1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_da_format.h" 23 #include "xfs_da_btree.h" 24 #include "xfs_dir2_priv.h" 25 #include "xfs_attr_leaf.h" 26 #include "xfs_types.h" 27 #include "xfs_errortag.h" 28 29 struct kmem_cache *xfs_ifork_cache; 30 31 void 32 xfs_init_local_fork( 33 struct xfs_inode *ip, 34 int whichfork, 35 const void *data, 36 int64_t size) 37 { 38 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 39 int mem_size = size; 40 bool zero_terminate; 41 42 /* 43 * If we are using the local fork to store a symlink body we need to 44 * zero-terminate it so that we can pass it back to the VFS directly. 45 * Overallocate the in-memory fork by one for that and add a zero 46 * to terminate it below. 47 */ 48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 49 if (zero_terminate) 50 mem_size++; 51 52 if (size) { 53 ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS); 54 memcpy(ifp->if_u1.if_data, data, size); 55 if (zero_terminate) 56 ifp->if_u1.if_data[size] = '\0'; 57 } else { 58 ifp->if_u1.if_data = NULL; 59 } 60 61 ifp->if_bytes = size; 62 } 63 64 /* 65 * The file is in-lined in the on-disk inode. 66 */ 67 STATIC int 68 xfs_iformat_local( 69 struct xfs_inode *ip, 70 struct xfs_dinode *dip, 71 int whichfork, 72 int size) 73 { 74 /* 75 * If the size is unreasonable, then something 76 * is wrong and we just bail out rather than crash in 77 * kmem_alloc() or memcpy() below. 78 */ 79 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 80 xfs_warn(ip->i_mount, 81 "corrupt inode %llu (bad size %d for local fork, size = %zd).", 82 (unsigned long long) ip->i_ino, size, 83 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 84 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 85 "xfs_iformat_local", dip, sizeof(*dip), 86 __this_address); 87 return -EFSCORRUPTED; 88 } 89 90 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 91 return 0; 92 } 93 94 /* 95 * The file consists of a set of extents all of which fit into the on-disk 96 * inode. 97 */ 98 STATIC int 99 xfs_iformat_extents( 100 struct xfs_inode *ip, 101 struct xfs_dinode *dip, 102 int whichfork) 103 { 104 struct xfs_mount *mp = ip->i_mount; 105 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 106 int state = xfs_bmap_fork_to_state(whichfork); 107 xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork); 108 int size = nex * sizeof(xfs_bmbt_rec_t); 109 struct xfs_iext_cursor icur; 110 struct xfs_bmbt_rec *dp; 111 struct xfs_bmbt_irec new; 112 int i; 113 114 /* 115 * If the number of extents is unreasonable, then something is wrong and 116 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 117 */ 118 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 119 xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).", 120 ip->i_ino, nex); 121 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 122 "xfs_iformat_extents(1)", dip, sizeof(*dip), 123 __this_address); 124 return -EFSCORRUPTED; 125 } 126 127 ifp->if_bytes = 0; 128 ifp->if_u1.if_root = NULL; 129 ifp->if_height = 0; 130 if (size) { 131 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 132 133 xfs_iext_first(ifp, &icur); 134 for (i = 0; i < nex; i++, dp++) { 135 xfs_failaddr_t fa; 136 137 xfs_bmbt_disk_get_all(dp, &new); 138 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 139 if (fa) { 140 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 141 "xfs_iformat_extents(2)", 142 dp, sizeof(*dp), fa); 143 return -EFSCORRUPTED; 144 } 145 146 xfs_iext_insert(ip, &icur, &new, state); 147 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 148 xfs_iext_next(ifp, &icur); 149 } 150 } 151 return 0; 152 } 153 154 /* 155 * The file has too many extents to fit into 156 * the inode, so they are in B-tree format. 157 * Allocate a buffer for the root of the B-tree 158 * and copy the root into it. The i_extents 159 * field will remain NULL until all of the 160 * extents are read in (when they are needed). 