xref: /linux/fs/xfs/libxfs/xfs_ialloc_btree.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35 #include "xfs_rmap.h"
36 
37 
38 STATIC int
39 xfs_inobt_get_minrecs(
40 	struct xfs_btree_cur	*cur,
41 	int			level)
42 {
43 	return cur->bc_mp->m_inobt_mnr[level != 0];
44 }
45 
46 STATIC struct xfs_btree_cur *
47 xfs_inobt_dup_cursor(
48 	struct xfs_btree_cur	*cur)
49 {
50 	return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 			cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 			cur->bc_btnum);
53 }
54 
55 STATIC void
56 xfs_inobt_set_root(
57 	struct xfs_btree_cur	*cur,
58 	union xfs_btree_ptr	*nptr,
59 	int			inc)	/* level change */
60 {
61 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
62 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
63 
64 	agi->agi_root = nptr->s;
65 	be32_add_cpu(&agi->agi_level, inc);
66 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67 }
68 
69 STATIC void
70 xfs_finobt_set_root(
71 	struct xfs_btree_cur	*cur,
72 	union xfs_btree_ptr	*nptr,
73 	int			inc)	/* level change */
74 {
75 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
76 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
77 
78 	agi->agi_free_root = nptr->s;
79 	be32_add_cpu(&agi->agi_free_level, inc);
80 	xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82 }
83 
84 STATIC int
85 __xfs_inobt_alloc_block(
86 	struct xfs_btree_cur	*cur,
87 	union xfs_btree_ptr	*start,
88 	union xfs_btree_ptr	*new,
89 	int			*stat,
90 	enum xfs_ag_resv_type	resv)
91 {
92 	xfs_alloc_arg_t		args;		/* block allocation args */
93 	int			error;		/* error return value */
94 	xfs_agblock_t		sbno = be32_to_cpu(start->s);
95 
96 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
97 
98 	memset(&args, 0, sizeof(args));
99 	args.tp = cur->bc_tp;
100 	args.mp = cur->bc_mp;
101 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
102 	args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
103 	args.minlen = 1;
104 	args.maxlen = 1;
105 	args.prod = 1;
106 	args.type = XFS_ALLOCTYPE_NEAR_BNO;
107 	args.resv = resv;
108 
109 	error = xfs_alloc_vextent(&args);
110 	if (error) {
111 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
112 		return error;
113 	}
114 	if (args.fsbno == NULLFSBLOCK) {
115 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
116 		*stat = 0;
117 		return 0;
118 	}
119 	ASSERT(args.len == 1);
120 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
121 
122 	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
123 	*stat = 1;
124 	return 0;
125 }
126 
127 STATIC int
128 xfs_inobt_alloc_block(
129 	struct xfs_btree_cur	*cur,
130 	union xfs_btree_ptr	*start,
131 	union xfs_btree_ptr	*new,
132 	int			*stat)
133 {
134 	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
135 }
136 
137 STATIC int
138 xfs_finobt_alloc_block(
139 	struct xfs_btree_cur	*cur,
140 	union xfs_btree_ptr	*start,
141 	union xfs_btree_ptr	*new,
142 	int			*stat)
143 {
144 	if (cur->bc_mp->m_inotbt_nores)
145 		return xfs_inobt_alloc_block(cur, start, new, stat);
146 	return __xfs_inobt_alloc_block(cur, start, new, stat,
147 			XFS_AG_RESV_METADATA);
148 }
149 
150 STATIC int
151 __xfs_inobt_free_block(
152 	struct xfs_btree_cur	*cur,
153 	struct xfs_buf		*bp,
154 	enum xfs_ag_resv_type	resv)
155 {
156 	struct xfs_owner_info	oinfo;
157 
158 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
159 	return xfs_free_extent(cur->bc_tp,
160 			XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
161 			&oinfo, resv);
162 }
163 
164 STATIC int
