1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_da_format.h" 23 #include "xfs_da_btree.h" 24 #include "xfs_dir2_priv.h" 25 #include "xfs_attr_leaf.h" 26 27 kmem_zone_t *xfs_ifork_zone; 28 29 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 30 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 31 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 32 33 /* 34 * Copy inode type and data and attr format specific information from the 35 * on-disk inode to the in-core inode and fork structures. For fifos, devices, 36 * and sockets this means set i_rdev to the proper value. For files, 37 * directories, and symlinks this means to bring in the in-line data or extent 38 * pointers as well as the attribute fork. For a fork in B-tree format, only 39 * the root is immediately brought in-core. The rest will be read in later when 40 * first referenced (see xfs_iread_extents()). 41 */ 42 int 43 xfs_iformat_fork( 44 struct xfs_inode *ip, 45 struct xfs_dinode *dip) 46 { 47 struct inode *inode = VFS_I(ip); 48 struct xfs_attr_shortform *atp; 49 int size; 50 int error = 0; 51 xfs_fsize_t di_size; 52 53 switch (inode->i_mode & S_IFMT) { 54 case S_IFIFO: 55 case S_IFCHR: 56 case S_IFBLK: 57 case S_IFSOCK: 58 ip->i_d.di_size = 0; 59 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 60 break; 61 62 case S_IFREG: 63 case S_IFLNK: 64 case S_IFDIR: 65 switch (dip->di_format) { 66 case XFS_DINODE_FMT_LOCAL: 67 di_size = be64_to_cpu(dip->di_size); 68 size = (int)di_size; 69 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 70 break; 71 case XFS_DINODE_FMT_EXTENTS: 72 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 73 break; 74 case XFS_DINODE_FMT_BTREE: 75 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 76 break; 77 default: 78 return -EFSCORRUPTED; 79 } 80 break; 81 82 default: 83 return -EFSCORRUPTED; 84 } 85 if (error) 86 return error; 87 88 if (xfs_is_reflink_inode(ip)) { 89 ASSERT(ip->i_cowfp == NULL); 90 xfs_ifork_init_cow(ip); 91 } 92 93 if (!XFS_DFORK_Q(dip)) 94 return 0; 95 96 ASSERT(ip->i_afp == NULL); 97 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_NOFS); 98 99 switch (dip->di_aformat) { 100 case XFS_DINODE_FMT_LOCAL: 101 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 102 size = be16_to_cpu(atp->hdr.totsize); 103 104 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 105 break; 106 case XFS_DINODE_FMT_EXTENTS: 107 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 108 break; 109 case XFS_DINODE_FMT_BTREE: 110 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 111 break; 112 default: 113 error = -EFSCORRUPTED; 114 break; 115 } 116 if (error) { 117 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 118 ip->i_afp = NULL; 119 if (ip->i_cowfp) 120 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 121 ip->i_cowfp = NULL; 122 xfs_idestroy_fork(ip, XFS_DATA_FORK); 123 } 124 return error; 125 } 126 127 void 128 xfs_init_local_fork( 129 struct xfs_inode *ip, 130 int whichfork, 131 const void *data, 132 int size) 133 { 134 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 135 int mem_size = size, real_size = 0; 136 bool zero_terminate; 137 138 /* 139 * If we are using the local fork to store a symlink body we need to 140 * zero-terminate it so that we can pass it back to the VFS directly. 141 * Overallocate the in-memory fork by one for that and add a zero 142 * to terminate it below. 143 */ 144 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 145 if (zero_terminate) 146 mem_size++; 147 148 if (size) { 149 real_size = roundup(mem_size, 4); 150 ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS); 151 memcpy(ifp->if_u1.if_data, data, size); 152 if (zero_terminate) 153 ifp->if_u1.if_data[size] = '\0'; 154 } else { 155 ifp->if_u1.if_data = NULL; 156 } 157 158 ifp->if_bytes = size; 159 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT); 160 ifp->if_flags |= XFS_IFINLINE; 161 } 162 163 /* 164 * The file is in-lined in the on-disk inode. 165 */ 166 STATIC int 167 xfs_iformat_local( 168 xfs_inode_t *ip, 169 xfs_dinode_t *dip, 170 int whichfork, 171 int size) 172 { 173 /* 174 * If the size is unreasonable, then something 175 * is wrong and we just bail out rather than crash in 176 * kmem_alloc() or memcpy() below. 