xref: /linux/fs/xfs/libxfs/xfs_trans_resv.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_bmap_btree.h"
18 #include "xfs_quota.h"
19 #include "xfs_trans.h"
20 #include "xfs_qm.h"
21 #include "xfs_trans_space.h"
22 #include "xfs_rtbitmap.h"
23 
24 #define _ALLOC	true
25 #define _FREE	false
26 
27 /*
28  * A buffer has a format structure overhead in the log in addition
29  * to the data, so we need to take this into account when reserving
30  * space in a transaction for a buffer.  Round the space required up
31  * to a multiple of 128 bytes so that we don't change the historical
32  * reservation that has been used for this overhead.
33  */
34 STATIC uint
35 xfs_buf_log_overhead(void)
36 {
37 	return round_up(sizeof(struct xlog_op_header) +
38 			sizeof(struct xfs_buf_log_format), 128);
39 }
40 
41 /*
42  * Calculate out transaction log reservation per item in bytes.
43  *
44  * The nbufs argument is used to indicate the number of items that
45  * will be changed in a transaction.  size is used to tell how many
46  * bytes should be reserved per item.
47  */
48 STATIC uint
49 xfs_calc_buf_res(
50 	uint		nbufs,
51 	uint		size)
52 {
53 	return nbufs * (size + xfs_buf_log_overhead());
54 }
55 
56 /*
57  * Per-extent log reservation for the btree changes involved in freeing or
58  * allocating an extent.  In classic XFS there were two trees that will be
59  * modified (bnobt + cntbt).  With rmap enabled, there are three trees
60  * (rmapbt).  The number of blocks reserved is based on the formula:
61  *
62  * num trees * ((2 blocks/level * max depth) - 1)
63  *
64  * Keep in mind that max depth is calculated separately for each type of tree.
65  */
66 uint
67 xfs_allocfree_block_count(
68 	struct xfs_mount *mp,
69 	uint		num_ops)
70 {
71 	uint		blocks;
72 
73 	blocks = num_ops * 2 * (2 * mp->m_alloc_maxlevels - 1);
74 	if (xfs_has_rmapbt(mp))
75 		blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
76 
77 	return blocks;
78 }
79 
80 /*
81  * Per-extent log reservation for refcount btree changes.  These are never done
82  * in the same transaction as an allocation or a free, so we compute them
83  * separately.
84  */
85 static unsigned int
86 xfs_refcountbt_block_count(
87 	struct xfs_mount	*mp,
88 	unsigned int		num_ops)
89 {
90 	return num_ops * (2 * mp->m_refc_maxlevels - 1);
91 }
92 
93 /*
94  * Logging inodes is really tricksy. They are logged in memory format,
95  * which means that what we write into the log doesn't directly translate into
96  * the amount of space they use on disk.
97  *
98  * Case in point - btree format forks in memory format use more space than the
99  * on-disk format. In memory, the buffer contains a normal btree block header so
100  * the btree code can treat it as though it is just another generic buffer.
101  * However, when we write it to the inode fork, we don't write all of this
102  * header as it isn't needed. e.g. the root is only ever in the inode, so
103  * there's no need for sibling pointers which would waste 16 bytes of space.
104  *
105  * Hence when we have an inode with a maximally sized btree format fork, then
106  * amount of information we actually log is greater than the size of the inode
107  * on disk. Hence we need an inode reservation function that calculates all this
108  * correctly. So, we log:
109  *
110  * - 4 log op headers for object
111  *	- for the ilf, the inode core and 2 forks
112  * - inode log format object
113  * - the inode core
114  * - two inode forks containing bmap btree root blocks.
115  *	- the btree data contained by both forks will fit into the inode size,
116  *	  hence when combined with the inode core above, we have a total of the
117  *	  actual inode size.
118  *	- the BMBT headers need to be accounted separately, as they are
119  *	  additional to the records and pointers that fit inside the inode
120  *	  forks.
