrees.  This is the computed btree size minus anything we didn't
658 	 * use.
659 	 */
660 	freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
661 	freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;
662 
663 	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
664 	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);
665 
666 	/*
667 	 * The AGF header contains extra information related to the free space
668 	 * btrees, so we must update those fields here.
669 	 */
670 	agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
671 				(be32_to_cpu(agf->agf_rmap_blocks) - 1));
672 	agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
673 	agf->agf_longest = cpu_to_be32(ra->longest);
674 	xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
675 						 XFS_AGF_LONGEST |
676 						 XFS_AGF_FREEBLKS);
677 
678 	/*
679 	 * After we commit the new btree to disk, it is possible that the
680 	 * process to reap the old btree blocks will race with the AIL trying
681 	 * to checkpoint the old btree blocks into the filesystem.  If the new
682 	 * tree is shorter than the old one, the allocbt write verifier will
683 	 * fail and the AIL will shut down the filesystem.
684 	 *
685 	 * To avoid this, save the old incore btree height values as the alt
686 	 * height values before re-initializing the perag info from the updated
687 	 * AGF to capture all the new values.
688 	 */
689 	pag->pagf_repair_bno_level = pag->pagf_bno_level;
690 	pag->pagf_repair_cnt_level = pag->pagf_cnt_level;
691 
692 	/* Reinitialize with the values we just logged. */
693 	return xrep_reinit_pagf(sc);
694 }
695 
696 /*
697  * Use the collected free space information to stage new free space btrees.
698  * If this is successful we'll return with the new btree root
699  * information logged to the repair transaction but not yet committed.
700  */
701 STATIC int
702 xrep_abt_build_new_trees(
703 	struct xrep_abt		*ra)
704 {
705 	struct xfs_scrub	*sc = ra->sc;
706 	struct xfs_btree_cur	*bno_cur;
707 	struct xfs_btree_cur	*cnt_cur;
708 	struct xfs_perag	*pag = sc->sa.pag;
709 	bool			needs_resort = false;
710 	int			error;
711 
712 	/*
713 	 * Sort the free extents by length so that we can set up the free space
714 	 * btrees in as few extents as possible.  This reduces the amount of
715 	 * deferred rmap / free work we have to do at the end.
716 	 */
717 	error = xrep_cntbt_sort_records(ra, false);
718 	if (error)
719 		return error;
720 
721 	/*
722 	 * Prepare to construct the new btree by reserving disk space for the
723 	 * new btree and setting up all the accounting information we'll need
724 	 * to root the new btree while it's under construction and before we
725 	 * attach it to the AG header.
726 	 */
727 	xrep_newbt_init_bare(&ra->new_bnobt, sc);
728 	xrep_newbt_init_bare(&ra->new_cntbt, sc);
729 
730 	ra->new_bnobt.bload.get_records = xrep_abt_get_records;
731 	ra->new_cntbt.bload.get_records = xrep_abt_get_records;
732 
733 	ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
734 	ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;
735 
736 	/* Allocate cursors for the staged btrees. */
737 	bno_cur = xfs_bnobt_init_cursor(sc->mp, NULL, NULL, pag);
738 	xfs_btree_stage_afakeroot(bno_cur, &ra->new_bnobt.afake);
739 
740 	cnt_cur = xfs_cntbt_init_cursor(sc->mp, NULL, NULL, pag);
741 	xfs_btree_stage_afakeroot(cnt_cur, &ra->new_cntbt.afake);
742 
743 	/* Last chance to abort before we start committing fixes. */
744 	if (xchk_should_terminate(sc, &error))
745 		goto err_cur;
746 
747 	/* Reserve the space we'll need for the new btrees. */
748 	error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
749 	if (error)
750 		goto err_cur;
751 
752 	/*
753 	 * If we need to re-sort the free extents by length, do so so that we
754 	 * can put the records into the cntbt in the correct order.
755 	 */
756 	if (needs_resort) {
757 		error = xrep_cntbt_sort_records(ra, needs_resort);
758 		if (error)
759 			goto err_cur;
760 	}
761 
762 	/*
763 	 * Due to btree slack factors, it's possible for a new btree to be one
764 	 * level taller than the old btree.  Update the alternate incore btree
765 	 * height so that we don't trip the verifiers when writing the new
766 	 * btree blocks to disk.
767 	 */
768 	pag->pagf_repair_bno_level = ra->new_bnobt.bload.btree_height;
769 	pag->pagf_repair_cnt_level = ra->new_cntbt.bload.btree_height;
770 
771 	/* Load the free space by length tree. */
772 	ra->array_cur = XFARRAY_CURSOR_INIT;
773 	ra->longest = 0;
774 	error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
775 	if (error)
776 		goto err_levels;
777 
778 	error = xrep_bnobt_sort_records(ra);
779 	if (error)
780 		goto err_levels;
781 
782 	/* Load the free space by block number tree. */
783 	ra->array_cur = XFARRAY_CURSOR_INIT;
784 	error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
785 	if (error)
786 		goto err_levels;
787 
788 	/*
789 	 * Install the new btrees in the AG header.  After this point the old
790 	 * btrees are no longer accessible and the new trees are live.
