1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_alloc.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_ialloc.h" 19 #include "xfs_ialloc_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_rmap_btree.h" 22 #include "xfs_refcount_btree.h" 23 #include "scrub/scrub.h" 24 #include "scrub/common.h" 25 #include "scrub/trace.h" 26 #include "scrub/repair.h" 27 #include "scrub/bitmap.h" 28 29 /* Superblock */ 30 31 /* Repair the superblock. */ 32 int 33 xrep_superblock( 34 struct xfs_scrub *sc) 35 { 36 struct xfs_mount *mp = sc->mp; 37 struct xfs_buf *bp; 38 xfs_agnumber_t agno; 39 int error; 40 41 /* Don't try to repair AG 0's sb; let xfs_repair deal with it. */ 42 agno = sc->sm->sm_agno; 43 if (agno == 0) 44 return -EOPNOTSUPP; 45 46 error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp); 47 if (error) 48 return error; 49 50 /* Copy AG 0's superblock to this one. */ 51 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 52 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 53 54 /* Write this to disk. */ 55 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 56 xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1); 57 return error; 58 } 59 60 /* AGF */ 61 62 struct xrep_agf_allocbt { 63 struct xfs_scrub *sc; 64 xfs_agblock_t freeblks; 65 xfs_agblock_t longest; 66 }; 67 68 /* Record free space shape information. */ 69 STATIC int 70 xrep_agf_walk_allocbt( 71 struct xfs_btree_cur *cur, 72 struct xfs_alloc_rec_incore *rec, 73 void *priv) 74 { 75 struct xrep_agf_allocbt *raa = priv; 76 int error = 0; 77 78 if (xchk_should_terminate(raa->sc, &error)) 79 return error; 80 81 raa->freeblks += rec->ar_blockcount; 82 if (rec->ar_blockcount > raa->longest) 83 raa->longest = rec->ar_blockcount; 84 return error; 85 } 86 87 /* Does this AGFL block look sane? */ 88 STATIC int 89 xrep_agf_check_agfl_block( 90 struct xfs_mount *mp, 91 xfs_agblock_t agbno, 92 void *priv) 93 { 94 struct xfs_scrub *sc = priv; 95 96 if (!xfs_verify_agbno(mp, sc->sa.agno, agbno)) 97 return -EFSCORRUPTED; 98 return 0; 99 } 100 101 /* 102 * Offset within the xrep_find_ag_btree array for each btree type. Avoid the 103 * XFS_BTNUM_ names here to avoid creating a sparse array. 104 */ 105 enum { 106 XREP_AGF_BNOBT = 0, 107 XREP_AGF_CNTBT, 108 XREP_AGF_RMAPBT, 109 XREP_AGF_REFCOUNTBT, 110 XREP_AGF_END, 111 XREP_AGF_MAX 112 }; 113 114 /* Check a btree root candidate. */ 115 static inline bool 116 xrep_check_btree_root( 117 struct xfs_scrub *sc, 118 struct xrep_find_ag_btree *fab) 119 { 120 struct xfs_mount *mp = sc->mp; 121 xfs_agnumber_t agno = sc->sm->sm_agno; 122 123 return xfs_verify_agbno(mp, agno, fab->root) && 124 fab->height <= XFS_BTREE_MAXLEVELS; 125 } 126 127 /* 128 * Given the btree roots described by *fab, find the roots, check them for 129 * sanity, and pass the root data back out via *fab. 130 * 131 * This is /also/ a chicken and egg problem because we have to use the rmapbt 132 * (rooted in the AGF) to find the btrees rooted in the AGF. We also have no 133 * idea if the btrees make any sense. If we hit obvious corruptions in those 134 * btrees we'll bail out. 135 */ 136 STATIC int 137 xrep_agf_find_btrees( 138 struct xfs_scrub *sc, 139 struct xfs_buf *agf_bp, 140 struct xrep_find_ag_btree *fab, 141 struct xfs_buf *agfl_bp) 142 { 143 struct xfs_agf *old_agf = agf_bp->b_addr; 144 int error; 145 146 /* Go find the root data. */ 147 error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp); 148 if (error) 149 return error; 150 151 /* We must find the bnobt, cntbt, and rmapbt roots. */ 152 if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) || 153 !xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) || 154 !xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT])) 155 return -EFSCORRUPTED; 156 157 /* 158 * We relied on the rmapbt to reconstruct the AGF. If we get a 159 * different root then something's seriously wrong. 160 */ 161 if (fab[XREP_AGF_RMAPBT].root != 162 be32_to_cpu(old_agf->agf_roots[XFS_BTNUM_RMAPi])) 163 return -EFSCORRUPTED; 164 165 /* We must find the refcountbt root if that feature is enabled. */ 166 if (xfs_sb_version_hasreflink(&sc->mp->m_sb) && 167 !xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT])) 168 return -EFSCORRUPTED; 169 170 return 0; 171 } 172 173 /* 174 * Reinitialize the AGF header, making an in-core copy of the old contents so 175 * that we know which in-core state needs to be reinitialized. 176 */ 177 STATIC void 178 xrep_agf_init_header( 179 struct xfs_scrub *sc, 180 struct xfs_buf *agf_bp, 181 struct xfs_agf *old_agf) 182 { 183 struct xfs_mount *mp = sc->mp; 184 struct xfs_agf *agf = agf_bp->b_addr; 185 186 memcpy(old_agf, agf, sizeof(*old_agf)); 187 memset(agf, 0, BBTOB(agf_bp->b_length)); 188 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 189 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 190 agf->agf_seqno = cpu_to_be32(sc->sa.agno); 191 agf->agf_length = cpu_to_be32(xfs_ag_block_count(mp, sc->sa.agno)); 192 agf->agf_flfirst = old_agf->agf_flfirst; 193 agf->agf_fllast = old_agf->agf_fllast; 194 agf->agf_flcount = old_agf->agf_flcount; 195 if (xfs_sb_version_hascrc(&mp->m_sb)) 196 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 197 198 /* Mark the incore AGF data stale until we're done fixing things. */ 199 ASSERT(sc->sa.pag->pagf_init); 200 sc->sa.pag->pagf_init = 0; 201 } 202 203 /* Set btree root information in an AGF. */ 204 STATIC void 205 xrep_agf_set_roots( 206 struct xfs_scrub *sc, 207 struct xfs_agf *agf, 208 struct xrep_find_ag_btree *fab) 209 { 210 agf->agf_roots[XFS_BTNUM_BNOi] = 211 cpu_to_be32(fab[XREP_AGF_BNOBT].root); 212 agf->agf_levels[XFS_BTNUM_BNOi] = 213 cpu_to_be32(fab[XREP_AGF_BNOBT].height); 214 215 agf->agf_roots[XFS_BTNUM_CNTi] = 216 cpu_to_be32(fab[XREP_AGF_CNTBT].root); 217 agf->agf_levels[XFS_BTNUM_CNTi] = 218 cpu_to_be32(fab[XREP_AGF_CNTBT].height); 219 220 agf->agf_roots[XFS_BTNUM_RMAPi] = 221 cpu_to_be32(fab[XREP_AGF_RMAPBT].root); 222 agf->agf_levels[XFS_BTNUM_RMAPi] = 223 cpu_to_be32(fab[XREP_AGF_RMAPBT].height); 224 225 if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) { 226 agf->agf_refcount_root = 227 cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root); 228 agf->agf_refcount_level = 229 cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height); 230 } 231 } 232 233 /* Update all AGF fields which derive from btree contents. */ 234 STATIC int 235 xrep_agf_calc_from_btrees( 236 struct xfs_scrub *sc, 237 struct xfs_buf *agf_bp) 238 { 239 struct xrep_agf_allocbt raa = { .sc = sc }; 240 struct xfs_btree_cur *cur = NULL; 241 struct xfs_agf *agf = agf_bp->b_addr; 