121  */
122 STATIC uint
123 xfs_calc_inode_res(
124 	struct xfs_mount	*mp,
125 	uint			ninodes)
126 {
127 	return ninodes *
128 		(4 * sizeof(struct xlog_op_header) +
129 		 sizeof(struct xfs_inode_log_format) +
130 		 mp->m_sb.sb_inodesize +
131 		 2 * XFS_BMBT_BLOCK_LEN(mp));
132 }
133 
134 /*
135  * Inode btree record insertion/removal modifies the inode btree and free space
136  * btrees (since the inobt does not use the agfl). This requires the following
137  * reservation:
138  *
139  * the inode btree: max depth * blocksize
140  * the allocation btrees: 2 trees * (max depth - 1) * block size
141  *
142  * The caller must account for SB and AG header modifications, etc.
143  */
144 STATIC uint
145 xfs_calc_inobt_res(
146 	struct xfs_mount	*mp)
147 {
148 	return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
149 			XFS_FSB_TO_B(mp, 1)) +
150 				xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
151 			XFS_FSB_TO_B(mp, 1));
152 }
153 
154 /*
155  * The free inode btree is a conditional feature. The behavior differs slightly
156  * from that of the traditional inode btree in that the finobt tracks records
157  * for inode chunks with at least one free inode. A record can be removed from
158  * the tree during individual inode allocation. Therefore the finobt
159  * reservation is unconditional for both the inode chunk allocation and
160  * individual inode allocation (modify) cases.
161  *
162  * Behavior aside, the reservation for finobt modification is equivalent to the
163  * traditional inobt: cover a full finobt shape change plus block allocation.
164  */
165 STATIC uint
166 xfs_calc_finobt_res(
167 	struct xfs_mount	*mp)
168 {
169 	if (!xfs_has_finobt(mp))
170 		return 0;
171 
172 	return xfs_calc_inobt_res(mp);
173 }
174 
175 /*
176  * Calculate the reservation required to allocate or free an inode chunk. This
177  * includes:
178  *
179  * the allocation btrees: 2 trees * (max depth - 1) * block size
180  * the inode chunk: m_ino_geo.ialloc_blks * N
181  *
182  * The size N of the inode chunk reservation depends on whether it is for
183  * allocation or free and which type of create transaction is in use. An inode
184  * chunk free always invalidates the buffers and only requires reservation for
185  * headers (N == 0). An inode chunk allocation requires a chunk sized
186  * reservation on v4 and older superblocks to initialize the chunk. No chunk
187  * reservation is required for allocation on v5 supers, which use ordered
188  * buffers to initialize.
189  */
190 STATIC uint
191 xfs_calc_inode_chunk_res(
192 	struct xfs_mount	*mp,
193 	bool			alloc)
194 {
195 	uint			res, size = 0;
196 
197 	res = xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
198 			       XFS_FSB_TO_B(mp, 1));
199 	if (alloc) {
200 		/* icreate tx uses ordered buffers */
201 		if (xfs_has_v3inodes(mp))
202 			return res;
203 		size = XFS_FSB_TO_B(mp, 1);
204 	}
205 
206 	res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
207 	return res;
208 }
209 
210 /*
211  * Per-extent log reservation for the btree changes involved in freeing or
212  * allocating a realtime extent.  We have to be able to log as many rtbitmap
213  * blocks as needed to mark inuse XFS_BMBT_MAX_EXTLEN blocks' worth of realtime
214  * extents, as well as the realtime summary block.
215  */
216 static unsigned int
217 xfs_rtalloc_block_count(
218 	struct xfs_mount	*mp,
219 	unsigned int		num_ops)
220 {
221 	unsigned int		rtbmp_blocks;
222 	xfs_rtxlen_t		rtxlen;
223 
224 	rtxlen = xfs_extlen_to_rtxlen(mp, XFS_MAX_BMBT_EXTLEN);
225 	rtbmp_blocks = xfs_rtbitmap_blockcount(mp, rtxlen);
226 	return (rtbmp_blocks + 1) * num_ops;
227 }
228 
229 /*
230  * Various log reservation values.
231  *
232  * These are based on the size of the file system block because that is what
233  * most transactions manipulate.  Each adds in an additional 128 bytes per
234  * item logged to try to account for the overhead of the transaction mechanism.
235  *
236  * Note:  Most of the reservations underestimate the number of allocation
237  * groups into which they could free extents in the xfs_defer_finish() call.
238  * This is because the number in the worst case is quite high and quite
239  * unusual.  In order to fix this we need to change xfs_defer_finish() to free
240  * extents in only a single AG at a time.  This will require changes to the
241  * EFI code as well, however, so that the EFI for the extents not freed is
242  * logged again in each transaction.  See SGI PV #261917.
