1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_btree.h" 14 #include "xfs_btree_staging.h" 15 #include "xfs_refcount_btree.h" 16 #include "xfs_refcount.h" 17 #include "xfs_alloc.h" 18 #include "xfs_error.h" 19 #include "xfs_trace.h" 20 #include "xfs_trans.h" 21 #include "xfs_bit.h" 22 #include "xfs_rmap.h" 23 #include "xfs_ag.h" 24 25 static struct kmem_cache *xfs_refcountbt_cur_cache; 26 27 static struct xfs_btree_cur * 28 xfs_refcountbt_dup_cursor( 29 struct xfs_btree_cur *cur) 30 { 31 return xfs_refcountbt_init_cursor(cur->bc_mp, cur->bc_tp, 32 cur->bc_ag.agbp, cur->bc_ag.pag); 33 } 34 35 STATIC void 36 xfs_refcountbt_set_root( 37 struct xfs_btree_cur *cur, 38 const union xfs_btree_ptr *ptr, 39 int inc) 40 { 41 struct xfs_buf *agbp = cur->bc_ag.agbp; 42 struct xfs_agf *agf = agbp->b_addr; 43 struct xfs_perag *pag = agbp->b_pag; 44 45 ASSERT(ptr->s != 0); 46 47 agf->agf_refcount_root = ptr->s; 48 be32_add_cpu(&agf->agf_refcount_level, inc); 49 pag->pagf_refcount_level += inc; 50 51 xfs_alloc_log_agf(cur->bc_tp, agbp, 52 XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); 53 } 54 55 STATIC int 56 xfs_refcountbt_alloc_block( 57 struct xfs_btree_cur *cur, 58 const union xfs_btree_ptr *start, 59 union xfs_btree_ptr *new, 60 int *stat) 61 { 62 struct xfs_buf *agbp = cur->bc_ag.agbp; 63 struct xfs_agf *agf = agbp->b_addr; 64 struct xfs_alloc_arg args; /* block allocation args */ 65 int error; /* error return value */ 66 67 memset(&args, 0, sizeof(args)); 68 args.tp = cur->bc_tp; 69 args.mp = cur->bc_mp; 70 args.pag = cur->bc_ag.pag; 71 args.oinfo = XFS_RMAP_OINFO_REFC; 72 args.minlen = args.maxlen = args.prod = 1; 73 args.resv = XFS_AG_RESV_METADATA; 74 75 error = xfs_alloc_vextent_near_bno(&args, 76 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, 77 xfs_refc_block(args.mp))); 78 if (error) 79 goto out_error; 80 trace_xfs_refcountbt_alloc_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, 81 args.agbno, 1); 82 if (args.fsbno == NULLFSBLOCK) { 83 *stat = 0; 84 return 0; 85 } 86 ASSERT(args.agno == cur->bc_ag.pag->pag_agno); 87 ASSERT(args.len == 1); 88 89 new->s = cpu_to_be32(args.agbno); 90 be32_add_cpu(&agf->agf_refcount_blocks, 1); 91 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); 92 93 *stat = 1; 94 return 0; 95 96 out_error: 97 return error; 98 } 99 100 STATIC int 101 xfs_refcountbt_free_block( 102 struct xfs_btree_cur *cur, 103 struct xfs_buf *bp) 104 { 105 struct xfs_mount *mp = cur->bc_mp; 106 struct xfs_buf *agbp = cur->bc_ag.agbp; 107 struct xfs_agf *agf = agbp->b_addr; 108 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 109 int error; 110 111 trace_xfs_refcountbt_free_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, 112 XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1); 113 be32_add_cpu(&agf->agf_refcount_blocks, -1); 114 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); 115 error = xfs_free_extent(cur->bc_tp, cur->bc_ag.pag, 116 XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1, 117 &XFS_RMAP_OINFO_REFC, XFS_AG_RESV_METADATA); 