xref: /linux/fs/xfs/libxfs/xfs_ialloc_btree.c (revision 6cc45f8c1f898570916044f606be9890d295e129)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_health.h"
21 #include "xfs_trace.h"
22 #include "xfs_trans.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25 
26 static struct kmem_cache	*xfs_inobt_cur_cache;
27 
28 STATIC int
29 xfs_inobt_get_minrecs(
30 	struct xfs_btree_cur	*cur,
31 	int			level)
32 {
33 	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
34 }
35 
36 STATIC struct xfs_btree_cur *
37 xfs_inobt_dup_cursor(
38 	struct xfs_btree_cur	*cur)
39 {
40 	return xfs_inobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
41 			cur->bc_ag.agbp);
42 }
43 
44 STATIC struct xfs_btree_cur *
45 xfs_finobt_dup_cursor(
46 	struct xfs_btree_cur	*cur)
47 {
48 	return xfs_finobt_init_cursor(to_perag(cur->bc_group), cur->bc_tp,
49 			cur->bc_ag.agbp);
50 }
51 
52 STATIC void
53 xfs_inobt_set_root(
54 	struct xfs_btree_cur		*cur,
55 	const union xfs_btree_ptr	*nptr,
56 	int				inc)	/* level change */
57 {
58 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
59 	struct xfs_agi		*agi = agbp->b_addr;
60 
61 	agi->agi_root = nptr->s;
62 	be32_add_cpu(&agi->agi_level, inc);
63 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
64 }
65 
66 STATIC void
67 xfs_finobt_set_root(
68 	struct xfs_btree_cur		*cur,
69 	const union xfs_btree_ptr	*nptr,
70 	int				inc)	/* level change */
71 {
72 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
73 	struct xfs_agi		*agi = agbp->b_addr;
74 
75 	agi->agi_free_root = nptr->s;
76 	be32_add_cpu(&agi->agi_free_level, inc);
77 	xfs_ialloc_log_agi(cur->bc_tp, agbp,
78 			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
79 }
80 
81 /* Update the inode btree block counter for this btree. */
82 static inline void
83 xfs_inobt_mod_blockcount(
84 	struct xfs_btree_cur	*cur,
85 	int			howmuch)
86 {
87 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
88 	struct xfs_agi		*agi = agbp->b_addr;
89 
90 	if (!xfs_has_inobtcounts(cur->bc_mp))
91 		return;
92 
93 	if (xfs_btree_is_fino(cur->bc_ops))
94 		be32_add_cpu(&agi->agi_fblocks, howmuch);
95 	else
96 		be32_add_cpu(&agi->agi_iblocks, howmuch);
97 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
98 }
99 
100 STATIC int
101 __xfs_inobt_alloc_block(
102 	struct xfs_btree_cur		*cur,
103 	const union xfs_btree_ptr	*start,
104 	union xfs_btree_ptr		*new,
105 	int				*stat,
106 	enum xfs_ag_resv_type		resv)
107 {
108 	xfs_alloc_arg_t		args;		/* block allocation args */
109 	int			error;		/* error return value */
110 	xfs_agblock_t		sbno = be32_to_cpu(start->s);
111 
112 	memset(&args, 0, sizeof(args));
113 	args.tp = cur->bc_tp;
114 	args.mp = cur->bc_mp;
115 	args.pag = to_perag(cur->bc_group);
116 	args.oinfo = XFS_RMAP_OINFO_INOBT;
117 	args.minlen = 1;
118 	args.maxlen = 1;
119 	args.prod = 1;
120 	args.resv = resv;
121 
122 	error = xfs_alloc_vextent_near_bno(&args,
123 			xfs_agbno_to_fsb(args.pag, sbno));
124 	if (error)
125 		return error;
126 
127 	if (args.fsbno == NULLFSBLOCK) {
128 		*stat = 0;
129 		return 0;
130 	}
131 	ASSERT(args.len == 1);
132 
133 	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134 	*stat = 1;
135 	xfs_inobt_mod_blockcount(cur, 1);
136 	return 0;
137 }
138 
139 STATIC int
140 xfs_inobt_alloc_block(
141 	struct xfs_btree_cur		*cur,
142 	const union xfs_btree_ptr	*start,
143 	union xfs_btree_ptr		*new,
144 	int				*stat)
145 {
146 	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147 }
148 
149 STATIC int
150 xfs_finobt_alloc_block(
151 	struct xfs_btree_cur		*cur,
152 	const union xfs_btree_ptr	*start,
153 	union xfs_btree_ptr		*new,
154 	int				*stat)
155 {
156 	if (cur->bc_mp->m_finobt_nores)
157 		return xfs_inobt_alloc_block(cur, start, new, stat);
158 	return __xfs_inobt_alloc_block(cur, start, new, stat,
159 			XFS_AG_RESV_METADATA);