243  *
244  * Reservation functions here avoid a huge stack in xfs_trans_init due to
245  * register overflow from temporaries in the calculations.
246  */
247 
248 /*
249  * Compute the log reservation required to handle the refcount update
250  * transaction.  Refcount updates are always done via deferred log items.
251  *
252  * This is calculated as:
253  * Data device refcount updates (t1):
254  *    the agfs of the ags containing the blocks: nr_ops * sector size
255  *    the refcount btrees: nr_ops * 1 trees * (2 * max depth - 1) * block size
256  */
257 static unsigned int
258 xfs_calc_refcountbt_reservation(
259 	struct xfs_mount	*mp,
260 	unsigned int		nr_ops)
261 {
262 	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
263 
264 	if (!xfs_has_reflink(mp))
265 		return 0;
266 
267 	return xfs_calc_buf_res(nr_ops, mp->m_sb.sb_sectsize) +
268 	       xfs_calc_buf_res(xfs_refcountbt_block_count(mp, nr_ops), blksz);
269 }
270 
271 /*
272  * In a write transaction we can allocate a maximum of 2
273  * extents.  This gives (t1):
274  *    the inode getting the new extents: inode size
275  *    the inode's bmap btree: max depth * block size
276  *    the agfs of the ags from which the extents are allocated: 2 * sector
277  *    the superblock free block counter: sector size
278  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
279  * Or, if we're writing to a realtime file (t2):
280  *    the inode getting the new extents: inode size
281  *    the inode's bmap btree: max depth * block size
282  *    the agfs of the ags from which the extents are allocated: 2 * sector
283  *    the superblock free block counter: sector size
284  *    the realtime bitmap: ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
285  *    the realtime summary: 1 block
286  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
287  * And the bmap_finish transaction can free bmap blocks in a join (t3):
288  *    the agfs of the ags containing the blocks: 2 * sector size
289  *    the agfls of the ags containing the blocks: 2 * sector size
290  *    the super block free block counter: sector size
291  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
292  * And any refcount updates that happen in a separate transaction (t4).
293  */
294 STATIC uint
295 xfs_calc_write_reservation(
296 	struct xfs_mount	*mp,
297 	bool			for_minlogsize)
298 {
299 	unsigned int		t1, t2, t3, t4;
300 	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
301 
302 	t1 = xfs_calc_inode_res(mp, 1) +
303 	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
304 	     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
305 	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
306 
307 	if (xfs_has_realtime(mp)) {
308 		t2 = xfs_calc_inode_res(mp, 1) +
309 		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
310 				     blksz) +
311 		     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
312 		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 1), blksz) +
313 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1), blksz);
314 	} else {
315 		t2 = 0;
316 	}
317 
318 	t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
319 	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
320 
321 	/*
322 	 * In the early days of reflink, we included enough reservation to log
323 	 * two refcountbt splits for each transaction.  The codebase runs
324 	 * refcountbt updates in separate transactions now, so to compute the
325 	 * minimum log size, add the refcountbtree splits back to t1 and t3 and
326 	 * do not account them separately as t4.  Reflink did not support
327 	 * realtime when the reservations were established, so no adjustment to
328 	 * t2 is needed.
329 	 */
330 	if (for_minlogsize) {
331 		unsigned int	adj = 0;
332 
333 		if (xfs_has_reflink(mp))
334 			adj = xfs_calc_buf_res(
335 					xfs_refcountbt_block_count(mp, 2),
336 					blksz);
337 		t1 += adj;
338 		t3 += adj;
339 		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
340 	}
341 
342 	t4 = xfs_calc_refcountbt_reservation(mp, 1);
343 	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
344 }
345 
346 unsigned int
347 xfs_calc_write_reservation_minlogsize(
348 	struct xfs_mount	*mp)
349 {
350 	return xfs_calc_write_reservation(mp, true);
351 }
352 
353 /*
354  * In truncating a file we free up to two extents at once.  We can modify (t1):
355  *    the inode being truncated: inode size
356  *    the inode's bmap btree: (max depth + 1) * block size
357  * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
358  *    the agf for each of the ags: 4 * sector size
359  *    the agfl for each of the ags: 4 * sector size
360  *    the super block to reflect the freed blocks: sector size
361  *    worst case split in allocation btrees per extent assuming 4 extents:
362  *		4 exts * 2 trees * (2 * max depth - 1) * block size
363  * Or, if it's a realtime file (t3):
364  *    the agf for each of the ags: 2 * sector size
365  *    the agfl for each of the ags: 2 * sector size
366  *    the super block to reflect the freed blocks: sector size
367  *    the realtime bitmap:
368  *		2 exts * ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
369  *    the realtime summary: 2 exts * 1 block
370  *    worst case split in allocation btrees per extent assuming 2 extents:
371  *		2 exts * 2 trees * (2 * max depth - 1) * block size
372  * And any refcount updates that happen in a separate transaction (t4).
