1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_da_format.h" 23 #include "xfs_da_btree.h" 24 #include "xfs_dir2_priv.h" 25 #include "xfs_attr_leaf.h" 26 27 kmem_zone_t *xfs_ifork_zone; 28 29 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 30 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 31 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 32 33 /* 34 * Copy inode type and data and attr format specific information from the 35 * on-disk inode to the in-core inode and fork structures. For fifos, devices, 36 * and sockets this means set i_rdev to the proper value. For files, 37 * directories, and symlinks this means to bring in the in-line data or extent 38 * pointers as well as the attribute fork. For a fork in B-tree format, only 39 * the root is immediately brought in-core. The rest will be read in later when 40 * first referenced (see xfs_iread_extents()). 41 */ 42 int 43 xfs_iformat_fork( 44 struct xfs_inode *ip, 45 struct xfs_dinode *dip) 46 { 47 struct inode *inode = VFS_I(ip); 48 struct xfs_attr_shortform *atp; 49 int size; 50 int error = 0; 51 xfs_fsize_t di_size; 52 53 switch (inode->i_mode & S_IFMT) { 54 case S_IFIFO: 55 case S_IFCHR: 56 case S_IFBLK: 57 case S_IFSOCK: 58 ip->i_d.di_size = 0; 59 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 60 break; 61 62 case S_IFREG: 63 case S_IFLNK: 64 case S_IFDIR: 65 switch (dip->di_format) { 66 case XFS_DINODE_FMT_LOCAL: 67 di_size = be64_to_cpu(dip->di_size); 68 size = (int)di_size; 69 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 70 break; 71 case XFS_DINODE_FMT_EXTENTS: 72 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 73 break; 74 case XFS_DINODE_FMT_BTREE: 75 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 76 break; 77 default: 78 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 79 dip, sizeof(*dip), __this_address); 80 return -EFSCORRUPTED; 81 } 82 break; 83 84 default: 85 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 86 sizeof(*dip), __this_address); 87 return -EFSCORRUPTED; 88 } 89 if (error) 90 return error; 91 92 if (xfs_is_reflink_inode(ip)) { 93 ASSERT(ip->i_cowfp == NULL); 94 xfs_ifork_init_cow(ip); 95 } 96 97 if (!XFS_DFORK_Q(dip)) 98 return 0; 99 100 ASSERT(ip->i_afp == NULL); 101 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_NOFS); 102 103 switch (dip->di_aformat) { 104 case XFS_DINODE_FMT_LOCAL: 105 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 106 size = be16_to_cpu(atp->hdr.totsize); 107 108 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 109 break; 110 case XFS_DINODE_FMT_EXTENTS: 111 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 112 break; 113 case XFS_DINODE_FMT_BTREE: 114 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 115 break; 116 default: 117 xfs_inode_verifier_error(ip, error, __func__, dip, 118 sizeof(*dip), __this_address); 119 error = -EFSCORRUPTED; 120 break; 121 } 122 if (error) { 123 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 124 ip->i_afp = NULL; 125 if (ip->i_cowfp) 126 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); 127 ip->i_cowfp = NULL; 128 xfs_idestroy_fork(ip, XFS_DATA_FORK); 129 } 130 return error; 131 } 132 133 void 134 xfs_init_local_fork( 135 struct xfs_inode *ip, 136 int whichfork, 137 const void *data, 138 int64_t size) 139 { 140 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 141 int mem_size = size, real_size = 0; 142 bool zero_terminate; 143 144 /* 145 * If we are using the local fork to store a symlink body we need to 146 * zero-terminate it so that we can pass it back to the VFS directly. 147 * Overallocate the in-memory fork by one for that and add a zero 148 * to terminate it below. 149 */ 150 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 151 if (zero_terminate) 152 mem_size++; 153 154 if (size) { 155 real_size = roundup(mem_size, 4); 156 ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS); 157 memcpy(ifp->if_u1.if_data, data, size); 158 if (zero_terminate) 159 ifp->if_u1.if_data[size] = '\0'; 160 } else { 161 ifp->if_u1.if_data = NULL; 162 } 163 164 ifp->if_bytes = size; 165 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT); 166 ifp->if_flags |= XFS_IFINLINE; 167 } 168 169 /* 170 * The file is in-lined in the on-disk inode. 