161 */ 162 STATIC int 163 xfs_iformat_btree( 164 struct xfs_inode *ip, 165 struct xfs_dinode *dip, 166 int whichfork) 167 { 168 struct xfs_mount *mp = ip->i_mount; 169 xfs_bmdr_block_t *dfp; 170 struct xfs_ifork *ifp; 171 /* REFERENCED */ 172 int nrecs; 173 int size; 174 int level; 175 176 ifp = xfs_ifork_ptr(ip, whichfork); 177 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 178 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 179 nrecs = be16_to_cpu(dfp->bb_numrecs); 180 level = be16_to_cpu(dfp->bb_level); 181 182 /* 183 * blow out if -- fork has less extents than can fit in 184 * fork (fork shouldn't be a btree format), root btree 185 * block has more records than can fit into the fork, 186 * or the number of extents is greater than the number of 187 * blocks. 188 */ 189 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) || 190 nrecs == 0 || 191 XFS_BMDR_SPACE_CALC(nrecs) > 192 XFS_DFORK_SIZE(dip, mp, whichfork) || 193 ifp->if_nextents > ip->i_nblocks) || 194 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) { 195 xfs_warn(mp, "corrupt inode %llu (btree).", 196 (unsigned long long) ip->i_ino); 197 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 198 "xfs_iformat_btree", dfp, size, 199 __this_address); 200 return -EFSCORRUPTED; 201 } 202 203 ifp->if_broot_bytes = size; 204 ifp->if_broot = kmem_alloc(size, KM_NOFS); 205 ASSERT(ifp->if_broot != NULL); 206 /* 207 * Copy and convert from the on-disk structure 208 * to the in-memory structure. 209 */ 210 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 211 ifp->if_broot, size); 212 213 ifp->if_bytes = 0; 214 ifp->if_u1.if_root = NULL; 215 ifp->if_height = 0; 216 return 0; 217 } 218 219 int 220 xfs_iformat_data_fork( 221 struct xfs_inode *ip, 222 struct xfs_dinode *dip) 223 { 224 struct inode *inode = VFS_I(ip); 225 int error; 226 227 /* 228 * Initialize the extent count early, as the per-format routines may 229 * depend on it. 230 */ 231 ip->i_df.if_format = dip->di_format; 232 ip->i_df.if_nextents = xfs_dfork_data_extents(dip); 233 234 switch (inode->i_mode & S_IFMT) { 235 case S_IFIFO: 236 case S_IFCHR: 237 case S_IFBLK: 238 case S_IFSOCK: 239 ip->i_disk_size = 0; 240 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 241 return 0; 242 case S_IFREG: 243 case S_IFLNK: 244 case S_IFDIR: 245 switch (ip->i_df.if_format) { 246 case XFS_DINODE_FMT_LOCAL: 247 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, 248 be64_to_cpu(dip->di_size)); 249 if (!error) 250 error = xfs_ifork_verify_local_data(ip); 251 return error; 252 case XFS_DINODE_FMT_EXTENTS: 253 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 254 case XFS_DINODE_FMT_BTREE: 255 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 256 default: 257 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 258 dip, sizeof(*dip), __this_address); 259 return -EFSCORRUPTED; 260 } 261 break; 262 default: 263 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 264 sizeof(*dip), __this_address); 265 return -EFSCORRUPTED; 266 } 267 } 268 269 static uint16_t 270 xfs_dfork_attr_shortform_size( 271 struct xfs_dinode *dip) 272 { 273 struct xfs_attr_shortform *atp = 274 (struct xfs_attr_shortform *)XFS_DFORK_APTR(dip); 275 276 return be16_to_cpu(atp->hdr.totsize); 277 } 278 279 void 280 xfs_ifork_init_attr( 281 struct xfs_inode *ip, 282 enum xfs_dinode_fmt format, 283 xfs_extnum_t nextents) 284 { 285 ip->i_af.if_format = format; 286 ip->i_af.if_nextents = nextents; 287 } 288 289 void 290 xfs_ifork_zap_attr( 291 struct xfs_inode *ip) 292 { 293 xfs_idestroy_fork(&ip->i_af); 294 memset(&ip->i_af, 0, sizeof(struct xfs_ifork)); 295 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 296 } 297 298 int 299 xfs_iformat_attr_fork( 300 struct xfs_inode *ip, 301 struct xfs_dinode *dip) 302 { 303 xfs_extnum_t naextents = xfs_dfork_attr_extents(dip); 304 int error = 0; 305 306 /* 307 * Initialize the extent count early, as the per-format routines may 308 * depend on it. 309 */ 310 xfs_ifork_init_attr(ip, dip->di_aformat, naextents); 311 312 switch (ip->i_af.if_format) { 313 case XFS_DINODE_FMT_LOCAL: 314 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, 315 xfs_dfork_attr_shortform_size(dip)); 316 if (!error) 317 error = xfs_ifork_verify_local_attr(ip); 318 break; 319 case XFS_DINODE_FMT_EXTENTS: 320 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 321 break; 322 case XFS_DINODE_FMT_BTREE: 323 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 324 break; 325 default: 326 xfs_inode_verifier_error(ip, error, __func__, dip, 327 sizeof(*dip), __this_address); 328 error = -EFSCORRUPTED; 329 break; 330 } 331 332 if (error) 333 xfs_ifork_zap_attr(ip); 334 return error; 335 } 336 337 /* 338 * Reallocate the space for if_broot based on the number of records 339 * being added or deleted as indicated in rec_diff. Move the records 340 * and pointers in if_broot to fit the new size. When shrinking this 341 * will eliminate holes between the records and pointers created by 342 * the caller. When growing this will create holes to be filled in 343 * by the caller. 