242 struct xfs_mount *mp = sc->mp; 243 xfs_agblock_t btreeblks; 244 xfs_agblock_t blocks; 245 int error; 246 247 /* Update the AGF counters from the bnobt. */ 248 cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno, 249 XFS_BTNUM_BNO); 250 error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa); 251 if (error) 252 goto err; 253 error = xfs_btree_count_blocks(cur, &blocks); 254 if (error) 255 goto err; 256 xfs_btree_del_cursor(cur, error); 257 btreeblks = blocks - 1; 258 agf->agf_freeblks = cpu_to_be32(raa.freeblks); 259 agf->agf_longest = cpu_to_be32(raa.longest); 260 261 /* Update the AGF counters from the cntbt. */ 262 cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno, 263 XFS_BTNUM_CNT); 264 error = xfs_btree_count_blocks(cur, &blocks); 265 if (error) 266 goto err; 267 xfs_btree_del_cursor(cur, error); 268 btreeblks += blocks - 1; 269 270 /* Update the AGF counters from the rmapbt. */ 271 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 272 error = xfs_btree_count_blocks(cur, &blocks); 273 if (error) 274 goto err; 275 xfs_btree_del_cursor(cur, error); 276 agf->agf_rmap_blocks = cpu_to_be32(blocks); 277 btreeblks += blocks - 1; 278 279 agf->agf_btreeblks = cpu_to_be32(btreeblks); 280 281 /* Update the AGF counters from the refcountbt. */ 282 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 283 cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp, 284 sc->sa.agno); 285 error = xfs_btree_count_blocks(cur, &blocks); 286 if (error) 287 goto err; 288 xfs_btree_del_cursor(cur, error); 289 agf->agf_refcount_blocks = cpu_to_be32(blocks); 290 } 291 292 return 0; 293 err: 294 xfs_btree_del_cursor(cur, error); 295 return error; 296 } 297 298 /* Commit the new AGF and reinitialize the incore state. */ 299 STATIC int 300 xrep_agf_commit_new( 301 struct xfs_scrub *sc, 302 struct xfs_buf *agf_bp) 303 { 304 struct xfs_perag *pag; 305 struct xfs_agf *agf = agf_bp->b_addr; 306 307 /* Trigger fdblocks recalculation */ 308 xfs_force_summary_recalc(sc->mp); 309 310 /* Write this to disk. */ 311 xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF); 312 xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1); 313 314 /* Now reinitialize the in-core counters we changed. */ 315 pag = sc->sa.pag; 316 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 317 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 318 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 319 pag->pagf_levels[XFS_BTNUM_BNOi] = 320 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); 321 pag->pagf_levels[XFS_BTNUM_CNTi] = 322 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); 323 pag->pagf_levels[XFS_BTNUM_RMAPi] = 324 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]); 325 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 326 pag->pagf_init = 1; 327 328 return 0; 329 } 330 331 /* Repair the AGF. v5 filesystems only. */ 332 int 333 xrep_agf( 334 struct xfs_scrub *sc) 335 { 336 struct xrep_find_ag_btree fab[XREP_AGF_MAX] = { 337 [XREP_AGF_BNOBT] = { 338 .rmap_owner = XFS_RMAP_OWN_AG, 339 .buf_ops = &xfs_bnobt_buf_ops, 340 }, 341 [XREP_AGF_CNTBT] = { 342 .rmap_owner = XFS_RMAP_OWN_AG, 343 .buf_ops = &xfs_cntbt_buf_ops, 344 }, 345 [XREP_AGF_RMAPBT] = { 346 .rmap_owner = XFS_RMAP_OWN_AG, 347 .buf_ops = &xfs_rmapbt_buf_ops, 348 }, 349 [XREP_AGF_REFCOUNTBT] = { 350 .rmap_owner = XFS_RMAP_OWN_REFC, 351 .buf_ops = &xfs_refcountbt_buf_ops, 352 }, 353 [XREP_AGF_END] = { 354 .buf_ops = NULL, 355 }, 356 }; 357 struct xfs_agf old_agf; 358 struct xfs_mount *mp = sc->mp; 359 struct xfs_buf *agf_bp; 360 struct xfs_buf *agfl_bp; 361 struct xfs_agf *agf; 362 int error; 363 364 /* We require the rmapbt to rebuild anything. */ 365 if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) 366 return -EOPNOTSUPP; 367 368 xchk_perag_get(sc->mp, &sc->sa); 369 /* 370 * Make sure we have the AGF buffer, as scrub might have decided it 371 * was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED. 372 */ 373 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 374 XFS_AG_DADDR(mp, sc->sa.agno, XFS_AGF_DADDR(mp)), 375 XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL); 376 if (error) 377 return error; 378 agf_bp->b_ops = &xfs_agf_buf_ops; 379 agf = agf_bp->b_addr; 380 381 /* 382 * Load the AGFL so that we can screen out OWN_AG blocks that are on 383 * the AGFL now; these blocks might have once been part of the 384 * bno/cnt/rmap btrees but are not now. This is a chicken and egg 385 * problem: the AGF is corrupt, so we have to trust the AGFL contents 386 * because we can't do any serious cross-referencing with any of the 387 * btrees rooted in the AGF. If the AGFL contents are obviously bad 388 * then we'll bail out. 389 */ 390 error = xfs_alloc_read_agfl(mp, sc->tp, sc->sa.agno, &agfl_bp); 391 if (error) 392 return error; 393 394 /* 395 * Spot-check the AGFL blocks; if they're obviously corrupt then 396 * there's nothing we can do but bail out. 397 */ 398 error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp, 399 xrep_agf_check_agfl_block, sc); 400 if (error) 401 return error; 402 403 /* 404 * Find the AGF btree roots. This is also a chicken-and-egg situation; 405 * see the function for more details. 406 */ 407 error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp); 408 if (error) 409 return error; 410 411 /* Start rewriting the header and implant the btrees we found. */ 412 xrep_agf_init_header(sc, agf_bp, &old_agf); 413 xrep_agf_set_roots(sc, agf, fab); 414 error = xrep_agf_calc_from_btrees(sc, agf_bp); 415 if (error) 416 goto out_revert; 417 418 /* Commit the changes and reinitialize incore state. */ 419 return xrep_agf_commit_new(sc, agf_bp); 420 421 out_revert: 422 /* Mark the incore AGF state stale and revert the AGF. */ 423 sc->sa.pag->pagf_init = 0; 424 memcpy(agf, &old_agf, sizeof(old_agf)); 425 return error; 426 } 427 428 /* AGFL */ 429 430 struct xrep_agfl { 431 /* Bitmap of other OWN_AG metadata blocks. */ 432 struct xbitmap agmetablocks; 433 434 /* Bitmap of free space. */ 435 struct xbitmap *freesp; 436 437 struct xfs_scrub *sc; 438 }; 439 440 /* Record all OWN_AG (free space btree) information from the rmap data. */ 441 STATIC int 442 xrep_agfl_walk_rmap( 443 struct xfs_btree_cur *cur, 444 struct xfs_rmap_irec *rec, 445 void *priv) 446 { 447 struct xrep_agfl *ra = priv; 448 xfs_fsblock_t fsb; 449 int error = 0; 450 451 if (xchk_should_terminate(ra->sc, &error)) 452 return error; 453 454 /* Record all the OWN_AG blocks. */ 455 if (rec->rm_owner == XFS_RMAP_OWN_AG) { 456 fsb = XFS_AGB_TO_FSB(cur->bc_mp, cur->bc_ag.agno, 457 rec->rm_startblock); 458 error = xbitmap_set(ra->freesp, fsb, rec->rm_blockcount); 459 if (error) 460 return error; 461 } 462 463 return xbitmap_set_btcur_path(&ra->agmetablocks, cur); 464 } 465 466 /* 467 * Map out all the non-AGFL OWN_AG space in this AG so that we can deduce 468 * which blocks belong to the AGFL. 469 * 470 * Compute the set of old AGFL blocks by subtracting from the list of OWN_AG 471 * blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt, 472 * rmapbt). These are the old AGFL blocks, so return that list and the number 473 * of blocks we're actually going to put back on the AGFL. 474 */ 475 STATIC int 476 xrep_agfl_collect_blocks( 477 struct xfs_scrub *sc, 478 struct xfs_buf *agf_bp, 479 struct xbitmap *agfl_extents, 480 xfs_agblock_t *flcount) 481 { 482 struct xrep_agfl ra; 483 struct xfs_mount *mp = sc->mp; 484 struct xfs_btree_cur *cur; 485 int error; 486 487 ra.sc = sc; 488 ra.freesp = agfl_extents; 489 xbitmap_init(&ra.agmetablocks); 490 491 /* Find all space used by the free space btrees & rmapbt. */ 492 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 493 error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra); 494 if (error) 495 goto err; 496 xfs_btree_del_cursor(cur, error); 497 498 /* Find all blocks currently being used by the bnobt. */ 499 cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno, 500 XFS_BTNUM_BNO); 501 error = xbitmap_set_btblocks(&ra.agmetablocks, cur); 502 if (error) 503 goto err; 504 xfs_btree_del_cursor(cur, error); 505 506 /* Find all blocks currently being used by the cntbt. */ 507 cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno, 508 XFS_BTNUM_CNT); 509 error = xbitmap_set_btblocks(&ra.agmetablocks, cur); 510 if (error) 511 goto err; 512 513 xfs_btree_del_cursor(cur, error); 514 515 /* 516 * Drop the freesp meta blocks that are in use by btrees. 517 * The remaining blocks /should/ be AGFL blocks. 518 */ 519 error = xbitmap_disunion(agfl_extents, &ra.agmetablocks); 520 xbitmap_destroy(&ra.agmetablocks); 521 if (error) 522 return error; 523 524 /* 525 * Calculate the new AGFL size. If we found more blocks than fit in 526 * the AGFL we'll free them later. 527 */ 528 *flcount = min_t(uint64_t, xbitmap_hweight(agfl_extents), 529 xfs_agfl_size(mp)); 530 return 0; 531 532 err: 533 xbitmap_destroy(&ra.agmetablocks); 534 xfs_btree_del_cursor(cur, error); 535 return error; 536 } 537 538 /* Update the AGF and reset the in-core state. */ 539 STATIC void 540 xrep_agfl_update_agf( 541 struct xfs_scrub *sc, 542 struct xfs_buf *agf_bp, 543 xfs_agblock_t flcount) 544 { 545 struct xfs_agf *agf = agf_bp->b_addr; 546 547 ASSERT(flcount <= xfs_agfl_size(sc->mp)); 548 549 /* Trigger fdblocks recalculation */ 550 xfs_force_summary_recalc(sc->mp); 551 552 /* Update the AGF counters. */ 553 if (sc->sa.pag->pagf_init) 554 sc->sa.pag->pagf_flcount = flcount; 555 agf->agf_flfirst = cpu_to_be32(0); 556 agf->agf_flcount = cpu_to_be32(flcount); 557 agf->agf_fllast = cpu_to_be32(flcount - 1); 558 559 xfs_alloc_log_agf(sc->tp, agf_bp, 560 XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT); 561 } 562 563 /* Write out a totally new AGFL. */ 564 STATIC void 565 xrep_agfl_init_header( 566 struct xfs_scrub *sc, 567 struct xfs_buf *agfl_bp, 568 struct xbitmap *agfl_extents, 569 xfs_agblock_t flcount) 570 { 571 struct xfs_mount *mp = sc->mp; 572 __be32 *agfl_bno; 573 struct xbitmap_range *br; 574 struct xbitmap_range *n; 575 struct xfs_agfl *agfl; 576 xfs_agblock_t agbno; 577 unsigned int fl_off; 578 579 ASSERT(flcount <= xfs_agfl_size(mp)); 580 581 /* 582 * Start rewriting the header by setting the bno[] array to 583 * NULLAGBLOCK, then setting AGFL header fields. 