xref: /linux/fs/xfs/libxfs/xfs_rmap_btree.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_extent_busy.h"
23 #include "xfs_ag.h"
24 #include "xfs_ag_resv.h"
25 #include "xfs_buf_mem.h"
26 #include "xfs_btree_mem.h"
27 
28 static struct kmem_cache	*xfs_rmapbt_cur_cache;
29 
30 /*
31  * Reverse map btree.
32  *
33  * This is a per-ag tree used to track the owner(s) of a given extent. With
34  * reflink it is possible for there to be multiple owners, which is a departure
35  * from classic XFS. Owner records for data extents are inserted when the
36  * extent is mapped and removed when an extent is unmapped.  Owner records for
37  * all other block types (i.e. metadata) are inserted when an extent is
38  * allocated and removed when an extent is freed. There can only be one owner
39  * of a metadata extent, usually an inode or some other metadata structure like
40  * an AG btree.
41  *
42  * The rmap btree is part of the free space management, so blocks for the tree
43  * are sourced from the agfl. Hence we need transaction reservation support for
44  * this tree so that the freelist is always large enough. This also impacts on
45  * the minimum space we need to leave free in the AG.
46  *
47  * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48  * but it is the only way to enforce unique keys when a block can be owned by
49  * multiple files at any offset. There's no need to order/search by extent
50  * size for online updating/management of the tree. It is intended that most
51  * reverse lookups will be to find the owner(s) of a particular block, or to
52  * try to recover tree and file data from corrupt primary metadata.
53  */
54 
55 static struct xfs_btree_cur *
56 xfs_rmapbt_dup_cursor(
57 	struct xfs_btree_cur	*cur)
58 {
59 	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 				cur->bc_ag.agbp, cur->bc_ag.pag);
61 }
62 
63 STATIC void
64 xfs_rmapbt_set_root(
65 	struct xfs_btree_cur		*cur,
66 	const union xfs_btree_ptr	*ptr,
67 	int				inc)
68 {
69 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
70 	struct xfs_agf		*agf = agbp->b_addr;
71 
72 	ASSERT(ptr->s != 0);
73 
74 	agf->agf_rmap_root = ptr->s;
75 	be32_add_cpu(&agf->agf_rmap_level, inc);
76 	cur->bc_ag.pag->pagf_rmap_level += inc;
77 
78 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
79 }
80 
81 STATIC int
82 xfs_rmapbt_alloc_block(
83 	struct xfs_btree_cur		*cur,
84 	const union xfs_btree_ptr	*start,
85 	union xfs_btree_ptr		*new,
86 	int				*stat)
87 {
88 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
89 	struct xfs_agf		*agf = agbp->b_addr;
90 	struct xfs_perag	*pag = cur->bc_ag.pag;
91 	int			error;
92 	xfs_agblock_t		bno;
93 
94 	/* Allocate the new block from the freelist. If we can't, give up.  */
95 	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
96 				       &bno, 1);
97 	if (error)
98 		return error;
99 	if (bno == NULLAGBLOCK) {
100 		*stat = 0;
101 		return 0;
102 	}
103 
104 	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
105 
106 	new->s = cpu_to_be32(bno);
107 	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109 
110 	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111 
112 	*stat = 1;
113 	return 0;
114 }
115 
116 STATIC int
117 xfs_rmapbt_free_block(
118 	struct xfs_btree_cur	*cur,
119 	struct xfs_buf		*bp)
120 {
121 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122 	struct xfs_agf		*agf = agbp->b_addr;
123 	struct xfs_perag	*pag = cur->bc_ag.pag;
124 	xfs_agblock_t		bno;
125 	int			error;
126 
127 	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
128 	be32_add_cpu(&agf->agf_rmap_blocks, -1);
129 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
130 	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
131 	if (error)
132 		return error;
133 
134 	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
135 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
136 
137 	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
138 	return 0;
139 }
140 
141 STATIC int
142 xfs_rmapbt_get_minrecs(
143 	struct xfs_btree_cur	*cur,
144 	int			level)
145 {
146 	return cur->bc_mp->m_rmap_mnr[level != 0];
147 }
148 
149 STATIC int
150 xfs_rmapbt_get_maxrecs(
151 	struct xfs_btree_cur	*cur,
152 	int			level)
153 {
154 	return cur->bc_mp->m_rmap_mxr[level != 0];
155 }
156 
157 /*
158  * Convert the ondisk record's offset field into the ondisk key's offset field.
