1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_cksum.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_ialloc_btree.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap_btree.h" 29 #include "xfs_bmap.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 34 /* 35 * Physical superblock buffer manipulations. Shared with libxfs in userspace. 36 */ 37 38 /* 39 * Reference counting access wrappers to the perag structures. 40 * Because we never free per-ag structures, the only thing we 41 * have to protect against changes is the tree structure itself. 42 */ 43 struct xfs_perag * 44 xfs_perag_get( 45 struct xfs_mount *mp, 46 xfs_agnumber_t agno) 47 { 48 struct xfs_perag *pag; 49 int ref = 0; 50 51 rcu_read_lock(); 52 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 53 if (pag) { 54 ASSERT(atomic_read(&pag->pag_ref) >= 0); 55 ref = atomic_inc_return(&pag->pag_ref); 56 } 57 rcu_read_unlock(); 58 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 59 return pag; 60 } 61 62 /* 63 * search from @first to find the next perag with the given tag set. 64 */ 65 struct xfs_perag * 66 xfs_perag_get_tag( 67 struct xfs_mount *mp, 68 xfs_agnumber_t first, 69 int tag) 70 { 71 struct xfs_perag *pag; 72 int found; 73 int ref; 74 75 rcu_read_lock(); 76 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 77 (void **)&pag, first, 1, tag); 78 if (found <= 0) { 79 rcu_read_unlock(); 80 return NULL; 81 } 82 ref = atomic_inc_return(&pag->pag_ref); 83 rcu_read_unlock(); 84 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 85 return pag; 86 } 87 88 void 89 xfs_perag_put( 90 struct xfs_perag *pag) 91 { 92 int ref; 93 94 ASSERT(atomic_read(&pag->pag_ref) > 0); 95 ref = atomic_dec_return(&pag->pag_ref); 96 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 97 } 98 99 /* Check all the superblock fields we care about when reading one in. */ 100 STATIC int 101 xfs_validate_sb_read( 102 struct xfs_mount *mp, 103 struct xfs_sb *sbp) 104 { 105 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 106 return 0; 107 108 /* 109 * Version 5 superblock feature mask validation. Reject combinations 110 * the kernel cannot support up front before checking anything else. 111 */ 112 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 113 xfs_warn(mp, 114 "Superblock has unknown compatible features (0x%x) enabled.", 115 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 116 xfs_warn(mp, 117 "Using a more recent kernel is recommended."); 118 } 119 120 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 121 xfs_alert(mp, 122 "Superblock has unknown read-only compatible features (0x%x) enabled.", 123 (sbp->sb_features_ro_compat & 124 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 125 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 126 xfs_warn(mp, 127 "Attempted to mount read-only compatible filesystem read-write."); 128 xfs_warn(mp, 129 "Filesystem can only be safely mounted read only."); 130 131 return -EINVAL; 132 } 133 } 134 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 135 xfs_warn(mp, 136 "Superblock has unknown incompatible features (0x%x) enabled.", 137 (sbp->sb_features_incompat & 138 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 139 xfs_warn(mp, 140 "Filesystem cannot be safely mounted by this kernel."); 141 return -EINVAL; 142 } 143 144 return 0; 145 } 146 147 /* Check all the superblock fields we care about when writing one out. */ 148 STATIC int 149 xfs_validate_sb_write( 150 struct xfs_mount *mp, 151 struct xfs_buf *bp, 152 struct xfs_sb *sbp) 153 { 154 /* 155 * Carry out additional sb summary counter sanity checks when we write 156 * the superblock. We skip this in the read validator because there 157 * could be newer superblocks in the log and if the values are garbage 158 * even after replay we'll recalculate them at the end of log mount. 159 * 160 * mkfs has traditionally written zeroed counters to inprogress and 161 * secondary superblocks, so allow this usage to continue because 162 * we never read counters from such superblocks. 163 */ 164 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && 165 (sbp->sb_fdblocks > sbp->sb_dblocks || 166 !xfs_verify_icount(mp, sbp->sb_icount) || 167 sbp->sb_ifree > sbp->sb_icount)) { 168 xfs_warn(mp, "SB summary counter sanity check failed"); 169 return -EFSCORRUPTED; 170 } 171 172 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 173 return 0; 174 175 /* 176 * Version 5 superblock feature mask validation. Reject combinations 177 * the kernel cannot support since we checked for unsupported bits in 178 * the read verifier, which means that memory is corrupt. 