1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_bmap.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_icreate_item.h" 25 #include "xfs_icache.h" 26 #include "xfs_trace.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap.h" 29 #include "xfs_ag.h" 30 #include "xfs_health.h" 31 32 /* 33 * Lookup a record by ino in the btree given by cur. 34 */ 35 int /* error */ 36 xfs_inobt_lookup( 37 struct xfs_btree_cur *cur, /* btree cursor */ 38 xfs_agino_t ino, /* starting inode of chunk */ 39 xfs_lookup_t dir, /* <=, >=, == */ 40 int *stat) /* success/failure */ 41 { 42 cur->bc_rec.i.ir_startino = ino; 43 cur->bc_rec.i.ir_holemask = 0; 44 cur->bc_rec.i.ir_count = 0; 45 cur->bc_rec.i.ir_freecount = 0; 46 cur->bc_rec.i.ir_free = 0; 47 return xfs_btree_lookup(cur, dir, stat); 48 } 49 50 /* 51 * Update the record referred to by cur to the value given. 52 * This either works (return 0) or gets an EFSCORRUPTED error. 53 */ 54 STATIC int /* error */ 55 xfs_inobt_update( 56 struct xfs_btree_cur *cur, /* btree cursor */ 57 xfs_inobt_rec_incore_t *irec) /* btree record */ 58 { 59 union xfs_btree_rec rec; 60 61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 62 if (xfs_has_sparseinodes(cur->bc_mp)) { 63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 64 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 66 } else { 67 /* ir_holemask/ir_count not supported on-disk */ 68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 69 } 70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 71 return xfs_btree_update(cur, &rec); 72 } 73 74 /* Convert on-disk btree record to incore inobt record. */ 75 void 76 xfs_inobt_btrec_to_irec( 77 struct xfs_mount *mp, 78 const union xfs_btree_rec *rec, 79 struct xfs_inobt_rec_incore *irec) 80 { 81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 82 if (xfs_has_sparseinodes(mp)) { 83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 84 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 86 } else { 87 /* 88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 89 * values for full inode chunks. 90 */ 91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 92 irec->ir_count = XFS_INODES_PER_CHUNK; 93 irec->ir_freecount = 94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 95 } 96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 97 } 98 99 /* Compute the freecount of an incore inode record. */ 100 uint8_t 101 xfs_inobt_rec_freecount( 102 const struct xfs_inobt_rec_incore *irec) 103 { 104 uint64_t realfree = irec->ir_free; 105 106 if (xfs_inobt_issparse(irec->ir_holemask)) 107 realfree &= xfs_inobt_irec_to_allocmask(irec); 108 return hweight64(realfree); 109 } 110 111 /* Simple checks for inode records. */ 112 xfs_failaddr_t 113 xfs_inobt_check_irec( 114 struct xfs_perag *pag, 115 const struct xfs_inobt_rec_incore *irec) 116 { 117 /* Record has to be properly aligned within the AG. */ 118 if (!xfs_verify_agino(pag, irec->ir_startino)) 119 return __this_address; 120 if (!xfs_verify_agino(pag, 121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) 122 return __this_address; 123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 124 irec->ir_count > XFS_INODES_PER_CHUNK) 125 return __this_address; 126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 127 return __this_address; 128 129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount) 130 return __this_address; 131 132 return NULL; 133 } 134 135 static inline int 136 xfs_inobt_complain_bad_rec( 137 struct xfs_btree_cur *cur, 138 xfs_failaddr_t fa, 139 const struct xfs_inobt_rec_incore *irec) 140 { 141 struct xfs_mount *mp = cur->bc_mp; 142 143 xfs_warn(mp, 144 "%sbt record corruption in AG %d detected at %pS!", 145 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); 146 xfs_warn(mp, 147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 148 irec->ir_startino, irec->ir_count, irec->ir_freecount, 149 irec->ir_free, irec->ir_holemask); 150 xfs_btree_mark_sick(cur); 151 return -EFSCORRUPTED; 152 } 153 154 /* 155 * Get the data from the pointed-to record. 156 */ 157 int 158 xfs_inobt_get_rec( 159 struct xfs_btree_cur *cur, 160 struct xfs_inobt_rec_incore *irec, 161 int *stat) 162 { 163 struct xfs_mount *mp = cur->bc_mp; 164 union xfs_btree_rec *rec; 165 xfs_failaddr_t fa; 166 int error; 167 168 error = xfs_btree_get_rec(cur, &rec, stat); 169 if (error || *stat == 0) 170 return error; 171 172 xfs_inobt_btrec_to_irec(mp, rec, irec); 173 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec); 174 if (fa) 175 return xfs_inobt_complain_bad_rec(cur, fa, irec); 176 177 return 0; 178 } 179 180 /* 181 * Insert a single inobt record. Cursor must already point to desired location. 182 */ 183 int 184 xfs_inobt_insert_rec( 185 struct xfs_btree_cur *cur, 186 uint16_t holemask, 187 uint8_t count, 188 int32_t freecount, 189 xfs_inofree_t free, 190 int *stat) 191 { 192 cur->bc_rec.i.ir_holemask = holemask; 193 cur->bc_rec.i.ir_count = count; 194 cur->bc_rec.i.ir_freecount = freecount; 195 cur->bc_rec.i.ir_free = free; 196 return xfs_btree_insert(cur, stat); 197 } 198 199 /* 200 * Insert records describing a newly allocated inode chunk into the inobt. 201 */ 202 STATIC int 203 xfs_inobt_insert( 204 struct xfs_perag *pag, 205 struct xfs_trans *tp, 206 struct xfs_buf *agbp, 207 xfs_agino_t newino, 208 xfs_agino_t newlen, 209 bool is_finobt) 210 { 211 struct xfs_btree_cur *cur; 212 xfs_agino_t thisino; 213 int i; 214 int error; 215 216 if (is_finobt) 217 cur = xfs_finobt_init_cursor(pag, tp, agbp); 218 else 219 cur = xfs_inobt_init_cursor(pag, tp, agbp); 220 221 for (thisino = newino; 222 thisino < newino + newlen; 223 thisino += XFS_INODES_PER_CHUNK) { 224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 225 if (error) { 226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 227 return error; 228 } 229 ASSERT(i == 0); 230 231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 232 XFS_INODES_PER_CHUNK, 233 XFS_INODES_PER_CHUNK, 234 XFS_INOBT_ALL_FREE, &i); 235 if (error) { 236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 237 return error; 238 } 239 ASSERT(i == 1); 240 } 241 242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 243 244 return 0; 245 } 246 247 /* 248 * Verify that the number of free inodes in the AGI is correct. 249 */ 250 #ifdef DEBUG 251 static int 252 xfs_check_agi_freecount( 253 struct xfs_btree_cur *cur) 254 { 255 if (cur->bc_nlevels == 1) { 256 xfs_inobt_rec_incore_t rec; 257 int freecount = 0; 258 int error; 259 int i; 260 261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 262 if (error) 263 return error; 264 265 do { 266 error = xfs_inobt_get_rec(cur, &rec, &i); 267 if (error) 268 return error; 269 270 if (i) { 271 freecount += rec.ir_freecount; 272 error = xfs_btree_increment(cur, 0, &i); 273 if (error) 274 return error; 275 } 276 } while (i == 1); 277 278 if (!xfs_is_shutdown(cur->bc_mp)) 279 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); 280 } 281 return 0; 282 } 283 #else 284 #define xfs_check_agi_freecount(cur) 0 285 #endif 286 287 /* 288 * Initialise a new set of inodes. When called without a transaction context 289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 290 * than logging them (which in a transaction context puts them into the AIL 291 * for writeback rather than the xfsbufd queue). 292 */ 293 int 294 xfs_ialloc_inode_init( 295 struct xfs_mount *mp, 296 struct xfs_trans *tp, 297 struct list_head *buffer_list, 298 int icount, 299 xfs_agnumber_t agno, 300 xfs_agblock_t agbno, 301 xfs_agblock_t length, 302 unsigned int gen) 303 { 304 struct xfs_buf *fbuf; 305 struct xfs_dinode *free; 306 int nbufs; 307 int version; 308 int i, j; 309 xfs_daddr_t d; 310 xfs_ino_t ino = 0; 311 int error; 312 313 /* 314 * Loop over the new block(s), filling in the inodes. For small block 315 * sizes, manipulate the inodes in buffers which are multiples of the 316 * blocks size. 317 */ 318 nbufs = length / M_IGEO(mp)->blocks_per_cluster; 319 320 /* 321 * Figure out what version number to use in the inodes we create. If 322 * the superblock version has caught up to the one that supports the new 323 * inode format, then use the new inode version. Otherwise use the old 324 * version so that old kernels will continue to be able to use the file 325 * system. 326 * 327 * For v3 inodes, we also need to write the inode number into the inode, 328 * so calculate the first inode number of the chunk here as 329 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 330 * across multiple filesystem blocks (such as a cluster) and so cannot 331 * be used in the cluster buffer loop below. 332 * 333 * Further, because we are writing the inode directly into the buffer 334 * and calculating a CRC on the entire inode, we have ot log the entire 335 * inode so that the entire range the CRC covers is present in the log. 336 * That means for v3 inode we log the entire buffer rather than just the 337 * inode cores. 338 */ 339 if (xfs_has_v3inodes(mp)) { 340 version = 3; 341 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 342 343 /* 344 * log the initialisation that is about to take place as an 345 * logical operation. This means the transaction does not 346 * need to log the physical changes to the inode buffers as log 347 * recovery will know what initialisation is actually needed. 348 * Hence we only need to log the buffers as "ordered" buffers so 349 * they track in the AIL as if they were physically logged. 350 */ 351 if (tp) 352 xfs_icreate_log(tp, agno, agbno, icount, 353 mp->m_sb.sb_inodesize, length, gen); 354 } else 355 version = 2; 356 357 for (j = 0; j < nbufs; j++) { 358 /* 359 * Get the block. 360 */ 361 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 362 (j * M_IGEO(mp)->blocks_per_cluster)); 363 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 364 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, 365 XBF_UNMAPPED, &fbuf); 366 if (error) 367 return error; 368 369 /* Initialize the inode buffers and log them appropriately. */ 370 fbuf->b_ops = &xfs_inode_buf_ops; 371 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 372 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { 373 int ioffset = i << mp->m_sb.sb_inodelog; 374 375 free = xfs_make_iptr(mp, fbuf, i); 376 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 377 free->di_version = version; 378 free->di_gen = cpu_to_be32(gen); 379 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 380 381 if (version == 3) { 382 free->di_ino = cpu_to_be64(ino); 383 ino++; 384 uuid_copy(&free->di_uuid, 385 &mp->m_sb.sb_meta_uuid); 386 xfs_dinode_calc_crc(mp, free); 387 } else if (tp) { 388 /* just log the inode core */ 389 xfs_trans_log_buf(tp, fbuf, ioffset, 390 ioffset + XFS_DINODE_SIZE(mp) - 1); 391 } 392 } 393 394 if (tp) { 395 /* 396 * Mark the buffer as an inode allocation buffer so it 397 * sticks in AIL at the point of this allocation 398 * transaction. This ensures the they are on disk before 399 * the tail of the log can be moved past this 400 * transaction (i.e. by preventing relogging from moving 401 * it forward in the log). 402 */ 403 xfs_trans_inode_alloc_buf(tp, fbuf); 404 if (version == 3) { 405 /* 406 * Mark the buffer as ordered so that they are 407 * not physically logged in the transaction but 408 * still tracked in the AIL as part of the 409 * transaction and pin the log appropriately. 410 */ 411 xfs_trans_ordered_buf(tp, fbuf); 412 } 413 } else { 414 fbuf->b_flags |= XBF_DONE; 415 xfs_buf_delwri_queue(fbuf, buffer_list); 416 xfs_buf_relse(fbuf); 417 } 418 } 419 return 0; 420 } 421 422 /* 423 * Align startino and allocmask for a recently allocated sparse chunk such that 424 * they are fit for insertion (or merge) into the on-disk inode btrees. 