165 xfs_inobt_free_block(
166 	struct xfs_btree_cur	*cur,
167 	struct xfs_buf		*bp)
168 {
169 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
170 }
171 
172 STATIC int
173 xfs_finobt_free_block(
174 	struct xfs_btree_cur	*cur,
175 	struct xfs_buf		*bp)
176 {
177 	if (cur->bc_mp->m_inotbt_nores)
178 		return xfs_inobt_free_block(cur, bp);
179 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
180 }
181 
182 STATIC int
183 xfs_inobt_get_maxrecs(
184 	struct xfs_btree_cur	*cur,
185 	int			level)
186 {
187 	return cur->bc_mp->m_inobt_mxr[level != 0];
188 }
189 
190 STATIC void
191 xfs_inobt_init_key_from_rec(
192 	union xfs_btree_key	*key,
193 	union xfs_btree_rec	*rec)
194 {
195 	key->inobt.ir_startino = rec->inobt.ir_startino;
196 }
197 
198 STATIC void
199 xfs_inobt_init_high_key_from_rec(
200 	union xfs_btree_key	*key,
201 	union xfs_btree_rec	*rec)
202 {
203 	__u32			x;
204 
205 	x = be32_to_cpu(rec->inobt.ir_startino);
206 	x += XFS_INODES_PER_CHUNK - 1;
207 	key->inobt.ir_startino = cpu_to_be32(x);
208 }
209 
210 STATIC void
211 xfs_inobt_init_rec_from_cur(
212 	struct xfs_btree_cur	*cur,
213 	union xfs_btree_rec	*rec)
214 {
215 	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
216 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
217 		rec->inobt.ir_u.sp.ir_holemask =
218 					cpu_to_be16(cur->bc_rec.i.ir_holemask);
219 		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
220 		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
221 	} else {
222 		/* ir_holemask/ir_count not supported on-disk */
223 		rec->inobt.ir_u.f.ir_freecount =
224 					cpu_to_be32(cur->bc_rec.i.ir_freecount);
225 	}
226 	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
227 }
228 
229 /*
230  * initial value of ptr for lookup
231  */
232 STATIC void
233 xfs_inobt_init_ptr_from_cur(
234 	struct xfs_btree_cur	*cur,
235 	union xfs_btree_ptr	*ptr)
236 {
237 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
238 
239 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
240 
241 	ptr->s = agi->agi_root;
242 }
243 
244 STATIC void
245 xfs_finobt_init_ptr_from_cur(
246 	struct xfs_btree_cur	*cur,
247 	union xfs_btree_ptr	*ptr)
248 {
249 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
250 
251 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
252 	ptr->s = agi->agi_free_root;
253 }
254 
255 STATIC int64_t
256 xfs_inobt_key_diff(
257 	struct xfs_btree_cur	*cur,
258 	union xfs_btree_key	*key)
259 {
260 	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
261 			  cur->bc_rec.i.ir_startino;
262 }
263 
264 STATIC int64_t
265 xfs_inobt_diff_two_keys(
266 	struct xfs_btree_cur	*cur,
267 	union xfs_btree_key	*k1,
268 	union xfs_btree_key	*k2)
269 {
270 	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
271 			  be32_to_cpu(k2->inobt.ir_startino);
272 }
273 
274 static xfs_failaddr_t
275 xfs_inobt_verify(
276 	struct xfs_buf		*bp)
277 {
278 	struct xfs_mount	*mp = bp->b_target->bt_mount;
279 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
280 	xfs_failaddr_t		fa;
281 	unsigned int		level;
282 
283 	/*
284 	 * During growfs operations, we can't verify the exact owner as the
285 	 * perag is not fully initialised and hence not attached to the buffer.
286 	 *
287 	 * Similarly, during log recovery we will have a perag structure
288 	 * attached, but the agi information will not yet have been initialised
289 	 * from the on disk AGI. We don't currently use any of this information,
290 	 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
291 	 * ever do.