159  * Fork and bmbt are significant parts of the rmap record key, but written
160  * status is merely a record attribute.
161  */
162 static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
163 {
164 	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
165 }
166 
167 STATIC void
168 xfs_rmapbt_init_key_from_rec(
169 	union xfs_btree_key		*key,
170 	const union xfs_btree_rec	*rec)
171 {
172 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
173 	key->rmap.rm_owner = rec->rmap.rm_owner;
174 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
175 }
176 
177 /*
178  * The high key for a reverse mapping record can be computed by shifting
179  * the startblock and offset to the highest value that would still map
180  * to that record.  In practice this means that we add blockcount-1 to
181  * the startblock for all records, and if the record is for a data/attr
182  * fork mapping, we add blockcount-1 to the offset too.
183  */
184 STATIC void
185 xfs_rmapbt_init_high_key_from_rec(
186 	union xfs_btree_key		*key,
187 	const union xfs_btree_rec	*rec)
188 {
189 	uint64_t			off;
190 	int				adj;
191 
192 	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
193 
194 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
195 	be32_add_cpu(&key->rmap.rm_startblock, adj);
196 	key->rmap.rm_owner = rec->rmap.rm_owner;
197 	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
198 	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
199 	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
200 		return;
201 	off = be64_to_cpu(key->rmap.rm_offset);
202 	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
203 	key->rmap.rm_offset = cpu_to_be64(off);
204 }
205 
206 STATIC void
207 xfs_rmapbt_init_rec_from_cur(
208 	struct xfs_btree_cur	*cur,
209 	union xfs_btree_rec	*rec)
210 {
211 	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
212 	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
213 	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
214 	rec->rmap.rm_offset = cpu_to_be64(
215 			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
216 }
217 
218 STATIC void
219 xfs_rmapbt_init_ptr_from_cur(
220 	struct xfs_btree_cur	*cur,
221 	union xfs_btree_ptr	*ptr)
222 {
223 	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
224 
225 	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226 
227 	ptr->s = agf->agf_rmap_root;
228 }
229 
230 /*
231  * Mask the appropriate parts of the ondisk key field for a key comparison.
232  * Fork and bmbt are significant parts of the rmap record key, but written
233  * status is merely a record attribute.
234  */
235 static inline uint64_t offset_keymask(uint64_t offset)
236 {
237 	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
238 }
239 
240 STATIC int64_t
241 xfs_rmapbt_key_diff(
242 	struct xfs_btree_cur		*cur,
243 	const union xfs_btree_key	*key)
244 {
245 	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
246 	const struct xfs_rmap_key	*kp = &key->rmap;
247 	__u64				x, y;
248 	int64_t				d;
249 
250 	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
251 	if (d)
252 		return d;
253 
254 	x = be64_to_cpu(kp->rm_owner);
255 	y = rec->rm_owner;
256 	if (x > y)
257 		return 1;
258 	else if (y > x)
259 		return -1;
260 
261 	x = offset_keymask(be64_to_cpu(kp->rm_offset));
262 	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
263 	if (x > y)
264 		return 1;
265 	else if (y > x)
266 		return -1;
267 	return 0;
268 }
269 
270 STATIC int64_t
271 xfs_rmapbt_diff_two_keys(
272 	struct xfs_btree_cur		*cur,
273 	const union xfs_btree_key	*k1,
274 	const union xfs_btree_key	*k2,
275 	const union xfs_btree_key	*mask)