160 }
161 
162 STATIC int
163 __xfs_inobt_free_block(
164 	struct xfs_btree_cur	*cur,
165 	struct xfs_buf		*bp,
166 	enum xfs_ag_resv_type	resv)
167 {
168 	xfs_fsblock_t		fsbno;
169 
170 	xfs_inobt_mod_blockcount(cur, -1);
171 	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172 	return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173 			&XFS_RMAP_OINFO_INOBT, resv, 0);
174 }
175 
176 STATIC int
177 xfs_inobt_free_block(
178 	struct xfs_btree_cur	*cur,
179 	struct xfs_buf		*bp)
180 {
181 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182 }
183 
184 STATIC int
185 xfs_finobt_free_block(
186 	struct xfs_btree_cur	*cur,
187 	struct xfs_buf		*bp)
188 {
189 	if (cur->bc_mp->m_finobt_nores)
190 		return xfs_inobt_free_block(cur, bp);
191 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192 }
193 
194 STATIC int
195 xfs_inobt_get_maxrecs(
196 	struct xfs_btree_cur	*cur,
197 	int			level)
198 {
199 	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200 }
201 
202 STATIC void
203 xfs_inobt_init_key_from_rec(
204 	union xfs_btree_key		*key,
205 	const union xfs_btree_rec	*rec)
206 {
207 	key->inobt.ir_startino = rec->inobt.ir_startino;
208 }
209 
210 STATIC void
211 xfs_inobt_init_high_key_from_rec(
212 	union xfs_btree_key		*key,
213 	const union xfs_btree_rec	*rec)
214 {
215 	__u32				x;
216 
217 	x = be32_to_cpu(rec->inobt.ir_startino);
218 	x += XFS_INODES_PER_CHUNK - 1;
219 	key->inobt.ir_startino = cpu_to_be32(x);
220 }
221 
222 STATIC void
223 xfs_inobt_init_rec_from_cur(
224 	struct xfs_btree_cur	*cur,
225 	union xfs_btree_rec	*rec)
226 {
227 	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228 	if (xfs_has_sparseinodes(cur->bc_mp)) {
229 		rec->inobt.ir_u.sp.ir_holemask =
230 					cpu_to_be16(cur->bc_rec.i.ir_holemask);
231 		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232 		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233 	} else {
234 		/* ir_holemask/ir_count not supported on-disk */
235 		rec->inobt.ir_u.f.ir_freecount =
236 					cpu_to_be32(cur->bc_rec.i.ir_freecount);
237 	}
238 	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239 }
240 
241 /*
242  * initial value of ptr for lookup
243  */
244 STATIC void
245 xfs_inobt_init_ptr_from_cur(
246 	struct xfs_btree_cur	*cur,
247 	union xfs_btree_ptr	*ptr)
248 {
249 	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
250 
251 	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
252 
253 	ptr->s = agi->agi_root;
254 }
255 
256 STATIC void
257 xfs_finobt_init_ptr_from_cur(
258 	struct xfs_btree_cur	*cur,
259 	union xfs_btree_ptr	*ptr)
260 {
261 	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
262 
263 	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agi->agi_seqno));
264 
265 	ptr->s = agi->agi_free_root;
266 }
267 
268 STATIC int64_t
269 xfs_inobt_key_diff(
270 	struct xfs_btree_cur		*cur,
271 	const union xfs_btree_key	*key)
272 {
273 	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
274 			  cur->bc_rec.i.ir_startino;
275 }
276 
277 STATIC int64_t
278 xfs_inobt_diff_two_keys(
279 	struct xfs_btree_cur		*cur,
280 	const union xfs_btree_key	*k1,
281 	const union xfs_btree_key	*k2,
282 	const union xfs_btree_key	*mask)
283 {
284 	ASSERT(!mask || mask->inobt.ir_startino);
285 
286 	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
287 			be32_to_cpu(k2->inobt.ir_startino);
288 }
289 
290 static xfs_failaddr_t
291 xfs_inobt_verify(
292 	struct xfs_buf		*bp)
293 {
294 	struct xfs_mount	*mp = bp->b_mount;
295 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
296 	xfs_failaddr_t		fa;
297 	unsigned int		level;
298 
299 	if (!xfs_verify_magic(bp, block->bb_magic))
300 		return __this_address;
301 
302 	/*
303 	 * During growfs operations, we can't verify the exact owner as the
304 	 * perag is not fully initialised and hence not attached to the buffer.