373  */
374 STATIC uint
375 xfs_calc_itruncate_reservation(
376 	struct xfs_mount	*mp,
377 	bool			for_minlogsize)
378 {
379 	unsigned int		t1, t2, t3, t4;
380 	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
381 
382 	t1 = xfs_calc_inode_res(mp, 1) +
383 	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
384 
385 	t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
386 	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4), blksz);
387 
388 	if (xfs_has_realtime(mp)) {
389 		t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
390 		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 2), blksz) +
391 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
392 	} else {
393 		t3 = 0;
394 	}
395 
396 	/*
397 	 * In the early days of reflink, we included enough reservation to log
398 	 * four refcountbt splits in the same transaction as bnobt/cntbt
399 	 * updates.  The codebase runs refcountbt updates in separate
400 	 * transactions now, so to compute the minimum log size, add the
401 	 * refcount btree splits back here and do not compute them separately
402 	 * as t4.  Reflink did not support realtime when the reservations were
403 	 * established, so do not adjust t3.
404 	 */
405 	if (for_minlogsize) {
406 		if (xfs_has_reflink(mp))
407 			t2 += xfs_calc_buf_res(
408 					xfs_refcountbt_block_count(mp, 4),
409 					blksz);
410 
411 		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
412 	}
413 
414 	t4 = xfs_calc_refcountbt_reservation(mp, 2);
415 	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
416 }
417 
418 unsigned int
419 xfs_calc_itruncate_reservation_minlogsize(
420 	struct xfs_mount	*mp)
421 {
422 	return xfs_calc_itruncate_reservation(mp, true);
423 }
424 
425 /*
426  * In renaming a files we can modify:
427  *    the five inodes involved: 5 * inode size
428  *    the two directory btrees: 2 * (max depth + v2) * dir block size
429  *    the two directory bmap btrees: 2 * max depth * block size
430  * And the bmap_finish transaction can free dir and bmap blocks (two sets
431  *	of bmap blocks) giving:
432  *    the agf for the ags in which the blocks live: 3 * sector size
433  *    the agfl for the ags in which the blocks live: 3 * sector size
434  *    the superblock for the free block count: sector size
435  *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
436  */
437 STATIC uint
438 xfs_calc_rename_reservation(
439 	struct xfs_mount	*mp)
440 {
441 	return XFS_DQUOT_LOGRES(mp) +
442 		max((xfs_calc_inode_res(mp, 5) +
443 		     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
444 				      XFS_FSB_TO_B(mp, 1))),
445 		    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
446 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 3),
447 				      XFS_FSB_TO_B(mp, 1))));
448 }
449 
450 /*
451  * For removing an inode from unlinked list at first, we can modify:
452  *    the agi hash list and counters: sector size
453  *    the on disk inode before ours in the agi hash list: inode cluster size
454  *    the on disk inode in the agi hash list: inode cluster size
455  */
456 STATIC uint
457 xfs_calc_iunlink_remove_reservation(
458 	struct xfs_mount        *mp)
459 {
460 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
461 	       2 * M_IGEO(mp)->inode_cluster_size;
462 }
463 
464 /*
465  * For creating a link to an inode:
466  *    the parent directory inode: inode size
467  *    the linked inode: inode size
468  *    the directory btree could split: (max depth + v2) * dir block size
469  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
470  * And the bmap_finish transaction can free some bmap blocks giving:
471  *    the agf for the ag in which the blocks live: sector size
472  *    the agfl for the ag in which the blocks live: sector size
473  *    the superblock for the free block count: sector size
474  *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
475  */
476 STATIC uint
477 xfs_calc_link_reservation(
478 	struct xfs_mount	*mp)
479 {
480 	return XFS_DQUOT_LOGRES(mp) +
481 		xfs_calc_iunlink_remove_reservation(mp) +
482 		max((xfs_calc_inode_res(mp, 2) +
483 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