276 {
277 	const struct xfs_rmap_key	*kp1 = &k1->rmap;
278 	const struct xfs_rmap_key	*kp2 = &k2->rmap;
279 	int64_t				d;
280 	__u64				x, y;
281 
282 	/* Doesn't make sense to mask off the physical space part */
283 	ASSERT(!mask || mask->rmap.rm_startblock);
284 
285 	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
286 		     be32_to_cpu(kp2->rm_startblock);
287 	if (d)
288 		return d;
289 
290 	if (!mask || mask->rmap.rm_owner) {
291 		x = be64_to_cpu(kp1->rm_owner);
292 		y = be64_to_cpu(kp2->rm_owner);
293 		if (x > y)
294 			return 1;
295 		else if (y > x)
296 			return -1;
297 	}
298 
299 	if (!mask || mask->rmap.rm_offset) {
300 		/* Doesn't make sense to allow offset but not owner */
301 		ASSERT(!mask || mask->rmap.rm_owner);
302 
303 		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
304 		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
305 		if (x > y)
306 			return 1;
307 		else if (y > x)
308 			return -1;
309 	}
310 
311 	return 0;
312 }
313 
314 static xfs_failaddr_t
315 xfs_rmapbt_verify(
316 	struct xfs_buf		*bp)
317 {
318 	struct xfs_mount	*mp = bp->b_mount;
319 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
320 	struct xfs_perag	*pag = bp->b_pag;
321 	xfs_failaddr_t		fa;
322 	unsigned int		level;
323 
324 	/*
325 	 * magic number and level verification
326 	 *
327 	 * During growfs operations, we can't verify the exact level or owner as
328 	 * the perag is not fully initialised and hence not attached to the
329 	 * buffer.  In this case, check against the maximum tree depth.
330 	 *
331 	 * Similarly, during log recovery we will have a perag structure
332 	 * attached, but the agf information will not yet have been initialised
333 	 * from the on disk AGF. Again, we can only check against maximum limits
334 	 * in this case.
335 	 */
336 	if (!xfs_verify_magic(bp, block->bb_magic))
337 		return __this_address;
338 
339 	if (!xfs_has_rmapbt(mp))
340 		return __this_address;
341 	fa = xfs_btree_agblock_v5hdr_verify(bp);
342 	if (fa)
343 		return fa;
344 
345 	level = be16_to_cpu(block->bb_level);
346 	if (pag && xfs_perag_initialised_agf(pag)) {
347 		unsigned int	maxlevel = pag->pagf_rmap_level;
348 
349 #ifdef CONFIG_XFS_ONLINE_REPAIR
350 		/*
351 		 * Online repair could be rewriting the free space btrees, so
352 		 * we'll validate against the larger of either tree while this
353 		 * is going on.
354 		 */
355 		maxlevel = max_t(unsigned int, maxlevel,
356 				pag->pagf_repair_rmap_level);
357 #endif
358 		if (level >= maxlevel)
359 			return __this_address;
360 	} else if (level >= mp->m_rmap_maxlevels)
361 		return __this_address;
362 
363 	return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
364 }
365 
366 static void
367 xfs_rmapbt_read_verify(
368 	struct xfs_buf	*bp)
369 {
370 	xfs_failaddr_t	fa;
371 
372 	if (!xfs_btree_agblock_verify_crc(bp))
373 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
374 	else {
375 		fa = xfs_rmapbt_verify(bp);
376 		if (fa)
377 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
378 	}
379 
380 	if (bp->b_error)
381 		trace_xfs_btree_corrupt(bp, _RET_IP_);
382 }
383 
384 static void
385 xfs_rmapbt_write_verify(
386 	struct xfs_buf	*bp)
387 {
388 	xfs_failaddr_t	fa;
389 
390 	fa = xfs_rmapbt_verify(bp);
391 	if (fa) {
392 		trace_xfs_btree_corrupt(bp, _RET_IP_);
393 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
394 		return;
395 	}
396 	xfs_btree_agblock_calc_crc(bp);
397 
398 }
399 
400 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
401 	.name			= "xfs_rmapbt",
402 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