177 */ 178 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 179 xfs_warn(ip->i_mount, 180 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 181 (unsigned long long) ip->i_ino, size, 182 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 183 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 184 "xfs_iformat_local", dip, sizeof(*dip), 185 __this_address); 186 return -EFSCORRUPTED; 187 } 188 189 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 190 return 0; 191 } 192 193 /* 194 * The file consists of a set of extents all of which fit into the on-disk 195 * inode. 196 */ 197 STATIC int 198 xfs_iformat_extents( 199 struct xfs_inode *ip, 200 struct xfs_dinode *dip, 201 int whichfork) 202 { 203 struct xfs_mount *mp = ip->i_mount; 204 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 205 int state = xfs_bmap_fork_to_state(whichfork); 206 int nex = XFS_DFORK_NEXTENTS(dip, whichfork); 207 int size = nex * sizeof(xfs_bmbt_rec_t); 208 struct xfs_iext_cursor icur; 209 struct xfs_bmbt_rec *dp; 210 struct xfs_bmbt_irec new; 211 int i; 212 213 /* 214 * If the number of extents is unreasonable, then something is wrong and 215 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 216 */ 217 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 218 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 219 (unsigned long long) ip->i_ino, nex); 220 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 221 "xfs_iformat_extents(1)", dip, sizeof(*dip), 222 __this_address); 223 return -EFSCORRUPTED; 224 } 225 226 ifp->if_bytes = 0; 227 ifp->if_u1.if_root = NULL; 228 ifp->if_height = 0; 229 if (size) { 230 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 231 232 xfs_iext_first(ifp, &icur); 233 for (i = 0; i < nex; i++, dp++) { 234 xfs_failaddr_t fa; 235 236 xfs_bmbt_disk_get_all(dp, &new); 237 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 238 if (fa) { 239 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 240 "xfs_iformat_extents(2)", 241 dp, sizeof(*dp), fa); 242 return -EFSCORRUPTED; 243 } 244 245 xfs_iext_insert(ip, &icur, &new, state); 246 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 247 xfs_iext_next(ifp, &icur); 248 } 249 } 250 ifp->if_flags |= XFS_IFEXTENTS; 251 return 0; 252 } 253 254 /* 255 * The file has too many extents to fit into 256 * the inode, so they are in B-tree format. 257 * Allocate a buffer for the root of the B-tree 258 * and copy the root into it. The i_extents 259 * field will remain NULL until all of the 260 * extents are read in (when they are needed). 261 */ 262 STATIC int 263 xfs_iformat_btree( 264 xfs_inode_t *ip, 265 xfs_dinode_t *dip, 266 int whichfork) 267 { 268 struct xfs_mount *mp = ip->i_mount; 269 xfs_bmdr_block_t *dfp; 270 struct xfs_ifork *ifp; 271 /* REFERENCED */ 272 int nrecs; 273 int size; 274 int level; 275 276 ifp = XFS_IFORK_PTR(ip, whichfork); 277 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 278 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 279 nrecs = be16_to_cpu(dfp->bb_numrecs); 280 level = be16_to_cpu(dfp->bb_level); 281 282 /* 283 * blow out if -- fork has less extents than can fit in 284 * fork (fork shouldn't be a btree format), root btree 285 * block has more records than can fit into the fork, 286 * or the number of extents is greater than the number of 287 * blocks. 288 */ 289 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 290 XFS_IFORK_MAXEXT(ip, whichfork) || 291 nrecs == 0 || 292 XFS_BMDR_SPACE_CALC(nrecs) > 293 XFS_DFORK_SIZE(dip, mp, whichfork) || 294 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) || 295 level == 0 || level > XFS_BTREE_MAXLEVELS) { 296 xfs_warn(mp, "corrupt inode %Lu (btree).", 297 (unsigned long long) ip->i_ino); 298 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 299 "xfs_iformat_btree", dfp, size, 300 __this_address); 301 return -EFSCORRUPTED; 302 } 303 304 ifp->if_broot_bytes = size; 305 ifp->if_broot = kmem_alloc(size, KM_NOFS); 306 ASSERT(ifp->if_broot != NULL); 307 /* 308 * Copy and convert from the on-disk structure 309 * to the in-memory structure. 