584 */ 585 agfl = XFS_BUF_TO_AGFL(agfl_bp); 586 memset(agfl, 0xFF, BBTOB(agfl_bp->b_length)); 587 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 588 agfl->agfl_seqno = cpu_to_be32(sc->sa.agno); 589 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 590 591 /* 592 * Fill the AGFL with the remaining blocks. If agfl_extents has more 593 * blocks than fit in the AGFL, they will be freed in a subsequent 594 * step. 595 */ 596 fl_off = 0; 597 agfl_bno = xfs_buf_to_agfl_bno(agfl_bp); 598 for_each_xbitmap_extent(br, n, agfl_extents) { 599 agbno = XFS_FSB_TO_AGBNO(mp, br->start); 600 601 trace_xrep_agfl_insert(mp, sc->sa.agno, agbno, br->len); 602 603 while (br->len > 0 && fl_off < flcount) { 604 agfl_bno[fl_off] = cpu_to_be32(agbno); 605 fl_off++; 606 agbno++; 607 608 /* 609 * We've now used br->start by putting it in the AGFL, 610 * so bump br so that we don't reap the block later. 611 */ 612 br->start++; 613 br->len--; 614 } 615 616 if (br->len) 617 break; 618 list_del(&br->list); 619 kmem_free(br); 620 } 621 622 /* Write new AGFL to disk. */ 623 xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF); 624 xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1); 625 } 626 627 /* Repair the AGFL. */ 628 int 629 xrep_agfl( 630 struct xfs_scrub *sc) 631 { 632 struct xbitmap agfl_extents; 633 struct xfs_mount *mp = sc->mp; 634 struct xfs_buf *agf_bp; 635 struct xfs_buf *agfl_bp; 636 xfs_agblock_t flcount; 637 int error; 638 639 /* We require the rmapbt to rebuild anything. */ 640 if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) 641 return -EOPNOTSUPP; 642 643 xchk_perag_get(sc->mp, &sc->sa); 644 xbitmap_init(&agfl_extents); 645 646 /* 647 * Read the AGF so that we can query the rmapbt. We hope that there's 648 * nothing wrong with the AGF, but all the AG header repair functions 649 * have this chicken-and-egg problem. 650 */ 651 error = xfs_alloc_read_agf(mp, sc->tp, sc->sa.agno, 0, &agf_bp); 652 if (error) 653 return error; 654 655 /* 656 * Make sure we have the AGFL buffer, as scrub might have decided it 657 * was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED. 658 */ 659 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 660 XFS_AG_DADDR(mp, sc->sa.agno, XFS_AGFL_DADDR(mp)), 661 XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL); 662 if (error) 663 return error; 664 agfl_bp->b_ops = &xfs_agfl_buf_ops; 665 666 /* Gather all the extents we're going to put on the new AGFL. */ 667 error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount); 668 if (error) 669 goto err; 670 671 /* 672 * Update AGF and AGFL. We reset the global free block counter when 673 * we adjust the AGF flcount (which can fail) so avoid updating any 674 * buffers until we know that part works. 675 */ 676 xrep_agfl_update_agf(sc, agf_bp, flcount); 677 xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount); 678 679 /* 680 * Ok, the AGFL should be ready to go now. Roll the transaction to 681 * make the new AGFL permanent before we start using it to return 682 * freespace overflow to the freespace btrees. 