1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_error.h" 27 #include "xfs_cksum.h" 28 #include "xfs_icache.h" 29 #include "xfs_trans.h" 30 #include "xfs_ialloc.h" 31 32 /* 33 * Check that none of the inode's in the buffer have a next 34 * unlinked field of 0. 35 */ 36 #if defined(DEBUG) 37 void 38 xfs_inobp_check( 39 xfs_mount_t *mp, 40 xfs_buf_t *bp) 41 { 42 int i; 43 int j; 44 xfs_dinode_t *dip; 45 46 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 47 48 for (i = 0; i < j; i++) { 49 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize); 50 if (!dip->di_next_unlinked) { 51 xfs_alert(mp, 52 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.", 53 i, (long long)bp->b_bn); 54 } 55 } 56 } 57 #endif 58 59 /* 60 * If we are doing readahead on an inode buffer, we might be in log recovery 61 * reading an inode allocation buffer that hasn't yet been replayed, and hence 62 * has not had the inode cores stamped into it. Hence for readahead, the buffer 63 * may be potentially invalid. 64 * 65 * If the readahead buffer is invalid, we need to mark it with an error and 66 * clear the DONE status of the buffer so that a followup read will re-read it 67 * from disk. We don't report the error otherwise to avoid warnings during log 68 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here 69 * because all we want to do is say readahead failed; there is no-one to report 70 * the error to, so this will distinguish it from a non-ra verifier failure. 71 * Changes to this readahead error behavour also need to be reflected in 72 * xfs_dquot_buf_readahead_verify(). 73 */ 74 static void 75 xfs_inode_buf_verify( 76 struct xfs_buf *bp, 77 bool readahead) 78 { 79 struct xfs_mount *mp = bp->b_target->bt_mount; 80 int i; 81 int ni; 82 83 /* 84 * Validate the magic number and version of every inode in the buffer 85 */ 86 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; 87 for (i = 0; i < ni; i++) { 88 int di_ok; 89 xfs_dinode_t *dip; 90 91 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); 92 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 93 XFS_DINODE_GOOD_VERSION(dip->di_version); 94 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 95 XFS_ERRTAG_ITOBP_INOTOBP, 96 XFS_RANDOM_ITOBP_INOTOBP))) { 97 if (readahead) { 98 bp->b_flags &= ~XBF_DONE; 99 xfs_buf_ioerror(bp, -EIO); 100 return; 101 } 102 103 xfs_buf_ioerror(bp, -EFSCORRUPTED); 104 xfs_verifier_error(bp); 105 #ifdef DEBUG 106 xfs_alert(mp, 107 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 108 (unsigned long long)bp->b_bn, i, 109 be16_to_cpu(dip->di_magic)); 110 #endif 111 } 112 } 113 xfs_inobp_check(mp, bp); 114 } 115 116 117 static void 118 xfs_inode_buf_read_verify( 119 struct xfs_buf *bp) 120 { 121 xfs_inode_buf_verify(bp, false); 122 } 123 124 static void 125 xfs_inode_buf_readahead_verify( 126 struct xfs_buf *bp) 127 { 128 xfs_inode_buf_verify(bp, true); 129 } 130 131 static void 132 xfs_inode_buf_write_verify( 133 struct xfs_buf *bp) 134 { 135 xfs_inode_buf_verify(bp, false); 136 } 137 138 const struct xfs_buf_ops xfs_inode_buf_ops = { 139 .name = "xfs_inode", 140 .verify_read = xfs_inode_buf_read_verify, 141 .verify_write = xfs_inode_buf_write_verify, 142 }; 143 144 const struct xfs_buf_ops xfs_inode_buf_ra_ops = { 145 .name = "xxfs_inode_ra", 146 .verify_read = xfs_inode_buf_readahead_verify, 147 .verify_write = xfs_inode_buf_write_verify, 148 }; 149 150 151 /* 152 * This routine is called to map an inode to the buffer containing the on-disk 153 * version of the inode. It returns a pointer to the buffer containing the 154 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a 155 * pointer to the on-disk inode within that buffer. 156 * 157 * If a non-zero error is returned, then the contents of bpp and dipp are 158 * undefined. 159 */ 160 int 161 xfs_imap_to_bp( 162 struct xfs_mount *mp, 163 struct xfs_trans *tp, 164 struct xfs_imap *imap, 165 struct xfs_dinode **dipp, 166 struct xfs_buf **bpp, 167 uint buf_flags, 168 uint iget_flags) 169 { 170 struct xfs_buf *bp; 171 int error; 172 173 buf_flags |= XBF_UNMAPPED; 174 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 175 (int)imap->im_len, buf_flags, &bp, 176 &xfs_inode_buf_ops); 177 if (error) { 178 if (error == -EAGAIN) { 179 ASSERT(buf_flags & XBF_TRYLOCK); 180 return error; 181 } 182 183 if (error == -EFSCORRUPTED && 184 (iget_flags & XFS_IGET_UNTRUSTED)) 185 return -EINVAL; 186 187 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.", 188 __func__, error); 189 return error; 190 } 191 192 *bpp = bp; 193 *dipp = xfs_buf_offset(bp, imap->im_boffset); 194 return 0; 195 } 196 197 void 198 xfs_dinode_from_disk( 199 xfs_icdinode_t *to, 200 xfs_dinode_t *from) 201 { 202 to->di_magic = be16_to_cpu(from->di_magic); 203 to->di_mode = be16_to_cpu(from->di_mode); 204 to->di_version = from ->di_version; 205 to->di_format = from->di_format; 206 to->di_onlink = be16_to_cpu(from->di_onlink); 207 to->di_uid = be32_to_cpu(from->di_uid); 208 to->di_gid = be32_to_cpu(from->di_gid); 209 to->di_nlink = be32_to_cpu(from->di_nlink); 210 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 211 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 212 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 213 to->di_flushiter = be16_to_cpu(from->di_flushiter); 214 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 215 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 216 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 217 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 218 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 219 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 220 to->di_size = be64_to_cpu(from->di_size); 221 to->di_nblocks = be64_to_cpu(from->di_nblocks); 222 to->di_extsize = be32_to_cpu(from->di_extsize); 223 to->di_nextents = be32_to_cpu(from->di_nextents); 224 to->di_anextents = be16_to_cpu(from->di_anextents); 225 to->di_forkoff = from->di_forkoff; 226 to->di_aformat = from->di_aformat; 227 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 228 to->di_dmstate = be16_to_cpu(from->di_dmstate); 229 to->di_flags = be16_to_cpu(from->di_flags); 230 to->di_gen = be32_to_cpu(from->di_gen); 231 232 if (to->di_version == 3) { 233 to->di_changecount = be64_to_cpu(from->di_changecount); 234 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec); 235 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec); 236 to->di_flags2 = be64_to_cpu(from->di_flags2); 237 to->di_ino = be64_to_cpu(from->di_ino); 238 to->di_lsn = be64_to_cpu(from->di_lsn); 239 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 240 uuid_copy(&to->di_uuid, &from->di_uuid); 241 } 242 } 243 244 void 245 xfs_dinode_to_disk( 246 xfs_dinode_t *to, 247 xfs_icdinode_t *from) 248 { 249 to->di_magic = cpu_to_be16(from->di_magic); 250 to->di_mode = cpu_to_be16(from->di_mode); 251 to->di_version = from ->di_version; 252 to->di_format = from->di_format; 253 to->di_onlink = cpu_to_be16(from->di_onlink); 254 to->di_uid = cpu_to_be32(from->di_uid); 255 to->di_gid = cpu_to_be32(from->di_gid); 256 to->di_nlink = cpu_to_be32(from->di_nlink); 257 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 258 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 259 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 260 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 261 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 262 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 263 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 264 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 265 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 266 to->di_size = cpu_to_be64(from->di_size); 267 to->di_nblocks = cpu_to_be64(from->di_nblocks); 268 to->di_extsize = cpu_to_be32(from->di_extsize); 269 to->di_nextents = cpu_to_be32(from->di_nextents); 270 to->di_anextents = cpu_to_be16(from->di_anextents); 271 to->di_forkoff = from->di_forkoff; 272 to->di_aformat = from->di_aformat; 273 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 274 to->di_dmstate = cpu_to_be16(from->di_dmstate); 275 to->di_flags = cpu_to_be16(from->di_flags); 276 to->di_gen = cpu_to_be32(from->di_gen); 277 278 if (from->di_version == 3) { 279 to->di_changecount = cpu_to_be64(from->di_changecount); 280 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 281 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 282 to->di_flags2 = cpu_to_be64(from->di_flags2); 283 to->di_ino = cpu_to_be64(from->di_ino); 284 to->di_lsn = cpu_to_be64(from->di_lsn); 285 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 286 uuid_copy(&to->di_uuid, &from->di_uuid); 287 to->di_flushiter = 0; 288 } else { 289 to->di_flushiter = cpu_to_be16(from->di_flushiter); 290 } 291 } 292 293 static bool 294 xfs_dinode_verify( 295 struct xfs_mount *mp, 296 struct xfs_inode *ip, 297 struct xfs_dinode *dip) 298 { 299 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) 300 return false; 301 302 /* only version 3 or greater inodes are extensively verified here */ 303 if (dip->di_version < 3) 304 return true; 305 306 if (!xfs_sb_version_hascrc(&mp->m_sb)) 307 return false; 308 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, 309 XFS_DINODE_CRC_OFF)) 310 return false; 311 if (be64_to_cpu(dip->di_ino) != ip->i_ino) 312 return false; 313 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid)) 314 return false; 315 return true; 316 } 317 318 void 319 xfs_dinode_calc_crc( 320 struct xfs_mount *mp, 321 struct xfs_dinode *dip) 322 { 323 __uint32_t crc; 324 325 if (dip->di_version < 3) 326 return; 327 328 ASSERT(xfs_sb_version_hascrc(&mp->m_sb)); 329 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize, 330 XFS_DINODE_CRC_OFF); 331 dip->di_crc = xfs_end_cksum(crc); 332 } 333 334 /* 335 * Read the disk inode attributes into the in-core inode structure. 