292 	 */
293 	switch (block->bb_magic) {
294 	case cpu_to_be32(XFS_IBT_CRC_MAGIC):
295 	case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
296 		fa = xfs_btree_sblock_v5hdr_verify(bp);
297 		if (fa)
298 			return fa;
299 		/* fall through */
300 	case cpu_to_be32(XFS_IBT_MAGIC):
301 	case cpu_to_be32(XFS_FIBT_MAGIC):
302 		break;
303 	default:
304 		return NULL;
305 	}
306 
307 	/* level verification */
308 	level = be16_to_cpu(block->bb_level);
309 	if (level >= mp->m_in_maxlevels)
310 		return __this_address;
311 
312 	return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
313 }
314 
315 static void
316 xfs_inobt_read_verify(
317 	struct xfs_buf	*bp)
318 {
319 	xfs_failaddr_t	fa;
320 
321 	if (!xfs_btree_sblock_verify_crc(bp))
322 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
323 	else {
324 		fa = xfs_inobt_verify(bp);
325 		if (fa)
326 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
327 	}
328 
329 	if (bp->b_error)
330 		trace_xfs_btree_corrupt(bp, _RET_IP_);
331 }
332 
333 static void
334 xfs_inobt_write_verify(
335 	struct xfs_buf	*bp)
336 {
337 	xfs_failaddr_t	fa;
338 
339 	fa = xfs_inobt_verify(bp);
340 	if (fa) {
341 		trace_xfs_btree_corrupt(bp, _RET_IP_);
342 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
343 		return;
344 	}
345 	xfs_btree_sblock_calc_crc(bp);
346 
347 }
348 
349 const struct xfs_buf_ops xfs_inobt_buf_ops = {
350 	.name = "xfs_inobt",
351 	.verify_read = xfs_inobt_read_verify,
352 	.verify_write = xfs_inobt_write_verify,
353 	.verify_struct = xfs_inobt_verify,
354 };
355 
356 STATIC int
357 xfs_inobt_keys_inorder(
358 	struct xfs_btree_cur	*cur,
359 	union xfs_btree_key	*k1,
360 	union xfs_btree_key	*k2)
361 {
362 	return be32_to_cpu(k1->inobt.ir_startino) <
363 		be32_to_cpu(k2->inobt.ir_startino);
364 }
365 
366 STATIC int
367 xfs_inobt_recs_inorder(
368 	struct xfs_btree_cur	*cur,
369 	union xfs_btree_rec	*r1,
370 	union xfs_btree_rec	*r2)
371 {
372 	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
373 		be32_to_cpu(r2->inobt.ir_startino);
374 }
375 
376 static const struct xfs_btree_ops xfs_inobt_ops = {
377 	.rec_len		= sizeof(xfs_inobt_rec_t),
378 	.key_len		= sizeof(xfs_inobt_key_t),
379 
380 	.dup_cursor		= xfs_inobt_dup_cursor,
381 	.set_root		= xfs_inobt_set_root,
382 	.alloc_block		= xfs_inobt_alloc_block,
383 	.free_block		= xfs_inobt_free_block,
384 	.get_minrecs		= xfs_inobt_get_minrecs,
385 	.get_maxrecs		= xfs_inobt_get_maxrecs,
386 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
387 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
388 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
389 	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
390 	.key_diff		= xfs_inobt_key_diff,
391 	.buf_ops		= &xfs_inobt_buf_ops,
392 	.diff_two_keys		= xfs_inobt_diff_two_keys,
393 	.keys_inorder		= xfs_inobt_keys_inorder,
394 	.recs_inorder		= xfs_inobt_recs_inorder,
395 };
396 
397 static const struct xfs_btree_ops xfs_finobt_ops = {
398 	.rec_len		= sizeof(xfs_inobt_rec_t),
399 	.key_len		= sizeof(xfs_inobt_key_t),
400 
401 	.dup_cursor		= xfs_inobt_dup_cursor,
402 	.set_root		= xfs_finobt_set_root,
403 	.alloc_block		= xfs_finobt_alloc_block,
404 	.free_block		= xfs_finobt_free_block,
405 	.get_minrecs		= xfs_inobt_get_minrecs,
406 	.get_maxrecs		= xfs_inobt_get_maxrecs,
407 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
408 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
409 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
410 	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
411 	.key_diff		= xfs_inobt_key_diff,
412 	.buf_ops		= &xfs_inobt_buf_ops,
413 	.diff_two_keys		= xfs_inobt_diff_two_keys,
414 	.keys_inorder		= xfs_inobt_keys_inorder,
415 	.recs_inorder		= xfs_inobt_recs_inorder,
416 };
417 
418 /*
419  * Allocate a new inode btree cursor.
420  */
421 struct xfs_btree_cur *				/* new inode btree cursor */
422 xfs_inobt_init_cursor(
423 	struct xfs_mount	*mp,		/* file system mount point */
424 	struct xfs_trans	*tp,		/* transaction pointer */
425 	struct xfs_buf		*agbp,		/* buffer for agi structure */
426 	xfs_agnumber_t		agno,		/* allocation group number */
427 	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
428 {
429 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
430 	struct xfs_btree_cur	*cur;
431 
432 	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
433 
434 	cur->bc_tp = tp;
435 	cur->bc_mp = mp;
436 	cur->bc_btnum = btnum;
437 	if (btnum == XFS_BTNUM_INO) {
438 		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
439 		cur->bc_ops = &xfs_inobt_ops;
440 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
441 	} else {
442 		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
443 		cur->bc_ops = &xfs_finobt_ops;
444 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
445 	}
446 
447 	cur->bc_blocklog = mp->m_sb.sb_blocklog;
448 
449 	if (xfs_sb_version_hascrc(&mp->m_sb))
450 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
451 
452 	cur->bc_private.a.agbp = agbp;
453 	cur->bc_private.a.agno = agno;
454 
455 	return cur;
456 }
457 
458 /*
459  * Calculate number of records in an inobt btree block.