425 * 426 * Background: 427 * 428 * When enabled, sparse inode support increases the inode alignment from cluster 429 * size to inode chunk size. This means that the minimum range between two 430 * non-adjacent inode records in the inobt is large enough for a full inode 431 * record. This allows for cluster sized, cluster aligned block allocation 432 * without need to worry about whether the resulting inode record overlaps with 433 * another record in the tree. Without this basic rule, we would have to deal 434 * with the consequences of overlap by potentially undoing recent allocations in 435 * the inode allocation codepath. 436 * 437 * Because of this alignment rule (which is enforced on mount), there are two 438 * inobt possibilities for newly allocated sparse chunks. One is that the 439 * aligned inode record for the chunk covers a range of inodes not already 440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 441 * other is that a record already exists at the aligned startino that considers 442 * the newly allocated range as sparse. In the latter case, record content is 443 * merged in hope that sparse inode chunks fill to full chunks over time. 444 */ 445 STATIC void 446 xfs_align_sparse_ino( 447 struct xfs_mount *mp, 448 xfs_agino_t *startino, 449 uint16_t *allocmask) 450 { 451 xfs_agblock_t agbno; 452 xfs_agblock_t mod; 453 int offset; 454 455 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 456 mod = agbno % mp->m_sb.sb_inoalignmt; 457 if (!mod) 458 return; 459 460 /* calculate the inode offset and align startino */ 461 offset = XFS_AGB_TO_AGINO(mp, mod); 462 *startino -= offset; 463 464 /* 465 * Since startino has been aligned down, left shift allocmask such that 466 * it continues to represent the same physical inodes relative to the 467 * new startino. 468 */ 469 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 470 } 471 472 /* 473 * Determine whether the source inode record can merge into the target. Both 474 * records must be sparse, the inode ranges must match and there must be no 475 * allocation overlap between the records. 476 */ 477 STATIC bool 478 __xfs_inobt_can_merge( 479 struct xfs_inobt_rec_incore *trec, /* tgt record */ 480 struct xfs_inobt_rec_incore *srec) /* src record */ 481 { 482 uint64_t talloc; 483 uint64_t salloc; 484 485 /* records must cover the same inode range */ 486 if (trec->ir_startino != srec->ir_startino) 487 return false; 488 489 /* both records must be sparse */ 490 if (!xfs_inobt_issparse(trec->ir_holemask) || 491 !xfs_inobt_issparse(srec->ir_holemask)) 492 return false; 493 494 /* both records must track some inodes */ 495 if (!trec->ir_count || !srec->ir_count) 496 return false; 497 498 /* can't exceed capacity of a full record */ 499 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 500 return false; 501 502 /* verify there is no allocation overlap */ 503 talloc = xfs_inobt_irec_to_allocmask(trec); 504 salloc = xfs_inobt_irec_to_allocmask(srec); 505 if (talloc & salloc) 506 return false; 507 508 return true; 509 } 510 511 /* 512 * Merge the source inode record into the target. The caller must call 513 * __xfs_inobt_can_merge() to ensure the merge is valid. 514 */ 515 STATIC void 516 __xfs_inobt_rec_merge( 517 struct xfs_inobt_rec_incore *trec, /* target */ 518 struct xfs_inobt_rec_incore *srec) /* src */ 519 { 520 ASSERT(trec->ir_startino == srec->ir_startino); 521 522 /* combine the counts */ 523 trec->ir_count += srec->ir_count; 524 trec->ir_freecount += srec->ir_freecount; 525 526 /* 527 * Merge the holemask and free mask. For both fields, 0 bits refer to 528 * allocated inodes. We combine the allocated ranges with bitwise AND. 529 */ 530 trec->ir_holemask &= srec->ir_holemask; 531 trec->ir_free &= srec->ir_free; 532 } 533 534 /* 535 * Insert a new sparse inode chunk into the associated inode allocation btree. 536 * The inode record for the sparse chunk is pre-aligned to a startino that 537 * should match any pre-existing sparse inode record in the tree. This allows 538 * sparse chunks to fill over time. 539 * 540 * If no preexisting record exists, the provided record is inserted. 541 * If there is a preexisting record, the provided record is merged with the 542 * existing record and updated in place. The merged record is returned in nrec. 543 * 544 * It is considered corruption if a merge is requested and not possible. Given 545 * the sparse inode alignment constraints, this should never happen. 546 */ 547 STATIC int 548 xfs_inobt_insert_sprec( 549 struct xfs_perag *pag, 550 struct xfs_trans *tp, 551 struct xfs_buf *agbp, 552 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */ 553 { 554 struct xfs_mount *mp = pag->pag_mount; 555 struct xfs_btree_cur *cur; 556 int error; 557 int i; 558 struct xfs_inobt_rec_incore rec; 559 560 cur = xfs_inobt_init_cursor(pag, tp, agbp); 561 562 /* the new record is pre-aligned so we know where to look */ 563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 564 if (error) 565 goto error; 566 /* if nothing there, insert a new record and return */ 567 if (i == 0) { 568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 569 nrec->ir_count, nrec->ir_freecount, 570 nrec->ir_free, &i); 571 if (error) 572 goto error; 573 if (XFS_IS_CORRUPT(mp, i != 1)) { 574 xfs_btree_mark_sick(cur); 575 error = -EFSCORRUPTED; 576 goto error; 577 } 578 579 goto out; 580 } 581 582 /* 583 * A record exists at this startino. Merge the records. 584 */ 585 error = xfs_inobt_get_rec(cur, &rec, &i); 586 if (error) 587 goto error; 588 if (XFS_IS_CORRUPT(mp, i != 1)) { 589 xfs_btree_mark_sick(cur); 590 error = -EFSCORRUPTED; 591 goto error; 592 } 593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { 594 xfs_btree_mark_sick(cur); 595 error = -EFSCORRUPTED; 596 goto error; 597 } 598 599 /* 600 * This should never fail. If we have coexisting records that 601 * cannot merge, something is seriously wrong. 602 */ 603 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { 604 xfs_btree_mark_sick(cur); 605 error = -EFSCORRUPTED; 606 goto error; 607 } 608 609 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, 610 rec.ir_holemask, nrec->ir_startino, 611 nrec->ir_holemask); 612 613 /* merge to nrec to output the updated record */ 614 __xfs_inobt_rec_merge(nrec, &rec); 615 616 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, 617 nrec->ir_holemask); 618 619 error = xfs_inobt_rec_check_count(mp, nrec); 620 if (error) 621 goto error; 622 623 error = xfs_inobt_update(cur, nrec); 624 if (error) 625 goto error; 626 627 out: 628 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 629 return 0; 630 error: 631 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 632 return error; 633 } 634 635 /* 636 * Insert a new sparse inode chunk into the free inode btree. The inode 637 * record for the sparse chunk is pre-aligned to a startino that should match 638 * any pre-existing sparse inode record in the tree. This allows sparse chunks 639 * to fill over time. 640 * 641 * The new record is always inserted, overwriting a pre-existing record if 642 * there is one. 643 */ 644 STATIC int 645 xfs_finobt_insert_sprec( 646 struct xfs_perag *pag, 647 struct xfs_trans *tp, 648 struct xfs_buf *agbp, 649 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */ 650 { 651 struct xfs_mount *mp = pag->pag_mount; 652 struct xfs_btree_cur *cur; 653 int error; 654 int i; 655 656 cur = xfs_finobt_init_cursor(pag, tp, agbp); 657 658 /* the new record is pre-aligned so we know where to look */ 659 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 660 if (error) 661 goto error; 662 /* if nothing there, insert a new record and return */ 663 if (i == 0) { 664 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 665 nrec->ir_count, nrec->ir_freecount, 666 nrec->ir_free, &i); 667 if (error) 668 goto error; 669 if (XFS_IS_CORRUPT(mp, i != 1)) { 670 xfs_btree_mark_sick(cur); 671 error = -EFSCORRUPTED; 672 goto error; 673 } 674 } else { 675 error = xfs_inobt_update(cur, nrec); 676 if (error) 677 goto error; 678 } 679 680 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 681 return 0; 682 error: 683 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 684 return error; 685 } 686 687 688 /* 689 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if 690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so 691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum 692 * inode count threshold, or the usual negative error code for other errors. 693 */ 694 STATIC int 695 xfs_ialloc_ag_alloc( 696 struct xfs_perag *pag, 697 struct xfs_trans *tp, 698 struct xfs_buf *agbp) 699 { 700 struct xfs_agi *agi; 701 struct xfs_alloc_arg args; 702 int error; 703 xfs_agino_t newino; /* new first inode's number */ 704 xfs_agino_t newlen; /* new number of inodes */ 705 int isaligned = 0; /* inode allocation at stripe */ 706 /* unit boundary */ 707 /* init. to full chunk */ 708 struct xfs_inobt_rec_incore rec; 709 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); 710 uint16_t allocmask = (uint16_t) -1; 711 int do_sparse = 0; 712 713 memset(&args, 0, sizeof(args)); 714 args.tp = tp; 715 args.mp = tp->t_mountp; 716 args.fsbno = NULLFSBLOCK; 717 args.oinfo = XFS_RMAP_OINFO_INODES; 718 args.pag = pag; 719 720 #ifdef DEBUG 721 /* randomly do sparse inode allocations */ 722 if (xfs_has_sparseinodes(tp->t_mountp) && 723 igeo->ialloc_min_blks < igeo->ialloc_blks) 724 do_sparse = get_random_u32_below(2); 725 #endif 726 727 /* 728 * Locking will ensure that we don't have two callers in here 729 * at one time. 730 */ 731 newlen = igeo->ialloc_inos; 732 if (igeo->maxicount && 733 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 734 igeo->maxicount) 735 return -ENOSPC; 736 args.minlen = args.maxlen = igeo->ialloc_blks; 737 /* 738 * First try to allocate inodes contiguous with the last-allocated 739 * chunk of inodes. If the filesystem is striped, this will fill 740 * an entire stripe unit with inodes. 741 */ 742 agi = agbp->b_addr; 743 newino = be32_to_cpu(agi->agi_newino); 744 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 745 igeo->ialloc_blks; 746 if (do_sparse) 747 goto sparse_alloc; 748 if (likely(newino != NULLAGINO && 749 (args.agbno < be32_to_cpu(agi->agi_length)))) { 750 args.prod = 1; 751 752 /* 753 * We need to take into account alignment here to ensure that 754 * we don't modify the free list if we fail to have an exact 755 * block. If we don't have an exact match, and every oher 756 * attempt allocation attempt fails, we'll end up cancelling 757 * a dirty transaction and shutting down. 758 * 759 * For an exact allocation, alignment must be 1, 760 * however we need to take cluster alignment into account when 761 * fixing up the freelist. Use the minalignslop field to 762 * indicate that extra blocks might be required for alignment, 763 * but not to use them in the actual exact allocation. 764 */ 765 args.alignment = 1; 766 args.minalignslop = igeo->cluster_align - 1; 767 768 /* Allow space for the inode btree to split. */ 769 args.minleft = igeo->inobt_maxlevels; 770 error = xfs_alloc_vextent_exact_bno(&args, 771 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 772 args.agbno)); 773 if (error) 774 return error; 775 776 /* 777 * This request might have dirtied the transaction if the AG can 778 * satisfy the request, but the exact block was not available. 779 * If the allocation did fail, subsequent requests will relax 780 * the exact agbno requirement and increase the alignment 781 * instead. It is critical that the total size of the request 782 * (len + alignment + slop) does not increase from this point 783 * on, so reset minalignslop to ensure it is not included in 784 * subsequent requests. 