179 */ 180 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 181 xfs_warn(mp, 182 "Corruption detected in superblock compatible features (0x%x)!", 183 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 184 return -EFSCORRUPTED; 185 } 186 187 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 188 xfs_alert(mp, 189 "Corruption detected in superblock read-only compatible features (0x%x)!", 190 (sbp->sb_features_ro_compat & 191 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 192 return -EFSCORRUPTED; 193 } 194 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 195 xfs_warn(mp, 196 "Corruption detected in superblock incompatible features (0x%x)!", 197 (sbp->sb_features_incompat & 198 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 199 return -EFSCORRUPTED; 200 } 201 if (xfs_sb_has_incompat_log_feature(sbp, 202 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 203 xfs_warn(mp, 204 "Corruption detected in superblock incompatible log features (0x%x)!", 205 (sbp->sb_features_log_incompat & 206 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 207 return -EFSCORRUPTED; 208 } 209 210 /* 211 * We can't read verify the sb LSN because the read verifier is called 212 * before the log is allocated and processed. We know the log is set up 213 * before write verifier calls, so check it here. 214 */ 215 if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) 216 return -EFSCORRUPTED; 217 218 return 0; 219 } 220 221 /* Check the validity of the SB. */ 222 STATIC int 223 xfs_validate_sb_common( 224 struct xfs_mount *mp, 225 struct xfs_buf *bp, 226 struct xfs_sb *sbp) 227 { 228 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 229 uint32_t agcount = 0; 230 uint32_t rem; 231 232 if (!xfs_verify_magic(bp, dsb->sb_magicnum)) { 233 xfs_warn(mp, "bad magic number"); 234 return -EWRONGFS; 235 } 236 237 if (!xfs_sb_good_version(sbp)) { 238 xfs_warn(mp, "bad version"); 239 return -EWRONGFS; 240 } 241 242 if (xfs_sb_version_has_pquotino(sbp)) { 243 if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { 244 xfs_notice(mp, 245 "Version 5 of Super block has XFS_OQUOTA bits."); 246 return -EFSCORRUPTED; 247 } 248 } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | 249 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { 250 xfs_notice(mp, 251 "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); 252 return -EFSCORRUPTED; 253 } 254 255 /* 256 * Full inode chunks must be aligned to inode chunk size when 257 * sparse inodes are enabled to support the sparse chunk 258 * allocation algorithm and prevent overlapping inode records. 259 */ 260 if (xfs_sb_version_hassparseinodes(sbp)) { 261 uint32_t align; 262 263 align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize 264 >> sbp->sb_blocklog; 265 if (sbp->sb_inoalignmt != align) { 266 xfs_warn(mp, 267 "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", 268 sbp->sb_inoalignmt, align); 269 return -EINVAL; 270 } 271 } 272 273 if (unlikely( 274 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 275 xfs_warn(mp, 276 "filesystem is marked as having an external log; " 277 "specify logdev on the mount command line."); 278 return -EINVAL; 279 } 280 281 if (unlikely( 282 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 283 xfs_warn(mp, 284 "filesystem is marked as having an internal log; " 285 "do not specify logdev on the mount command line."); 286 return -EINVAL; 287 } 288 289 /* Compute agcount for this number of dblocks and agblocks */ 290 if (sbp->sb_agblocks) { 291 agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); 292 if (rem) 293 agcount++; 294 } 295 296 /* 297 * More sanity checking. Most of these were stolen directly from 298 * xfs_repair. 299 */ 300 if (unlikely( 301 sbp->sb_agcount <= 0 || 302 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 303 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 304 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 305 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 306 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 307 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 308 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 309 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 310 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 311 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 312 sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 313 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 314 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 315 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 316 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 317 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 318 sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || 319 sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || 320 XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || 321 XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || 322 sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || 323 agcount == 0 || agcount != sbp->sb_agcount || 324 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 325 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 326 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 327 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 328 sbp->sb_dblocks == 0 || 329 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 330 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || 331 sbp->sb_shared_vn != 0)) { 332 xfs_notice(mp, "SB sanity