403 	.verify_read		= xfs_rmapbt_read_verify,
404 	.verify_write		= xfs_rmapbt_write_verify,
405 	.verify_struct		= xfs_rmapbt_verify,
406 };
407 
408 STATIC int
409 xfs_rmapbt_keys_inorder(
410 	struct xfs_btree_cur		*cur,
411 	const union xfs_btree_key	*k1,
412 	const union xfs_btree_key	*k2)
413 {
414 	uint32_t		x;
415 	uint32_t		y;
416 	uint64_t		a;
417 	uint64_t		b;
418 
419 	x = be32_to_cpu(k1->rmap.rm_startblock);
420 	y = be32_to_cpu(k2->rmap.rm_startblock);
421 	if (x < y)
422 		return 1;
423 	else if (x > y)
424 		return 0;
425 	a = be64_to_cpu(k1->rmap.rm_owner);
426 	b = be64_to_cpu(k2->rmap.rm_owner);
427 	if (a < b)
428 		return 1;
429 	else if (a > b)
430 		return 0;
431 	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
432 	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
433 	if (a <= b)
434 		return 1;
435 	return 0;
436 }
437 
438 STATIC int
439 xfs_rmapbt_recs_inorder(
440 	struct xfs_btree_cur		*cur,
441 	const union xfs_btree_rec	*r1,
442 	const union xfs_btree_rec	*r2)
443 {
444 	uint32_t		x;
445 	uint32_t		y;
446 	uint64_t		a;
447 	uint64_t		b;
448 
449 	x = be32_to_cpu(r1->rmap.rm_startblock);
450 	y = be32_to_cpu(r2->rmap.rm_startblock);
451 	if (x < y)
452 		return 1;
453 	else if (x > y)
454 		return 0;
455 	a = be64_to_cpu(r1->rmap.rm_owner);
456 	b = be64_to_cpu(r2->rmap.rm_owner);
457 	if (a < b)
458 		return 1;
459 	else if (a > b)
460 		return 0;
461 	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
462 	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
463 	if (a <= b)
464 		return 1;
465 	return 0;
466 }
467 
468 STATIC enum xbtree_key_contig
469 xfs_rmapbt_keys_contiguous(
470 	struct xfs_btree_cur		*cur,
471 	const union xfs_btree_key	*key1,
472 	const union xfs_btree_key	*key2,
473 	const union xfs_btree_key	*mask)
474 {
475 	ASSERT(!mask || mask->rmap.rm_startblock);
476 
477 	/*
478 	 * We only support checking contiguity of the physical space component.
479 	 * If any callers ever need more specificity than that, they'll have to
480 	 * implement it here.
481 	 */
482 	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
483 
484 	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
485 				 be32_to_cpu(key2->rmap.rm_startblock));
486 }
487 
488 const struct xfs_btree_ops xfs_rmapbt_ops = {
489 	.name			= "rmap",
490 	.type			= XFS_BTREE_TYPE_AG,
491 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
492 
493 	.rec_len		= sizeof(struct xfs_rmap_rec),
494 	/* Overlapping btree; 2 keys per pointer. */
495 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
496 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
497 
498 	.lru_refs		= XFS_RMAP_BTREE_REF,
499 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_2),
500 	.sick_mask		= XFS_SICK_AG_RMAPBT,
501 
502 	.dup_cursor		= xfs_rmapbt_dup_cursor,
503 	.set_root		= xfs_rmapbt_set_root,
504 	.alloc_block		= xfs_rmapbt_alloc_block,
505 	.free_block		= xfs_rmapbt_free_block,
506 	.get_minrecs		= xfs_rmapbt_get_minrecs,
507 	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
508 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
509 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
510 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
511 	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
512 	.key_diff		= xfs_rmapbt_key_diff,
513 	.buf_ops		= &xfs_rmapbt_buf_ops,
514 	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
515 	.keys_inorder		= xfs_rmapbt_keys_inorder,
516 	.recs_inorder		= xfs_rmapbt_recs_inorder,
517 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
518 };
519 
520 /*
521  * Create a new reverse mapping btree cursor.
