1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_bmap.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_icreate_item.h" 25 #include "xfs_icache.h" 26 #include "xfs_trace.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap.h" 29 #include "xfs_ag.h" 30 31 /* 32 * Lookup a record by ino in the btree given by cur. 33 */ 34 int /* error */ 35 xfs_inobt_lookup( 36 struct xfs_btree_cur *cur, /* btree cursor */ 37 xfs_agino_t ino, /* starting inode of chunk */ 38 xfs_lookup_t dir, /* <=, >=, == */ 39 int *stat) /* success/failure */ 40 { 41 cur->bc_rec.i.ir_startino = ino; 42 cur->bc_rec.i.ir_holemask = 0; 43 cur->bc_rec.i.ir_count = 0; 44 cur->bc_rec.i.ir_freecount = 0; 45 cur->bc_rec.i.ir_free = 0; 46 return xfs_btree_lookup(cur, dir, stat); 47 } 48 49 /* 50 * Update the record referred to by cur to the value given. 51 * This either works (return 0) or gets an EFSCORRUPTED error. 52 */ 53 STATIC int /* error */ 54 xfs_inobt_update( 55 struct xfs_btree_cur *cur, /* btree cursor */ 56 xfs_inobt_rec_incore_t *irec) /* btree record */ 57 { 58 union xfs_btree_rec rec; 59 60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 61 if (xfs_has_sparseinodes(cur->bc_mp)) { 62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 63 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 65 } else { 66 /* ir_holemask/ir_count not supported on-disk */ 67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 68 } 69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 70 return xfs_btree_update(cur, &rec); 71 } 72 73 /* Convert on-disk btree record to incore inobt record. */ 74 void 75 xfs_inobt_btrec_to_irec( 76 struct xfs_mount *mp, 77 const union xfs_btree_rec *rec, 78 struct xfs_inobt_rec_incore *irec) 79 { 80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 81 if (xfs_has_sparseinodes(mp)) { 82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 83 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 85 } else { 86 /* 87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 88 * values for full inode chunks. 89 */ 90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 91 irec->ir_count = XFS_INODES_PER_CHUNK; 92 irec->ir_freecount = 93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 94 } 95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 96 } 97 98 /* Simple checks for inode records. */ 99 xfs_failaddr_t 100 xfs_inobt_check_irec( 101 struct xfs_btree_cur *cur, 102 const struct xfs_inobt_rec_incore *irec) 103 { 104 uint64_t realfree; 105 106 /* Record has to be properly aligned within the AG. */ 107 if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino)) 108 return __this_address; 109 if (!xfs_verify_agino(cur->bc_ag.pag, 110 irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) 111 return __this_address; 112 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 113 irec->ir_count > XFS_INODES_PER_CHUNK) 114 return __this_address; 115 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 116 return __this_address; 117 118 /* if there are no holes, return the first available offset */ 119 if (!xfs_inobt_issparse(irec->ir_holemask)) 120 realfree = irec->ir_free; 121 else 122 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); 123 if (hweight64(realfree) != irec->ir_freecount) 124 return __this_address; 125 126 return NULL; 127 } 128 129 static inline int 130 xfs_inobt_complain_bad_rec( 131 struct xfs_btree_cur *cur, 132 xfs_failaddr_t fa, 133 const struct xfs_inobt_rec_incore *irec) 134 { 135 struct xfs_mount *mp = cur->bc_mp; 136 137 xfs_warn(mp, 138 "%s Inode BTree record corruption in AG %d detected at %pS!", 139 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", 140 cur->bc_ag.pag->pag_agno, fa); 141 xfs_warn(mp, 142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 143 irec->ir_startino, irec->ir_count, irec->ir_freecount, 144 irec->ir_free, irec->ir_holemask); 145 return -EFSCORRUPTED; 146 } 147 148 /* 149 * Get the data from the pointed-to record. 