305 	 *
306 	 * Similarly, during log recovery we will have a perag structure
307 	 * attached, but the agi information will not yet have been initialised
308 	 * from the on disk AGI. We don't currently use any of this information,
309 	 * but beware of the landmine (i.e. need to check
310 	 * xfs_perag_initialised_agi(pag)) if we ever do.
311 	 */
312 	if (xfs_has_crc(mp)) {
313 		fa = xfs_btree_agblock_v5hdr_verify(bp);
314 		if (fa)
315 			return fa;
316 	}
317 
318 	/* level verification */
319 	level = be16_to_cpu(block->bb_level);
320 	if (level >= M_IGEO(mp)->inobt_maxlevels)
321 		return __this_address;
322 
323 	return xfs_btree_agblock_verify(bp,
324 			M_IGEO(mp)->inobt_mxr[level != 0]);
325 }
326 
327 static void
328 xfs_inobt_read_verify(
329 	struct xfs_buf	*bp)
330 {
331 	xfs_failaddr_t	fa;
332 
333 	if (!xfs_btree_agblock_verify_crc(bp))
334 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 	else {
336 		fa = xfs_inobt_verify(bp);
337 		if (fa)
338 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339 	}
340 
341 	if (bp->b_error)
342 		trace_xfs_btree_corrupt(bp, _RET_IP_);
343 }
344 
345 static void
346 xfs_inobt_write_verify(
347 	struct xfs_buf	*bp)
348 {
349 	xfs_failaddr_t	fa;
350 
351 	fa = xfs_inobt_verify(bp);
352 	if (fa) {
353 		trace_xfs_btree_corrupt(bp, _RET_IP_);
354 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 		return;
356 	}
357 	xfs_btree_agblock_calc_crc(bp);
358 
359 }
360 
361 const struct xfs_buf_ops xfs_inobt_buf_ops = {
362 	.name = "xfs_inobt",
363 	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
364 	.verify_read = xfs_inobt_read_verify,
365 	.verify_write = xfs_inobt_write_verify,
366 	.verify_struct = xfs_inobt_verify,
367 };
368 
369 const struct xfs_buf_ops xfs_finobt_buf_ops = {
370 	.name = "xfs_finobt",
371 	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
372 		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
373 	.verify_read = xfs_inobt_read_verify,
374 	.verify_write = xfs_inobt_write_verify,
375 	.verify_struct = xfs_inobt_verify,
376 };
377 
378 STATIC int
379 xfs_inobt_keys_inorder(
380 	struct xfs_btree_cur		*cur,
381 	const union xfs_btree_key	*k1,
382 	const union xfs_btree_key	*k2)
383 {
384 	return be32_to_cpu(k1->inobt.ir_startino) <
385 		be32_to_cpu(k2->inobt.ir_startino);
386 }
387 
388 STATIC int
389 xfs_inobt_recs_inorder(
390 	struct xfs_btree_cur		*cur,
391 	const union xfs_btree_rec	*r1,
392 	const union xfs_btree_rec	*r2)
393 {
394 	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
395 		be32_to_cpu(r2->inobt.ir_startino);
396 }
397 
398 STATIC enum xbtree_key_contig
399 xfs_inobt_keys_contiguous(
400 	struct xfs_btree_cur		*cur,
401 	const union xfs_btree_key	*key1,
402 	const union xfs_btree_key	*key2,
403 	const union xfs_btree_key	*mask)
404 {
405 	ASSERT(!mask || mask->inobt.ir_startino);
406 
407 	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
408 				 be32_to_cpu(key2->inobt.ir_startino));
409 }
410 
411 const struct xfs_btree_ops xfs_inobt_ops = {
412 	.name			= "ino",
413 	.type			= XFS_BTREE_TYPE_AG,
414 
415 	.rec_len		= sizeof(xfs_inobt_rec_t),
416 	.key_len		= sizeof(xfs_inobt_key_t),
417 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
418 
419 	.lru_refs		= XFS_INO_BTREE_REF,
420 	.statoff		= XFS_STATS_CALC_INDEX(xs_ibt_2),
421 	.sick_mask		= XFS_SICK_AG_INOBT,
422 
423 	.dup_cursor		= xfs_inobt_dup_cursor,