785 */ 786 args.minalignslop = 0; 787 } 788 789 if (unlikely(args.fsbno == NULLFSBLOCK)) { 790 /* 791 * Set the alignment for the allocation. 792 * If stripe alignment is turned on then align at stripe unit 793 * boundary. 794 * If the cluster size is smaller than a filesystem block 795 * then we're doing I/O for inodes in filesystem block size 796 * pieces, so don't need alignment anyway. 797 */ 798 isaligned = 0; 799 if (igeo->ialloc_align) { 800 ASSERT(!xfs_has_noalign(args.mp)); 801 args.alignment = args.mp->m_dalign; 802 isaligned = 1; 803 } else 804 args.alignment = igeo->cluster_align; 805 /* 806 * Allocate a fixed-size extent of inodes. 807 */ 808 args.prod = 1; 809 /* 810 * Allow space for the inode btree to split. 811 */ 812 args.minleft = igeo->inobt_maxlevels; 813 error = xfs_alloc_vextent_near_bno(&args, 814 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 815 be32_to_cpu(agi->agi_root))); 816 if (error) 817 return error; 818 } 819 820 /* 821 * If stripe alignment is turned on, then try again with cluster 822 * alignment. 823 */ 824 if (isaligned && args.fsbno == NULLFSBLOCK) { 825 args.alignment = igeo->cluster_align; 826 error = xfs_alloc_vextent_near_bno(&args, 827 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 828 be32_to_cpu(agi->agi_root))); 829 if (error) 830 return error; 831 } 832 833 /* 834 * Finally, try a sparse allocation if the filesystem supports it and 835 * the sparse allocation length is smaller than a full chunk. 836 */ 837 if (xfs_has_sparseinodes(args.mp) && 838 igeo->ialloc_min_blks < igeo->ialloc_blks && 839 args.fsbno == NULLFSBLOCK) { 840 sparse_alloc: 841 args.alignment = args.mp->m_sb.sb_spino_align; 842 args.prod = 1; 843 844 args.minlen = igeo->ialloc_min_blks; 845 args.maxlen = args.minlen; 846 847 /* 848 * The inode record will be aligned to full chunk size. We must 849 * prevent sparse allocation from AG boundaries that result in 850 * invalid inode records, such as records that start at agbno 0 851 * or extend beyond the AG. 852 * 853 * Set min agbno to the first aligned, non-zero agbno and max to 854 * the last aligned agbno that is at least one full chunk from 855 * the end of the AG. 856 */ 857 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 858 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 859 args.mp->m_sb.sb_inoalignmt) - 860 igeo->ialloc_blks; 861 862 error = xfs_alloc_vextent_near_bno(&args, 863 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 864 be32_to_cpu(agi->agi_root))); 865 if (error) 866 return error; 867 868 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 869 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 870 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 871 } 872 873 if (args.fsbno == NULLFSBLOCK) 874 return -EAGAIN; 875 876 ASSERT(args.len == args.minlen); 877 878 /* 879 * Stamp and write the inode buffers. 880 * 881 * Seed the new inode cluster with a random generation number. This 882 * prevents short-term reuse of generation numbers if a chunk is 883 * freed and then immediately reallocated. We use random numbers 884 * rather than a linear progression to prevent the next generation 885 * number from being easily guessable. 886 */ 887 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, 888 args.agbno, args.len, get_random_u32()); 889 890 if (error) 891 return error; 892 /* 893 * Convert the results. 894 */ 895 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 896 897 if (xfs_inobt_issparse(~allocmask)) { 898 /* 899 * We've allocated a sparse chunk. Align the startino and mask. 900 */ 901 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 902 903 rec.ir_startino = newino; 904 rec.ir_holemask = ~allocmask; 905 rec.ir_count = newlen; 906 rec.ir_freecount = newlen; 907 rec.ir_free = XFS_INOBT_ALL_FREE; 908 909 /* 910 * Insert the sparse record into the inobt and allow for a merge 911 * if necessary. If a merge does occur, rec is updated to the 912 * merged record. 913 */ 914 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec); 915 if (error == -EFSCORRUPTED) { 916 xfs_alert(args.mp, 917 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 918 XFS_AGINO_TO_INO(args.mp, pag->pag_agno, 919 rec.ir_startino), 920 rec.ir_holemask, rec.ir_count); 921 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 922 } 923 if (error) 924 return error; 925 926 /* 927 * We can't merge the part we've just allocated as for the inobt 928 * due to finobt semantics. The original record may or may not 929 * exist independent of whether physical inodes exist in this 930 * sparse chunk. 931 * 932 * We must update the finobt record based on the inobt record. 933 * rec contains the fully merged and up to date inobt record 934 * from the previous call. Set merge false to replace any 935 * existing record with this one. 936 */ 937 if (xfs_has_finobt(args.mp)) { 938 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec); 939 if (error) 940 return error; 941 } 942 } else { 943 /* full chunk - insert new records to both btrees */ 944 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false); 945 if (error) 946 return error; 947 948 if (xfs_has_finobt(args.mp)) { 949 error = xfs_inobt_insert(pag, tp, agbp, newino, 950 newlen, true); 951 if (error) 952 return error; 953 } 954 } 955 956 /* 957 * Update AGI counts and newino. 958 */ 959 be32_add_cpu(&agi->agi_count, newlen); 960 be32_add_cpu(&agi->agi_freecount, newlen); 961 pag->pagi_freecount += newlen; 962 pag->pagi_count += newlen; 963 agi->agi_newino = cpu_to_be32(newino); 964 965 /* 966 * Log allocation group header fields 967 */ 968 xfs_ialloc_log_agi(tp, agbp, 969 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 970 /* 971 * Modify/log superblock values for inode count and inode free count. 972 */ 973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 975 return 0; 976 } 977 978 /* 979 * Try to retrieve the next record to the left/right from the current one. 980 */ 981 STATIC int 982 xfs_ialloc_next_rec( 983 struct xfs_btree_cur *cur, 984 xfs_inobt_rec_incore_t *rec, 985 int *done, 986 int left) 987 { 988 int error; 989 int i; 990 991 if (left) 992 error = xfs_btree_decrement(cur, 0, &i); 993 else 994 error = xfs_btree_increment(cur, 0, &i); 995 996 if (error) 997 return error; 998 *done = !i; 999 if (i) { 1000 error = xfs_inobt_get_rec(cur, rec, &i); 1001 if (error) 1002 return error; 1003 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1004 xfs_btree_mark_sick(cur); 1005 return -EFSCORRUPTED; 1006 } 1007 } 1008 1009 return 0; 1010 } 1011 1012 STATIC int 1013 xfs_ialloc_get_rec( 1014 struct xfs_btree_cur *cur, 1015 xfs_agino_t agino, 1016 xfs_inobt_rec_incore_t *rec, 1017 int *done) 1018 { 1019 int error; 1020 int i; 1021 1022 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1023 if (error) 1024 return error; 1025 *done = !i; 1026 if (i) { 1027 error = xfs_inobt_get_rec(cur, rec, &i); 1028 if (error) 1029 return error; 1030 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1031 xfs_btree_mark_sick(cur); 1032 return -EFSCORRUPTED; 1033 } 1034 } 1035 1036 return 0; 1037 } 1038 1039 /* 1040 * Return the offset of the first free inode in the record. If the inode chunk 1041 * is sparsely allocated, we convert the record holemask to inode granularity 1042 * and mask off the unallocated regions from the inode free mask. 1043 */ 1044 STATIC int 1045 xfs_inobt_first_free_inode( 1046 struct xfs_inobt_rec_incore *rec) 1047 { 1048 xfs_inofree_t realfree; 1049 1050 /* if there are no holes, return the first available offset */ 1051 if (!xfs_inobt_issparse(rec->ir_holemask)) 1052 return xfs_lowbit64(rec->ir_free); 1053 1054 realfree = xfs_inobt_irec_to_allocmask(rec); 1055 realfree &= rec->ir_free; 1056 1057 return xfs_lowbit64(realfree); 1058 } 1059 1060 /* 1061 * If this AG has corrupt inodes, check if allocating this inode would fail 1062 * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again 1063 * somewhere else. 1064 */ 1065 static int 1066 xfs_dialloc_check_ino( 1067 struct xfs_perag *pag, 1068 struct xfs_trans *tp, 1069 xfs_ino_t ino) 1070 { 1071 struct xfs_imap imap; 1072 struct xfs_buf *bp; 1073 int error; 1074 1075 error = xfs_imap(pag, tp, ino, &imap, 0); 1076 if (error) 1077 return -EAGAIN; 1078 1079 error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp); 1080 if (error) 1081 return -EAGAIN; 1082 1083 xfs_trans_brelse(tp, bp); 1084 return 0; 1085 } 1086 1087 /* 1088 * Allocate an inode using the inobt-only algorithm. 1089 */ 1090 STATIC int 1091 xfs_dialloc_ag_inobt( 1092 struct xfs_perag *pag, 1093 struct xfs_trans *tp, 1094 struct xfs_buf *agbp, 1095 xfs_ino_t parent, 1096 xfs_ino_t *inop) 1097 { 1098 struct xfs_mount *mp = tp->t_mountp; 1099 struct xfs_agi *agi = agbp->b_addr; 1100 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1101 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1102 struct xfs_btree_cur *cur, *tcur; 1103 struct xfs_inobt_rec_incore rec, trec; 1104 xfs_ino_t ino; 1105 int error; 1106 int offset; 1107 int i, j; 1108 int searchdistance = 10; 1109 1110 ASSERT(xfs_perag_initialised_agi(pag)); 1111 ASSERT(xfs_perag_allows_inodes(pag)); 1112 ASSERT(pag->pagi_freecount > 0); 1113 1114 restart_pagno: 1115 cur = xfs_inobt_init_cursor(pag, tp, agbp); 1116 /* 1117 * If pagino is 0 (this is the root inode allocation) use newino. 1118 * This must work because we've just allocated some. 1119 */ 1120 if (!pagino) 1121 pagino = be32_to_cpu(agi->agi_newino); 1122 1123 error = xfs_check_agi_freecount(cur); 1124 if (error) 1125 goto error0; 1126 1127 /* 1128 * If in the same AG as the parent, try to get near the parent. 1129 */ 1130 if (pagno == pag->pag_agno) { 1131 int doneleft; /* done, to the left */ 1132 int doneright; /* done, to the right */ 1133 1134 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1135 if (error) 1136 goto error0; 1137 if (XFS_IS_CORRUPT(mp, i != 1)) { 1138 xfs_btree_mark_sick(cur); 1139 error = -EFSCORRUPTED; 1140 goto error0; 1141 } 1142 1143 error = xfs_inobt_get_rec(cur, &rec, &j); 1144 if (error) 1145 goto error0; 1146 if (XFS_IS_CORRUPT(mp, j != 1)) { 1147 xfs_btree_mark_sick(cur); 1148 error = -EFSCORRUPTED; 1149 goto error0; 1150 } 1151 1152 if (rec.ir_freecount > 0) { 1153 /* 1154 * Found a free inode in the same chunk 1155 * as the parent, done. 1156 */ 1157 goto alloc_inode; 1158 } 1159 1160 1161 /* 1162 * In the same AG as parent, but parent's chunk is full. 1163 */ 1164 1165 /* duplicate the cursor, search left & right simultaneously */ 1166 error = xfs_btree_dup_cursor(cur, &tcur); 1167 if (error) 1168 goto error0; 1169 1170 /* 1171 * Skip to last blocks looked up if same parent inode. 1172 */ 1173 if (pagino != NULLAGINO && 1174 pag->pagl_pagino == pagino && 1175 pag->pagl_leftrec != NULLAGINO && 1176 pag->pagl_rightrec != NULLAGINO) { 1177 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1178 &trec, &doneleft); 1179 if (error) 1180 goto error1; 1181 1182 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1183 &rec, &doneright); 1184 if (error) 1185 goto error1; 1186 } else { 1187 /* search left with tcur, back up 1 record */ 1188 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1189 if (error) 1190 goto error1; 1191 1192 /* search right with cur, go forward 1 record. */ 1193 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1194 if (error) 1195 goto error1; 1196 } 1197 1198 /* 1199 * Loop until we find an inode chunk with a free inode. 