171 */ 172 STATIC int 173 xfs_iformat_local( 174 xfs_inode_t *ip, 175 xfs_dinode_t *dip, 176 int whichfork, 177 int size) 178 { 179 /* 180 * If the size is unreasonable, then something 181 * is wrong and we just bail out rather than crash in 182 * kmem_alloc() or memcpy() below. 183 */ 184 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 185 xfs_warn(ip->i_mount, 186 "corrupt inode %Lu (bad size %d for local fork, size = %zd).", 187 (unsigned long long) ip->i_ino, size, 188 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 189 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 190 "xfs_iformat_local", dip, sizeof(*dip), 191 __this_address); 192 return -EFSCORRUPTED; 193 } 194 195 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 196 return 0; 197 } 198 199 /* 200 * The file consists of a set of extents all of which fit into the on-disk 201 * inode. 202 */ 203 STATIC int 204 xfs_iformat_extents( 205 struct xfs_inode *ip, 206 struct xfs_dinode *dip, 207 int whichfork) 208 { 209 struct xfs_mount *mp = ip->i_mount; 210 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 211 int state = xfs_bmap_fork_to_state(whichfork); 212 int nex = XFS_DFORK_NEXTENTS(dip, whichfork); 213 int size = nex * sizeof(xfs_bmbt_rec_t); 214 struct xfs_iext_cursor icur; 215 struct xfs_bmbt_rec *dp; 216 struct xfs_bmbt_irec new; 217 int i; 218 219 /* 220 * If the number of extents is unreasonable, then something is wrong and 221 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 222 */ 223 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 224 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 225 (unsigned long long) ip->i_ino, nex); 226 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 227 "xfs_iformat_extents(1)", dip, sizeof(*dip), 228 __this_address); 229 return -EFSCORRUPTED; 230 } 231 232 ifp->if_bytes = 0; 233 ifp->if_u1.if_root = NULL; 234 ifp->if_height = 0; 235 if (size) { 236 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 237 238 xfs_iext_first(ifp, &icur); 239 for (i = 0; i < nex; i++, dp++) { 240 xfs_failaddr_t fa; 241 242 xfs_bmbt_disk_get_all(dp, &new); 243 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 244 if (fa) { 245 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 246 "xfs_iformat_extents(2)", 247 dp, sizeof(*dp), fa); 248 return -EFSCORRUPTED; 249 } 250 251 xfs_iext_insert(ip, &icur, &new, state); 252 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 253 xfs_iext_next(ifp, &icur); 254 } 255 } 256 ifp->if_flags |= XFS_IFEXTENTS; 257 return 0; 258 } 259 260 /* 261 * The file has too many extents to fit into 262 * the inode, so they are in B-tree format. 263 * Allocate a buffer for the root of the B-tree 264 * and copy the root into it. The i_extents 265 * field will remain NULL until all of the 266 * extents are read in (when they are needed). 267 */ 268 STATIC int 269 xfs_iformat_btree( 270 xfs_inode_t *ip, 271 xfs_dinode_t *dip, 272 int whichfork) 273 { 274 struct xfs_mount *mp = ip->i_mount; 275 xfs_bmdr_block_t *dfp; 276 struct xfs_ifork *ifp; 277 /* REFERENCED */ 278 int nrecs; 279 int size; 280 int level; 281 282 ifp = XFS_IFORK_PTR(ip, whichfork); 283 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 284 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 285 nrecs = be16_to_cpu(dfp->bb_numrecs); 286 level = be16_to_cpu(dfp->bb_level); 287 288 /* 289 * blow out if -- fork has less extents than can fit in 290 * fork (fork shouldn't be a btree format), root btree 291 * block has more records than can fit into the fork, 292 * or the number of extents is greater than the number of 293 * blocks. 294 */ 295 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 296 XFS_IFORK_MAXEXT(ip, whichfork) || 297 nrecs == 0 || 298 XFS_BMDR_SPACE_CALC(nrecs) > 299 XFS_DFORK_SIZE(dip, mp, whichfork) || 300 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) || 301 level == 0 || level > XFS_BTREE_MAXLEVELS) { 302 xfs_warn(mp, "corrupt inode %Lu (btree).", 303 (unsigned long long) ip->i_ino); 304 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 305 "xfs_iformat_btree", dfp, size, 306 __this_address); 307 return -EFSCORRUPTED; 308 } 309 310 ifp->if_broot_bytes = size; 311 ifp->if_broot = kmem_alloc(size, KM_NOFS); 312 ASSERT(ifp->if_broot != NULL); 313 /* 314 * Copy and convert from the on-disk structure 315 * to the in-memory structure. 