118 if (error) 119 return error; 120 121 return error; 122 } 123 124 STATIC int 125 xfs_refcountbt_get_minrecs( 126 struct xfs_btree_cur *cur, 127 int level) 128 { 129 return cur->bc_mp->m_refc_mnr[level != 0]; 130 } 131 132 STATIC int 133 xfs_refcountbt_get_maxrecs( 134 struct xfs_btree_cur *cur, 135 int level) 136 { 137 return cur->bc_mp->m_refc_mxr[level != 0]; 138 } 139 140 STATIC void 141 xfs_refcountbt_init_key_from_rec( 142 union xfs_btree_key *key, 143 const union xfs_btree_rec *rec) 144 { 145 key->refc.rc_startblock = rec->refc.rc_startblock; 146 } 147 148 STATIC void 149 xfs_refcountbt_init_high_key_from_rec( 150 union xfs_btree_key *key, 151 const union xfs_btree_rec *rec) 152 { 153 __u32 x; 154 155 x = be32_to_cpu(rec->refc.rc_startblock); 156 x += be32_to_cpu(rec->refc.rc_blockcount) - 1; 157 key->refc.rc_startblock = cpu_to_be32(x); 158 } 159 160 STATIC void 161 xfs_refcountbt_init_rec_from_cur( 162 struct xfs_btree_cur *cur, 163 union xfs_btree_rec *rec) 164 { 165 const struct xfs_refcount_irec *irec = &cur->bc_rec.rc; 166 uint32_t start; 167 168 start = xfs_refcount_encode_startblock(irec->rc_startblock, 169 irec->rc_domain); 170 rec->refc.rc_startblock = cpu_to_be32(start); 171 rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount); 172 rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount); 173 } 174 175 STATIC void 176 xfs_refcountbt_init_ptr_from_cur( 177 struct xfs_btree_cur *cur, 178 union xfs_btree_ptr *ptr) 179 { 180 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; 181 182 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno)); 183 184 ptr->s = agf->agf_refcount_root; 185 } 186 187 STATIC int64_t 188 xfs_refcountbt_key_diff( 189 struct xfs_btree_cur *cur, 190 const union xfs_btree_key *key) 191 { 192 const struct xfs_refcount_key *kp = &key->refc; 193 const struct xfs_refcount_irec *irec = &cur->bc_rec.rc; 194 uint32_t start; 195 196 start = xfs_refcount_encode_startblock(irec->rc_startblock, 197 irec->rc_domain); 198 return (int64_t)be32_to_cpu(kp->rc_startblock) - start; 199 } 200 201 STATIC int64_t 202 xfs_refcountbt_diff_two_keys( 203 struct xfs_btree_cur *cur, 204 const union xfs_btree_key *k1, 205 const union xfs_btree_key *k2, 206 const union xfs_btree_key *mask) 207 { 208 ASSERT(!mask || mask->refc.rc_startblock); 209 210 return (int64_t)be32_to_cpu(k1->refc.rc_startblock) - 211 be32_to_cpu(k2->refc.rc_startblock); 212 } 213 214 STATIC xfs_failaddr_t 215 xfs_refcountbt_verify( 216 struct xfs_buf *bp) 217 { 218 struct xfs_mount *mp = bp->b_mount; 219 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 220 struct xfs_perag *pag = bp->b_pag; 221 xfs_failaddr_t fa; 222 unsigned int level; 223 224 if (!xfs_verify_magic(bp, block->bb_magic)) 225 return __this_address; 226 227 if (!xfs_has_reflink(mp)) 228 return __this_address; 229 fa = xfs_btree_sblock_v5hdr_verify(bp); 230 if (fa) 231 return fa; 232 233 level = be16_to_cpu(block->bb_level); 234 if (pag && xfs_perag_initialised_agf(pag)) { 235 if (level >= pag->pagf_refcount_level) 236 