1200 */ 1201 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1202 int useleft; /* using left inode chunk this time */ 1203 1204 /* figure out the closer block if both are valid. */ 1205 if (!doneleft && !doneright) { 1206 useleft = pagino - 1207 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1208 rec.ir_startino - pagino; 1209 } else { 1210 useleft = !doneleft; 1211 } 1212 1213 /* free inodes to the left? */ 1214 if (useleft && trec.ir_freecount) { 1215 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1216 cur = tcur; 1217 1218 pag->pagl_leftrec = trec.ir_startino; 1219 pag->pagl_rightrec = rec.ir_startino; 1220 pag->pagl_pagino = pagino; 1221 rec = trec; 1222 goto alloc_inode; 1223 } 1224 1225 /* free inodes to the right? */ 1226 if (!useleft && rec.ir_freecount) { 1227 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1228 1229 pag->pagl_leftrec = trec.ir_startino; 1230 pag->pagl_rightrec = rec.ir_startino; 1231 pag->pagl_pagino = pagino; 1232 goto alloc_inode; 1233 } 1234 1235 /* get next record to check */ 1236 if (useleft) { 1237 error = xfs_ialloc_next_rec(tcur, &trec, 1238 &doneleft, 1); 1239 } else { 1240 error = xfs_ialloc_next_rec(cur, &rec, 1241 &doneright, 0); 1242 } 1243 if (error) 1244 goto error1; 1245 } 1246 1247 if (searchdistance <= 0) { 1248 /* 1249 * Not in range - save last search 1250 * location and allocate a new inode 1251 */ 1252 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1253 pag->pagl_leftrec = trec.ir_startino; 1254 pag->pagl_rightrec = rec.ir_startino; 1255 pag->pagl_pagino = pagino; 1256 1257 } else { 1258 /* 1259 * We've reached the end of the btree. because 1260 * we are only searching a small chunk of the 1261 * btree each search, there is obviously free 1262 * inodes closer to the parent inode than we 1263 * are now. restart the search again. 1264 */ 1265 pag->pagl_pagino = NULLAGINO; 1266 pag->pagl_leftrec = NULLAGINO; 1267 pag->pagl_rightrec = NULLAGINO; 1268 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1269 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1270 goto restart_pagno; 1271 } 1272 } 1273 1274 /* 1275 * In a different AG from the parent. 1276 * See if the most recently allocated block has any free. 1277 */ 1278 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1279 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1280 XFS_LOOKUP_EQ, &i); 1281 if (error) 1282 goto error0; 1283 1284 if (i == 1) { 1285 error = xfs_inobt_get_rec(cur, &rec, &j); 1286 if (error) 1287 goto error0; 1288 1289 if (j == 1 && rec.ir_freecount > 0) { 1290 /* 1291 * The last chunk allocated in the group 1292 * still has a free inode. 1293 */ 1294 goto alloc_inode; 1295 } 1296 } 1297 } 1298 1299 /* 1300 * None left in the last group, search the whole AG 1301 */ 1302 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1303 if (error) 1304 goto error0; 1305 if (XFS_IS_CORRUPT(mp, i != 1)) { 1306 xfs_btree_mark_sick(cur); 1307 error = -EFSCORRUPTED; 1308 goto error0; 1309 } 1310 1311 for (;;) { 1312 error = xfs_inobt_get_rec(cur, &rec, &i); 1313 if (error) 1314 goto error0; 1315 if (XFS_IS_CORRUPT(mp, i != 1)) { 1316 xfs_btree_mark_sick(cur); 1317 error = -EFSCORRUPTED; 1318 goto error0; 1319 } 1320 if (rec.ir_freecount > 0) 1321 break; 1322 error = xfs_btree_increment(cur, 0, &i); 1323 if (error) 1324 goto error0; 1325 if (XFS_IS_CORRUPT(mp, i != 1)) { 1326 xfs_btree_mark_sick(cur); 1327 error = -EFSCORRUPTED; 1328 goto error0; 1329 } 1330 } 1331 1332 alloc_inode: 1333 offset = xfs_inobt_first_free_inode(&rec); 1334 ASSERT(offset >= 0); 1335 ASSERT(offset < XFS_INODES_PER_CHUNK); 1336 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1337 XFS_INODES_PER_CHUNK) == 0); 1338 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1339 1340 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { 1341 error = xfs_dialloc_check_ino(pag, tp, ino); 1342 if (error) 1343 goto error0; 1344 } 1345 1346 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1347 rec.ir_freecount--; 1348 error = xfs_inobt_update(cur, &rec); 1349 if (error) 1350 goto error0; 1351 be32_add_cpu(&agi->agi_freecount, -1); 1352 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1353 pag->pagi_freecount--; 1354 1355 error = xfs_check_agi_freecount(cur); 1356 if (error) 1357 goto error0; 1358 1359 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1360 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1361 *inop = ino; 1362 return 0; 1363 error1: 1364 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1365 error0: 1366 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1367 return error; 1368 } 1369 1370 /* 1371 * Use the free inode btree to allocate an inode based on distance from the 1372 * parent. Note that the provided cursor may be deleted and replaced. 1373 */ 1374 STATIC int 1375 xfs_dialloc_ag_finobt_near( 1376 xfs_agino_t pagino, 1377 struct xfs_btree_cur **ocur, 1378 struct xfs_inobt_rec_incore *rec) 1379 { 1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1381 struct xfs_btree_cur *rcur; /* right search cursor */ 1382 struct xfs_inobt_rec_incore rrec; 1383 int error; 1384 int i, j; 1385 1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1387 if (error) 1388 return error; 1389 1390 if (i == 1) { 1391 error = xfs_inobt_get_rec(lcur, rec, &i); 1392 if (error) 1393 return error; 1394 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) { 1395 xfs_btree_mark_sick(lcur); 1396 return -EFSCORRUPTED; 1397 } 1398 1399 /* 1400 * See if we've landed in the parent inode record. The finobt 1401 * only tracks chunks with at least one free inode, so record 1402 * existence is enough. 1403 */ 1404 if (pagino >= rec->ir_startino && 1405 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1406 return 0; 1407 } 1408 1409 error = xfs_btree_dup_cursor(lcur, &rcur); 1410 if (error) 1411 return error; 1412 1413 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1414 if (error) 1415 goto error_rcur; 1416 if (j == 1) { 1417 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1418 if (error) 1419 goto error_rcur; 1420 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { 1421 xfs_btree_mark_sick(lcur); 1422 error = -EFSCORRUPTED; 1423 goto error_rcur; 1424 } 1425 } 1426 1427 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { 1428 xfs_btree_mark_sick(lcur); 1429 error = -EFSCORRUPTED; 1430 goto error_rcur; 1431 } 1432 if (i == 1 && j == 1) { 1433 /* 1434 * Both the left and right records are valid. Choose the closer 1435 * inode chunk to the target. 1436 */ 1437 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1438 (rrec.ir_startino - pagino)) { 1439 *rec = rrec; 1440 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1441 *ocur = rcur; 1442 } else { 1443 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1444 } 1445 } else if (j == 1) { 1446 /* only the right record is valid */ 1447 *rec = rrec; 1448 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1449 *ocur = rcur; 1450 } else if (i == 1) { 1451 /* only the left record is valid */ 1452 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1453 } 1454 1455 return 0; 1456 1457 error_rcur: 1458 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1459 return error; 1460 } 1461 1462 /* 1463 * Use the free inode btree to find a free inode based on a newino hint. If 1464 * the hint is NULL, find the first free inode in the AG. 1465 */ 1466 STATIC int 1467 xfs_dialloc_ag_finobt_newino( 1468 struct xfs_agi *agi, 1469 struct xfs_btree_cur *cur, 1470 struct xfs_inobt_rec_incore *rec) 1471 { 1472 int error; 1473 int i; 1474 1475 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1476 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1477 XFS_LOOKUP_EQ, &i); 1478 if (error) 1479 return error; 1480 if (i == 1) { 1481 error = xfs_inobt_get_rec(cur, rec, &i); 1482 if (error) 1483 return error; 1484 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1485 xfs_btree_mark_sick(cur); 1486 return -EFSCORRUPTED; 1487 } 1488 return 0; 1489 } 1490 } 1491 1492 /* 1493 * Find the first inode available in the AG. 1494 */ 1495 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1496 if (error) 1497 return error; 1498 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1499 xfs_btree_mark_sick(cur); 1500 return -EFSCORRUPTED; 1501 } 1502 1503 error = xfs_inobt_get_rec(cur, rec, &i); 1504 if (error) 1505 return error; 1506 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1507 xfs_btree_mark_sick(cur); 1508 return -EFSCORRUPTED; 1509 } 1510 1511 return 0; 1512 } 1513 1514 /* 1515 * Update the inobt based on a modification made to the finobt. Also ensure that 1516 * the records from both trees are equivalent post-modification. 1517 */ 1518 STATIC int 1519 xfs_dialloc_ag_update_inobt( 1520 struct xfs_btree_cur *cur, /* inobt cursor */ 1521 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1522 int offset) /* inode offset */ 1523 { 1524 struct xfs_inobt_rec_incore rec; 1525 int error; 1526 int i; 1527 1528 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1529 if (error) 1530 return error; 1531 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1532 xfs_btree_mark_sick(cur); 1533 return -EFSCORRUPTED; 1534 } 1535 1536 error = xfs_inobt_get_rec(cur, &rec, &i); 1537 if (error) 1538 return error; 1539 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1540 xfs_btree_mark_sick(cur); 1541 return -EFSCORRUPTED; 1542 } 1543 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1544 XFS_INODES_PER_CHUNK) == 0); 1545 1546 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1547 rec.ir_freecount--; 1548 1549 if (XFS_IS_CORRUPT(cur->bc_mp, 1550 rec.ir_free != frec->ir_free || 1551 rec.ir_freecount != frec->ir_freecount)) { 1552 xfs_btree_mark_sick(cur); 1553 return -EFSCORRUPTED; 1554 } 1555 1556 return xfs_inobt_update(cur, &rec); 1557 } 1558 1559 /* 1560 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1561 * back to the inobt search algorithm. 1562 * 1563 * The caller selected an AG for us, and made sure that free inodes are 1564 * available. 1565 */ 1566 static int 1567 xfs_dialloc_ag( 1568 struct xfs_perag *pag, 1569 struct xfs_trans *tp, 1570 struct xfs_buf *agbp, 1571 xfs_ino_t parent, 1572 xfs_ino_t *inop) 1573 { 1574 struct xfs_mount *mp = tp->t_mountp; 1575 struct xfs_agi *agi = agbp->b_addr; 1576 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1577 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1578 struct xfs_btree_cur *cur; /* finobt cursor */ 1579 struct xfs_btree_cur *icur; /* inobt cursor */ 1580 struct xfs_inobt_rec_incore rec; 1581 xfs_ino_t ino; 1582 int error; 1583 int offset; 1584 int i; 1585 1586 if (!xfs_has_finobt(mp)) 1587 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); 1588 1589 /* 1590 * If pagino is 0 (this is the root inode allocation) use newino. 1591 * This must work because we've just allocated some. 1592 */ 1593 if (!pagino) 1594 pagino = be32_to_cpu(agi->agi_newino); 1595 1596 cur = xfs_finobt_init_cursor(pag, tp, agbp); 1597 1598 error = xfs_check_agi_freecount(cur); 1599 if (error) 1600 goto error_cur; 1601 1602 /* 1603 * The search algorithm depends on whether we're in the same AG as the 1604 * parent. If so, find the closest available inode to the parent. If 1605 * not, consider the agi hint or find the first free inode in the AG. 1606 */ 1607 if (pag->pag_agno == pagno) 1608 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1609 else 1610 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1611 if (error) 1612 goto error_cur; 1613 1614 offset = xfs_inobt_first_free_inode(&rec); 1615 ASSERT(offset >= 0); 1616 ASSERT(offset < XFS_INODES_PER_CHUNK); 1617 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1618 XFS_INODES_PER_CHUNK) == 0); 1619 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1620 1621 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { 1622 error = xfs_dialloc_check_ino(pag, tp, ino); 1623 if (error) 1624 goto error_cur; 1625 } 1626 1627 /* 1628 * Modify or remove the finobt record. 