316 */ 317 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 318 ifp->if_broot, size); 319 ifp->if_flags &= ~XFS_IFEXTENTS; 320 ifp->if_flags |= XFS_IFBROOT; 321 322 ifp->if_bytes = 0; 323 ifp->if_u1.if_root = NULL; 324 ifp->if_height = 0; 325 return 0; 326 } 327 328 /* 329 * Reallocate the space for if_broot based on the number of records 330 * being added or deleted as indicated in rec_diff. Move the records 331 * and pointers in if_broot to fit the new size. When shrinking this 332 * will eliminate holes between the records and pointers created by 333 * the caller. When growing this will create holes to be filled in 334 * by the caller. 335 * 336 * The caller must not request to add more records than would fit in 337 * the on-disk inode root. If the if_broot is currently NULL, then 338 * if we are adding records, one will be allocated. The caller must also 339 * not request that the number of records go below zero, although 340 * it can go to zero. 341 * 342 * ip -- the inode whose if_broot area is changing 343 * ext_diff -- the change in the number of records, positive or negative, 344 * requested for the if_broot array. 345 */ 346 void 347 xfs_iroot_realloc( 348 xfs_inode_t *ip, 349 int rec_diff, 350 int whichfork) 351 { 352 struct xfs_mount *mp = ip->i_mount; 353 int cur_max; 354 struct xfs_ifork *ifp; 355 struct xfs_btree_block *new_broot; 356 int new_max; 357 size_t new_size; 358 char *np; 359 char *op; 360 361 /* 362 * Handle the degenerate case quietly. 363 */ 364 if (rec_diff == 0) { 365 return; 366 } 367 368 ifp = XFS_IFORK_PTR(ip, whichfork); 369 if (rec_diff > 0) { 370 /* 371 * If there wasn't any memory allocated before, just 372 * allocate it now and get out. 373 */ 374 if (ifp->if_broot_bytes == 0) { 375 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 376 ifp->if_broot = kmem_alloc(new_size, KM_NOFS); 377 ifp->if_broot_bytes = (int)new_size; 378 return; 379 } 380 381 /* 382 * If there is already an existing if_broot, then we need 383 * to realloc() it and shift the pointers to their new 384 * location. The records don't change location because 385 * they are kept butted up against the btree block header. 386 */ 387 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 388 new_max = cur_max + rec_diff; 389 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 390 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 391 KM_NOFS); 392 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 393 ifp->if_broot_bytes); 394 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 395 (int)new_size); 396 ifp->if_broot_bytes = (int)new_size; 397 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 398 XFS_IFORK_SIZE(ip, whichfork)); 399 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 400 return; 401 } 402 403 /* 404 * rec_diff is less than 0. In this case, we are shrinking the 405 * if_broot buffer. It must already exist. If we go to zero 406 * records, just get rid of the root and clear the status bit. 407 */ 408 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 409 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 410 new_max = cur_max + rec_diff; 411 ASSERT(new_max >= 0); 412 if (new_max > 0) 413 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 414 else 415 new_size = 0; 416 if (new_size > 0) { 417 new_broot = kmem_alloc(new_size, KM_NOFS); 418 /* 419 * First copy over the btree block header. 420 */ 421 memcpy(new_broot, ifp->if_broot, 422 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 423 } else { 424 new_broot = NULL; 425 ifp->if_flags &= ~XFS_IFBROOT; 426 } 427 428 /* 429 * Only copy the records and pointers if there are any. 430 */ 431 if (new_max > 0) { 432 /* 433 * First copy the records. 434 */ 435 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 436 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 437 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 438 439 /* 440 * Then copy the pointers. 