check failed"); 333 return -EFSCORRUPTED; 334 } 335 336 if (sbp->sb_unit) { 337 if (!xfs_sb_version_hasdalign(sbp) || 338 sbp->sb_unit > sbp->sb_width || 339 (sbp->sb_width % sbp->sb_unit) != 0) { 340 xfs_notice(mp, "SB stripe unit sanity check failed"); 341 return -EFSCORRUPTED; 342 } 343 } else if (xfs_sb_version_hasdalign(sbp)) { 344 xfs_notice(mp, "SB stripe alignment sanity check failed"); 345 return -EFSCORRUPTED; 346 } else if (sbp->sb_width) { 347 xfs_notice(mp, "SB stripe width sanity check failed"); 348 return -EFSCORRUPTED; 349 } 350 351 352 if (xfs_sb_version_hascrc(&mp->m_sb) && 353 sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { 354 xfs_notice(mp, "v5 SB sanity check failed"); 355 return -EFSCORRUPTED; 356 } 357 358 /* 359 * Until this is fixed only page-sized or smaller data blocks work. 360 */ 361 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 362 xfs_warn(mp, 363 "File system with blocksize %d bytes. " 364 "Only pagesize (%ld) or less will currently work.", 365 sbp->sb_blocksize, PAGE_SIZE); 366 return -ENOSYS; 367 } 368 369 /* 370 * Currently only very few inode sizes are supported. 371 */ 372 switch (sbp->sb_inodesize) { 373 case 256: 374 case 512: 375 case 1024: 376 case 2048: 377 break; 378 default: 379 xfs_warn(mp, "inode size of %d bytes not supported", 380 sbp->sb_inodesize); 381 return -ENOSYS; 382 } 383 384 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 385 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 386 xfs_warn(mp, 387 "file system too large to be mounted on this system."); 388 return -EFBIG; 389 } 390 391 /* 392 * Don't touch the filesystem if a user tool thinks it owns the primary 393 * superblock. mkfs doesn't clear the flag from secondary supers, so 394 * we don't check them at all. 395 */ 396 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && sbp->sb_inprogress) { 397 xfs_warn(mp, "Offline file system operation in progress!"); 398 return -EFSCORRUPTED; 399 } 400 return 0; 401 } 402 403 void 404 xfs_sb_quota_from_disk(struct xfs_sb *sbp) 405 { 406 /* 407 * older mkfs doesn't initialize quota inodes to NULLFSINO. This 408 * leads to in-core values having two different values for a quota 409 * inode to be invalid: 0 and NULLFSINO. Change it to a single value 410 * NULLFSINO. 411 * 412 * Note that this change affect only the in-core values. These 413 * values are not written back to disk unless any quota information 414 * is written to the disk. Even in that case, sb_pquotino field is 415 * not written to disk unless the superblock supports pquotino. 416 */ 417 if (sbp->sb_uquotino == 0) 418 sbp->sb_uquotino = NULLFSINO; 419 if (sbp->sb_gquotino == 0) 420 sbp->sb_gquotino = NULLFSINO; 421 if (sbp->sb_pquotino == 0) 422 sbp->sb_pquotino = NULLFSINO; 423 424 /* 425 * We need to do these manipilations only if we are working 426 * with an older version of on-disk superblock. 427 */ 428 if (xfs_sb_version_has_pquotino(sbp)) 429 return; 430 431 if (sbp->sb_qflags & XFS_OQUOTA_ENFD) 432 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 433 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; 434 if (sbp->sb_qflags & XFS_OQUOTA_CHKD) 435 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 436 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; 437 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); 438 439 if (sbp->sb_qflags & XFS_PQUOTA_ACCT && 440 sbp->sb_gquotino != NULLFSINO) { 441 /* 442 * In older version of superblock, on-disk superblock only 443 * has sb_gquotino, and in-core superblock has both sb_gquotino 444 * and sb_pquotino. But, only one of them is supported at any 445 * point of time. So, if PQUOTA is set in disk superblock, 446 * copy over sb_gquotino to sb_pquotino. The NULLFSINO test 447 * above is to make sure we don't do this twice and wipe them 448 * both out! 449 */ 450 sbp->sb_pquotino = sbp->sb_gquotino; 451 sbp->sb_gquotino = NULLFSINO; 452 } 453 } 454 455 static void 456 __xfs_sb_from_disk( 457 struct xfs_sb *to, 458 xfs_dsb_t *from, 459 bool convert_xquota) 460 { 461 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 462 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 463 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 464 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 465 to->sb_rextents = be64_to_cpu(from->sb_rextents); 466 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 467 to->sb_logstart = be64_to_cpu(from->sb_logstart); 468 to->sb_rootino = be64_to_cpu(from->sb_rootino); 469 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 470 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 471 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 472 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 473 to->sb_agcount = be32_to_cpu(from->sb_agcount); 474 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 475 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 476 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 477 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 478 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 