484 				      XFS_FSB_TO_B(mp, 1))),
485 		    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
486 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
487 				      XFS_FSB_TO_B(mp, 1))));
488 }
489 
490 /*
491  * For adding an inode to unlinked list we can modify:
492  *    the agi hash list: sector size
493  *    the on disk inode: inode cluster size
494  */
495 STATIC uint
496 xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
497 {
498 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
499 			M_IGEO(mp)->inode_cluster_size;
500 }
501 
502 /*
503  * For removing a directory entry we can modify:
504  *    the parent directory inode: inode size
505  *    the removed inode: inode size
506  *    the directory btree could join: (max depth + v2) * dir block size
507  *    the directory bmap btree could join or split: (max depth + v2) * blocksize
508  * And the bmap_finish transaction can free the dir and bmap blocks giving:
509  *    the agf for the ag in which the blocks live: 2 * sector size
510  *    the agfl for the ag in which the blocks live: 2 * sector size
511  *    the superblock for the free block count: sector size
512  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
513  */
514 STATIC uint
515 xfs_calc_remove_reservation(
516 	struct xfs_mount	*mp)
517 {
518 	return XFS_DQUOT_LOGRES(mp) +
519 		xfs_calc_iunlink_add_reservation(mp) +
520 		max((xfs_calc_inode_res(mp, 2) +
521 		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
522 				      XFS_FSB_TO_B(mp, 1))),
523 		    (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
524 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
525 				      XFS_FSB_TO_B(mp, 1))));
526 }
527 
528 /*
529  * For create, break it in to the two cases that the transaction
530  * covers. We start with the modify case - allocation done by modification
531  * of the state of existing inodes - and the allocation case.
532  */
533 
534 /*
535  * For create we can modify:
536  *    the parent directory inode: inode size
537  *    the new inode: inode size
538  *    the inode btree entry: block size
539  *    the superblock for the nlink flag: sector size
540  *    the directory btree: (max depth + v2) * dir block size
541  *    the directory inode's bmap btree: (max depth + v2) * block size
542  *    the finobt (record modification and allocation btrees)
543  */
544 STATIC uint
545 xfs_calc_create_resv_modify(
546 	struct xfs_mount	*mp)
547 {
548 	return xfs_calc_inode_res(mp, 2) +
549 		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
550 		(uint)XFS_FSB_TO_B(mp, 1) +
551 		xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
552 		xfs_calc_finobt_res(mp);
553 }
554 
555 /*
556  * For icreate we can allocate some inodes giving:
557  *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
558  *    the superblock for the nlink flag: sector size
559  *    the inode chunk (allocation, optional init)
560  *    the inobt (record insertion)
561  *    the finobt (optional, record insertion)
562  */
563 STATIC uint
564 xfs_calc_icreate_resv_alloc(
565 	struct xfs_mount	*mp)
566 {
567 	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
568 		mp->m_sb.sb_sectsize +
569 		xfs_calc_inode_chunk_res(mp, _ALLOC) +
570 		xfs_calc_inobt_res(mp) +
571 		xfs_calc_finobt_res(mp);
572 }
573 
574 STATIC uint
575 xfs_calc_icreate_reservation(xfs_mount_t *mp)
576 {
577 	return XFS_DQUOT_LOGRES(mp) +
578 		max(xfs_calc_icreate_resv_alloc(mp),
579 		    xfs_calc_create_resv_modify(mp));
580 }
581 
582 STATIC uint
583 xfs_calc_create_tmpfile_reservation(
584 	struct xfs_mount        *mp)
585 {
586 	uint	res = XFS_DQUOT_LOGRES(mp);
587 
588 	res += xfs_calc_icreate_resv_alloc(mp);
589 	return res + xfs_calc_iunlink_add_reservation(mp);
590 }
591 
592 /*
593  * Making a new directory is the same as creating a new file.
594  */
595 STATIC uint
596 xfs_calc_mkdir_reservation(
597 	struct xfs_mount	*mp)
598 {
599 	return xfs_calc_icreate_reservation(mp);
600 }
601 
602 
603 /*
604  * Making a new symplink is the same as creating a new file, but
605  * with the added blocks for remote symlink data which can be up to 1kB in
606  * length (XFS_SYMLINK_MAXLEN).