return __this_address; 237 } else if (level >= mp->m_refc_maxlevels) 238 return __this_address; 239 240 return xfs_btree_sblock_verify(bp, mp->m_refc_mxr[level != 0]); 241 } 242 243 STATIC void 244 xfs_refcountbt_read_verify( 245 struct xfs_buf *bp) 246 { 247 xfs_failaddr_t fa; 248 249 if (!xfs_btree_sblock_verify_crc(bp)) 250 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 251 else { 252 fa = xfs_refcountbt_verify(bp); 253 if (fa) 254 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 255 } 256 257 if (bp->b_error) 258 trace_xfs_btree_corrupt(bp, _RET_IP_); 259 } 260 261 STATIC void 262 xfs_refcountbt_write_verify( 263 struct xfs_buf *bp) 264 { 265 xfs_failaddr_t fa; 266 267 fa = xfs_refcountbt_verify(bp); 268 if (fa) { 269 trace_xfs_btree_corrupt(bp, _RET_IP_); 270 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 271 return; 272 } 273 xfs_btree_sblock_calc_crc(bp); 274 275 } 276 277 const struct xfs_buf_ops xfs_refcountbt_buf_ops = { 278 .name = "xfs_refcountbt", 279 .magic = { 0, cpu_to_be32(XFS_REFC_CRC_MAGIC) }, 280 .verify_read = xfs_refcountbt_read_verify, 281 .verify_write = xfs_refcountbt_write_verify, 282 .verify_struct = xfs_refcountbt_verify, 283 }; 284 285 STATIC int 286 xfs_refcountbt_keys_inorder( 287 struct xfs_btree_cur *cur, 288 const union xfs_btree_key *k1, 289 const union xfs_btree_key *k2) 290 { 291 return be32_to_cpu(k1->refc.rc_startblock) < 292 be32_to_cpu(k2->refc.rc_startblock); 293 } 294 295 STATIC int 296 xfs_refcountbt_recs_inorder( 297 struct xfs_btree_cur *cur, 298 const union xfs_btree_rec *r1, 299 const union xfs_btree_rec *r2) 300 { 301 return be32_to_cpu(r1->refc.rc_startblock) + 302 be32_to_cpu(r1->refc.rc_blockcount) <= 303 be32_to_cpu(r2->refc.rc_startblock); 304 } 305 306 STATIC enum xbtree_key_contig 307 xfs_refcountbt_keys_contiguous( 308 struct xfs_btree_cur *cur, 309 const union xfs_btree_key *key1, 310 const union xfs_btree_key *key2, 311 const union xfs_btree_key *mask) 312 { 313 ASSERT(!mask || mask->refc.rc_startblock); 314 315 return xbtree_key_contig(be32_to_cpu(key1->refc.rc_startblock), 316 be32_to_cpu(key2->refc.rc_startblock)); 317 } 318 319 static const struct xfs_btree_ops xfs_refcountbt_ops = { 320 .rec_len = sizeof(struct xfs_refcount_rec), 321 .key_len = sizeof(struct xfs_refcount_key), 322 323 .dup_cursor = xfs_refcountbt_dup_cursor, 324 .set_root = xfs_refcountbt_set_root, 325 .alloc_block = xfs_refcountbt_alloc_block, 326 .free_block = xfs_refcountbt_free_block, 327 .get_minrecs = xfs_refcountbt_get_minrecs, 328 .get_maxrecs = xfs_refcountbt_get_maxrecs, 329 .init_key_from_rec = xfs_refcountbt_init_key_from_rec, 330 .init_high_key_from_rec = xfs_refcountbt_init_high_key_from_rec, 331 .init_rec_from_cur = xfs_refcountbt_init_rec_from_cur, 332 .init_ptr_from_cur = xfs_refcountbt_init_ptr_from_cur, 333 .key_diff = xfs_refcountbt_key_diff, 334 .buf_ops = &xfs_refcountbt_buf_ops, 335 .diff_two_keys = xfs_refcountbt_diff_two_keys, 336 .keys_inorder = xfs_refcountbt_keys_inorder, 337 .recs_inorder = xfs_refcountbt_recs_inorder, 338 .keys_contiguous = xfs_refcountbt_keys_contiguous, 339 }; 340 341 /* 342 * Initialize a new refcount btree cursor. 