1629 */ 1630 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1631 rec.ir_freecount--; 1632 if (rec.ir_freecount) 1633 error = xfs_inobt_update(cur, &rec); 1634 else 1635 error = xfs_btree_delete(cur, &i); 1636 if (error) 1637 goto error_cur; 1638 1639 /* 1640 * The finobt has now been updated appropriately. We haven't updated the 1641 * agi and superblock yet, so we can create an inobt cursor and validate 1642 * the original freecount. If all is well, make the equivalent update to 1643 * the inobt using the finobt record and offset information. 1644 */ 1645 icur = xfs_inobt_init_cursor(pag, tp, agbp); 1646 1647 error = xfs_check_agi_freecount(icur); 1648 if (error) 1649 goto error_icur; 1650 1651 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1652 if (error) 1653 goto error_icur; 1654 1655 /* 1656 * Both trees have now been updated. We must update the perag and 1657 * superblock before we can check the freecount for each btree. 1658 */ 1659 be32_add_cpu(&agi->agi_freecount, -1); 1660 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1661 pag->pagi_freecount--; 1662 1663 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1664 1665 error = xfs_check_agi_freecount(icur); 1666 if (error) 1667 goto error_icur; 1668 error = xfs_check_agi_freecount(cur); 1669 if (error) 1670 goto error_icur; 1671 1672 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1673 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1674 *inop = ino; 1675 return 0; 1676 1677 error_icur: 1678 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1679 error_cur: 1680 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1681 return error; 1682 } 1683 1684 static int 1685 xfs_dialloc_roll( 1686 struct xfs_trans **tpp, 1687 struct xfs_buf *agibp) 1688 { 1689 struct xfs_trans *tp = *tpp; 1690 struct xfs_dquot_acct *dqinfo; 1691 int error; 1692 1693 /* 1694 * Hold to on to the agibp across the commit so no other allocation can 1695 * come in and take the free inodes we just allocated for our caller. 1696 */ 1697 xfs_trans_bhold(tp, agibp); 1698 1699 /* 1700 * We want the quota changes to be associated with the next transaction, 1701 * NOT this one. So, detach the dqinfo from this and attach it to the 1702 * next transaction. 1703 */ 1704 dqinfo = tp->t_dqinfo; 1705 tp->t_dqinfo = NULL; 1706 1707 error = xfs_trans_roll(&tp); 1708 1709 /* Re-attach the quota info that we detached from prev trx. */ 1710 tp->t_dqinfo = dqinfo; 1711 1712 /* 1713 * Join the buffer even on commit error so that the buffer is released 1714 * when the caller cancels the transaction and doesn't have to handle 1715 * this error case specially. 1716 */ 1717 xfs_trans_bjoin(tp, agibp); 1718 *tpp = tp; 1719 return error; 1720 } 1721 1722 static bool 1723 xfs_dialloc_good_ag( 1724 struct xfs_perag *pag, 1725 struct xfs_trans *tp, 1726 umode_t mode, 1727 int flags, 1728 bool ok_alloc) 1729 { 1730 struct xfs_mount *mp = tp->t_mountp; 1731 xfs_extlen_t ineed; 1732 xfs_extlen_t longest = 0; 1733 int needspace; 1734 int error; 1735 1736 if (!pag) 1737 return false; 1738 if (!xfs_perag_allows_inodes(pag)) 1739 return false; 1740 1741 if (!xfs_perag_initialised_agi(pag)) { 1742 error = xfs_ialloc_read_agi(pag, tp, 0, NULL); 1743 if (error) 1744 return false; 1745 } 1746 1747 if (pag->pagi_freecount) 1748 return true; 1749 if (!ok_alloc) 1750 return false; 1751 1752 if (!xfs_perag_initialised_agf(pag)) { 1753 error = xfs_alloc_read_agf(pag, tp, flags, NULL); 1754 if (error) 1755 return false; 1756 } 1757 1758 /* 1759 * Check that there is enough free space for the file plus a chunk of 1760 * inodes if we need to allocate some. If this is the first pass across 1761 * the AGs, take into account the potential space needed for alignment 1762 * of inode chunks when checking the longest contiguous free space in 1763 * the AG - this prevents us from getting ENOSPC because we have free 1764 * space larger than ialloc_blks but alignment constraints prevent us 1765 * from using it. 1766 * 1767 * If we can't find an AG with space for full alignment slack to be 1768 * taken into account, we must be near ENOSPC in all AGs. Hence we 1769 * don't include alignment for the second pass and so if we fail 1770 * allocation due to alignment issues then it is most likely a real 1771 * ENOSPC condition. 1772 * 1773 * XXX(dgc): this calculation is now bogus thanks to the per-ag 1774 * reservations that xfs_alloc_fix_freelist() now does via 1775 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will 1776 * be more than large enough for the check below to succeed, but 1777 * xfs_alloc_space_available() will fail because of the non-zero 1778 * metadata reservation and hence we won't actually be able to allocate 1779 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC 1780 * because of this. 1781 */ 1782 ineed = M_IGEO(mp)->ialloc_min_blks; 1783 if (flags && ineed > 1) 1784 ineed += M_IGEO(mp)->cluster_align; 1785 longest = pag->pagf_longest; 1786 if (!longest) 1787 longest = pag->pagf_flcount > 0; 1788 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 1789 1790 if (pag->pagf_freeblks < needspace + ineed || longest < ineed) 1791 return false; 1792 return true; 1793 } 1794 1795 static int 1796 xfs_dialloc_try_ag( 1797 struct xfs_perag *pag, 1798 struct xfs_trans **tpp, 1799 xfs_ino_t parent, 1800 xfs_ino_t *new_ino, 1801 bool ok_alloc) 1802 { 1803 struct xfs_buf *agbp; 1804 xfs_ino_t ino; 1805 int error; 1806 1807 /* 1808 * Then read in the AGI buffer and recheck with the AGI buffer 1809 * lock held. 1810 */ 1811 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp); 1812 if (error) 1813 return error; 1814 1815 if (!pag->pagi_freecount) { 1816 if (!ok_alloc) { 1817 error = -EAGAIN; 1818 goto out_release; 1819 } 1820 1821 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); 1822 if (error < 0) 1823 goto out_release; 1824 1825 /* 1826 * We successfully allocated space for an inode cluster in this 1827 * AG. Roll the transaction so that we can allocate one of the 1828 * new inodes. 1829 */ 1830 ASSERT(pag->pagi_freecount > 0); 1831 error = xfs_dialloc_roll(tpp, agbp); 1832 if (error) 1833 goto out_release; 1834 } 1835 1836 /* Allocate an inode in the found AG */ 1837 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); 1838 if (!error) 1839 *new_ino = ino; 1840 return error; 1841 1842 out_release: 1843 xfs_trans_brelse(*tpp, agbp); 1844 return error; 1845 } 1846 1847 /* 1848 * Allocate an on-disk inode. 1849 * 1850 * Mode is used to tell whether the new inode is a directory and hence where to 1851 * locate it. The on-disk inode that is allocated will be returned in @new_ino 1852 * on success, otherwise an error will be set to indicate the failure (e.g. 1853 * -ENOSPC). 1854 */ 1855 int 1856 xfs_dialloc( 1857 struct xfs_trans **tpp, 1858 xfs_ino_t parent, 1859 umode_t mode, 1860 xfs_ino_t *new_ino) 1861 { 1862 struct xfs_mount *mp = (*tpp)->t_mountp; 1863 xfs_agnumber_t agno; 1864 int error = 0; 1865 xfs_agnumber_t start_agno; 1866 struct xfs_perag *pag; 1867 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1868 bool ok_alloc = true; 1869 bool low_space = false; 1870 int flags; 1871 xfs_ino_t ino = NULLFSINO; 1872 1873 /* 1874 * Directories, symlinks, and regular files frequently allocate at least 1875 * one block, so factor that potential expansion when we examine whether 1876 * an AG has enough space for file creation. 1877 */ 1878 if (S_ISDIR(mode)) 1879 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % 1880 mp->m_maxagi; 1881 else { 1882 start_agno = XFS_INO_TO_AGNO(mp, parent); 1883 if (start_agno >= mp->m_maxagi) 1884 start_agno = 0; 1885 } 1886 1887 /* 1888 * If we have already hit the ceiling of inode blocks then clear 1889 * ok_alloc so we scan all available agi structures for a free 1890 * inode. 1891 * 1892 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1893 * which will sacrifice the preciseness but improve the performance. 1894 */ 1895 if (igeo->maxicount && 1896 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos 1897 > igeo->maxicount) { 1898 ok_alloc = false; 1899 } 1900 1901 /* 1902 * If we are near to ENOSPC, we want to prefer allocation from AGs that 1903 * have free inodes in them rather than use up free space allocating new 1904 * inode chunks. Hence we turn off allocation for the first non-blocking 1905 * pass through the AGs if we are near ENOSPC to consume free inodes 1906 * that we can immediately allocate, but then we allow allocation on the 1907 * second pass if we fail to find an AG with free inodes in it. 1908 */ 1909 if (percpu_counter_read_positive(&mp->m_fdblocks) < 1910 mp->m_low_space[XFS_LOWSP_1_PCNT]) { 1911 ok_alloc = false; 1912 low_space = true; 1913 } 1914 1915 /* 1916 * Loop until we find an allocation group that either has free inodes 1917 * or in which we can allocate some inodes. Iterate through the 1918 * allocation groups upward, wrapping at the end. 1919 */ 1920 flags = XFS_ALLOC_FLAG_TRYLOCK; 1921 retry: 1922 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { 1923 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { 1924 error = xfs_dialloc_try_ag(pag, tpp, parent, 1925 &ino, ok_alloc); 1926 if (error != -EAGAIN) 1927 break; 1928 error = 0; 1929 } 1930 1931 if (xfs_is_shutdown(mp)) { 1932 error = -EFSCORRUPTED; 1933 break; 1934 } 1935 } 1936 if (pag) 1937 xfs_perag_rele(pag); 1938 if (error) 1939 return error; 1940 if (ino == NULLFSINO) { 1941 if (flags) { 1942 flags = 0; 1943 if (low_space) 1944 ok_alloc = true; 1945 goto retry; 1946 } 1947 return -ENOSPC; 1948 } 1949 1950 /* 1951 * Protect against obviously corrupt allocation btree records. Later 1952 * xfs_iget checks will catch re-allocation of other active in-memory 1953 * and on-disk inodes. If we don't catch reallocating the parent inode 1954 * here we will deadlock in xfs_iget() so we have to do these checks 1955 * first. 1956 */ 1957 if (ino == parent || !xfs_verify_dir_ino(mp, ino)) { 1958 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 1959 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), 1960 XFS_SICK_AG_INOBT); 1961 return -EFSCORRUPTED; 1962 } 1963 1964 *new_ino = ino; 1965 return 0; 1966 } 1967 1968 /* 1969 * Free the blocks of an inode chunk. We must consider that the inode chunk 1970 * might be sparse and only free the regions that are allocated as part of the 1971 * chunk. 1972 */ 1973 static int 1974 xfs_difree_inode_chunk( 1975 struct xfs_trans *tp, 1976 xfs_agnumber_t agno, 1977 struct xfs_inobt_rec_incore *rec) 1978 { 1979 struct xfs_mount *mp = tp->t_mountp; 1980 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1981 rec->ir_startino); 1982 int startidx, endidx; 1983 int nextbit; 1984 xfs_agblock_t agbno; 1985 int contigblk; 1986 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1987 1988 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1989 /* not sparse, calculate extent info directly */ 1990 return xfs_free_extent_later(tp, 1991 XFS_AGB_TO_FSB(mp, agno, sagbno), 1992 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, 1993 XFS_AG_RESV_NONE, 0); 1994 } 1995 1996 /* holemask is only 16-bits (fits in an unsigned long) */ 1997 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1998 holemask[0] = rec->ir_holemask; 1999 2000 /* 2001 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 2002 * holemask and convert the start/end index of each range to an extent. 2003 * We start with the start and end index both pointing at the first 0 in 2004 * the mask. 2005 */ 2006 startidx = endidx = find_first_zero_bit(holemask, 2007 XFS_INOBT_HOLEMASK_BITS); 2008 nextbit = startidx + 1; 2009 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 2010 int error; 2011 2012 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 2013 nextbit); 2014 /* 2015 * If the next zero bit is contiguous, update the end index of 2016 * the current range and continue. 