150 */ 151 int 152 xfs_inobt_get_rec( 153 struct xfs_btree_cur *cur, 154 struct xfs_inobt_rec_incore *irec, 155 int *stat) 156 { 157 struct xfs_mount *mp = cur->bc_mp; 158 union xfs_btree_rec *rec; 159 xfs_failaddr_t fa; 160 int error; 161 162 error = xfs_btree_get_rec(cur, &rec, stat); 163 if (error || *stat == 0) 164 return error; 165 166 xfs_inobt_btrec_to_irec(mp, rec, irec); 167 fa = xfs_inobt_check_irec(cur, irec); 168 if (fa) 169 return xfs_inobt_complain_bad_rec(cur, fa, irec); 170 171 return 0; 172 } 173 174 /* 175 * Insert a single inobt record. Cursor must already point to desired location. 176 */ 177 int 178 xfs_inobt_insert_rec( 179 struct xfs_btree_cur *cur, 180 uint16_t holemask, 181 uint8_t count, 182 int32_t freecount, 183 xfs_inofree_t free, 184 int *stat) 185 { 186 cur->bc_rec.i.ir_holemask = holemask; 187 cur->bc_rec.i.ir_count = count; 188 cur->bc_rec.i.ir_freecount = freecount; 189 cur->bc_rec.i.ir_free = free; 190 return xfs_btree_insert(cur, stat); 191 } 192 193 /* 194 * Insert records describing a newly allocated inode chunk into the inobt. 195 */ 196 STATIC int 197 xfs_inobt_insert( 198 struct xfs_perag *pag, 199 struct xfs_trans *tp, 200 struct xfs_buf *agbp, 201 xfs_agino_t newino, 202 xfs_agino_t newlen, 203 xfs_btnum_t btnum) 204 { 205 struct xfs_btree_cur *cur; 206 xfs_agino_t thisino; 207 int i; 208 int error; 209 210 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum); 211 212 for (thisino = newino; 213 thisino < newino + newlen; 214 thisino += XFS_INODES_PER_CHUNK) { 215 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 216 if (error) { 217 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 218 return error; 219 } 220 ASSERT(i == 0); 221 222 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 223 XFS_INODES_PER_CHUNK, 224 XFS_INODES_PER_CHUNK, 225 XFS_INOBT_ALL_FREE, &i); 226 if (error) { 227 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 228 return error; 229 } 230 ASSERT(i == 1); 231 } 232 233 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 234 235 return 0; 236 } 237 238 /* 239 * Verify that the number of free inodes in the AGI is correct. 240 */ 241 #ifdef DEBUG 242 static int 243 xfs_check_agi_freecount( 244 struct xfs_btree_cur *cur) 245 { 246 if (cur->bc_nlevels == 1) { 247 xfs_inobt_rec_incore_t rec; 248 int freecount = 0; 249 int error; 250 int i; 251 252 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 253 if (error) 254 return error; 255 256 do { 257 error = xfs_inobt_get_rec(cur, &rec, &i); 258 if (error) 259 return error; 260 261 if (i) { 262 freecount += rec.ir_freecount; 263 error = xfs_btree_increment(cur, 0, &i); 264 if (error) 265 return error; 266 } 267 } while (i == 1); 268 269 if (!xfs_is_shutdown(cur->bc_mp)) 270 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); 271 } 272 return 0; 273 } 274 #else 275 #define xfs_check_agi_freecount(cur) 0 276 #endif 277 278 /* 279 * Initialise a new set of inodes. When called without a transaction context 280 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 281 * than logging them (which in a transaction context puts them into the AIL 282 * for writeback rather than the xfsbufd queue). 283 */ 284 int 285 xfs_ialloc_inode_init( 286 struct xfs_mount *mp, 287 struct xfs_trans *tp, 288 struct list_head *buffer_list, 289 int icount, 290 xfs_agnumber_t agno, 291 xfs_agblock_t agbno, 292 xfs_agblock_t length, 293 unsigned int gen) 294 { 295 struct xfs_buf *fbuf; 296 struct xfs_dinode *free; 297 int nbufs; 298 int version; 299 int i, j; 300 xfs_daddr_t d; 301 xfs_ino_t ino = 0; 302 int error; 303 304 /* 305 * Loop over the new block(s), filling in the inodes. For small block 306 * sizes, manipulate the inodes in buffers which are multiples of the 307 * blocks size. 308 */ 309 nbufs = length / M_IGEO(mp)->blocks_per_cluster; 310 311 /* 312 * Figure out what version number to use in the inodes we create. If 313 * the superblock version has caught up to the one that supports the new 314 * inode format, then use the new inode version. Otherwise use the old 315 * version so that old kernels will continue to be able to use the file 316 * system. 