460  */
461 int
462 xfs_inobt_maxrecs(
463 	struct xfs_mount	*mp,
464 	int			blocklen,
465 	int			leaf)
466 {
467 	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
468 
469 	if (leaf)
470 		return blocklen / sizeof(xfs_inobt_rec_t);
471 	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
472 }
473 
474 /*
475  * Convert the inode record holemask to an inode allocation bitmap. The inode
476  * allocation bitmap is inode granularity and specifies whether an inode is
477  * physically allocated on disk (not whether the inode is considered allocated
478  * or free by the fs).
479  *
480  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
481  */
482 uint64_t
483 xfs_inobt_irec_to_allocmask(
484 	struct xfs_inobt_rec_incore	*rec)
485 {
486 	uint64_t			bitmap = 0;
487 	uint64_t			inodespbit;
488 	int				nextbit;
489 	uint				allocbitmap;
490 
491 	/*
492 	 * The holemask has 16-bits for a 64 inode record. Therefore each
493 	 * holemask bit represents multiple inodes. Create a mask of bits to set
494 	 * in the allocmask for each holemask bit.
495 	 */
496 	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
497 
498 	/*
499 	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
500 	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
501 	 * anything beyond the 16 holemask bits since this casts to a larger
502 	 * type.
503 	 */
504 	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
505 
506 	/*
507 	 * allocbitmap is the inverted holemask so every set bit represents
508 	 * allocated inodes. To expand from 16-bit holemask granularity to
509 	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
510 	 * bitmap for every holemask bit.
511 	 */
512 	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
513 	while (nextbit != -1) {
514 		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
515 
516 		bitmap |= (inodespbit <<
517 			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
518 
519 		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
520 	}
521 
522 	return bitmap;
523 }
524 
525 #if defined(DEBUG) || defined(XFS_WARN)
526 /*
527  * Verify that an in-core inode record has a valid inode count.
528  */
529 int
530 xfs_inobt_rec_check_count(
531 	struct xfs_mount		*mp,
532 	struct xfs_inobt_rec_incore	*rec)
533 {
534 	int				inocount = 0;
535 	int				nextbit = 0;
536 	uint64_t			allocbmap;
537 	int				wordsz;
538 
539 	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
540 	allocbmap = xfs_inobt_irec_to_allocmask(rec);
541 
542 	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
543 	while (nextbit != -1) {
544 		inocount++;
545 		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
546 				       nextbit + 1);
547 	}
548 
549 	if (inocount != rec->ir_count)
550 		return -EFSCORRUPTED;
551 
552 	return 0;
553 }
554 #endif	/* DEBUG */
555 
556 static xfs_extlen_t
557 xfs_inobt_max_size(
558 	struct xfs_mount	*mp)
559 {
560 	/* Bail out if we're uninitialized, which can happen in mkfs. */
561 	if (mp->m_inobt_mxr[0] == 0)
562 		return 0;
563 
564 	return xfs_btree_calc_size(mp, mp->m_inobt_mnr,
565 		(uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
566 				XFS_INODES_PER_CHUNK);
567 }
568 
569 static int
570 xfs_inobt_count_blocks(
571 	struct xfs_mount	*mp,
572 	xfs_agnumber_t		agno,
573 	xfs_btnum_t		btnum,
574 	xfs_extlen_t		*tree_blocks)
575 {
576 	struct xfs_buf		*agbp;
577 	struct xfs_btree_cur	*cur;
578 	int			error;
579 
580 	error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
581 	if (error)
582 		return error;
583 
584 	cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
585 	error = xfs_btree_count_blocks(cur, tree_blocks);
586 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
587 	xfs_buf_relse(agbp);
588 
589 	return error;
590 }
591 
592 /*
593  * Figure out how many blocks to reserve and how many are used by this btree.
594  */
595 int
596 xfs_finobt_calc_reserves(
597 	struct xfs_mount	*mp,
598 	xfs_agnumber_t		agno,
599 	xfs_extlen_t		*ask,
600 	xfs_extlen_t		*used)
601 {
602 	xfs_extlen_t		tree_len = 0;
603 	int			error;
604 
605 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
606 		return 0;
607 
608 	error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
609 	if (error)
610 		return error;
611 
612 	*ask += xfs_inobt_max_size(mp);
613 	*used += tree_len;
614 	return 0;
615 }
616