343 */ 344 static struct xfs_btree_cur * 345 xfs_refcountbt_init_common( 346 struct xfs_mount *mp, 347 struct xfs_trans *tp, 348 struct xfs_perag *pag) 349 { 350 struct xfs_btree_cur *cur; 351 352 ASSERT(pag->pag_agno < mp->m_sb.sb_agcount); 353 354 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_REFC, 355 mp->m_refc_maxlevels, xfs_refcountbt_cur_cache); 356 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_refcbt_2); 357 358 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 359 360 cur->bc_ag.pag = xfs_perag_hold(pag); 361 cur->bc_ag.refc.nr_ops = 0; 362 cur->bc_ag.refc.shape_changes = 0; 363 cur->bc_ops = &xfs_refcountbt_ops; 364 return cur; 365 } 366 367 /* Create a btree cursor. */ 368 struct xfs_btree_cur * 369 xfs_refcountbt_init_cursor( 370 struct xfs_mount *mp, 371 struct xfs_trans *tp, 372 struct xfs_buf *agbp, 373 struct xfs_perag *pag) 374 { 375 struct xfs_agf *agf = agbp->b_addr; 376 struct xfs_btree_cur *cur; 377 378 cur = xfs_refcountbt_init_common(mp, tp, pag); 379 cur->bc_nlevels = be32_to_cpu(agf->agf_refcount_level); 380 cur->bc_ag.agbp = agbp; 381 return cur; 382 } 383 384 /* Create a btree cursor with a fake root for staging. */ 385 struct xfs_btree_cur * 386 xfs_refcountbt_stage_cursor( 387 struct xfs_mount *mp, 388 struct xbtree_afakeroot *afake, 389 struct xfs_perag *pag) 390 { 391 struct xfs_btree_cur *cur; 392 393 cur = xfs_refcountbt_init_common(mp, NULL, pag); 394 xfs_btree_stage_afakeroot(cur, afake); 395 return cur; 396 } 397 398 /* 399 * Swap in the new btree root. Once we pass this point the newly rebuilt btree 400 * is in place and we have to kill off all the old btree blocks. 401 */ 402 void 403 xfs_refcountbt_commit_staged_btree( 404 struct xfs_btree_cur *cur, 405 struct xfs_trans *tp, 406 struct xfs_buf *agbp) 407 { 408 struct xfs_agf *agf = agbp->b_addr; 409 struct xbtree_afakeroot *afake = cur->bc_ag.afake; 410 411 ASSERT(cur->bc_flags & XFS_BTREE_STAGING); 412 413 agf->agf_refcount_root = cpu_to_be32(afake->af_root); 414 agf->agf_refcount_level = cpu_to_be32(afake->af_levels); 415 agf->agf_refcount_blocks = cpu_to_be32(afake->af_blocks); 416 xfs_alloc_log_agf(tp, agbp, XFS_AGF_REFCOUNT_BLOCKS | 417 XFS_AGF_REFCOUNT_ROOT | 418 XFS_AGF_REFCOUNT_LEVEL); 419 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_refcountbt_ops); 420 } 421 422 /* Calculate number of records in a refcount btree block. */ 423 static inline unsigned int 424 xfs_refcountbt_block_maxrecs( 425 unsigned int blocklen, 426 bool leaf) 427 { 428 if (leaf) 429 return blocklen / sizeof(struct xfs_refcount_rec); 430 return blocklen / (sizeof(struct xfs_refcount_key) + 431 sizeof(xfs_refcount_ptr_t)); 432 } 433 434 /* 435 * Calculate the number of records in a refcount btree block. 