317 * 318 * For v3 inodes, we also need to write the inode number into the inode, 319 * so calculate the first inode number of the chunk here as 320 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 321 * across multiple filesystem blocks (such as a cluster) and so cannot 322 * be used in the cluster buffer loop below. 323 * 324 * Further, because we are writing the inode directly into the buffer 325 * and calculating a CRC on the entire inode, we have ot log the entire 326 * inode so that the entire range the CRC covers is present in the log. 327 * That means for v3 inode we log the entire buffer rather than just the 328 * inode cores. 329 */ 330 if (xfs_has_v3inodes(mp)) { 331 version = 3; 332 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 333 334 /* 335 * log the initialisation that is about to take place as an 336 * logical operation. This means the transaction does not 337 * need to log the physical changes to the inode buffers as log 338 * recovery will know what initialisation is actually needed. 339 * Hence we only need to log the buffers as "ordered" buffers so 340 * they track in the AIL as if they were physically logged. 341 */ 342 if (tp) 343 xfs_icreate_log(tp, agno, agbno, icount, 344 mp->m_sb.sb_inodesize, length, gen); 345 } else 346 version = 2; 347 348 for (j = 0; j < nbufs; j++) { 349 /* 350 * Get the block. 351 */ 352 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 353 (j * M_IGEO(mp)->blocks_per_cluster)); 354 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 355 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, 356 XBF_UNMAPPED, &fbuf); 357 if (error) 358 return error; 359 360 /* Initialize the inode buffers and log them appropriately. */ 361 fbuf->b_ops = &xfs_inode_buf_ops; 362 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 363 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { 364 int ioffset = i << mp->m_sb.sb_inodelog; 365 366 free = xfs_make_iptr(mp, fbuf, i); 367 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 368 free->di_version = version; 369 free->di_gen = cpu_to_be32(gen); 370 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 371 372 if (version == 3) { 373 free->di_ino = cpu_to_be64(ino); 374 ino++; 375 uuid_copy(&free->di_uuid, 376 &mp->m_sb.sb_meta_uuid); 377 xfs_dinode_calc_crc(mp, free); 378 } else if (tp) { 379 /* just log the inode core */ 380 xfs_trans_log_buf(tp, fbuf, ioffset, 381 ioffset + XFS_DINODE_SIZE(mp) - 1); 382 } 383 } 384 385 if (tp) { 386 /* 387 * Mark the buffer as an inode allocation buffer so it 388 * sticks in AIL at the point of this allocation 389 * transaction. This ensures the they are on disk before 390 * the tail of the log can be moved past this 391 * transaction (i.e. by preventing relogging from moving 392 * it forward in the log). 393 */ 394 xfs_trans_inode_alloc_buf(tp, fbuf); 395 if (version == 3) { 396 /* 397 * Mark the buffer as ordered so that they are 398 * not physically logged in the transaction but 399 * still tracked in the AIL as part of the 400 * transaction and pin the log appropriately. 401 */ 402 xfs_trans_ordered_buf(tp, fbuf); 403 } 404 } else { 405 fbuf->b_flags |= XBF_DONE; 406 xfs_buf_delwri_queue(fbuf, buffer_list); 407 xfs_buf_relse(fbuf); 408 } 409 } 410 return 0; 411 } 412 413 /* 414 * Align startino and allocmask for a recently allocated sparse chunk such that 415 * they are fit for insertion (or merge) into the on-disk inode btrees. 416 * 417 * Background: 418 * 419 * When enabled, sparse inode support increases the inode alignment from cluster 420 * size to inode chunk size. This means that the minimum range between two 421 * non-adjacent inode records in the inobt is large enough for a full inode 422 * record. This allows for cluster sized, cluster aligned block allocation 423 * without need to worry about whether the resulting inode record overlaps with 424 * another record in the tree. Without this basic rule, we would have to deal 425 * with the consequences of overlap by potentially undoing recent allocations in 426 * the inode allocation codepath. 