2017 */ 2018 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 2019 nextbit == endidx + 1) { 2020 endidx = nextbit; 2021 goto next; 2022 } 2023 2024 /* 2025 * nextbit is not contiguous with the current end index. Convert 2026 * the current start/end to an extent and add it to the free 2027 * list. 2028 */ 2029 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 2030 mp->m_sb.sb_inopblock; 2031 contigblk = ((endidx - startidx + 1) * 2032 XFS_INODES_PER_HOLEMASK_BIT) / 2033 mp->m_sb.sb_inopblock; 2034 2035 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 2036 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 2037 error = xfs_free_extent_later(tp, 2038 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, 2039 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0); 2040 if (error) 2041 return error; 2042 2043 /* reset range to current bit and carry on... */ 2044 startidx = endidx = nextbit; 2045 2046 next: 2047 nextbit++; 2048 } 2049 return 0; 2050 } 2051 2052 STATIC int 2053 xfs_difree_inobt( 2054 struct xfs_perag *pag, 2055 struct xfs_trans *tp, 2056 struct xfs_buf *agbp, 2057 xfs_agino_t agino, 2058 struct xfs_icluster *xic, 2059 struct xfs_inobt_rec_incore *orec) 2060 { 2061 struct xfs_mount *mp = pag->pag_mount; 2062 struct xfs_agi *agi = agbp->b_addr; 2063 struct xfs_btree_cur *cur; 2064 struct xfs_inobt_rec_incore rec; 2065 int ilen; 2066 int error; 2067 int i; 2068 int off; 2069 2070 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2071 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 2072 2073 /* 2074 * Initialize the cursor. 2075 */ 2076 cur = xfs_inobt_init_cursor(pag, tp, agbp); 2077 2078 error = xfs_check_agi_freecount(cur); 2079 if (error) 2080 goto error0; 2081 2082 /* 2083 * Look for the entry describing this inode. 2084 */ 2085 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 2086 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 2087 __func__, error); 2088 goto error0; 2089 } 2090 if (XFS_IS_CORRUPT(mp, i != 1)) { 2091 xfs_btree_mark_sick(cur); 2092 error = -EFSCORRUPTED; 2093 goto error0; 2094 } 2095 error = xfs_inobt_get_rec(cur, &rec, &i); 2096 if (error) { 2097 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 2098 __func__, error); 2099 goto error0; 2100 } 2101 if (XFS_IS_CORRUPT(mp, i != 1)) { 2102 xfs_btree_mark_sick(cur); 2103 error = -EFSCORRUPTED; 2104 goto error0; 2105 } 2106 /* 2107 * Get the offset in the inode chunk. 2108 */ 2109 off = agino - rec.ir_startino; 2110 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 2111 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 2112 /* 2113 * Mark the inode free & increment the count. 2114 */ 2115 rec.ir_free |= XFS_INOBT_MASK(off); 2116 rec.ir_freecount++; 2117 2118 /* 2119 * When an inode chunk is free, it becomes eligible for removal. Don't 2120 * remove the chunk if the block size is large enough for multiple inode 2121 * chunks (that might not be free). 2122 */ 2123 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2124 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2125 xic->deleted = true; 2126 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, 2127 rec.ir_startino); 2128 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 2129 2130 /* 2131 * Remove the inode cluster from the AGI B+Tree, adjust the 2132 * AGI and Superblock inode counts, and mark the disk space 2133 * to be freed when the transaction is committed. 2134 */ 2135 ilen = rec.ir_freecount; 2136 be32_add_cpu(&agi->agi_count, -ilen); 2137 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 2138 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 2139 pag->pagi_freecount -= ilen - 1; 2140 pag->pagi_count -= ilen; 2141 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 2142 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 2143 2144 if ((error = xfs_btree_delete(cur, &i))) { 2145 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 2146 __func__, error); 2147 goto error0; 2148 } 2149 2150 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); 2151 if (error) 2152 goto error0; 2153 } else { 2154 xic->deleted = false; 2155 2156 error = xfs_inobt_update(cur, &rec); 2157 if (error) { 2158 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2159 __func__, error); 2160 goto error0; 2161 } 2162 2163 /* 2164 * Change the inode free counts and log the ag/sb changes. 2165 */ 2166 be32_add_cpu(&agi->agi_freecount, 1); 2167 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2168 pag->pagi_freecount++; 2169 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2170 } 2171 2172 error = xfs_check_agi_freecount(cur); 2173 if (error) 2174 goto error0; 2175 2176 *orec = rec; 2177 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2178 return 0; 2179 2180 error0: 2181 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2182 return error; 2183 } 2184 2185 /* 2186 * Free an inode in the free inode btree. 2187 */ 2188 STATIC int 2189 xfs_difree_finobt( 2190 struct xfs_perag *pag, 2191 struct xfs_trans *tp, 2192 struct xfs_buf *agbp, 2193 xfs_agino_t agino, 2194 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2195 { 2196 struct xfs_mount *mp = pag->pag_mount; 2197 struct xfs_btree_cur *cur; 2198 struct xfs_inobt_rec_incore rec; 2199 int offset = agino - ibtrec->ir_startino; 2200 int error; 2201 int i; 2202 2203 cur = xfs_finobt_init_cursor(pag, tp, agbp); 2204 2205 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2206 if (error) 2207 goto error; 2208 if (i == 0) { 2209 /* 2210 * If the record does not exist in the finobt, we must have just 2211 * freed an inode in a previously fully allocated chunk. If not, 2212 * something is out of sync. 2213 */ 2214 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { 2215 xfs_btree_mark_sick(cur); 2216 error = -EFSCORRUPTED; 2217 goto error; 2218 } 2219 2220 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2221 ibtrec->ir_count, 2222 ibtrec->ir_freecount, 2223 ibtrec->ir_free, &i); 2224 if (error) 2225 goto error; 2226 ASSERT(i == 1); 2227 2228 goto out; 2229 } 2230 2231 /* 2232 * Read and update the existing record. We could just copy the ibtrec 2233 * across here, but that would defeat the purpose of having redundant 2234 * metadata. By making the modifications independently, we can catch 2235 * corruptions that we wouldn't see if we just copied from one record 2236 * to another. 2237 */ 2238 error = xfs_inobt_get_rec(cur, &rec, &i); 2239 if (error) 2240 goto error; 2241 if (XFS_IS_CORRUPT(mp, i != 1)) { 2242 xfs_btree_mark_sick(cur); 2243 error = -EFSCORRUPTED; 2244 goto error; 2245 } 2246 2247 rec.ir_free |= XFS_INOBT_MASK(offset); 2248 rec.ir_freecount++; 2249 2250 if (XFS_IS_CORRUPT(mp, 2251 rec.ir_free != ibtrec->ir_free || 2252 rec.ir_freecount != ibtrec->ir_freecount)) { 2253 xfs_btree_mark_sick(cur); 2254 error = -EFSCORRUPTED; 2255 goto error; 2256 } 2257 2258 /* 2259 * The content of inobt records should always match between the inobt 2260 * and finobt. The lifecycle of records in the finobt is different from 2261 * the inobt in that the finobt only tracks records with at least one 2262 * free inode. Hence, if all of the inodes are free and we aren't 2263 * keeping inode chunks permanently on disk, remove the record. 2264 * Otherwise, update the record with the new information. 2265 * 2266 * Note that we currently can't free chunks when the block size is large 2267 * enough for multiple chunks. Leave the finobt record to remain in sync 2268 * with the inobt. 2269 */ 2270 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2271 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2272 error = xfs_btree_delete(cur, &i); 2273 if (error) 2274 goto error; 2275 ASSERT(i == 1); 2276 } else { 2277 error = xfs_inobt_update(cur, &rec); 2278 if (error) 2279 goto error; 2280 } 2281 2282 out: 2283 error = xfs_check_agi_freecount(cur); 2284 if (error) 2285 goto error; 2286 2287 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2288 return 0; 2289 2290 error: 2291 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2292 return error; 2293 } 2294 2295 /* 2296 * Free disk inode. Carefully avoids touching the incore inode, all 2297 * manipulations incore are the caller's responsibility. 2298 * The on-disk inode is not changed by this operation, only the 2299 * btree (free inode mask) is changed. 2300 */ 2301 int 2302 xfs_difree( 2303 struct xfs_trans *tp, 2304 struct xfs_perag *pag, 2305 xfs_ino_t inode, 2306 struct xfs_icluster *xic) 2307 { 2308 /* REFERENCED */ 2309 xfs_agblock_t agbno; /* block number containing inode */ 2310 struct xfs_buf *agbp; /* buffer for allocation group header */ 2311 xfs_agino_t agino; /* allocation group inode number */ 2312 int error; /* error return value */ 2313 struct xfs_mount *mp = tp->t_mountp; 2314 struct xfs_inobt_rec_incore rec;/* btree record */ 2315 2316 /* 2317 * Break up inode number into its components. 2318 */ 2319 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { 2320 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", 2321 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); 2322 ASSERT(0); 2323 return -EINVAL; 2324 } 2325 agino = XFS_INO_TO_AGINO(mp, inode); 2326 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2327 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2328 __func__, (unsigned long long)inode, 2329 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2330 ASSERT(0); 2331 return -EINVAL; 2332 } 2333 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2334 if (agbno >= mp->m_sb.sb_agblocks) { 2335 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2336 __func__, agbno, mp->m_sb.sb_agblocks); 2337 ASSERT(0); 2338 return -EINVAL; 2339 } 2340 /* 2341 * Get the allocation group header. 2342 */ 2343 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); 2344 if (error) { 2345 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2346 __func__, error); 2347 return error; 2348 } 2349 2350 /* 2351 * Fix up the inode allocation btree. 2352 */ 2353 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); 2354 if (error) 2355 goto error0; 2356 2357 /* 2358 * Fix up the free inode btree. 2359 */ 2360 if (xfs_has_finobt(mp)) { 2361 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); 2362 if (error) 2363 goto error0; 2364 } 2365 2366 return 0; 2367 2368 error0: 2369 return error; 2370 } 2371 2372 STATIC int 2373 xfs_imap_lookup( 2374 struct xfs_perag *pag, 2375 struct xfs_trans *tp, 2376 xfs_agino_t agino, 2377 xfs_agblock_t agbno, 2378 xfs_agblock_t *chunk_agbno, 2379 xfs_agblock_t *offset_agbno, 2380 int flags) 2381 { 2382 struct xfs_mount *mp = pag->pag_mount; 2383 struct xfs_inobt_rec_incore rec; 2384 struct xfs_btree_cur *cur; 2385 struct xfs_buf *agbp; 2386 int error; 2387 int i; 2388 2389 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); 2390 if (error) { 2391 xfs_alert(mp, 2392 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2393 __func__, error, pag->pag_agno); 2394 return error; 2395 } 2396 2397 /* 2398 * Lookup the inode record for the given agino. If the record cannot be 2399 * found, then it's an invalid inode number and we should abort. Once 2400 * we have a record, we need to ensure it contains the inode number 2401 * we are looking up. 2402 */ 2403 cur = xfs_inobt_init_cursor(pag, tp, agbp); 2404 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2405 if (!error) { 2406 if (i) 2407 error = xfs_inobt_get_rec(cur, &rec, &i); 2408 if (!error && i == 0) 2409 error = -EINVAL; 2410 } 2411 2412 xfs_trans_brelse(tp, agbp); 2413 xfs_btree_del_cursor(cur, error); 2414 if (error) 2415 return error; 2416 2417 /* check that the returned record contains the required inode */ 2418 if (rec.ir_startino > agino || 2419 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) 2420 return -EINVAL; 2421 2422 /* for untrusted inodes check it is allocated first */ 2423 if ((flags & XFS_IGET_UNTRUSTED) && 2424 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2425 return -EINVAL; 2426 2427 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2428 *offset_agbno = agbno - *chunk_agbno; 2429 return 0; 2430 } 2431 2432 /* 2433 * Return the location of the inode in imap, for mapping it into a buffer. 