344 * 345 * The caller must not request to add more records than would fit in 346 * the on-disk inode root. If the if_broot is currently NULL, then 347 * if we are adding records, one will be allocated. The caller must also 348 * not request that the number of records go below zero, although 349 * it can go to zero. 350 * 351 * ip -- the inode whose if_broot area is changing 352 * ext_diff -- the change in the number of records, positive or negative, 353 * requested for the if_broot array. 354 */ 355 void 356 xfs_iroot_realloc( 357 xfs_inode_t *ip, 358 int rec_diff, 359 int whichfork) 360 { 361 struct xfs_mount *mp = ip->i_mount; 362 int cur_max; 363 struct xfs_ifork *ifp; 364 struct xfs_btree_block *new_broot; 365 int new_max; 366 size_t new_size; 367 char *np; 368 char *op; 369 370 /* 371 * Handle the degenerate case quietly. 372 */ 373 if (rec_diff == 0) { 374 return; 375 } 376 377 ifp = xfs_ifork_ptr(ip, whichfork); 378 if (rec_diff > 0) { 379 /* 380 * If there wasn't any memory allocated before, just 381 * allocate it now and get out. 382 */ 383 if (ifp->if_broot_bytes == 0) { 384 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 385 ifp->if_broot = kmem_alloc(new_size, KM_NOFS); 386 ifp->if_broot_bytes = (int)new_size; 387 return; 388 } 389 390 /* 391 * If there is already an existing if_broot, then we need 392 * to realloc() it and shift the pointers to their new 393 * location. The records don't change location because 394 * they are kept butted up against the btree block header. 395 */ 396 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 397 new_max = cur_max + rec_diff; 398 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 399 ifp->if_broot = krealloc(ifp->if_broot, new_size, 400 GFP_NOFS | __GFP_NOFAIL); 401 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 402 ifp->if_broot_bytes); 403 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 404 (int)new_size); 405 ifp->if_broot_bytes = (int)new_size; 406 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 407 xfs_inode_fork_size(ip, whichfork)); 408 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 409 return; 410 } 411 412 /* 413 * rec_diff is less than 0. In this case, we are shrinking the 414 * if_broot buffer. It must already exist. If we go to zero 415 * records, just get rid of the root and clear the status bit. 416 */ 417 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 418 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 419 new_max = cur_max + rec_diff; 420 ASSERT(new_max >= 0); 421 if (new_max > 0) 422 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 423 else 424 new_size = 0; 425 if (new_size > 0) { 426 new_broot = kmem_alloc(new_size, KM_NOFS); 427 /* 428 * First copy over the btree block header. 429 */ 430 memcpy(new_broot, ifp->if_broot, 431 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 432 } else { 433 new_broot = NULL; 434 } 435 436 /* 437 * Only copy the records and pointers if there are any. 438 */ 439 if (new_max > 0) { 440 /* 441 * First copy the records. 442 */ 443 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 444 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 445 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 446 447 /* 448 * Then copy the pointers. 449 */ 450 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 451 ifp->if_broot_bytes); 452 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 453 (int)new_size); 454 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 455 } 456 kmem_free(ifp->if_broot); 457 ifp->if_broot = new_broot; 458 ifp->if_broot_bytes = (int)new_size; 459 if (ifp->if_broot) 460 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 461 xfs_inode_fork_size(ip, whichfork)); 462 return; 463 } 464 465 466 /* 467 * This is called when the amount of space needed for if_data 468 * is increased or decreased. The change in size is indicated by 469 * the number of bytes that need to be added or deleted in the 470 * byte_diff parameter. 