441 */ 442 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 443 ifp->if_broot_bytes); 444 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 445 (int)new_size); 446 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 447 } 448 kmem_free(ifp->if_broot); 449 ifp->if_broot = new_broot; 450 ifp->if_broot_bytes = (int)new_size; 451 if (ifp->if_broot) 452 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 453 XFS_IFORK_SIZE(ip, whichfork)); 454 return; 455 } 456 457 458 /* 459 * This is called when the amount of space needed for if_data 460 * is increased or decreased. The change in size is indicated by 461 * the number of bytes that need to be added or deleted in the 462 * byte_diff parameter. 463 * 464 * If the amount of space needed has decreased below the size of the 465 * inline buffer, then switch to using the inline buffer. Otherwise, 466 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 467 * to what is needed. 468 * 469 * ip -- the inode whose if_data area is changing 470 * byte_diff -- the change in the number of bytes, positive or negative, 471 * requested for the if_data array. 472 */ 473 void 474 xfs_idata_realloc( 475 struct xfs_inode *ip, 476 int64_t byte_diff, 477 int whichfork) 478 { 479 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 480 int64_t new_size = ifp->if_bytes + byte_diff; 481 482 ASSERT(new_size >= 0); 483 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork)); 484 485 if (byte_diff == 0) 486 return; 487 488 if (new_size == 0) { 489 kmem_free(ifp->if_u1.if_data); 490 ifp->if_u1.if_data = NULL; 491 ifp->if_bytes = 0; 492 return; 493 } 494 495 /* 496 * For inline data, the underlying buffer must be a multiple of 4 bytes 497 * in size so that it can be logged and stay on word boundaries. 498 * We enforce that here. 499 */ 500 ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, 501 roundup(new_size, 4), KM_NOFS); 502 ifp->if_bytes = new_size; 503 } 504 505 void 506 xfs_idestroy_fork( 507 xfs_inode_t *ip, 508 int whichfork) 509 { 510 struct xfs_ifork *ifp; 511 512 ifp = XFS_IFORK_PTR(ip, whichfork); 513 if (ifp->if_broot != NULL) { 514 kmem_free(ifp->if_broot); 515 ifp->if_broot = NULL; 516 } 517 518 /* 519 * If the format is local, then we can't have an extents 520 * array so just look for an inline data array. If we're 521 * not local then we may or may not have an extents list, 522 * so check and free it up if we do. 523 */ 524 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 525 if (ifp->if_u1.if_data != NULL) { 526 kmem_free(ifp->if_u1.if_data); 527 ifp->if_u1.if_data = NULL; 528 } 529 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) { 530 xfs_iext_destroy(ifp); 531 } 532 533 if (whichfork == XFS_ATTR_FORK) { 534 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 535 ip->i_afp = NULL; 536 } else if (whichfork == XFS_COW_FORK) { 537 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); 538 ip->i_cowfp = NULL; 539 } 540 } 541 542 /* 543 * Convert in-core extents to on-disk form 544 * 545 * In the case of the data fork, the in-core and on-disk fork sizes can be 546 * different due to delayed allocation extents. We only copy on-disk extents 547 * here, so callers must always use the physical fork size to determine the 548 * size of the buffer passed to this routine. We will return the size actually 549 * used. 550 */ 551 int 552 xfs_iextents_copy( 553 struct xfs_inode *ip, 554 struct xfs_bmbt_rec *dp, 555 int whichfork) 556 { 557 int state = xfs_bmap_fork_to_state(whichfork); 558 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 559 struct xfs_iext_cursor icur; 560 struct xfs_bmbt_irec rec; 561 int64_t copied = 0; 562 563 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 564 ASSERT(ifp->if_bytes > 0); 565 566 for_each_xfs_iext(ifp, &icur, &rec) { 567 if (isnullstartblock(rec.br_startblock)) 568 continue; 569 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 570 xfs_bmbt_disk_set_all(dp, &rec); 571 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 572 copied += sizeof(struct xfs_bmbt_rec); 573 dp++; 574 } 575 576 ASSERT(copied > 0); 577 ASSERT(copied <= ifp->if_bytes); 578 return copied; 579 } 580 581 /* 582 * Each of the following cases stores data into the same region 583 * of the on-disk inode, so only one of them can be valid at 584 * any given time. While it is possible to have conflicting formats 585 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 586 * in EXTENTS format, this can only happen when the fork has 587 * changed formats after being modified but before being flushed. 