479 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 480 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 481 to->sb_blocklog = from->sb_blocklog; 482 to->sb_sectlog = from->sb_sectlog; 483 to->sb_inodelog = from->sb_inodelog; 484 to->sb_inopblog = from->sb_inopblog; 485 to->sb_agblklog = from->sb_agblklog; 486 to->sb_rextslog = from->sb_rextslog; 487 to->sb_inprogress = from->sb_inprogress; 488 to->sb_imax_pct = from->sb_imax_pct; 489 to->sb_icount = be64_to_cpu(from->sb_icount); 490 to->sb_ifree = be64_to_cpu(from->sb_ifree); 491 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 492 to->sb_frextents = be64_to_cpu(from->sb_frextents); 493 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 494 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 495 to->sb_qflags = be16_to_cpu(from->sb_qflags); 496 to->sb_flags = from->sb_flags; 497 to->sb_shared_vn = from->sb_shared_vn; 498 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 499 to->sb_unit = be32_to_cpu(from->sb_unit); 500 to->sb_width = be32_to_cpu(from->sb_width); 501 to->sb_dirblklog = from->sb_dirblklog; 502 to->sb_logsectlog = from->sb_logsectlog; 503 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 504 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 505 to->sb_features2 = be32_to_cpu(from->sb_features2); 506 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 507 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 508 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 509 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 510 to->sb_features_log_incompat = 511 be32_to_cpu(from->sb_features_log_incompat); 512 /* crc is only used on disk, not in memory; just init to 0 here. */ 513 to->sb_crc = 0; 514 to->sb_spino_align = be32_to_cpu(from->sb_spino_align); 515 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 516 to->sb_lsn = be64_to_cpu(from->sb_lsn); 517 /* 518 * sb_meta_uuid is only on disk if it differs from sb_uuid and the 519 * feature flag is set; if not set we keep it only in memory. 520 */ 521 if (xfs_sb_version_hasmetauuid(to)) 522 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 523 else 524 uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); 525 /* Convert on-disk flags to in-memory flags? */ 526 if (convert_xquota) 527 xfs_sb_quota_from_disk(to); 528 } 529 530 void 531 xfs_sb_from_disk( 532 struct xfs_sb *to, 533 xfs_dsb_t *from) 534 { 535 __xfs_sb_from_disk(to, from, true); 536 } 537 538 static void 539 xfs_sb_quota_to_disk( 540 struct xfs_dsb *to, 541 struct xfs_sb *from) 542 { 543 uint16_t qflags = from->sb_qflags; 544 545 to->sb_uquotino = cpu_to_be64(from->sb_uquotino); 546 if (xfs_sb_version_has_pquotino(from)) { 547 to->sb_qflags = cpu_to_be16(from->sb_qflags); 548 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 549 to->sb_pquotino = cpu_to_be64(from->sb_pquotino); 550 return; 551 } 552 553 /* 554 * The in-core version of sb_qflags do not have XFS_OQUOTA_* 555 * flags, whereas the on-disk version does. So, convert incore 556 * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. 557 */ 558 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | 559 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); 560 561 if (from->sb_qflags & 562 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) 563 qflags |= XFS_OQUOTA_ENFD; 564 if (from->sb_qflags & 565 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) 566 qflags |= XFS_OQUOTA_CHKD; 567 to->sb_qflags = cpu_to_be16(qflags); 568 569 /* 570 * GQUOTINO and PQUOTINO cannot be used together in versions 571 * of superblock that do not have pquotino. from->sb_flags 572 * tells us which quota is active and should be copied to 573 * disk. If neither are active, we should NULL the inode. 574 * 575 * In all cases, the separate pquotino must remain 0 because it 576 * it beyond the "end" of the valid non-pquotino superblock. 577 */ 578 if (from->sb_qflags & XFS_GQUOTA_ACCT) 579 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 580 else if (from->sb_qflags & XFS_PQUOTA_ACCT) 581 to->sb_gquotino = cpu_to_be64(from->sb_pquotino); 582 else { 583 /* 584 * We can't rely on just the fields being logged to tell us 585 * that it is safe to write NULLFSINO - we should only do that 586 * if quotas are not actually enabled. Hence only write 587 * NULLFSINO if both in-core quota inodes are NULL. 588 */ 589 if (from->sb_gquotino == NULLFSINO && 590 from->sb_pquotino == NULLFSINO) 591 to->sb_gquotino = cpu_to_be64(NULLFSINO); 592 } 593 594 to->sb_pquotino = 0; 595 } 596 597 void 598 xfs_sb_to_disk( 599 struct xfs_dsb *to, 600 struct xfs_sb *from) 601 { 602 xfs_sb_quota_to_disk(to, from); 603 604 to->sb_magicnum = cpu_to_be32(from->sb_magicnum); 605 to->sb_blocksize = cpu_to_be32(from->sb_blocksize); 606 to->sb_dblocks = cpu_to_be64(from->sb_dblocks); 607 to->sb_rblocks = cpu_to_be64(from->sb_rblocks); 608 to->sb_rextents = cpu_to_be64(from->sb_rextents); 609 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 610 to->sb_logstart = cpu_to_be64(from->sb_logstart); 611 