522  *
523  * For staging cursors tp and agbp are NULL.
524  */
525 struct xfs_btree_cur *
526 xfs_rmapbt_init_cursor(
527 	struct xfs_mount	*mp,
528 	struct xfs_trans	*tp,
529 	struct xfs_buf		*agbp,
530 	struct xfs_perag	*pag)
531 {
532 	struct xfs_btree_cur	*cur;
533 
534 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
535 			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
536 	cur->bc_ag.pag = xfs_perag_hold(pag);
537 	cur->bc_ag.agbp = agbp;
538 	if (agbp) {
539 		struct xfs_agf		*agf = agbp->b_addr;
540 
541 		cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
542 	}
543 	return cur;
544 }
545 
546 #ifdef CONFIG_XFS_BTREE_IN_MEM
547 static inline unsigned int
548 xfs_rmapbt_mem_block_maxrecs(
549 	unsigned int		blocklen,
550 	bool			leaf)
551 {
552 	if (leaf)
553 		return blocklen / sizeof(struct xfs_rmap_rec);
554 	return blocklen /
555 		(2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
556 }
557 
558 /*
559  * Validate an in-memory rmap btree block.  Callers are allowed to generate an
560  * in-memory btree even if the ondisk feature is not enabled.
561  */
562 static xfs_failaddr_t
563 xfs_rmapbt_mem_verify(
564 	struct xfs_buf		*bp)
565 {
566 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
567 	xfs_failaddr_t		fa;
568 	unsigned int		level;
569 	unsigned int		maxrecs;
570 
571 	if (!xfs_verify_magic(bp, block->bb_magic))
572 		return __this_address;
573 
574 	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
575 	if (fa)
576 		return fa;
577 
578 	level = be16_to_cpu(block->bb_level);
579 	if (level >= xfs_rmapbt_maxlevels_ondisk())
580 		return __this_address;
581 
582 	maxrecs = xfs_rmapbt_mem_block_maxrecs(
583 			XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
584 	return xfs_btree_memblock_verify(bp, maxrecs);
585 }
586 
587 static void
588 xfs_rmapbt_mem_rw_verify(
589 	struct xfs_buf	*bp)
590 {
591 	xfs_failaddr_t	fa = xfs_rmapbt_mem_verify(bp);
592 
593 	if (fa)
594 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
595 }
596 
597 /* skip crc checks on in-memory btrees to save time */
598 static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
599 	.name			= "xfs_rmapbt_mem",
600 	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
601 	.verify_read		= xfs_rmapbt_mem_rw_verify,
602 	.verify_write		= xfs_rmapbt_mem_rw_verify,
603 	.verify_struct		= xfs_rmapbt_mem_verify,
604 };
605 
606 const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
607 	.name			= "mem_rmap",
608 	.type			= XFS_BTREE_TYPE_MEM,
609 	.geom_flags		= XFS_BTGEO_OVERLAPPING,
610 
611 	.rec_len		= sizeof(struct xfs_rmap_rec),
612 	/* Overlapping btree; 2 keys per pointer. */
613 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
614 	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
615 
616 	.lru_refs		= XFS_RMAP_BTREE_REF,
617 	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
618 
619 	.dup_cursor		= xfbtree_dup_cursor,
620 	.set_root		= xfbtree_set_root,
621 	.alloc_block		= xfbtree_alloc_block,
622 	.free_block		= xfbtree_free_block,
623 	.get_minrecs		= xfbtree_get_minrecs,
624 	.get_maxrecs		= xfbtree_get_maxrecs,
625 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
626 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
627 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
628 	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
629 	.key_diff		= xfs_rmapbt_key_diff,
630 	.buf_ops		= &xfs_rmapbt_mem_buf_ops,
631 	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
632 	.keys_inorder		= xfs_rmapbt_keys_inorder,
633 	.recs_inorder		= xfs_rmapbt_recs_inorder,
634 	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
635 };
636 
637 /* Create a cursor for an in-memory btree. */
638 struct xfs_btree_cur *
639 xfs_rmapbt_mem_cursor(