427 * 428 * Because of this alignment rule (which is enforced on mount), there are two 429 * inobt possibilities for newly allocated sparse chunks. One is that the 430 * aligned inode record for the chunk covers a range of inodes not already 431 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 432 * other is that a record already exists at the aligned startino that considers 433 * the newly allocated range as sparse. In the latter case, record content is 434 * merged in hope that sparse inode chunks fill to full chunks over time. 435 */ 436 STATIC void 437 xfs_align_sparse_ino( 438 struct xfs_mount *mp, 439 xfs_agino_t *startino, 440 uint16_t *allocmask) 441 { 442 xfs_agblock_t agbno; 443 xfs_agblock_t mod; 444 int offset; 445 446 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 447 mod = agbno % mp->m_sb.sb_inoalignmt; 448 if (!mod) 449 return; 450 451 /* calculate the inode offset and align startino */ 452 offset = XFS_AGB_TO_AGINO(mp, mod); 453 *startino -= offset; 454 455 /* 456 * Since startino has been aligned down, left shift allocmask such that 457 * it continues to represent the same physical inodes relative to the 458 * new startino. 459 */ 460 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 461 } 462 463 /* 464 * Determine whether the source inode record can merge into the target. Both 465 * records must be sparse, the inode ranges must match and there must be no 466 * allocation overlap between the records. 467 */ 468 STATIC bool 469 __xfs_inobt_can_merge( 470 struct xfs_inobt_rec_incore *trec, /* tgt record */ 471 struct xfs_inobt_rec_incore *srec) /* src record */ 472 { 473 uint64_t talloc; 474 uint64_t salloc; 475 476 /* records must cover the same inode range */ 477 if (trec->ir_startino != srec->ir_startino) 478 return false; 479 480 /* both records must be sparse */ 481 if (!xfs_inobt_issparse(trec->ir_holemask) || 482 !xfs_inobt_issparse(srec->ir_holemask)) 483 return false; 484 485 /* both records must track some inodes */ 486 if (!trec->ir_count || !srec->ir_count) 487 return false; 488 489 /* can't exceed capacity of a full record */ 490 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 491 return false; 492 493 /* verify there is no allocation overlap */ 494 talloc = xfs_inobt_irec_to_allocmask(trec); 495 salloc = xfs_inobt_irec_to_allocmask(srec); 496 if (talloc & salloc) 497 return false; 498 499 return true; 500 } 501 502 /* 503 * Merge the source inode record into the target. The caller must call 504 * __xfs_inobt_can_merge() to ensure the merge is valid. 505 */ 506 STATIC void 507 __xfs_inobt_rec_merge( 508 struct xfs_inobt_rec_incore *trec, /* target */ 509 struct xfs_inobt_rec_incore *srec) /* src */ 510 { 511 ASSERT(trec->ir_startino == srec->ir_startino); 512 513 /* combine the counts */ 514 trec->ir_count += srec->ir_count; 515 trec->ir_freecount += srec->ir_freecount; 516 517 /* 518 * Merge the holemask and free mask. For both fields, 0 bits refer to 519 * allocated inodes. We combine the allocated ranges with bitwise AND. 520 */ 521 trec->ir_holemask &= srec->ir_holemask; 522 trec->ir_free &= srec->ir_free; 523 } 524 525 /* 526 * Insert a new sparse inode chunk into the associated inode btree. The inode 527 * record for the sparse chunk is pre-aligned to a startino that should match 528 * any pre-existing sparse inode record in the tree. This allows sparse chunks 529 * to fill over time. 530 * 531 * This function supports two modes of handling preexisting records depending on 532 * the merge flag. If merge is true, the provided record is merged with the 533 * existing record and updated in place. The merged record is returned in nrec. 534 * If merge is false, an existing record is replaced with the provided record. 