588 * In these cases, the format always takes precedence, because the 589 * format indicates the current state of the fork. 590 */ 591 void 592 xfs_iflush_fork( 593 xfs_inode_t *ip, 594 xfs_dinode_t *dip, 595 xfs_inode_log_item_t *iip, 596 int whichfork) 597 { 598 char *cp; 599 struct xfs_ifork *ifp; 600 xfs_mount_t *mp; 601 static const short brootflag[2] = 602 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 603 static const short dataflag[2] = 604 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 605 static const short extflag[2] = 606 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 607 608 if (!iip) 609 return; 610 ifp = XFS_IFORK_PTR(ip, whichfork); 611 /* 612 * This can happen if we gave up in iformat in an error path, 613 * for the attribute fork. 614 */ 615 if (!ifp) { 616 ASSERT(whichfork == XFS_ATTR_FORK); 617 return; 618 } 619 cp = XFS_DFORK_PTR(dip, whichfork); 620 mp = ip->i_mount; 621 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 622 case XFS_DINODE_FMT_LOCAL: 623 if ((iip->ili_fields & dataflag[whichfork]) && 624 (ifp->if_bytes > 0)) { 625 ASSERT(ifp->if_u1.if_data != NULL); 626 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 627 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 628 } 629 break; 630 631 case XFS_DINODE_FMT_EXTENTS: 632 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 633 !(iip->ili_fields & extflag[whichfork])); 634 if ((iip->ili_fields & extflag[whichfork]) && 635 (ifp->if_bytes > 0)) { 636 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 637 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 638 whichfork); 639 } 640 break; 641 642 case XFS_DINODE_FMT_BTREE: 643 if ((iip->ili_fields & brootflag[whichfork]) && 644 (ifp->if_broot_bytes > 0)) { 645 ASSERT(ifp->if_broot != NULL); 646 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 647 XFS_IFORK_SIZE(ip, whichfork)); 648 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 649 (xfs_bmdr_block_t *)cp, 650 XFS_DFORK_SIZE(dip, mp, whichfork)); 651 } 652 break; 653 654 case XFS_DINODE_FMT_DEV: 655 if (iip->ili_fields & XFS_ILOG_DEV) { 656 ASSERT(whichfork == XFS_DATA_FORK); 657 xfs_dinode_put_rdev(dip, 658 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 659 } 660 break; 661 662 default: 663 ASSERT(0); 664 break; 665 } 666 } 667 668 /* Convert bmap state flags to an inode fork. */ 669 struct xfs_ifork * 670 xfs_iext_state_to_fork( 671 struct xfs_inode *ip, 672 int state) 673 { 674 if (state & BMAP_COWFORK) 675 return ip->i_cowfp; 676 else if (state & BMAP_ATTRFORK) 677 return ip->i_afp; 678 return &ip->i_df; 679 } 680 681 /* 682 * Initialize an inode's copy-on-write fork. 683 */ 684 void 685 xfs_ifork_init_cow( 686 struct xfs_inode *ip) 687 { 688 if (ip->i_cowfp) 689 return; 690 691 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone, 692 KM_NOFS); 693 ip->i_cowfp->if_flags = XFS_IFEXTENTS; 694 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 695 ip->i_cnextents = 0; 696 } 697 698 /* Default fork content verifiers. */ 699 struct xfs_ifork_ops xfs_default_ifork_ops = { 700 .verify_attr = xfs_attr_shortform_verify, 701 .verify_dir = xfs_dir2_sf_verify, 702 .verify_symlink = xfs_symlink_shortform_verify, 703 }; 704 705 /* Verify the inline contents of the data fork of an inode. */ 706 xfs_failaddr_t 707 xfs_ifork_verify_data( 708 struct xfs_inode *ip, 709 struct xfs_ifork_ops *ops) 710 { 711 /* Non-local data fork, we're done. */ 712 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 713 return NULL; 714 715 /* Check the inline data fork if there is one. */ 716 switch (VFS_I(ip)->i_mode & S_IFMT) { 717 case S_IFDIR: 718 return ops->verify_dir(ip); 719 case S_IFLNK: 720 return ops->verify_symlink(ip); 721 default: 722 return NULL; 723 } 724 } 725 726 /* Verify the inline contents of the attr fork of an inode. */ 727 xfs_failaddr_t 728 xfs_ifork_verify_attr( 729 struct xfs_inode *ip, 730 struct xfs_ifork_ops *ops) 731 { 732 /* There has to be an attr fork allocated if aformat is local. */ 733 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 734 return NULL; 735 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK)) 736 return __this_address; 737 return ops->verify_attr(ip); 738 } 739