640 	struct xfs_perag	*pag,
641 	struct xfs_trans	*tp,
642 	struct xfbtree		*xfbt)
643 {
644 	struct xfs_btree_cur	*cur;
645 	struct xfs_mount	*mp = pag->pag_mount;
646 
647 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_mem_ops,
648 			xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
649 	cur->bc_mem.xfbtree = xfbt;
650 	cur->bc_nlevels = xfbt->nlevels;
651 
652 	cur->bc_mem.pag = xfs_perag_hold(pag);
653 	return cur;
654 }
655 
656 /* Create an in-memory rmap btree. */
657 int
658 xfs_rmapbt_mem_init(
659 	struct xfs_mount	*mp,
660 	struct xfbtree		*xfbt,
661 	struct xfs_buftarg	*btp,
662 	xfs_agnumber_t		agno)
663 {
664 	xfbt->owner = agno;
665 	return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
666 }
667 
668 /* Compute the max possible height for reverse mapping btrees in memory. */
669 static unsigned int
670 xfs_rmapbt_mem_maxlevels(void)
671 {
672 	unsigned int		minrecs[2];
673 	unsigned int		blocklen;
674 
675 	blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
676 
677 	minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
678 	minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
679 
680 	/*
681 	 * How tall can an in-memory rmap btree become if we filled the entire
682 	 * AG with rmap records?
683 	 */
684 	return xfs_btree_compute_maxlevels(minrecs,
685 			XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
686 }
687 #else
688 # define xfs_rmapbt_mem_maxlevels()	(0)
689 #endif /* CONFIG_XFS_BTREE_IN_MEM */
690 
691 /*
692  * Install a new reverse mapping btree root.  Caller is responsible for
693  * invalidating and freeing the old btree blocks.
694  */
695 void
696 xfs_rmapbt_commit_staged_btree(
697 	struct xfs_btree_cur	*cur,
698 	struct xfs_trans	*tp,
699 	struct xfs_buf		*agbp)
700 {
701 	struct xfs_agf		*agf = agbp->b_addr;
702 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
703 
704 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
705 
706 	agf->agf_rmap_root = cpu_to_be32(afake->af_root);
707 	agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
708 	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
709 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
710 				    XFS_AGF_RMAP_BLOCKS);
711 	xfs_btree_commit_afakeroot(cur, tp, agbp);
712 }
713 
714 /* Calculate number of records in a reverse mapping btree block. */
715 static inline unsigned int
716 xfs_rmapbt_block_maxrecs(
717 	unsigned int		blocklen,
718 	bool			leaf)
719 {
720 	if (leaf)
721 		return blocklen / sizeof(struct xfs_rmap_rec);
722 	return blocklen /
723 		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
724 }
725 
726 /*
727  * Calculate number of records in an rmap btree block.
728  */
729 int
730 xfs_rmapbt_maxrecs(
731 	int			blocklen,
732 	int			leaf)
733 {
734 	blocklen -= XFS_RMAP_BLOCK_LEN;
735 	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
736 }
737 
738 /* Compute the max possible height for reverse mapping btrees. */
739 unsigned int
740 xfs_rmapbt_maxlevels_ondisk(void)
741 {
742 	unsigned int		minrecs[2];
743 	unsigned int		blocklen;
744 
745 	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
746 
747 	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
748 	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
749 
750 	/*
751 	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
752 	 *
753 	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
754 	 * refcount record format) owners, which means that theoretically we
755 	 * could face up to 2^64 rmap records.  However, we're likely to run
756 	 * out of blocks in the AG long before that happens, which means that
757 	 * we must compute the max height based on what the btree will look
758 	 * like if it consumes almost all the blocks in the AG due to maximal
759 	 * sharing factor.