607  */
608 STATIC uint
609 xfs_calc_symlink_reservation(
610 	struct xfs_mount	*mp)
611 {
612 	return xfs_calc_icreate_reservation(mp) +
613 	       xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
614 }
615 
616 /*
617  * In freeing an inode we can modify:
618  *    the inode being freed: inode size
619  *    the super block free inode counter, AGF and AGFL: sector size
620  *    the on disk inode (agi unlinked list removal)
621  *    the inode chunk (invalidated, headers only)
622  *    the inode btree
623  *    the finobt (record insertion, removal or modification)
624  *
625  * Note that the inode chunk res. includes an allocfree res. for freeing of the
626  * inode chunk. This is technically extraneous because the inode chunk free is
627  * deferred (it occurs after a transaction roll). Include the extra reservation
628  * anyways since we've had reports of ifree transaction overruns due to too many
629  * agfl fixups during inode chunk frees.
630  */
631 STATIC uint
632 xfs_calc_ifree_reservation(
633 	struct xfs_mount	*mp)
634 {
635 	return XFS_DQUOT_LOGRES(mp) +
636 		xfs_calc_inode_res(mp, 1) +
637 		xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
638 		xfs_calc_iunlink_remove_reservation(mp) +
639 		xfs_calc_inode_chunk_res(mp, _FREE) +
640 		xfs_calc_inobt_res(mp) +
641 		xfs_calc_finobt_res(mp);
642 }
643 
644 /*
645  * When only changing the inode we log the inode and possibly the superblock
646  * We also add a bit of slop for the transaction stuff.
647  */
648 STATIC uint
649 xfs_calc_ichange_reservation(
650 	struct xfs_mount	*mp)
651 {
652 	return XFS_DQUOT_LOGRES(mp) +
653 		xfs_calc_inode_res(mp, 1) +
654 		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
655 
656 }
657 
658 /*
659  * Growing the data section of the filesystem.
660  *	superblock
661  *	agi and agf
662  *	allocation btrees
663  */
664 STATIC uint
665 xfs_calc_growdata_reservation(
666 	struct xfs_mount	*mp)
667 {
668 	return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
669 		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
670 				 XFS_FSB_TO_B(mp, 1));
671 }
672 
673 /*
674  * Growing the rt section of the filesystem.
675  * In the first set of transactions (ALLOC) we allocate space to the
676  * bitmap or summary files.
677  *	superblock: sector size
678  *	agf of the ag from which the extent is allocated: sector size
679  *	bmap btree for bitmap/summary inode: max depth * blocksize
680  *	bitmap/summary inode: inode size
681  *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
682  */
683 STATIC uint
684 xfs_calc_growrtalloc_reservation(
685 	struct xfs_mount	*mp)
686 {
687 	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
688 		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
689 				 XFS_FSB_TO_B(mp, 1)) +
690 		xfs_calc_inode_res(mp, 1) +
691 		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
692 				 XFS_FSB_TO_B(mp, 1));
693 }
694 
695 /*
696  * Growing the rt section of the filesystem.
697  * In the second set of transactions (ZERO) we zero the new metadata blocks.
698  *	one bitmap/summary block: blocksize
699  */
700 STATIC uint
701 xfs_calc_growrtzero_reservation(
702 	struct xfs_mount	*mp)
703 {
704 	return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
705 }
706 
707 /*
708  * Growing the rt section of the filesystem.
709  * In the third set of transactions (FREE) we update metadata without
710  * allocating any new blocks.
711  *	superblock: sector size
712  *	bitmap inode: inode size
713  *	summary inode: inode size
714  *	one bitmap block: blocksize
715  *	summary blocks: new summary size
716  */
717 STATIC uint
718 xfs_calc_growrtfree_reservation(
719 	struct xfs_mount	*mp)
720 {
721 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
722 		xfs_calc_inode_res(mp, 2) +
723 		xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
724 		xfs_calc_buf_res(1, mp->m_rsumsize);
725 }
726 
727 /*
728  * Logging the inode modification timestamp on a synchronous write.