424 	.set_root		= xfs_inobt_set_root,
425 	.alloc_block		= xfs_inobt_alloc_block,
426 	.free_block		= xfs_inobt_free_block,
427 	.get_minrecs		= xfs_inobt_get_minrecs,
428 	.get_maxrecs		= xfs_inobt_get_maxrecs,
429 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
430 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
431 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
432 	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
433 	.key_diff		= xfs_inobt_key_diff,
434 	.buf_ops		= &xfs_inobt_buf_ops,
435 	.diff_two_keys		= xfs_inobt_diff_two_keys,
436 	.keys_inorder		= xfs_inobt_keys_inorder,
437 	.recs_inorder		= xfs_inobt_recs_inorder,
438 	.keys_contiguous	= xfs_inobt_keys_contiguous,
439 };
440 
441 const struct xfs_btree_ops xfs_finobt_ops = {
442 	.name			= "fino",
443 	.type			= XFS_BTREE_TYPE_AG,
444 
445 	.rec_len		= sizeof(xfs_inobt_rec_t),
446 	.key_len		= sizeof(xfs_inobt_key_t),
447 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
448 
449 	.lru_refs		= XFS_INO_BTREE_REF,
450 	.statoff		= XFS_STATS_CALC_INDEX(xs_fibt_2),
451 	.sick_mask		= XFS_SICK_AG_FINOBT,
452 
453 	.dup_cursor		= xfs_finobt_dup_cursor,
454 	.set_root		= xfs_finobt_set_root,
455 	.alloc_block		= xfs_finobt_alloc_block,
456 	.free_block		= xfs_finobt_free_block,
457 	.get_minrecs		= xfs_inobt_get_minrecs,
458 	.get_maxrecs		= xfs_inobt_get_maxrecs,
459 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
460 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
461 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
462 	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
463 	.key_diff		= xfs_inobt_key_diff,
464 	.buf_ops		= &xfs_finobt_buf_ops,
465 	.diff_two_keys		= xfs_inobt_diff_two_keys,
466 	.keys_inorder		= xfs_inobt_keys_inorder,
467 	.recs_inorder		= xfs_inobt_recs_inorder,
468 	.keys_contiguous	= xfs_inobt_keys_contiguous,
469 };
470 
471 /*
472  * Create an inode btree cursor.
473  *
474  * For staging cursors tp and agbp are NULL.
475  */
476 struct xfs_btree_cur *
477 xfs_inobt_init_cursor(
478 	struct xfs_perag	*pag,
479 	struct xfs_trans	*tp,
480 	struct xfs_buf		*agbp)
481 {
482 	struct xfs_mount	*mp = pag_mount(pag);
483 	struct xfs_btree_cur	*cur;
484 
485 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
486 			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
487 	cur->bc_group = xfs_group_hold(pag_group(pag));
488 	cur->bc_ag.agbp = agbp;
489 	if (agbp) {
490 		struct xfs_agi		*agi = agbp->b_addr;
491 
492 		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
493 	}
494 	return cur;
495 }
496 
497 /*
498  * Create a free inode btree cursor.
499  *
500  * For staging cursors tp and agbp are NULL.
501  */
502 struct xfs_btree_cur *
503 xfs_finobt_init_cursor(
504 	struct xfs_perag	*pag,
505 	struct xfs_trans	*tp,
506 	struct xfs_buf		*agbp)
507 {
508 	struct xfs_mount	*mp = pag_mount(pag);
509 	struct xfs_btree_cur	*cur;
510 
511 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
512 			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
513 	cur->bc_group = xfs_group_hold(pag_group(pag));
514 	cur->bc_ag.agbp = agbp;
515 	if (agbp) {
516 		struct xfs_agi		*agi = agbp->b_addr;
517 
518 		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
519 	}
520 	return cur;
521 }
522 
523 /*
524  * Install a new inobt btree root.  Caller is responsible for invalidating
525  * and freeing the old btree blocks.