683 */ 684 sc->sa.agf_bp = agf_bp; 685 sc->sa.agfl_bp = agfl_bp; 686 error = xrep_roll_ag_trans(sc); 687 if (error) 688 goto err; 689 690 /* Dump any AGFL overflow. */ 691 error = xrep_reap_extents(sc, &agfl_extents, &XFS_RMAP_OINFO_AG, 692 XFS_AG_RESV_AGFL); 693 err: 694 xbitmap_destroy(&agfl_extents); 695 return error; 696 } 697 698 /* AGI */ 699 700 /* 701 * Offset within the xrep_find_ag_btree array for each btree type. Avoid the 702 * XFS_BTNUM_ names here to avoid creating a sparse array. 703 */ 704 enum { 705 XREP_AGI_INOBT = 0, 706 XREP_AGI_FINOBT, 707 XREP_AGI_END, 708 XREP_AGI_MAX 709 }; 710 711 /* 712 * Given the inode btree roots described by *fab, find the roots, check them 713 * for sanity, and pass the root data back out via *fab. 714 */ 715 STATIC int 716 xrep_agi_find_btrees( 717 struct xfs_scrub *sc, 718 struct xrep_find_ag_btree *fab) 719 { 720 struct xfs_buf *agf_bp; 721 struct xfs_mount *mp = sc->mp; 722 int error; 723 724 /* Read the AGF. */ 725 error = xfs_alloc_read_agf(mp, sc->tp, sc->sa.agno, 0, &agf_bp); 726 if (error) 727 return error; 728 729 /* Find the btree roots. */ 730 error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL); 731 if (error) 732 return error; 733 734 /* We must find the inobt root. */ 735 if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT])) 736 return -EFSCORRUPTED; 737 738 /* We must find the finobt root if that feature is enabled. */ 739 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 740 !xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT])) 741 return -EFSCORRUPTED; 742 743 return 0; 744 } 745 746 /* 747 * Reinitialize the AGI header, making an in-core copy of the old contents so 748 * that we know which in-core state needs to be reinitialized. 749 */ 750 STATIC void 751 xrep_agi_init_header( 752 struct xfs_scrub *sc, 753 struct xfs_buf *agi_bp, 754 struct xfs_agi *old_agi) 755 { 756 struct xfs_agi *agi = agi_bp->b_addr; 757 struct xfs_mount *mp = sc->mp; 758 759 memcpy(old_agi, agi, sizeof(*old_agi)); 760 memset(agi, 0, BBTOB(agi_bp->b_length)); 761 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 762 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 763 agi->agi_seqno = cpu_to_be32(sc->sa.agno); 764 agi->agi_length = cpu_to_be32(xfs_ag_block_count(mp, sc->sa.agno)); 765 agi->agi_newino = cpu_to_be32(NULLAGINO); 766 agi->agi_dirino = cpu_to_be32(NULLAGINO); 767 if (xfs_sb_version_hascrc(&mp->m_sb)) 768 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 769 770 /* We don't know how to fix the unlinked list yet. */ 771 memcpy(&agi->agi_unlinked, &old_agi->agi_unlinked, 772 sizeof(agi->agi_unlinked)); 773 774 /* Mark the incore AGF data stale until we're done fixing things. */ 775 ASSERT(sc->sa.pag->pagi_init); 776 sc->sa.pag->pagi_init = 0; 777 } 778 779 /* Set btree root information in an AGI. */ 780 STATIC void 781 xrep_agi_set_roots( 782 struct xfs_scrub *sc, 783 struct xfs_agi *agi, 784 struct xrep_find_ag_btree *fab) 785 { 786 agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root); 787 agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height); 788 789 if (xfs_sb_version_hasfinobt(&sc->mp->m_sb)) { 790 agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root); 