791 	 */
792 	xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
793 	xfs_btree_del_cursor(bno_cur, 0);
794 	xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
795 	xfs_btree_del_cursor(cnt_cur, 0);
796 
797 	/* Reset the AGF counters now that we've changed the btree shape. */
798 	error = xrep_abt_reset_counters(ra);
799 	if (error)
800 		goto err_newbt;
801 
802 	/* Dispose of any unused blocks and the accounting information. */
803 	xrep_abt_dispose_reservations(ra, error);
804 
805 	return xrep_roll_ag_trans(sc);
806 
807 err_levels:
808 	pag->pagf_repair_bno_level = 0;
809 	pag->pagf_repair_cnt_level = 0;
810 err_cur:
811 	xfs_btree_del_cursor(cnt_cur, error);
812 	xfs_btree_del_cursor(bno_cur, error);
813 err_newbt:
814 	xrep_abt_dispose_reservations(ra, error);
815 	return error;
816 }
817 
818 /*
819  * Now that we've logged the roots of the new btrees, invalidate all of the
820  * old blocks and free them.
821  */
822 STATIC int
823 xrep_abt_remove_old_trees(
824 	struct xrep_abt		*ra)
825 {
826 	struct xfs_perag	*pag = ra->sc->sa.pag;
827 	int			error;
828 
829 	/* Free the old btree blocks if they're not in use. */
830 	error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
831 			&XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
832 	if (error)
833 		return error;
834 
835 	/*
836 	 * Now that we've zapped all the old allocbt blocks we can turn off
837 	 * the alternate height mechanism.
838 	 */
839 	pag->pagf_repair_bno_level = 0;
840 	pag->pagf_repair_cnt_level = 0;
841 	return 0;
842 }
843 
844 /* Repair the freespace btrees for some AG. */
845 int
846 xrep_allocbt(
847 	struct xfs_scrub	*sc)
848 {
849 	struct xrep_abt		*ra;
850 	struct xfs_mount	*mp = sc->mp;
851 	unsigned int		busy_gen;
852 	char			*descr;
853 	int			error;
854 
855 	/* We require the rmapbt to rebuild anything. */
856 	if (!xfs_has_rmapbt(mp))
857 		return -EOPNOTSUPP;
858 
859 	ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
860 	if (!ra)
861 		return -ENOMEM;
862 	ra->sc = sc;
863 
864 	/* We rebuild both data structures. */
865 	sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;
866 
867 	/*
868 	 * Make sure the busy extent list is clear because we can't put extents
869 	 * on there twice.  In theory we cleared this before we started, but
870 	 * let's not risk the filesystem.
871 	 */
872 	if (!xfs_extent_busy_list_empty(pag_group(sc->sa.pag), &busy_gen)) {
873 		error = -EDEADLOCK;
874 		goto out_ra;
875 	}
876 
877 	/* Set up enough storage to handle maximally fragmented free space. */
878 	descr = xchk_xfile_ag_descr(sc, "free space records");
879 	error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
880 			sizeof(struct xfs_alloc_rec_incore),
881 			&ra->free_records);
882 	kfree(descr);
883 	if (error)
884 		goto out_ra;
885 
886 	/* Collect the free space data and find the old btree blocks. */
887 	xagb_bitmap_init(&ra->old_allocbt_blocks);
888 	error = xrep_abt_find_freespace(ra);
889 	if (error)
890 		goto out_bitmap;
891 
892 	/* Rebuild the free space information. */
893 	error = xrep_abt_build_new_trees(ra);
894 	if (error)
895 		goto out_bitmap;
896 
897 	/* Kill the old trees. */
898 	error = xrep_abt_remove_old_trees(ra);
899 	if (error)
900 		goto out_bitmap;
901 
902 out_bitmap:
903 	xagb_bitmap_destroy(&ra->old_allocbt_blocks);
904 	xfarray_destroy(ra->free_records);
905 out_ra:
906 	kfree(ra);
907 	return error;
908 }
909 
910 /* Make sure both btrees are ok after we've rebuilt them. */
911 int
912 xrep_revalidate_allocbt(
913 	struct xfs_scrub	*sc)
914 {
915 	__u32			old_type = sc->sm->sm_type;
916 	int			error;
917 
918 	/*
919 	 * We must update sm_type temporarily so that the tree-to-tree cross
920 	 * reference checks will work in the correct direction, and also so
921 	 * that tracing will report correctly if there are more errors.
922 	 */
923 	sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
924 	error = xchk_allocbt(sc);
925 	if (error)
926 		goto out;
927 
928 	sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
929 	error = xchk_allocbt(sc);
930 out:
931 	sc->sm->sm_type = old_type;
932 	return error;
933 }
934