310 */ 311 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 312 ifp->if_broot, size); 313 ifp->if_flags &= ~XFS_IFEXTENTS; 314 ifp->if_flags |= XFS_IFBROOT; 315 316 ifp->if_bytes = 0; 317 ifp->if_u1.if_root = NULL; 318 ifp->if_height = 0; 319 return 0; 320 } 321 322 /* 323 * Reallocate the space for if_broot based on the number of records 324 * being added or deleted as indicated in rec_diff. Move the records 325 * and pointers in if_broot to fit the new size. When shrinking this 326 * will eliminate holes between the records and pointers created by 327 * the caller. When growing this will create holes to be filled in 328 * by the caller. 329 * 330 * The caller must not request to add more records than would fit in 331 * the on-disk inode root. If the if_broot is currently NULL, then 332 * if we are adding records, one will be allocated. The caller must also 333 * not request that the number of records go below zero, although 334 * it can go to zero. 335 * 336 * ip -- the inode whose if_broot area is changing 337 * ext_diff -- the change in the number of records, positive or negative, 338 * requested for the if_broot array. 339 */ 340 void 341 xfs_iroot_realloc( 342 xfs_inode_t *ip, 343 int rec_diff, 344 int whichfork) 345 { 346 struct xfs_mount *mp = ip->i_mount; 347 int cur_max; 348 struct xfs_ifork *ifp; 349 struct xfs_btree_block *new_broot; 350 int new_max; 351 size_t new_size; 352 char *np; 353 char *op; 354 355 /* 356 * Handle the degenerate case quietly. 357 */ 358 if (rec_diff == 0) { 359 return; 360 } 361 362 ifp = XFS_IFORK_PTR(ip, whichfork); 363 if (rec_diff > 0) { 364 /* 365 * If there wasn't any memory allocated before, just 366 * allocate it now and get out. 367 */ 368 if (ifp->if_broot_bytes == 0) { 369 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 370 ifp->if_broot = kmem_alloc(new_size, KM_NOFS); 371 ifp->if_broot_bytes = (int)new_size; 372 return; 373 } 374 375 /* 376 * If there is already an existing if_broot, then we need 377 * to realloc() it and shift the pointers to their new 378 * location. The records don't change location because 379 * they are kept butted up against the btree block header. 380 */ 381 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 382 new_max = cur_max + rec_diff; 383 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 384 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 385 KM_NOFS); 386 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 387 ifp->if_broot_bytes); 388 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 389 (int)new_size); 390 ifp->if_broot_bytes = (int)new_size; 391 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 392 XFS_IFORK_SIZE(ip, whichfork)); 393 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 394 return; 395 } 396 397 /* 398 * rec_diff is less than 0. In this case, we are shrinking the 399 * if_broot buffer. It must already exist. If we go to zero 400 * records, just get rid of the root and clear the status bit. 401 */ 402 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 403 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 404 new_max = cur_max + rec_diff; 405 ASSERT(new_max >= 0); 406 if (new_max > 0) 407 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 408 else 409 new_size = 0; 410 if (new_size > 0) { 411 new_broot = kmem_alloc(new_size, KM_NOFS); 412 /* 413 * First copy over the btree block header. 414 */ 415 memcpy(new_broot, ifp->if_broot, 416 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 417 } else { 418 new_broot = NULL; 419 ifp->if_flags &= ~XFS_IFBROOT; 420 } 421 422 /* 423 * Only copy the records and pointers if there are any. 424 */ 425 if (new_max > 0) { 426 /* 427 * First copy the records. 428 */ 429 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 430 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 431 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 432 433 /* 434 * Then copy the pointers. 