to->sb_rootino = cpu_to_be64(from->sb_rootino); 612 to->sb_rbmino = cpu_to_be64(from->sb_rbmino); 613 to->sb_rsumino = cpu_to_be64(from->sb_rsumino); 614 to->sb_rextsize = cpu_to_be32(from->sb_rextsize); 615 to->sb_agblocks = cpu_to_be32(from->sb_agblocks); 616 to->sb_agcount = cpu_to_be32(from->sb_agcount); 617 to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); 618 to->sb_logblocks = cpu_to_be32(from->sb_logblocks); 619 to->sb_versionnum = cpu_to_be16(from->sb_versionnum); 620 to->sb_sectsize = cpu_to_be16(from->sb_sectsize); 621 to->sb_inodesize = cpu_to_be16(from->sb_inodesize); 622 to->sb_inopblock = cpu_to_be16(from->sb_inopblock); 623 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 624 to->sb_blocklog = from->sb_blocklog; 625 to->sb_sectlog = from->sb_sectlog; 626 to->sb_inodelog = from->sb_inodelog; 627 to->sb_inopblog = from->sb_inopblog; 628 to->sb_agblklog = from->sb_agblklog; 629 to->sb_rextslog = from->sb_rextslog; 630 to->sb_inprogress = from->sb_inprogress; 631 to->sb_imax_pct = from->sb_imax_pct; 632 to->sb_icount = cpu_to_be64(from->sb_icount); 633 to->sb_ifree = cpu_to_be64(from->sb_ifree); 634 to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); 635 to->sb_frextents = cpu_to_be64(from->sb_frextents); 636 637 to->sb_flags = from->sb_flags; 638 to->sb_shared_vn = from->sb_shared_vn; 639 to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); 640 to->sb_unit = cpu_to_be32(from->sb_unit); 641 to->sb_width = cpu_to_be32(from->sb_width); 642 to->sb_dirblklog = from->sb_dirblklog; 643 to->sb_logsectlog = from->sb_logsectlog; 644 to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); 645 to->sb_logsunit = cpu_to_be32(from->sb_logsunit); 646 647 /* 648 * We need to ensure that bad_features2 always matches features2. 649 * Hence we enforce that here rather than having to remember to do it 650 * everywhere else that updates features2. 651 */ 652 from->sb_bad_features2 = from->sb_features2; 653 to->sb_features2 = cpu_to_be32(from->sb_features2); 654 to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); 655 656 if (xfs_sb_version_hascrc(from)) { 657 to->sb_features_compat = cpu_to_be32(from->sb_features_compat); 658 to->sb_features_ro_compat = 659 cpu_to_be32(from->sb_features_ro_compat); 660 to->sb_features_incompat = 661 cpu_to_be32(from->sb_features_incompat); 662 to->sb_features_log_incompat = 663 cpu_to_be32(from->sb_features_log_incompat); 664 to->sb_spino_align = cpu_to_be32(from->sb_spino_align); 665 to->sb_lsn = cpu_to_be64(from->sb_lsn); 666 if (xfs_sb_version_hasmetauuid(from)) 667 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 668 } 669 } 670 671 /* 672 * If the superblock has the CRC feature bit set or the CRC field is non-null, 673 * check that the CRC is valid. We check the CRC field is non-null because a 674 * single bit error could clear the feature bit and unused parts of the 675 * superblock are supposed to be zero. Hence a non-null crc field indicates that 676 * we've potentially lost a feature bit and we should check it anyway. 677 * 678 * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the 679 * last field in V4 secondary superblocks. So for secondary superblocks, 680 * we are more forgiving, and ignore CRC failures if the primary doesn't 681 * indicate that the fs version is V5. 682 */ 683 static void 684 xfs_sb_read_verify( 685 struct xfs_buf *bp) 686 { 687 struct xfs_sb sb; 688 struct xfs_mount *mp = bp->b_target->bt_mount; 689 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 690 int error; 691 692 /* 693 * open code the version check to avoid needing to convert the entire 694 * superblock from disk order just to check the version number 695 */ 696 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 697 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 698 XFS_SB_VERSION_5) || 699 dsb->sb_crc != 0)) { 700 701 if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { 702 /* Only fail bad secondaries on a known V5 filesystem */ 703 if (bp->b_bn == XFS_SB_DADDR || 704 xfs_sb_version_hascrc(&mp->m_sb)) { 705 error = -EFSBADCRC; 706 goto out_error; 707 } 708 } 709 } 710 711 /* 712 * Check all the superblock fields. Don't byteswap the xquota flags 713 * because _verify_common checks the on-disk values. 714 */ 715 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 716 error = xfs_validate_sb_common(mp, bp, &sb); 717 if (error) 718 goto out_error; 719 error = xfs_validate_sb_read(mp, &sb); 720 721 out_error: 722 if (error == -EFSCORRUPTED || error == -EFSBADCRC) 723 xfs_verifier_error(bp, error, __this_address); 724 else if (error) 725 xfs_buf_ioerror(bp, error); 726 } 727 728 /* 729 * We may be probed for a filesystem match, so we may not want to emit 730 * messages when the superblock buffer is not actually an XFS superblock. 731 * If we find an XFS superblock, then run a normal, noisy mount because we are 732 * really going to mount it and want to know about errors. 