2434 */ 2435 int 2436 xfs_imap( 2437 struct xfs_perag *pag, 2438 struct xfs_trans *tp, 2439 xfs_ino_t ino, /* inode to locate */ 2440 struct xfs_imap *imap, /* location map structure */ 2441 uint flags) /* flags for inode btree lookup */ 2442 { 2443 struct xfs_mount *mp = pag->pag_mount; 2444 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2445 xfs_agino_t agino; /* inode number within alloc group */ 2446 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2447 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2448 int error; /* error code */ 2449 int offset; /* index of inode in its buffer */ 2450 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2451 2452 ASSERT(ino != NULLFSINO); 2453 2454 /* 2455 * Split up the inode number into its parts. 2456 */ 2457 agino = XFS_INO_TO_AGINO(mp, ino); 2458 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2459 if (agbno >= mp->m_sb.sb_agblocks || 2460 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2461 error = -EINVAL; 2462 #ifdef DEBUG 2463 /* 2464 * Don't output diagnostic information for untrusted inodes 2465 * as they can be invalid without implying corruption. 2466 */ 2467 if (flags & XFS_IGET_UNTRUSTED) 2468 return error; 2469 if (agbno >= mp->m_sb.sb_agblocks) { 2470 xfs_alert(mp, 2471 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2472 __func__, (unsigned long long)agbno, 2473 (unsigned long)mp->m_sb.sb_agblocks); 2474 } 2475 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2476 xfs_alert(mp, 2477 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2478 __func__, ino, 2479 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2480 } 2481 xfs_stack_trace(); 2482 #endif /* DEBUG */ 2483 return error; 2484 } 2485 2486 /* 2487 * For bulkstat and handle lookups, we have an untrusted inode number 2488 * that we have to verify is valid. We cannot do this just by reading 2489 * the inode buffer as it may have been unlinked and removed leaving 2490 * inodes in stale state on disk. Hence we have to do a btree lookup 2491 * in all cases where an untrusted inode number is passed. 2492 */ 2493 if (flags & XFS_IGET_UNTRUSTED) { 2494 error = xfs_imap_lookup(pag, tp, agino, agbno, 2495 &chunk_agbno, &offset_agbno, flags); 2496 if (error) 2497 return error; 2498 goto out_map; 2499 } 2500 2501 /* 2502 * If the inode cluster size is the same as the blocksize or 2503 * smaller we get to the buffer by simple arithmetics. 2504 */ 2505 if (M_IGEO(mp)->blocks_per_cluster == 1) { 2506 offset = XFS_INO_TO_OFFSET(mp, ino); 2507 ASSERT(offset < mp->m_sb.sb_inopblock); 2508 2509 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); 2510 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2511 imap->im_boffset = (unsigned short)(offset << 2512 mp->m_sb.sb_inodelog); 2513 return 0; 2514 } 2515 2516 /* 2517 * If the inode chunks are aligned then use simple maths to 2518 * find the location. Otherwise we have to do a btree 2519 * lookup to find the location. 2520 */ 2521 if (M_IGEO(mp)->inoalign_mask) { 2522 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; 2523 chunk_agbno = agbno - offset_agbno; 2524 } else { 2525 error = xfs_imap_lookup(pag, tp, agino, agbno, 2526 &chunk_agbno, &offset_agbno, flags); 2527 if (error) 2528 return error; 2529 } 2530 2531 out_map: 2532 ASSERT(agbno >= chunk_agbno); 2533 cluster_agbno = chunk_agbno + 2534 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * 2535 M_IGEO(mp)->blocks_per_cluster); 2536 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2537 XFS_INO_TO_OFFSET(mp, ino); 2538 2539 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); 2540 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); 2541 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2542 2543 /* 2544 * If the inode number maps to a block outside the bounds 2545 * of the file system then return NULL rather than calling 2546 * read_buf and panicing when we get an error from the 2547 * driver. 2548 */ 2549 if ((imap->im_blkno + imap->im_len) > 2550 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2551 xfs_alert(mp, 2552 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2553 __func__, (unsigned long long) imap->im_blkno, 2554 (unsigned long long) imap->im_len, 2555 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2556 return -EINVAL; 2557 } 2558 return 0; 2559 } 2560 2561 /* 2562 * Log specified fields for the ag hdr (inode section). The growth of the agi 2563 * structure over time requires that we interpret the buffer as two logical 2564 * regions delineated by the end of the unlinked list. This is due to the size 2565 * of the hash table and its location in the middle of the agi. 2566 * 2567 * For example, a request to log a field before agi_unlinked and a field after 2568 * agi_unlinked could cause us to log the entire hash table and use an excessive 2569 * amount of log space. To avoid this behavior, log the region up through 2570 * agi_unlinked in one call and the region after agi_unlinked through the end of 2571 * the structure in another. 2572 */ 2573 void 2574 xfs_ialloc_log_agi( 2575 struct xfs_trans *tp, 2576 struct xfs_buf *bp, 2577 uint32_t fields) 2578 { 2579 int first; /* first byte number */ 2580 int last; /* last byte number */ 2581 static const short offsets[] = { /* field starting offsets */ 2582 /* keep in sync with bit definitions */ 2583 offsetof(xfs_agi_t, agi_magicnum), 2584 offsetof(xfs_agi_t, agi_versionnum), 2585 offsetof(xfs_agi_t, agi_seqno), 2586 offsetof(xfs_agi_t, agi_length), 2587 offsetof(xfs_agi_t, agi_count), 2588 offsetof(xfs_agi_t, agi_root), 2589 offsetof(xfs_agi_t, agi_level), 2590 offsetof(xfs_agi_t, agi_freecount), 2591 offsetof(xfs_agi_t, agi_newino), 2592 offsetof(xfs_agi_t, agi_dirino), 2593 offsetof(xfs_agi_t, agi_unlinked), 2594 offsetof(xfs_agi_t, agi_free_root), 2595 offsetof(xfs_agi_t, agi_free_level), 2596 offsetof(xfs_agi_t, agi_iblocks), 2597 sizeof(xfs_agi_t) 2598 }; 2599 #ifdef DEBUG 2600 struct xfs_agi *agi = bp->b_addr; 2601 2602 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2603 #endif 2604 2605 /* 2606 * Compute byte offsets for the first and last fields in the first 2607 * region and log the agi buffer. This only logs up through 2608 * agi_unlinked. 2609 */ 2610 if (fields & XFS_AGI_ALL_BITS_R1) { 2611 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2612 &first, &last); 2613 xfs_trans_log_buf(tp, bp, first, last); 2614 } 2615 2616 /* 2617 * Mask off the bits in the first region and calculate the first and 2618 * last field offsets for any bits in the second region. 2619 */ 2620 fields &= ~XFS_AGI_ALL_BITS_R1; 2621 if (fields) { 2622 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2623 &first, &last); 2624 xfs_trans_log_buf(tp, bp, first, last); 2625 } 2626 } 2627 2628 static xfs_failaddr_t 2629 xfs_agi_verify( 2630 struct xfs_buf *bp) 2631 { 2632 struct xfs_mount *mp = bp->b_mount; 2633 struct xfs_agi *agi = bp->b_addr; 2634 xfs_failaddr_t fa; 2635 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); 2636 uint32_t agi_length = be32_to_cpu(agi->agi_length); 2637 int i; 2638 2639 if (xfs_has_crc(mp)) { 2640 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2641 return __this_address; 2642 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) 2643 return __this_address; 2644 } 2645 2646 /* 2647 * Validate the magic number of the agi block. 2648 */ 2649 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2650 return __this_address; 2651 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2652 return __this_address; 2653 2654 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); 2655 if (fa) 2656 return fa; 2657 2658 if (be32_to_cpu(agi->agi_level) < 1 || 2659 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) 2660 return __this_address; 2661 2662 if (xfs_has_finobt(mp) && 2663 (be32_to_cpu(agi->agi_free_level) < 1 || 2664 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) 2665 return __this_address; 2666 2667 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2668 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2669 continue; 2670 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2671 return __this_address; 2672 } 2673 2674 return NULL; 2675 } 2676 2677 static void 2678 xfs_agi_read_verify( 2679 struct xfs_buf *bp) 2680 { 2681 struct xfs_mount *mp = bp->b_mount; 2682 xfs_failaddr_t fa; 2683 2684 if (xfs_has_crc(mp) && 2685 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2686 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2687 else { 2688 fa = xfs_agi_verify(bp); 2689 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2690 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2691 } 2692 } 2693 2694 static void 2695 xfs_agi_write_verify( 2696 struct xfs_buf *bp) 2697 { 2698 struct xfs_mount *mp = bp->b_mount; 2699 struct xfs_buf_log_item *bip = bp->b_log_item; 2700 struct xfs_agi *agi = bp->b_addr; 2701 xfs_failaddr_t fa; 2702 2703 fa = xfs_agi_verify(bp); 2704 if (fa) { 2705 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2706 return; 2707 } 2708 2709 if (!xfs_has_crc(mp)) 2710 return; 2711 2712 if (bip) 2713 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2714 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2715 } 2716 2717 const struct xfs_buf_ops xfs_agi_buf_ops = { 2718 .name = "xfs_agi", 2719 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2720 .verify_read = xfs_agi_read_verify, 2721 .verify_write = xfs_agi_write_verify, 2722 .verify_struct = xfs_agi_verify, 2723 }; 2724 2725 /* 2726 * Read in the allocation group header (inode allocation section) 2727 */ 2728 int 2729 xfs_read_agi( 2730 struct xfs_perag *pag, 2731 struct xfs_trans *tp, 2732 xfs_buf_flags_t flags, 2733 struct xfs_buf **agibpp) 2734 { 2735 struct xfs_mount *mp = pag->pag_mount; 2736 int error; 2737 2738 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); 2739 2740 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2741 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), 2742 XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops); 2743 if (xfs_metadata_is_sick(error)) 2744 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2745 if (error) 2746 return error; 2747 if (tp) 2748 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); 2749 2750 xfs_buf_set_ref(*agibpp, XFS_AGI_REF); 2751 return 0; 2752 } 2753 2754 /* 2755 * Read in the agi and initialise the per-ag data. If the caller supplies a 2756 * @agibpp, return the locked AGI buffer to them, otherwise release it. 2757 */ 2758 int 2759 xfs_ialloc_read_agi( 2760 struct xfs_perag *pag, 2761 struct xfs_trans *tp, 2762 int flags, 2763 struct xfs_buf **agibpp) 2764 { 2765 struct xfs_buf *agibp; 2766 struct xfs_agi *agi; 2767 int error; 2768 2769 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); 2770 2771 error = xfs_read_agi(pag, tp, 2772 (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 2773 &agibp); 2774 if (error) 2775 return error; 2776 2777 agi = agibp->b_addr; 2778 if (!xfs_perag_initialised_agi(pag)) { 2779 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2780 pag->pagi_count = be32_to_cpu(agi->agi_count); 2781 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 2782 } 2783 2784 /* 2785 * It's possible for these to be out of sync if 2786 * we are in the middle of a forced shutdown. 