336 * 337 * For version 5 superblocks, if we are initialising a new inode and we are not 338 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new 339 * inode core with a random generation number. If we are keeping inodes around, 340 * we need to read the inode cluster to get the existing generation number off 341 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode 342 * format) then log recovery is dependent on the di_flushiter field being 343 * initialised from the current on-disk value and hence we must also read the 344 * inode off disk. 345 */ 346 int 347 xfs_iread( 348 xfs_mount_t *mp, 349 xfs_trans_t *tp, 350 xfs_inode_t *ip, 351 uint iget_flags) 352 { 353 xfs_buf_t *bp; 354 xfs_dinode_t *dip; 355 int error; 356 357 /* 358 * Fill in the location information in the in-core inode. 359 */ 360 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 361 if (error) 362 return error; 363 364 /* shortcut IO on inode allocation if possible */ 365 if ((iget_flags & XFS_IGET_CREATE) && 366 xfs_sb_version_hascrc(&mp->m_sb) && 367 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 368 /* initialise the on-disk inode core */ 369 memset(&ip->i_d, 0, sizeof(ip->i_d)); 370 ip->i_d.di_magic = XFS_DINODE_MAGIC; 371 ip->i_d.di_gen = prandom_u32(); 372 if (xfs_sb_version_hascrc(&mp->m_sb)) { 373 ip->i_d.di_version = 3; 374 ip->i_d.di_ino = ip->i_ino; 375 uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid); 376 } else 377 ip->i_d.di_version = 2; 378 return 0; 379 } 380 381 /* 382 * Get pointers to the on-disk inode and the buffer containing it. 383 */ 384 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); 385 if (error) 386 return error; 387 388 /* even unallocated inodes are verified */ 389 if (!xfs_dinode_verify(mp, ip, dip)) { 390 xfs_alert(mp, "%s: validation failed for inode %lld failed", 391 __func__, ip->i_ino); 392 393 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip); 394 error = -EFSCORRUPTED; 395 goto out_brelse; 396 } 397 398 /* 399 * If the on-disk inode is already linked to a directory 400 * entry, copy all of the inode into the in-core inode. 401 * xfs_iformat_fork() handles copying in the inode format 402 * specific information. 403 * Otherwise, just get the truly permanent information. 404 */ 405 if (dip->di_mode) { 406 xfs_dinode_from_disk(&ip->i_d, dip); 407 error = xfs_iformat_fork(ip, dip); 408 if (error) { 409 #ifdef DEBUG 410 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 411 __func__, error); 412 #endif /* DEBUG */ 413 goto out_brelse; 414 } 415 } else { 416 /* 417 * Partial initialisation of the in-core inode. Just the bits 418 * that xfs_ialloc won't overwrite or relies on being correct. 419 */ 420 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 421 ip->i_d.di_version = dip->di_version; 422 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 423 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 424 425 if (dip->di_version == 3) { 426 ip->i_d.di_ino = be64_to_cpu(dip->di_ino); 427 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid); 428 } 429 430 /* 431 * Make sure to pull in the mode here as well in 432 * case the inode is released without being used. 433 * This ensures that xfs_inactive() will see that 434 * the inode is already free and not try to mess 435 * with the uninitialized part of it. 436 */ 437 ip->i_d.di_mode = 0; 438 } 439 440 /* 441 * Automatically convert version 1 inode formats in memory to version 2 442 * inode format. If the inode is modified, it will get logged and 443 * rewritten as a version 2 inode. We can do this because we set the 444 * superblock feature bit for v2 inodes unconditionally during mount 445 * and it means the reast of the code can assume the inode version is 2 446 * or higher. 447 */ 448 if (ip->i_d.di_version == 1) { 449 ip->i_d.di_version = 2; 450 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 451 ip->i_d.di_nlink = ip->i_d.di_onlink; 452 ip->i_d.di_onlink = 0; 453 xfs_set_projid(ip, 0); 454 } 455 456 ip->i_delayed_blks = 0; 457 458 /* 459 * Mark the buffer containing the inode as something to keep 460 * around for a while. This helps to keep recently accessed 461 * meta-data in-core longer. 462 */ 463 xfs_buf_set_ref(bp, XFS_INO_REF); 464 465 /* 466 * Use xfs_trans_brelse() to release the buffer containing the on-disk 467 * inode, because it was acquired with xfs_trans_read_buf() in 468 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal 469 * brelse(). If we're within a transaction, then xfs_trans_brelse() 470 * will only release the buffer if it is not dirty within the 471 * transaction. It will be OK to release the buffer in this case, 472 * because inodes on disk are never destroyed and we will be locking the 473 * new in-core inode before putting it in the cache where other 474 * processes can find it. Thus we don't have to worry about the inode 475 * being changed just because we released the buffer. 476 */ 477 out_brelse: 478 xfs_trans_brelse(tp, bp); 479 return error; 480 } 481