760 	 */
761 	return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
762 		   xfs_rmapbt_mem_maxlevels());
763 }
764 
765 /* Compute the maximum height of an rmap btree. */
766 void
767 xfs_rmapbt_compute_maxlevels(
768 	struct xfs_mount		*mp)
769 {
770 	if (!xfs_has_rmapbt(mp)) {
771 		mp->m_rmap_maxlevels = 0;
772 		return;
773 	}
774 
775 	if (xfs_has_reflink(mp)) {
776 		/*
777 		 * Compute the asymptotic maxlevels for an rmap btree on a
778 		 * filesystem that supports reflink.
779 		 *
780 		 * On a reflink filesystem, each AG block can have up to 2^32
781 		 * (per the refcount record format) owners, which means that
782 		 * theoretically we could face up to 2^64 rmap records.
783 		 * However, we're likely to run out of blocks in the AG long
784 		 * before that happens, which means that we must compute the
785 		 * max height based on what the btree will look like if it
786 		 * consumes almost all the blocks in the AG due to maximal
787 		 * sharing factor.
788 		 */
789 		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
790 				mp->m_sb.sb_agblocks);
791 	} else {
792 		/*
793 		 * If there's no block sharing, compute the maximum rmapbt
794 		 * height assuming one rmap record per AG block.
795 		 */
796 		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
797 				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
798 	}
799 	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
800 }
801 
802 /* Calculate the refcount btree size for some records. */
803 xfs_extlen_t
804 xfs_rmapbt_calc_size(
805 	struct xfs_mount	*mp,
806 	unsigned long long	len)
807 {
808 	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
809 }
810 
811 /*
812  * Calculate the maximum refcount btree size.
813  */
814 xfs_extlen_t
815 xfs_rmapbt_max_size(
816 	struct xfs_mount	*mp,
817 	xfs_agblock_t		agblocks)
818 {
819 	/* Bail out if we're uninitialized, which can happen in mkfs. */
820 	if (mp->m_rmap_mxr[0] == 0)
821 		return 0;
822 
823 	return xfs_rmapbt_calc_size(mp, agblocks);
824 }
825 
826 /*
827  * Figure out how many blocks to reserve and how many are used by this btree.
828  */
829 int
830 xfs_rmapbt_calc_reserves(
831 	struct xfs_mount	*mp,
832 	struct xfs_trans	*tp,
833 	struct xfs_perag	*pag,
834 	xfs_extlen_t		*ask,
835 	xfs_extlen_t		*used)
836 {
837 	struct xfs_buf		*agbp;
838 	struct xfs_agf		*agf;
839 	xfs_agblock_t		agblocks;
840 	xfs_extlen_t		tree_len;
841 	int			error;
842 
843 	if (!xfs_has_rmapbt(mp))
844 		return 0;
845 
846 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
847 	if (error)
848 		return error;
849 
850 	agf = agbp->b_addr;
851 	agblocks = be32_to_cpu(agf->agf_length);
852 	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
853 	xfs_trans_brelse(tp, agbp);
854 
855 	/*
856 	 * The log is permanently allocated, so the space it occupies will
857 	 * never be available for the kinds of things that would require btree
858 	 * expansion.  We therefore can pretend the space isn't there.
859 	 */
860 	if (xfs_ag_contains_log(mp, pag->pag_agno))
861 		agblocks -= mp->m_sb.sb_logblocks;
862 
863 	/* Reserve 1% of the AG or enough for 1 block per record. */
864 	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
865 	*used += tree_len;
866 
867 	return error;
868 }
869 
870 int __init
871 xfs_rmapbt_init_cur_cache(void)
872 {
873 	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
874 			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
875 			0, 0, NULL);
876 
877 	if (!xfs_rmapbt_cur_cache)
878 		return -ENOMEM;
879 	return 0;
880 }
881 
882 void
883 xfs_rmapbt_destroy_cur_cache(void)
884 {
885 	kmem_cache_destroy(xfs_rmapbt_cur_cache);
886 	xfs_rmapbt_cur_cache = NULL;
887 }
888