526  */
527 void
528 xfs_inobt_commit_staged_btree(
529 	struct xfs_btree_cur	*cur,
530 	struct xfs_trans	*tp,
531 	struct xfs_buf		*agbp)
532 {
533 	struct xfs_agi		*agi = agbp->b_addr;
534 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
535 	int			fields;
536 
537 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
538 
539 	if (xfs_btree_is_ino(cur->bc_ops)) {
540 		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
541 		agi->agi_root = cpu_to_be32(afake->af_root);
542 		agi->agi_level = cpu_to_be32(afake->af_levels);
543 		if (xfs_has_inobtcounts(cur->bc_mp)) {
544 			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
545 			fields |= XFS_AGI_IBLOCKS;
546 		}
547 		xfs_ialloc_log_agi(tp, agbp, fields);
548 		xfs_btree_commit_afakeroot(cur, tp, agbp);
549 	} else {
550 		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
551 		agi->agi_free_root = cpu_to_be32(afake->af_root);
552 		agi->agi_free_level = cpu_to_be32(afake->af_levels);
553 		if (xfs_has_inobtcounts(cur->bc_mp)) {
554 			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
555 			fields |= XFS_AGI_IBLOCKS;
556 		}
557 		xfs_ialloc_log_agi(tp, agbp, fields);
558 		xfs_btree_commit_afakeroot(cur, tp, agbp);
559 	}
560 }
561 
562 /* Calculate number of records in an inode btree block. */
563 static inline unsigned int
564 xfs_inobt_block_maxrecs(
565 	unsigned int		blocklen,
566 	bool			leaf)
567 {
568 	if (leaf)
569 		return blocklen / sizeof(xfs_inobt_rec_t);
570 	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
571 }
572 
573 /*
574  * Calculate number of records in an inobt btree block.
575  */
576 unsigned int
577 xfs_inobt_maxrecs(
578 	struct xfs_mount	*mp,
579 	unsigned int		blocklen,
580 	bool			leaf)
581 {
582 	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
583 	return xfs_inobt_block_maxrecs(blocklen, leaf);
584 }
585 
586 /*
587  * Maximum number of inode btree records per AG.  Pretend that we can fill an
588  * entire AG completely full of inodes except for the AG headers.
589  */
590 #define XFS_MAX_INODE_RECORDS \
591 	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
592 			XFS_INODES_PER_CHUNK
593 
594 /* Compute the max possible height for the inode btree. */
595 static inline unsigned int
596 xfs_inobt_maxlevels_ondisk(void)
597 {
598 	unsigned int		minrecs[2];
599 	unsigned int		blocklen;
600 
601 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
602 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
603 
604 	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606 
607 	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608 }
609 
610 /* Compute the max possible height for the free inode btree. */
611 static inline unsigned int
612 xfs_finobt_maxlevels_ondisk(void)
613 {
614 	unsigned int		minrecs[2];
615 	unsigned int		blocklen;
616 
617 	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
618 
619 	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
620 	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
621 
622 	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
623 }
624 
625 /* Compute the max possible height for either inode btree. */
626 unsigned int
627 xfs_iallocbt_maxlevels_ondisk(void)
628 {
629 	return max(xfs_inobt_maxlevels_ondisk(),
630 		   xfs_finobt_maxlevels_ondisk());
631 }
632 
633 /*
634  * Convert the inode record holemask to an inode allocation bitmap. The inode
635  * allocation bitmap is inode granularity and specifies whether an inode is
636  * physically allocated on disk (not whether the inode is considered allocated
637  * or free by the fs).
638  *
639  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
640  */
641 uint64_t
642 xfs_inobt_irec_to_allocmask(
643 	const struct xfs_inobt_rec_incore	*rec)
644 {
645 	uint64_t			bitmap = 0;
646 	uint64_t			inodespbit;
647 	int				nextbit;
648 	uint				allocbitmap;
649 
650 	/*
651 	 * The holemask has 16-bits for a 64 inode record. Therefore each
652 	 * holemask bit represents multiple inodes. Create a mask of bits to set
653 	 * in the allocmask for each holemask bit.
654 	 */
655 	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
656 
657 	/*
658 	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
659 	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
660 	 * anything beyond the 16 holemask bits since this casts to a larger
661 	 * type.
662 	 */
663 	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
664 
665 	/*
666 	 * allocbitmap is the inverted holemask so every set bit represents
667 	 * allocated inodes. To expand from 16-bit holemask granularity to
668 	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
669 	 * bitmap for every holemask bit.
670 	 */
671 	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
672 	while (nextbit != -1) {
673 		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
674 
675 		bitmap |= (inodespbit <<
676 			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
677 
678 		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
679 	}
680 
681 	return bitmap;
682 }
683 
684 #if defined(DEBUG) || defined(XFS_WARN)
685 /*
686  * Verify that an in-core inode record has a valid inode count.