729  *	inode
730  */
731 STATIC uint
732 xfs_calc_swrite_reservation(
733 	struct xfs_mount	*mp)
734 {
735 	return xfs_calc_inode_res(mp, 1);
736 }
737 
738 /*
739  * Logging the inode mode bits when writing a setuid/setgid file
740  *	inode
741  */
742 STATIC uint
743 xfs_calc_writeid_reservation(
744 	struct xfs_mount	*mp)
745 {
746 	return xfs_calc_inode_res(mp, 1);
747 }
748 
749 /*
750  * Converting the inode from non-attributed to attributed.
751  *	the inode being converted: inode size
752  *	agf block and superblock (for block allocation)
753  *	the new block (directory sized)
754  *	bmap blocks for the new directory block
755  *	allocation btrees
756  */
757 STATIC uint
758 xfs_calc_addafork_reservation(
759 	struct xfs_mount	*mp)
760 {
761 	return XFS_DQUOT_LOGRES(mp) +
762 		xfs_calc_inode_res(mp, 1) +
763 		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
764 		xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
765 		xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
766 				 XFS_FSB_TO_B(mp, 1)) +
767 		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
768 				 XFS_FSB_TO_B(mp, 1));
769 }
770 
771 /*
772  * Removing the attribute fork of a file
773  *    the inode being truncated: inode size
774  *    the inode's bmap btree: max depth * block size
775  * And the bmap_finish transaction can free the blocks and bmap blocks:
776  *    the agf for each of the ags: 4 * sector size
777  *    the agfl for each of the ags: 4 * sector size
778  *    the super block to reflect the freed blocks: sector size
779  *    worst case split in allocation btrees per extent assuming 4 extents:
780  *		4 exts * 2 trees * (2 * max depth - 1) * block size
781  */
782 STATIC uint
783 xfs_calc_attrinval_reservation(
784 	struct xfs_mount	*mp)
785 {
786 	return max((xfs_calc_inode_res(mp, 1) +
787 		    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
788 				     XFS_FSB_TO_B(mp, 1))),
789 		   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
790 		    xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4),
791 				     XFS_FSB_TO_B(mp, 1))));
792 }
793 
794 /*
795  * Setting an attribute at mount time.
796  *	the inode getting the attribute
797  *	the superblock for allocations
798  *	the agfs extents are allocated from
799  *	the attribute btree * max depth
800  *	the inode allocation btree
801  * Since attribute transaction space is dependent on the size of the attribute,
802  * the calculation is done partially at mount time and partially at runtime(see
803  * below).
804  */
805 STATIC uint
806 xfs_calc_attrsetm_reservation(
807 	struct xfs_mount	*mp)
808 {
809 	return XFS_DQUOT_LOGRES(mp) +
810 		xfs_calc_inode_res(mp, 1) +
811 		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
812 		xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
813 }
814 
815 /*
816  * Setting an attribute at runtime, transaction space unit per block.
817  * 	the superblock for allocations: sector size
818  *	the inode bmap btree could join or split: max depth * block size
819  * Since the runtime attribute transaction space is dependent on the total
820  * blocks needed for the 1st bmap, here we calculate out the space unit for
821  * one block so that the caller could figure out the total space according
822  * to the attibute extent length in blocks by:
823  *	ext * M_RES(mp)->tr_attrsetrt.tr_logres
824  */
825 STATIC uint
826 xfs_calc_attrsetrt_reservation(
827 	struct xfs_mount	*mp)
828 {
829 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
830 		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
831 				 XFS_FSB_TO_B(mp, 1));
832 }
833 
834 /*
835  * Removing an attribute.
836  *    the inode: inode size
837  *    the attribute btree could join: max depth * block size
838  *    the inode bmap btree could join or split: max depth * block size
839  * And the bmap_finish transaction can free the attr blocks freed giving:
840  *    the agf for the ag in which the blocks live: 2 * sector size
841  *    the agfl for the ag in which the blocks live: 2 * sector size
842  *    the superblock for the free block count: sector size
843  *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
844  */
845 STATIC uint
846 xfs_calc_attrrm_reservation(
847 	struct xfs_mount	*mp)
848 {
849 	return XFS_DQUOT_LOGRES(mp) +
850 		max((xfs_calc_inode_res(mp, 1) +
851 		     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
852 				      XFS_FSB_TO_B(mp, 1)) +
853 		     (uint)XFS_FSB_TO_B(mp,
854 					XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
855 		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
856 		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
857 		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
858 				      XFS_FSB_TO_B(mp, 1))));
859 }
860 
861 /*
862  * Clearing a bad agino number in an agi hash bucket.