791 agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height); 792 } 793 } 794 795 /* Update the AGI counters. */ 796 STATIC int 797 xrep_agi_calc_from_btrees( 798 struct xfs_scrub *sc, 799 struct xfs_buf *agi_bp) 800 { 801 struct xfs_btree_cur *cur; 802 struct xfs_agi *agi = agi_bp->b_addr; 803 struct xfs_mount *mp = sc->mp; 804 xfs_agino_t count; 805 xfs_agino_t freecount; 806 int error; 807 808 cur = xfs_inobt_init_cursor(mp, sc->tp, agi_bp, sc->sa.agno, 809 XFS_BTNUM_INO); 810 error = xfs_ialloc_count_inodes(cur, &count, &freecount); 811 if (error) 812 goto err; 813 xfs_btree_del_cursor(cur, error); 814 815 agi->agi_count = cpu_to_be32(count); 816 agi->agi_freecount = cpu_to_be32(freecount); 817 return 0; 818 err: 819 xfs_btree_del_cursor(cur, error); 820 return error; 821 } 822 823 /* Trigger reinitialization of the in-core data. */ 824 STATIC int 825 xrep_agi_commit_new( 826 struct xfs_scrub *sc, 827 struct xfs_buf *agi_bp) 828 { 829 struct xfs_perag *pag; 830 struct xfs_agi *agi = agi_bp->b_addr; 831 832 /* Trigger inode count recalculation */ 833 xfs_force_summary_recalc(sc->mp); 834 835 /* Write this to disk. */ 836 xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF); 837 xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1); 838 839 /* Now reinitialize the in-core counters if necessary. */ 840 pag = sc->sa.pag; 841 pag->pagi_count = be32_to_cpu(agi->agi_count); 842 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 843 pag->pagi_init = 1; 844 845 return 0; 846 } 847 848 /* Repair the AGI. */ 849 int 850 xrep_agi( 851 struct xfs_scrub *sc) 852 { 853 struct xrep_find_ag_btree fab[XREP_AGI_MAX] = { 854 [XREP_AGI_INOBT] = { 855 .rmap_owner = XFS_RMAP_OWN_INOBT, 856 .buf_ops = &xfs_inobt_buf_ops, 857 }, 858 [XREP_AGI_FINOBT] = { 859 .rmap_owner = XFS_RMAP_OWN_INOBT, 860 .buf_ops = &xfs_finobt_buf_ops, 861 }, 862 [XREP_AGI_END] = { 863 .buf_ops = NULL 864 }, 865 }; 866 struct xfs_agi old_agi; 867 struct xfs_mount *mp = sc->mp; 868 struct xfs_buf *agi_bp; 869 struct xfs_agi *agi; 870 int error; 871 872 /* We require the rmapbt to rebuild anything. */ 873 if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) 874 return -EOPNOTSUPP; 875 876 xchk_perag_get(sc->mp, &sc->sa); 877 /* 878 * Make sure we have the AGI buffer, as scrub might have decided it 879 * was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED. 880 */ 881 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 882 XFS_AG_DADDR(mp, sc->sa.agno, XFS_AGI_DADDR(mp)), 883 XFS_FSS_TO_BB(mp, 1), 0, &agi_bp, NULL); 884 if (error) 885 return error; 886 agi_bp->b_ops = &xfs_agi_buf_ops; 887 agi = agi_bp->b_addr; 888 889 /* Find the AGI btree roots. */ 890 error = xrep_agi_find_btrees(sc, fab); 891 if (error) 892 return error; 893 894 /* Start rewriting the header and implant the btrees we found. */ 895 xrep_agi_init_header(sc, agi_bp, &old_agi); 896 xrep_agi_set_roots(sc, agi, fab); 897 error = xrep_agi_calc_from_btrees(sc, agi_bp); 898 if (error) 899 goto out_revert; 900 901 /* Reinitialize in-core state. */ 902 return xrep_agi_commit_new(sc, agi_bp); 903 904 out_revert: 905 /* Mark the incore AGI state stale and revert the AGI. */ 906 sc->sa.pag->pagi_init = 0; 907 memcpy(agi, &old_agi, sizeof(old_agi)); 908 return error; 909 } 910