733 */ 734 static void 735 xfs_sb_quiet_read_verify( 736 struct xfs_buf *bp) 737 { 738 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 739 740 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 741 /* XFS filesystem, verify noisily! */ 742 xfs_sb_read_verify(bp); 743 return; 744 } 745 /* quietly fail */ 746 xfs_buf_ioerror(bp, -EWRONGFS); 747 } 748 749 static void 750 xfs_sb_write_verify( 751 struct xfs_buf *bp) 752 { 753 struct xfs_sb sb; 754 struct xfs_mount *mp = bp->b_target->bt_mount; 755 struct xfs_buf_log_item *bip = bp->b_log_item; 756 int error; 757 758 /* 759 * Check all the superblock fields. Don't byteswap the xquota flags 760 * because _verify_common checks the on-disk values. 761 */ 762 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 763 error = xfs_validate_sb_common(mp, bp, &sb); 764 if (error) 765 goto out_error; 766 error = xfs_validate_sb_write(mp, bp, &sb); 767 if (error) 768 goto out_error; 769 770 if (!xfs_sb_version_hascrc(&mp->m_sb)) 771 return; 772 773 if (bip) 774 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 775 776 xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); 777 return; 778 779 out_error: 780 xfs_verifier_error(bp, error, __this_address); 781 } 782 783 const struct xfs_buf_ops xfs_sb_buf_ops = { 784 .name = "xfs_sb", 785 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 786 .verify_read = xfs_sb_read_verify, 787 .verify_write = xfs_sb_write_verify, 788 }; 789 790 const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 791 .name = "xfs_sb_quiet", 792 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 793 .verify_read = xfs_sb_quiet_read_verify, 794 .verify_write = xfs_sb_write_verify, 795 }; 796 797 /* 798 * xfs_mount_common 799 * 800 * Mount initialization code establishing various mount 801 * fields from the superblock associated with the given 802 * mount structure 803 */ 804 void 805 xfs_sb_mount_common( 806 struct xfs_mount *mp, 807 struct xfs_sb *sbp) 808 { 809 mp->m_agfrotor = mp->m_agirotor = 0; 810 mp->m_maxagi = mp->m_sb.sb_agcount; 811 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 812 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 813 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 814 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 815 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 816 mp->m_blockmask = sbp->sb_blocksize - 1; 817 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 818 mp->m_blockwmask = mp->m_blockwsize - 1; 819 820 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 821 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 822 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 823 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 824 825 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 826 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 827 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 828 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 829 830 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 831 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 832 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 833 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 834 835 mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); 836 mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); 837 mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; 838 mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; 839 840 mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); 841 mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); 842 mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; 843 mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; 844 845 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 846 mp->m_ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 847 sbp->sb_inopblock); 848 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 849 850 if (sbp->sb_spino_align) 851 mp->m_ialloc_min_blks = sbp->sb_spino_align; 852 else 853 mp->m_ialloc_min_blks = mp->m_ialloc_blks; 854 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 855 mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); 856 } 857 858 /* 859 * xfs_initialize_perag_data 860 * 861 * Read in each per-ag structure so we can count up the number of 862 * allocated inodes, free inodes and used filesystem blocks as this 863 * information is no longer persistent in the superblock. Once we have 864 * this information, write it into the in-core superblock structure. 865 */ 866 int 867 xfs_initialize_perag_data( 868 struct xfs_mount *mp, 869 xfs_agnumber_t agcount) 870 { 871 xfs_agnumber_t index; 872 xfs_perag_t *pag; 873 xfs_sb_t *sbp = &mp->m_sb; 874 uint64_t ifree = 0; 875 uint64_t ialloc = 0; 876 uint64_t bfree = 0; 877 uint64_t bfreelst = 0; 878 uint64_t btree = 0; 879 uint64_t fdblocks; 880 int error = 0; 881 882 for (index = 0; index < agcount; index++) { 883 /* 884 * read the agf, then the agi. This gets us 885 * all the information we need and populates the 886 * per-ag structures for us. 887 */ 888 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 889 if (error) 890 return error; 891 892 error = xfs_ialloc_pagi_init(mp, NULL, index); 893 if (error) 894 return error; 895 pag = xfs_perag_get(mp, index); 896 ifree += pag->pagi_freecount; 897 ialloc += pag->pagi_count; 898 bfree += pag->pagf_freeblks; 899 bfreelst += pag->pagf_flcount; 900 btree += pag->pagf_btreeblks; 901 xfs_perag_put(pag); 902 } 903 fdblocks = bfree + bfreelst + btree; 904 905 /* 906 * If the new summary counts are obviously incorrect, fail the 907 * mount operation because that implies the AGFs are also corrupt. 