435 */ 436 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 437 ifp->if_broot_bytes); 438 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 439 (int)new_size); 440 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 441 } 442 kmem_free(ifp->if_broot); 443 ifp->if_broot = new_broot; 444 ifp->if_broot_bytes = (int)new_size; 445 if (ifp->if_broot) 446 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 447 XFS_IFORK_SIZE(ip, whichfork)); 448 return; 449 } 450 451 452 /* 453 * This is called when the amount of space needed for if_data 454 * is increased or decreased. The change in size is indicated by 455 * the number of bytes that need to be added or deleted in the 456 * byte_diff parameter. 457 * 458 * If the amount of space needed has decreased below the size of the 459 * inline buffer, then switch to using the inline buffer. Otherwise, 460 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 461 * to what is needed. 462 * 463 * ip -- the inode whose if_data area is changing 464 * byte_diff -- the change in the number of bytes, positive or negative, 465 * requested for the if_data array. 466 */ 467 void 468 xfs_idata_realloc( 469 struct xfs_inode *ip, 470 int byte_diff, 471 int whichfork) 472 { 473 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 474 int new_size = (int)ifp->if_bytes + byte_diff; 475 476 ASSERT(new_size >= 0); 477 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork)); 478 479 if (byte_diff == 0) 480 return; 481 482 if (new_size == 0) { 483 kmem_free(ifp->if_u1.if_data); 484 ifp->if_u1.if_data = NULL; 485 ifp->if_bytes = 0; 486 return; 487 } 488 489 /* 490 * For inline data, the underlying buffer must be a multiple of 4 bytes 491 * in size so that it can be logged and stay on word boundaries. 492 * We enforce that here. 493 */ 494 ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, 495 roundup(new_size, 4), KM_NOFS); 496 ifp->if_bytes = new_size; 497 } 498 499 void 500 xfs_idestroy_fork( 501 xfs_inode_t *ip, 502 int whichfork) 503 { 504 struct xfs_ifork *ifp; 505 506 ifp = XFS_IFORK_PTR(ip, whichfork); 507 if (ifp->if_broot != NULL) { 508 kmem_free(ifp->if_broot); 509 ifp->if_broot = NULL; 510 } 511 512 /* 513 * If the format is local, then we can't have an extents 514 * array so just look for an inline data array. If we're 515 * not local then we may or may not have an extents list, 516 * so check and free it up if we do. 517 */ 518 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 519 if (ifp->if_u1.if_data != NULL) { 520 kmem_free(ifp->if_u1.if_data); 521 ifp->if_u1.if_data = NULL; 522 } 523 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) { 524 xfs_iext_destroy(ifp); 525 } 526 527 if (whichfork == XFS_ATTR_FORK) { 528 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 529 ip->i_afp = NULL; 530 } else if (whichfork == XFS_COW_FORK) { 531 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 532 ip->i_cowfp = NULL; 533 } 534 } 535 536 /* 537 * Convert in-core extents to on-disk form 538 * 539 * In the case of the data fork, the in-core and on-disk fork sizes can be 540 * different due to delayed allocation extents. We only copy on-disk extents 541 * here, so callers must always use the physical fork size to determine the 542 * size of the buffer passed to this routine. We will return the size actually 543 * used. 544 */ 545 int 546 xfs_iextents_copy( 547 struct xfs_inode *ip, 548 struct xfs_bmbt_rec *dp, 549 int whichfork) 550 { 551 int state = xfs_bmap_fork_to_state(whichfork); 552 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 553 struct xfs_iext_cursor icur; 554 struct xfs_bmbt_irec rec; 555 int copied = 0; 556 557 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 558 ASSERT(ifp->if_bytes > 0); 559 560 for_each_xfs_iext(ifp, &icur, &rec) { 561 if (isnullstartblock(rec.br_startblock)) 562 continue; 563 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 564 xfs_bmbt_disk_set_all(dp, &rec); 565 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 566 copied += sizeof(struct xfs_bmbt_rec); 567 dp++; 568 } 569 570 ASSERT(copied > 0); 571 ASSERT(copied <= ifp->if_bytes); 572 return copied; 573 } 574 575 /* 576 * Each of the following cases stores data into the same region 577 * of the on-disk inode, so only one of them can be valid at 578 * any given time. While it is possible to have conflicting formats 579 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 580 * in EXTENTS format, this can only happen when the fork has 581 * changed formats after being modified but before being flushed. 