863  */
864 STATIC uint
865 xfs_calc_clear_agi_bucket_reservation(
866 	struct xfs_mount	*mp)
867 {
868 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
869 }
870 
871 /*
872  * Adjusting quota limits.
873  *    the disk quota buffer: sizeof(struct xfs_disk_dquot)
874  */
875 STATIC uint
876 xfs_calc_qm_setqlim_reservation(void)
877 {
878 	return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
879 }
880 
881 /*
882  * Allocating quota on disk if needed.
883  *	the write transaction log space for quota file extent allocation
884  *	the unit of quota allocation: one system block size
885  */
886 STATIC uint
887 xfs_calc_qm_dqalloc_reservation(
888 	struct xfs_mount	*mp,
889 	bool			for_minlogsize)
890 {
891 	return xfs_calc_write_reservation(mp, for_minlogsize) +
892 		xfs_calc_buf_res(1,
893 			XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
894 }
895 
896 unsigned int
897 xfs_calc_qm_dqalloc_reservation_minlogsize(
898 	struct xfs_mount	*mp)
899 {
900 	return xfs_calc_qm_dqalloc_reservation(mp, true);
901 }
902 
903 /*
904  * Syncing the incore super block changes to disk.
905  *     the super block to reflect the changes: sector size
906  */
907 STATIC uint
908 xfs_calc_sb_reservation(
909 	struct xfs_mount	*mp)
910 {
911 	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
912 }
913 
914 void
915 xfs_trans_resv_calc(
916 	struct xfs_mount	*mp,
917 	struct xfs_trans_resv	*resp)
918 {
919 	int			logcount_adj = 0;
920 
921 	/*
922 	 * The following transactions are logged in physical format and
923 	 * require a permanent reservation on space.
924 	 */
925 	resp->tr_write.tr_logres = xfs_calc_write_reservation(mp, false);
926 	resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
927 	resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
928 
929 	resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp, false);
930 	resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
931 	resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
932 
933 	resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
934 	resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
935 	resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
936 
937 	resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
938 	resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
939 	resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
940 
941 	resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
942 	resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
943 	resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
944 
945 	resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
946 	resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
947 	resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
948 
949 	resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
950 	resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
951 	resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
952 
953 	resp->tr_create_tmpfile.tr_logres =
954 			xfs_calc_create_tmpfile_reservation(mp);
955 	resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
956 	resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
957 
958 	resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
959 	resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
960 	resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
961 
962 	resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
963 	resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
964 	resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
965 
966 	resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
967 	resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
968 	resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
969 
970 	resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
971 	resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
972 	resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
973 
974 	resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
975 	resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
976 	resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
977 
978 	resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
979 	resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
980 	resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
981 
982 	resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
983 	resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
984 	resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
985 
986 	resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp,
987 			false);
988 	resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
989 	resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
990 
991 	/*
992 	 * The following transactions are logged in logical format with
993 	 * a default log count.
994 	 */
995 	resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
996 	resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
997 
998 	resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
999 	resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
1000 
1001 	/* growdata requires permanent res; it can free space to the last AG */
1002 	resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
1003 	resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
1004 	resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
1005 
1006 	/* The following transaction are logged in logical format */
1007 	resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
1008 	resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
1009 	resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
1010 	resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
1011 	resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
1012 	resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
1013 	resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
1014 
1015 	/*
1016 	 * Add one logcount for BUI items that appear with rmap or reflink,
1017 	 * one logcount for refcount intent items, and one logcount for rmap
1018 	 * intent items.
1019 	 */
1020 	if (xfs_has_reflink(mp) || xfs_has_rmapbt(mp))
1021 		logcount_adj++;
1022 	if (xfs_has_reflink(mp))
1023 		logcount_adj++;
1024 	if (xfs_has_rmapbt(mp))
1025 		logcount_adj++;
1026 
1027 	resp->tr_itruncate.tr_logcount += logcount_adj;
1028 	resp->tr_write.tr_logcount += logcount_adj;
1029 	resp->tr_qm_dqalloc.tr_logcount += logcount_adj;
1030 }
1031