687  */
688 int
689 xfs_inobt_rec_check_count(
690 	struct xfs_mount		*mp,
691 	struct xfs_inobt_rec_incore	*rec)
692 {
693 	int				inocount = 0;
694 	int				nextbit = 0;
695 	uint64_t			allocbmap;
696 	int				wordsz;
697 
698 	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
699 	allocbmap = xfs_inobt_irec_to_allocmask(rec);
700 
701 	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
702 	while (nextbit != -1) {
703 		inocount++;
704 		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
705 				       nextbit + 1);
706 	}
707 
708 	if (inocount != rec->ir_count)
709 		return -EFSCORRUPTED;
710 
711 	return 0;
712 }
713 #endif	/* DEBUG */
714 
715 static xfs_extlen_t
716 xfs_inobt_max_size(
717 	struct xfs_perag	*pag)
718 {
719 	struct xfs_mount	*mp = pag_mount(pag);
720 	xfs_agblock_t		agblocks = pag_group(pag)->xg_block_count;
721 
722 	/* Bail out if we're uninitialized, which can happen in mkfs. */
723 	if (M_IGEO(mp)->inobt_mxr[0] == 0)
724 		return 0;
725 
726 	/*
727 	 * The log is permanently allocated, so the space it occupies will
728 	 * never be available for the kinds of things that would require btree
729 	 * expansion.  We therefore can pretend the space isn't there.
730 	 */
731 	if (xfs_ag_contains_log(mp, pag_agno(pag)))
732 		agblocks -= mp->m_sb.sb_logblocks;
733 
734 	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
735 				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
736 					XFS_INODES_PER_CHUNK);
737 }
738 
739 static int
740 xfs_finobt_count_blocks(
741 	struct xfs_perag	*pag,
742 	struct xfs_trans	*tp,
743 	xfs_extlen_t		*tree_blocks)
744 {
745 	struct xfs_buf		*agbp = NULL;
746 	struct xfs_btree_cur	*cur;
747 	xfs_filblks_t		blocks;
748 	int			error;
749 
750 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
751 	if (error)
752 		return error;
753 
754 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
755 	error = xfs_btree_count_blocks(cur, &blocks);
756 	xfs_btree_del_cursor(cur, error);
757 	xfs_trans_brelse(tp, agbp);
758 	*tree_blocks = blocks;
759 
760 	return error;
761 }
762 
763 /* Read finobt block count from AGI header. */
764 static int
765 xfs_finobt_read_blocks(
766 	struct xfs_perag	*pag,
767 	struct xfs_trans	*tp,
768 	xfs_extlen_t		*tree_blocks)
769 {
770 	struct xfs_buf		*agbp;
771 	struct xfs_agi		*agi;
772 	int			error;
773 
774 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
775 	if (error)
776 		return error;
777 
778 	agi = agbp->b_addr;
779 	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
780 	xfs_trans_brelse(tp, agbp);
781 	return 0;
782 }
783 
784 /*
785  * Figure out how many blocks to reserve and how many are used by this btree.
786  */
787 int
788 xfs_finobt_calc_reserves(
789 	struct xfs_perag	*pag,
790 	struct xfs_trans	*tp,
791 	xfs_extlen_t		*ask,
792 	xfs_extlen_t		*used)
793 {
794 	xfs_extlen_t		tree_len = 0;
795 	int			error;
796 
797 	if (!xfs_has_finobt(pag_mount(pag)))
798 		return 0;
799 
800 	if (xfs_has_inobtcounts(pag_mount(pag)))
801 		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
802 	else
803 		error = xfs_finobt_count_blocks(pag, tp, &tree_len);
804 	if (error)
805 		return error;
806 
807 	*ask += xfs_inobt_max_size(pag);
808 	*used += tree_len;
809 	return 0;
810 }
811 
812 /* Calculate the inobt btree size for some records. */
813 xfs_extlen_t
814 xfs_iallocbt_calc_size(
815 	struct xfs_mount	*mp,
816 	unsigned long long	len)
817 {
818 	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
819 }
820 
821 int __init
822 xfs_inobt_init_cur_cache(void)
823 {
824 	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
825 			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
826 			0, 0, NULL);
827 
828 	if (!xfs_inobt_cur_cache)
829 		return -ENOMEM;
830 	return 0;
831 }
832 
833 void
834 xfs_inobt_destroy_cur_cache(void)
835 {
836 	kmem_cache_destroy(xfs_inobt_cur_cache);
837 	xfs_inobt_cur_cache = NULL;
838 }
839