471 * 472 * If the amount of space needed has decreased below the size of the 473 * inline buffer, then switch to using the inline buffer. Otherwise, 474 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 475 * to what is needed. 476 * 477 * ip -- the inode whose if_data area is changing 478 * byte_diff -- the change in the number of bytes, positive or negative, 479 * requested for the if_data array. 480 */ 481 void 482 xfs_idata_realloc( 483 struct xfs_inode *ip, 484 int64_t byte_diff, 485 int whichfork) 486 { 487 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 488 int64_t new_size = ifp->if_bytes + byte_diff; 489 490 ASSERT(new_size >= 0); 491 ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork)); 492 493 if (byte_diff == 0) 494 return; 495 496 if (new_size == 0) { 497 kmem_free(ifp->if_u1.if_data); 498 ifp->if_u1.if_data = NULL; 499 ifp->if_bytes = 0; 500 return; 501 } 502 503 ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size, 504 GFP_NOFS | __GFP_NOFAIL); 505 ifp->if_bytes = new_size; 506 } 507 508 void 509 xfs_idestroy_fork( 510 struct xfs_ifork *ifp) 511 { 512 if (ifp->if_broot != NULL) { 513 kmem_free(ifp->if_broot); 514 ifp->if_broot = NULL; 515 } 516 517 switch (ifp->if_format) { 518 case XFS_DINODE_FMT_LOCAL: 519 kmem_free(ifp->if_u1.if_data); 520 ifp->if_u1.if_data = NULL; 521 break; 522 case XFS_DINODE_FMT_EXTENTS: 523 case XFS_DINODE_FMT_BTREE: 524 if (ifp->if_height) 525 xfs_iext_destroy(ifp); 526 break; 527 } 528 } 529 530 /* 531 * Convert in-core extents to on-disk form 532 * 533 * In the case of the data fork, the in-core and on-disk fork sizes can be 534 * different due to delayed allocation extents. We only copy on-disk extents 535 * here, so callers must always use the physical fork size to determine the 536 * size of the buffer passed to this routine. We will return the size actually 537 * used. 538 */ 539 int 540 xfs_iextents_copy( 541 struct xfs_inode *ip, 542 struct xfs_bmbt_rec *dp, 543 int whichfork) 544 { 545 int state = xfs_bmap_fork_to_state(whichfork); 546 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 547 struct xfs_iext_cursor icur; 548 struct xfs_bmbt_irec rec; 549 int64_t copied = 0; 550 551 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 552 ASSERT(ifp->if_bytes > 0); 553 554 for_each_xfs_iext(ifp, &icur, &rec) { 555 if (isnullstartblock(rec.br_startblock)) 556 continue; 557 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 558 xfs_bmbt_disk_set_all(dp, &rec); 559 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 560 copied += sizeof(struct xfs_bmbt_rec); 561 dp++; 562 } 563 564 ASSERT(copied > 0); 565 ASSERT(copied <= ifp->if_bytes); 566 return copied; 567 } 568 569 /* 570 * Each of the following cases stores data into the same region 571 * of the on-disk inode, so only one of them can be valid at 572 * any given time. While it is possible to have conflicting formats 573 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 574 * in EXTENTS format, this can only happen when the fork has 575 * changed formats after being modified but before being flushed. 576 * In these cases, the format always takes precedence, because the 577 * format indicates the current state of the fork. 578 */ 579 void 580 xfs_iflush_fork( 581 struct xfs_inode *ip, 582 struct xfs_dinode *dip, 583 struct xfs_inode_log_item *iip, 584 int whichfork) 585 { 586 char *cp; 587 struct xfs_ifork *ifp; 588 xfs_mount_t *mp; 589 static const short brootflag[2] = 590 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 591 static const short dataflag[2] = 592 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 593 static const short extflag[2] = 594 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 595 596 if (!iip) 597 return; 598 ifp = xfs_ifork_ptr(ip, whichfork); 599 /* 600 * This can happen if we gave up in iformat in an error path, 601 * for the attribute fork. 602 */ 603 if (!ifp) { 604 ASSERT(whichfork == XFS_ATTR_FORK); 605 return; 606 } 607 cp = XFS_DFORK_PTR(dip, whichfork); 608 mp = ip->i_mount; 609 