436 */ 437 int 438 xfs_refcountbt_maxrecs( 439 int blocklen, 440 bool leaf) 441 { 442 blocklen -= XFS_REFCOUNT_BLOCK_LEN; 443 return xfs_refcountbt_block_maxrecs(blocklen, leaf); 444 } 445 446 /* Compute the max possible height of the maximally sized refcount btree. */ 447 unsigned int 448 xfs_refcountbt_maxlevels_ondisk(void) 449 { 450 unsigned int minrecs[2]; 451 unsigned int blocklen; 452 453 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; 454 455 minrecs[0] = xfs_refcountbt_block_maxrecs(blocklen, true) / 2; 456 minrecs[1] = xfs_refcountbt_block_maxrecs(blocklen, false) / 2; 457 458 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_CRC_AG_BLOCKS); 459 } 460 461 /* Compute the maximum height of a refcount btree. */ 462 void 463 xfs_refcountbt_compute_maxlevels( 464 struct xfs_mount *mp) 465 { 466 if (!xfs_has_reflink(mp)) { 467 mp->m_refc_maxlevels = 0; 468 return; 469 } 470 471 mp->m_refc_maxlevels = xfs_btree_compute_maxlevels( 472 mp->m_refc_mnr, mp->m_sb.sb_agblocks); 473 ASSERT(mp->m_refc_maxlevels <= xfs_refcountbt_maxlevels_ondisk()); 474 } 475 476 /* Calculate the refcount btree size for some records. */ 477 xfs_extlen_t 478 xfs_refcountbt_calc_size( 479 struct xfs_mount *mp, 480 unsigned long long len) 481 { 482 return xfs_btree_calc_size(mp->m_refc_mnr, len); 483 } 484 485 /* 486 * Calculate the maximum refcount btree size. 487 */ 488 xfs_extlen_t 489 xfs_refcountbt_max_size( 490 struct xfs_mount *mp, 491 xfs_agblock_t agblocks) 492 { 493 /* Bail out if we're uninitialized, which can happen in mkfs. */ 494 if (mp->m_refc_mxr[0] == 0) 495 return 0; 496 497 return xfs_refcountbt_calc_size(mp, agblocks); 498 } 499 500 /* 501 * Figure out how many blocks to reserve and how many are used by this btree. 502 */ 503 int 504 xfs_refcountbt_calc_reserves( 505 struct xfs_mount *mp, 506 struct xfs_trans *tp, 507 struct xfs_perag *pag, 508 xfs_extlen_t *ask, 509 xfs_extlen_t *used) 510 { 511 struct xfs_buf *agbp; 512 struct xfs_agf *agf; 513 xfs_agblock_t agblocks; 514 xfs_extlen_t tree_len; 515 int error; 516 517 if (!xfs_has_reflink(mp)) 518 return 0; 519 520 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 521 if (error) 522 return error; 523 524 agf = agbp->b_addr; 525 agblocks = be32_to_cpu(agf->agf_length); 526 tree_len = be32_to_cpu(agf->agf_refcount_blocks); 527 xfs_trans_brelse(tp, agbp); 528 529 /* 530 * The log is permanently allocated, so the space it occupies will 531 * never be available for the kinds of things that would require btree 532 * expansion. We therefore can pretend the space isn't there. 533 */ 534 if (xfs_ag_contains_log(mp, pag->pag_agno)) 535 agblocks -= mp->m_sb.sb_logblocks; 536 537 *ask += xfs_refcountbt_max_size(mp, agblocks); 538 *used += tree_len; 539 540 return error; 541 } 542 543 int __init 544 xfs_refcountbt_init_cur_cache(void) 545 { 546 xfs_refcountbt_cur_cache = kmem_cache_create("xfs_refcbt_cur", 547 xfs_btree_cur_sizeof(xfs_refcountbt_maxlevels_ondisk()), 548 0, 0, NULL); 549 550 if (!xfs_refcountbt_cur_cache) 551 return -ENOMEM; 552 return 0; 553 } 554 555 void 556 xfs_refcountbt_destroy_cur_cache(void) 557 { 558 kmem_cache_destroy(xfs_refcountbt_cur_cache); 559 xfs_refcountbt_cur_cache = NULL; 560 } 561