582 * In these cases, the format always takes precedence, because the 583 * format indicates the current state of the fork. 584 */ 585 void 586 xfs_iflush_fork( 587 xfs_inode_t *ip, 588 xfs_dinode_t *dip, 589 xfs_inode_log_item_t *iip, 590 int whichfork) 591 { 592 char *cp; 593 struct xfs_ifork *ifp; 594 xfs_mount_t *mp; 595 static const short brootflag[2] = 596 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 597 static const short dataflag[2] = 598 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 599 static const short extflag[2] = 600 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 601 602 if (!iip) 603 return; 604 ifp = XFS_IFORK_PTR(ip, whichfork); 605 /* 606 * This can happen if we gave up in iformat in an error path, 607 * for the attribute fork. 608 */ 609 if (!ifp) { 610 ASSERT(whichfork == XFS_ATTR_FORK); 611 return; 612 } 613 cp = XFS_DFORK_PTR(dip, whichfork); 614 mp = ip->i_mount; 615 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 616 case XFS_DINODE_FMT_LOCAL: 617 if ((iip->ili_fields & dataflag[whichfork]) && 618 (ifp->if_bytes > 0)) { 619 ASSERT(ifp->if_u1.if_data != NULL); 620 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 621 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 622 } 623 break; 624 625 case XFS_DINODE_FMT_EXTENTS: 626 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 627 !(iip->ili_fields & extflag[whichfork])); 628 if ((iip->ili_fields & extflag[whichfork]) && 629 (ifp->if_bytes > 0)) { 630 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 631 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 632 whichfork); 633 } 634 break; 635 636 case XFS_DINODE_FMT_BTREE: 637 if ((iip->ili_fields & brootflag[whichfork]) && 638 (ifp->if_broot_bytes > 0)) { 639 ASSERT(ifp->if_broot != NULL); 640 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 641 XFS_IFORK_SIZE(ip, whichfork)); 642 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 643 (xfs_bmdr_block_t *)cp, 644 XFS_DFORK_SIZE(dip, mp, whichfork)); 645 } 646 break; 647 648 case XFS_DINODE_FMT_DEV: 649 if (iip->ili_fields & XFS_ILOG_DEV) { 650 ASSERT(whichfork == XFS_DATA_FORK); 651 xfs_dinode_put_rdev(dip, 652 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 653 } 654 break; 655 656 default: 657 ASSERT(0); 658 break; 659 } 660 } 661 662 /* Convert bmap state flags to an inode fork. */ 663 struct xfs_ifork * 664 xfs_iext_state_to_fork( 665 struct xfs_inode *ip, 666 int state) 667 { 668 if (state & BMAP_COWFORK) 669 return ip->i_cowfp; 670 else if (state & BMAP_ATTRFORK) 671 return ip->i_afp; 672 return &ip->i_df; 673 } 674 675 /* 676 * Initialize an inode's copy-on-write fork. 677 */ 678 void 679 xfs_ifork_init_cow( 680 struct xfs_inode *ip) 681 { 682 if (ip->i_cowfp) 683 return; 684 685 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone, 686 KM_NOFS); 687 ip->i_cowfp->if_flags = XFS_IFEXTENTS; 688 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 689 ip->i_cnextents = 0; 690 } 691 692 /* Default fork content verifiers. */ 693 struct xfs_ifork_ops xfs_default_ifork_ops = { 694 .verify_attr = xfs_attr_shortform_verify, 695 .verify_dir = xfs_dir2_sf_verify, 696 .verify_symlink = xfs_symlink_shortform_verify, 697 }; 698 699 /* Verify the inline contents of the data fork of an inode. */ 700 xfs_failaddr_t 701 xfs_ifork_verify_data( 702 struct xfs_inode *ip, 703 struct xfs_ifork_ops *ops) 704 { 705 /* Non-local data fork, we're done. */ 706 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 707 return NULL; 708 709 /* Check the inline data fork if there is one. */ 710 switch (VFS_I(ip)->i_mode & S_IFMT) { 711 case S_IFDIR: 712 return ops->verify_dir(ip); 713 case S_IFLNK: 714 return ops->verify_symlink(ip); 715 default: 716 return NULL; 717 } 718 } 719 720 /* Verify the inline contents of the attr fork of an inode. */ 721 xfs_failaddr_t 722 xfs_ifork_verify_attr( 723 struct xfs_inode *ip, 724 struct xfs_ifork_ops *ops) 725 { 726 /* There has to be an attr fork allocated if aformat is local. */ 727 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 728 return NULL; 729 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK)) 730 return __this_address; 731 return ops->verify_attr(ip); 732 } 733