switch (ifp->if_format) { 610 case XFS_DINODE_FMT_LOCAL: 611 if ((iip->ili_fields & dataflag[whichfork]) && 612 (ifp->if_bytes > 0)) { 613 ASSERT(ifp->if_u1.if_data != NULL); 614 ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork)); 615 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 616 } 617 break; 618 619 case XFS_DINODE_FMT_EXTENTS: 620 if ((iip->ili_fields & extflag[whichfork]) && 621 (ifp->if_bytes > 0)) { 622 ASSERT(ifp->if_nextents > 0); 623 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 624 whichfork); 625 } 626 break; 627 628 case XFS_DINODE_FMT_BTREE: 629 if ((iip->ili_fields & brootflag[whichfork]) && 630 (ifp->if_broot_bytes > 0)) { 631 ASSERT(ifp->if_broot != NULL); 632 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 633 xfs_inode_fork_size(ip, whichfork)); 634 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 635 (xfs_bmdr_block_t *)cp, 636 XFS_DFORK_SIZE(dip, mp, whichfork)); 637 } 638 break; 639 640 case XFS_DINODE_FMT_DEV: 641 if (iip->ili_fields & XFS_ILOG_DEV) { 642 ASSERT(whichfork == XFS_DATA_FORK); 643 xfs_dinode_put_rdev(dip, 644 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 645 } 646 break; 647 648 default: 649 ASSERT(0); 650 break; 651 } 652 } 653 654 /* Convert bmap state flags to an inode fork. */ 655 struct xfs_ifork * 656 xfs_iext_state_to_fork( 657 struct xfs_inode *ip, 658 int state) 659 { 660 if (state & BMAP_COWFORK) 661 return ip->i_cowfp; 662 else if (state & BMAP_ATTRFORK) 663 return &ip->i_af; 664 return &ip->i_df; 665 } 666 667 /* 668 * Initialize an inode's copy-on-write fork. 669 */ 670 void 671 xfs_ifork_init_cow( 672 struct xfs_inode *ip) 673 { 674 if (ip->i_cowfp) 675 return; 676 677 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache, 678 GFP_NOFS | __GFP_NOFAIL); 679 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS; 680 } 681 682 /* Verify the inline contents of the data fork of an inode. */ 683 int 684 xfs_ifork_verify_local_data( 685 struct xfs_inode *ip) 686 { 687 xfs_failaddr_t fa = NULL; 688 689 switch (VFS_I(ip)->i_mode & S_IFMT) { 690 case S_IFDIR: 691 fa = xfs_dir2_sf_verify(ip); 692 break; 693 case S_IFLNK: 694 fa = xfs_symlink_shortform_verify(ip); 695 break; 696 default: 697 break; 698 } 699 700 if (fa) { 701 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 702 ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa); 703 return -EFSCORRUPTED; 704 } 705 706 return 0; 707 } 708 709 /* Verify the inline contents of the attr fork of an inode. */ 710 int 711 xfs_ifork_verify_local_attr( 712 struct xfs_inode *ip) 713 { 714 struct xfs_ifork *ifp = &ip->i_af; 715 xfs_failaddr_t fa; 716 717 if (!xfs_inode_has_attr_fork(ip)) 718 fa = __this_address; 719 else 720 fa = xfs_attr_shortform_verify(ip); 721 722 if (fa) { 723 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 724 ifp->if_u1.if_data, ifp->if_bytes, fa); 725 return -EFSCORRUPTED; 726 } 727 728 return 0; 729 } 730 731 int 732 xfs_iext_count_may_overflow( 733 struct xfs_inode *ip, 734 int whichfork, 735 int nr_to_add) 736 { 737 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 738 uint64_t max_exts; 739 uint64_t nr_exts; 740 741 if (whichfork == XFS_COW_FORK) 742 return 0; 743 744 max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip), 745 whichfork); 746 747 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS)) 748 max_exts = 10; 749 750 nr_exts = ifp->if_nextents + nr_to_add; 751 if (nr_exts < ifp->if_nextents || nr_exts > max_exts) 752 return -EFBIG; 753 754 return 0; 755 } 756 757 /* 758 * Upgrade this inode's extent counter fields to be able to handle a potential 759 * increase in the extent count by nr_to_add. Normally this is the same 760 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG. 761 */ 762 int 763 xfs_iext_count_upgrade( 764 struct xfs_trans *tp, 765 struct xfs_inode *ip, 766 uint nr_to_add) 767 { 768 ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR); 769 770 if (!xfs_has_large_extent_counts(ip->i_mount) || 771 xfs_inode_has_large_extent_counts(ip) || 772 XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS)) 773 return -EFBIG; 774 775 ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 776 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 777 778 return 0; 779 } 780