908 * Clear BAD_SUMMARY so that we don't unmount with a dirty log, which 909 * will prevent xfs_repair from fixing anything. 910 */ 911 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 912 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 913 error = -EFSCORRUPTED; 914 goto out; 915 } 916 917 /* Overwrite incore superblock counters with just-read data */ 918 spin_lock(&mp->m_sb_lock); 919 sbp->sb_ifree = ifree; 920 sbp->sb_icount = ialloc; 921 sbp->sb_fdblocks = fdblocks; 922 spin_unlock(&mp->m_sb_lock); 923 924 xfs_reinit_percpu_counters(mp); 925 out: 926 mp->m_flags &= ~XFS_MOUNT_BAD_SUMMARY; 927 return error; 928 } 929 930 /* 931 * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock 932 * into the superblock buffer to be logged. It does not provide the higher 933 * level of locking that is needed to protect the in-core superblock from 934 * concurrent access. 935 */ 936 void 937 xfs_log_sb( 938 struct xfs_trans *tp) 939 { 940 struct xfs_mount *mp = tp->t_mountp; 941 struct xfs_buf *bp = xfs_trans_getsb(tp, mp, 0); 942 943 mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); 944 mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); 945 mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); 946 947 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 948 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 949 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb)); 950 } 951 952 /* 953 * xfs_sync_sb 954 * 955 * Sync the superblock to disk. 956 * 957 * Note that the caller is responsible for checking the frozen state of the 958 * filesystem. This procedure uses the non-blocking transaction allocator and 959 * thus will allow modifications to a frozen fs. This is required because this 960 * code can be called during the process of freezing where use of the high-level 961 * allocator would deadlock. 962 */ 963 int 964 xfs_sync_sb( 965 struct xfs_mount *mp, 966 bool wait) 967 { 968 struct xfs_trans *tp; 969 int error; 970 971 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 972 XFS_TRANS_NO_WRITECOUNT, &tp); 973 if (error) 974 return error; 975 976 xfs_log_sb(tp); 977 if (wait) 978 xfs_trans_set_sync(tp); 979 return xfs_trans_commit(tp); 980 } 981 982 /* 983 * Update all the secondary superblocks to match the new state of the primary. 984 * Because we are completely overwriting all the existing fields in the 985 * secondary superblock buffers, there is no need to read them in from disk. 986 * Just get a new buffer, stamp it and write it. 987 * 988 * The sb buffers need to be cached here so that we serialise against other 989 * operations that access the secondary superblocks, but we don't want to keep 990 * them in memory once it is written so we mark it as a one-shot buffer. 991 */ 992 int 993 xfs_update_secondary_sbs( 994 struct xfs_mount *mp) 995 { 996 xfs_agnumber_t agno; 997 int saved_error = 0; 998 int error = 0; 999 LIST_HEAD (buffer_list); 1000 1001 /* update secondary superblocks. */ 1002 for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { 1003 struct xfs_buf *bp; 1004 1005 bp = xfs_buf_get(mp->m_ddev_targp, 1006 XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), 1007 XFS_FSS_TO_BB(mp, 1), 0); 1008 /* 1009 * If we get an error reading or writing alternate superblocks, 1010 * continue. xfs_repair chooses the "best" superblock based 1011 * on most matches; if we break early, we'll leave more 1012 * superblocks un-updated than updated, and xfs_repair may 1013 * pick them over the properly-updated primary. 1014 */ 1015 if (!bp) { 1016 xfs_warn(mp, 1017 "error allocating secondary superblock for ag %d", 1018 agno); 1019 if (!saved_error) 1020 saved_error = -ENOMEM; 1021 continue; 1022 } 1023 1024 bp->b_ops = &xfs_sb_buf_ops; 1025 xfs_buf_oneshot(bp); 1026 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 1027 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 1028 xfs_buf_delwri_queue(bp, &buffer_list); 1029 xfs_buf_relse(bp); 1030 1031 /* don't hold too many buffers at once */ 1032 if (agno % 16) 1033 continue; 1034 1035 error = xfs_buf_delwri_submit(&buffer_list); 1036 if (error) { 1037 xfs_warn(mp, 1038 "write error %d updating a secondary superblock near ag %d", 1039 error, agno); 1040 if (!saved_error) 1041 saved_error = error; 1042 continue; 1043 } 1044 } 1045 error = xfs_buf_delwri_submit(&buffer_list); 1046 if (error) { 1047 xfs_warn(mp, 1048 "write error %d updating a secondary superblock near ag %d", 1049 error, agno); 1050 } 1051 1052 return saved_error ? saved_error : error; 1053 } 1054 1055 /* 1056 * Same behavior as xfs_sync_sb, except that it is always synchronous and it 1057 * also writes the superblock buffer to disk sector 0 immediately. 