2787 */ 2788 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2789 xfs_is_shutdown(pag->pag_mount)); 2790 if (agibpp) 2791 *agibpp = agibp; 2792 else 2793 xfs_trans_brelse(tp, agibp); 2794 return 0; 2795 } 2796 2797 /* How many inodes are backed by inode clusters ondisk? */ 2798 STATIC int 2799 xfs_ialloc_count_ondisk( 2800 struct xfs_btree_cur *cur, 2801 xfs_agino_t low, 2802 xfs_agino_t high, 2803 unsigned int *allocated) 2804 { 2805 struct xfs_inobt_rec_incore irec; 2806 unsigned int ret = 0; 2807 int has_record; 2808 int error; 2809 2810 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2811 if (error) 2812 return error; 2813 2814 while (has_record) { 2815 unsigned int i, hole_idx; 2816 2817 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2818 if (error) 2819 return error; 2820 if (irec.ir_startino > high) 2821 break; 2822 2823 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { 2824 if (irec.ir_startino + i < low) 2825 continue; 2826 if (irec.ir_startino + i > high) 2827 break; 2828 2829 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; 2830 if (!(irec.ir_holemask & (1U << hole_idx))) 2831 ret++; 2832 } 2833 2834 error = xfs_btree_increment(cur, 0, &has_record); 2835 if (error) 2836 return error; 2837 } 2838 2839 *allocated = ret; 2840 return 0; 2841 } 2842 2843 /* Is there an inode record covering a given extent? */ 2844 int 2845 xfs_ialloc_has_inodes_at_extent( 2846 struct xfs_btree_cur *cur, 2847 xfs_agblock_t bno, 2848 xfs_extlen_t len, 2849 enum xbtree_recpacking *outcome) 2850 { 2851 xfs_agino_t agino; 2852 xfs_agino_t last_agino; 2853 unsigned int allocated; 2854 int error; 2855 2856 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2857 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2858 2859 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); 2860 if (error) 2861 return error; 2862 2863 if (allocated == 0) 2864 *outcome = XBTREE_RECPACKING_EMPTY; 2865 else if (allocated == last_agino - agino + 1) 2866 *outcome = XBTREE_RECPACKING_FULL; 2867 else 2868 *outcome = XBTREE_RECPACKING_SPARSE; 2869 return 0; 2870 } 2871 2872 struct xfs_ialloc_count_inodes { 2873 xfs_agino_t count; 2874 xfs_agino_t freecount; 2875 }; 2876 2877 /* Record inode counts across all inobt records. */ 2878 STATIC int 2879 xfs_ialloc_count_inodes_rec( 2880 struct xfs_btree_cur *cur, 2881 const union xfs_btree_rec *rec, 2882 void *priv) 2883 { 2884 struct xfs_inobt_rec_incore irec; 2885 struct xfs_ialloc_count_inodes *ci = priv; 2886 xfs_failaddr_t fa; 2887 2888 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2889 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec); 2890 if (fa) 2891 return xfs_inobt_complain_bad_rec(cur, fa, &irec); 2892 2893 ci->count += irec.ir_count; 2894 ci->freecount += irec.ir_freecount; 2895 2896 return 0; 2897 } 2898 2899 /* Count allocated and free inodes under an inobt. */ 2900 int 2901 xfs_ialloc_count_inodes( 2902 struct xfs_btree_cur *cur, 2903 xfs_agino_t *count, 2904 xfs_agino_t *freecount) 2905 { 2906 struct xfs_ialloc_count_inodes ci = {0}; 2907 int error; 2908 2909 ASSERT(xfs_btree_is_ino(cur->bc_ops)); 2910 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2911 if (error) 2912 return error; 2913 2914 *count = ci.count; 2915 *freecount = ci.freecount; 2916 return 0; 2917 } 2918 2919 /* 2920 * Initialize inode-related geometry information. 2921 * 2922 * Compute the inode btree min and max levels and set maxicount. 2923 * 2924 * Set the inode cluster size. This may still be overridden by the file 2925 * system block size if it is larger than the chosen cluster size. 2926 * 2927 * For v5 filesystems, scale the cluster size with the inode size to keep a 2928 * constant ratio of inode per cluster buffer, but only if mkfs has set the 2929 * inode alignment value appropriately for larger cluster sizes. 2930 * 2931 * Then compute the inode cluster alignment information. 2932 */ 2933 void 2934 xfs_ialloc_setup_geometry( 2935 struct xfs_mount *mp) 2936 { 2937 struct xfs_sb *sbp = &mp->m_sb; 2938 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2939 uint64_t icount; 2940 uint inodes; 2941 2942 igeo->new_diflags2 = 0; 2943 if (xfs_has_bigtime(mp)) 2944 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; 2945 if (xfs_has_large_extent_counts(mp)) 2946 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; 2947 2948 /* Compute inode btree geometry. */ 2949 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 2950 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 2951 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 2952 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; 2953 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; 2954 2955 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 2956 sbp->sb_inopblock); 2957 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; 2958 2959 if (sbp->sb_spino_align) 2960 igeo->ialloc_min_blks = sbp->sb_spino_align; 2961 else 2962 igeo->ialloc_min_blks = igeo->ialloc_blks; 2963 2964 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ 2965 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2966 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, 2967 inodes); 2968 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); 2969 2970 /* 2971 * Set the maximum inode count for this filesystem, being careful not 2972 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular 2973 * users should never get here due to failing sb verification, but 2974 * certain users (xfs_db) need to be usable even with corrupt metadata. 2975 */ 2976 if (sbp->sb_imax_pct && igeo->ialloc_blks) { 2977 /* 2978 * Make sure the maximum inode count is a multiple 2979 * of the units we allocate inodes in. 2980 */ 2981 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 2982 do_div(icount, 100); 2983 do_div(icount, igeo->ialloc_blks); 2984 igeo->maxicount = XFS_FSB_TO_INO(mp, 2985 icount * igeo->ialloc_blks); 2986 } else { 2987 igeo->maxicount = 0; 2988 } 2989 2990 /* 2991 * Compute the desired size of an inode cluster buffer size, which 2992 * starts at 8K and (on v5 filesystems) scales up with larger inode 2993 * sizes. 2994 * 2995 * Preserve the desired inode cluster size because the sparse inodes 2996 * feature uses that desired size (not the actual size) to compute the 2997 * sparse inode alignment. The mount code validates this value, so we 2998 * cannot change the behavior. 2999 */ 3000 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; 3001 if (xfs_has_v3inodes(mp)) { 3002 int new_size = igeo->inode_cluster_size_raw; 3003 3004 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 3005 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 3006 igeo->inode_cluster_size_raw = new_size; 3007 } 3008 3009 /* Calculate inode cluster ratios. */ 3010 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) 3011 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, 3012 igeo->inode_cluster_size_raw); 3013 else 3014 igeo->blocks_per_cluster = 1; 3015 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); 3016 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); 3017 3018 /* Calculate inode cluster alignment. */ 3019 if (xfs_has_align(mp) && 3020 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) 3021 igeo->cluster_align = mp->m_sb.sb_inoalignmt; 3022 else 3023 igeo->cluster_align = 1; 3024 igeo->inoalign_mask = igeo->cluster_align - 1; 3025 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); 3026 3027 /* 3028 * If we are using stripe alignment, check whether 3029 * the stripe unit is a multiple of the inode alignment 3030 */ 3031 if (mp->m_dalign && igeo->inoalign_mask && 3032 !(mp->m_dalign & igeo->inoalign_mask)) 3033 igeo->ialloc_align = mp->m_dalign; 3034 else 3035 igeo->ialloc_align = 0; 3036 } 3037 3038 /* Compute the location of the root directory inode that is laid out by mkfs. */ 3039 xfs_ino_t 3040 xfs_ialloc_calc_rootino( 3041 struct xfs_mount *mp, 3042 int sunit) 3043 { 3044 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3045 xfs_agblock_t first_bno; 3046 3047 /* 3048 * Pre-calculate the geometry of AG 0. We know what it looks like 3049 * because libxfs knows how to create allocation groups now. 3050 * 3051 * first_bno is the first block in which mkfs could possibly have 3052 * allocated the root directory inode, once we factor in the metadata 3053 * that mkfs formats before it. Namely, the four AG headers... 3054 */ 3055 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); 3056 3057 /* ...the two free space btree roots... */ 3058 first_bno += 2; 3059 3060 /* ...the inode btree root... */ 3061 first_bno += 1; 3062 3063 /* ...the initial AGFL... */ 3064 first_bno += xfs_alloc_min_freelist(mp, NULL); 3065 3066 /* ...the free inode btree root... */ 3067 if (xfs_has_finobt(mp)) 3068 first_bno++; 3069 3070 /* ...the reverse mapping btree root... */ 3071 if (xfs_has_rmapbt(mp)) 3072 first_bno++; 3073 3074 /* ...the reference count btree... */ 3075 if (xfs_has_reflink(mp)) 3076 first_bno++; 3077 3078 /* 3079 * ...and the log, if it is allocated in the first allocation group. 3080 * 3081 * This can happen with filesystems that only have a single 3082 * allocation group, or very odd geometries created by old mkfs 3083 * versions on very small filesystems. 3084 */ 3085 if (xfs_ag_contains_log(mp, 0)) 3086 first_bno += mp->m_sb.sb_logblocks; 3087 3088 /* 3089 * Now round first_bno up to whatever allocation alignment is given 3090 * by the filesystem or was passed in. 3091 */ 3092 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) 3093 first_bno = roundup(first_bno, sunit); 3094 else if (xfs_has_align(mp) && 3095 mp->m_sb.sb_inoalignmt > 1) 3096 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); 3097 3098 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); 3099 } 3100 3101 /* 3102 * Ensure there are not sparse inode clusters that cross the new EOAG. 3103 * 3104 * This is a no-op for non-spinode filesystems since clusters are always fully 3105 * allocated and checking the bnobt suffices. However, a spinode filesystem 3106 * could have a record where the upper inodes are free blocks. If those blocks 3107 * were removed from the filesystem, the inode record would extend beyond EOAG, 3108 * which will be flagged as corruption. 3109 */ 3110 int 3111 xfs_ialloc_check_shrink( 3112 struct xfs_perag *pag, 3113 struct xfs_trans *tp, 3114 struct xfs_buf *agibp, 3115 xfs_agblock_t new_length) 3116 { 3117 struct xfs_inobt_rec_incore rec; 3118 struct xfs_btree_cur *cur; 3119 xfs_agino_t agino; 3120 int has; 3121 int error; 3122 3123 if (!xfs_has_sparseinodes(pag->pag_mount)) 3124 return 0; 3125 3126 cur = xfs_inobt_init_cursor(pag, tp, agibp); 3127 3128 /* Look up the inobt record that would correspond to the new EOFS. */ 3129 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); 3130 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); 3131 if (error || !has) 3132 goto out; 3133 3134 error = xfs_inobt_get_rec(cur, &rec, &has); 3135 if (error) 3136 goto out; 3137 3138 if (!has) { 3139 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT); 3140 error = -EFSCORRUPTED; 3141 goto out; 3142 } 3143 3144 /* If the record covers inodes that would be beyond EOFS, bail out. */ 3145 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { 3146 error = -ENOSPC; 3147 goto out; 3148 } 3149 out: 3150 xfs_btree_del_cursor(cur, error); 3151 return error; 3152 } 3153