1058 */ 1059 int 1060 xfs_sync_sb_buf( 1061 struct xfs_mount *mp) 1062 { 1063 struct xfs_trans *tp; 1064 struct xfs_buf *bp; 1065 int error; 1066 1067 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); 1068 if (error) 1069 return error; 1070 1071 bp = xfs_trans_getsb(tp, mp, 0); 1072 xfs_log_sb(tp); 1073 xfs_trans_bhold(tp, bp); 1074 xfs_trans_set_sync(tp); 1075 error = xfs_trans_commit(tp); 1076 if (error) 1077 goto out; 1078 /* 1079 * write out the sb buffer to get the changes to disk 1080 */ 1081 error = xfs_bwrite(bp); 1082 out: 1083 xfs_buf_relse(bp); 1084 return error; 1085 } 1086 1087 int 1088 xfs_fs_geometry( 1089 struct xfs_sb *sbp, 1090 struct xfs_fsop_geom *geo, 1091 int struct_version) 1092 { 1093 memset(geo, 0, sizeof(struct xfs_fsop_geom)); 1094 1095 geo->blocksize = sbp->sb_blocksize; 1096 geo->rtextsize = sbp->sb_rextsize; 1097 geo->agblocks = sbp->sb_agblocks; 1098 geo->agcount = sbp->sb_agcount; 1099 geo->logblocks = sbp->sb_logblocks; 1100 geo->sectsize = sbp->sb_sectsize; 1101 geo->inodesize = sbp->sb_inodesize; 1102 geo->imaxpct = sbp->sb_imax_pct; 1103 geo->datablocks = sbp->sb_dblocks; 1104 geo->rtblocks = sbp->sb_rblocks; 1105 geo->rtextents = sbp->sb_rextents; 1106 geo->logstart = sbp->sb_logstart; 1107 BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); 1108 memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); 1109 1110 if (struct_version < 2) 1111 return 0; 1112 1113 geo->sunit = sbp->sb_unit; 1114 geo->swidth = sbp->sb_width; 1115 1116 if (struct_version < 3) 1117 return 0; 1118 1119 geo->version = XFS_FSOP_GEOM_VERSION; 1120 geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | 1121 XFS_FSOP_GEOM_FLAGS_DIRV2 | 1122 XFS_FSOP_GEOM_FLAGS_EXTFLG; 1123 if (xfs_sb_version_hasattr(sbp)) 1124 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; 1125 if (xfs_sb_version_hasquota(sbp)) 1126 geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; 1127 if (xfs_sb_version_hasalign(sbp)) 1128 geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; 1129 if (xfs_sb_version_hasdalign(sbp)) 1130 geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; 1131 if (xfs_sb_version_hassector(sbp)) 1132 geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; 1133 if (xfs_sb_version_hasasciici(sbp)) 1134 geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; 1135 if (xfs_sb_version_haslazysbcount(sbp)) 1136 geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; 1137 if (xfs_sb_version_hasattr2(sbp)) 1138 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; 1139 if (xfs_sb_version_hasprojid32bit(sbp)) 1140 geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; 1141 if (xfs_sb_version_hascrc(sbp)) 1142 geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; 1143 if (xfs_sb_version_hasftype(sbp)) 1144 geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; 1145 if (xfs_sb_version_hasfinobt(sbp)) 1146 geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; 1147 if (xfs_sb_version_hassparseinodes(sbp)) 1148 geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; 1149 if (xfs_sb_version_hasrmapbt(sbp)) 1150 geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; 1151 if (xfs_sb_version_hasreflink(sbp)) 1152 geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; 1153 if (xfs_sb_version_hassector(sbp)) 1154 geo->logsectsize = sbp->sb_logsectsize; 1155 else 1156 geo->logsectsize = BBSIZE; 1157 geo->rtsectsize = sbp->sb_blocksize; 1158 geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); 1159 1160 if (struct_version < 4) 1161 return 0; 1162 1163 if (xfs_sb_version_haslogv2(sbp)) 1164 geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; 1165 1166 geo->logsunit = sbp->sb_logsunit; 1167 1168 return 0; 1169 } 1170 1171 /* Read a secondary superblock. */ 1172 int 1173 xfs_sb_read_secondary( 1174 struct xfs_mount *mp, 1175 struct xfs_trans *tp, 1176 xfs_agnumber_t agno, 1177 struct xfs_buf **bpp) 1178 { 1179 struct xfs_buf *bp; 1180 int error; 1181 1182 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1183 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 1184 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1185 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); 1186 if (error) 1187 return error; 1188 xfs_buf_set_ref(bp, XFS_SSB_REF); 1189 *bpp = bp; 1190 return 0; 1191 } 1192 1193 /* Get an uninitialised secondary superblock buffer. */ 1194 int 1195 xfs_sb_get_secondary( 1196 struct xfs_mount *mp, 1197 struct xfs_trans *tp, 1198 xfs_agnumber_t agno, 1199 struct xfs_buf **bpp) 1200 { 1201 struct xfs_buf *bp; 1202 1203 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1204 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, 1205 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1206 XFS_FSS_TO_BB(mp, 1), 0); 1207 if (!bp) 1208 return -ENOMEM; 1209 bp->b_ops = &xfs_sb_buf_ops; 1210 xfs_buf_oneshot(bp); 1211 *bpp = bp; 1212 return 0; 1213 } 1214