535 * If no preexisting record exists, the provided record is always inserted. 536 * 537 * It is considered corruption if a merge is requested and not possible. Given 538 * the sparse inode alignment constraints, this should never happen. 539 */ 540 STATIC int 541 xfs_inobt_insert_sprec( 542 struct xfs_perag *pag, 543 struct xfs_trans *tp, 544 struct xfs_buf *agbp, 545 int btnum, 546 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 547 bool merge) /* merge or replace */ 548 { 549 struct xfs_mount *mp = pag->pag_mount; 550 struct xfs_btree_cur *cur; 551 int error; 552 int i; 553 struct xfs_inobt_rec_incore rec; 554 555 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum); 556 557 /* the new record is pre-aligned so we know where to look */ 558 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 559 if (error) 560 goto error; 561 /* if nothing there, insert a new record and return */ 562 if (i == 0) { 563 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 564 nrec->ir_count, nrec->ir_freecount, 565 nrec->ir_free, &i); 566 if (error) 567 goto error; 568 if (XFS_IS_CORRUPT(mp, i != 1)) { 569 error = -EFSCORRUPTED; 570 goto error; 571 } 572 573 goto out; 574 } 575 576 /* 577 * A record exists at this startino. Merge or replace the record 578 * depending on what we've been asked to do. 579 */ 580 if (merge) { 581 error = xfs_inobt_get_rec(cur, &rec, &i); 582 if (error) 583 goto error; 584 if (XFS_IS_CORRUPT(mp, i != 1)) { 585 error = -EFSCORRUPTED; 586 goto error; 587 } 588 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { 589 error = -EFSCORRUPTED; 590 goto error; 591 } 592 593 /* 594 * This should never fail. If we have coexisting records that 595 * cannot merge, something is seriously wrong. 596 */ 597 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { 598 error = -EFSCORRUPTED; 599 goto error; 600 } 601 602 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, 603 rec.ir_holemask, nrec->ir_startino, 604 nrec->ir_holemask); 605 606 /* merge to nrec to output the updated record */ 607 __xfs_inobt_rec_merge(nrec, &rec); 608 609 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, 610 nrec->ir_holemask); 611 612 error = xfs_inobt_rec_check_count(mp, nrec); 613 if (error) 614 goto error; 615 } 616 617 error = xfs_inobt_update(cur, nrec); 618 if (error) 619 goto error; 620 621 out: 622 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 623 return 0; 624 error: 625 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 626 return error; 627 } 628 629 /* 630 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if 631 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so 632 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum 633 * inode count threshold, or the usual negative error code for other errors. 634 */ 635 STATIC int 636 xfs_ialloc_ag_alloc( 637 struct xfs_perag *pag, 638 struct xfs_trans *tp, 639 struct xfs_buf *agbp) 640 { 641 struct xfs_agi *agi; 642 struct xfs_alloc_arg args; 643 int error; 644 xfs_agino_t newino; /* new first inode's number */ 645 xfs_agino_t newlen; /* new number of inodes */ 646 int isaligned = 0; /* inode allocation at stripe */ 647 /* unit boundary */ 648 /* init. to full chunk */ 649 struct xfs_inobt_rec_incore rec; 650 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); 651 uint16_t allocmask = (uint16_t) -1; 652 int do_sparse = 0; 653 654 memset(&args, 0, sizeof(args)); 655 args.tp = tp; 656 args.mp = tp->t_mountp; 657 args.fsbno = NULLFSBLOCK; 658 args.oinfo = XFS_RMAP_OINFO_INODES; 659 args.pag = pag; 660 661 #ifdef DEBUG 662 /* randomly do sparse inode allocations */ 663 if (xfs_has_sparseinodes(tp->t_mountp) && 664 igeo->ialloc_min_blks < igeo->ialloc_blks) 665 do_sparse = get_random_u32_below(2); 666 #endif 667 668 /* 669 * Locking will ensure that we don't have two callers in here 670 * at one time. 671 */ 672 newlen = igeo->ialloc_inos; 673 if (igeo->maxicount && 674 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 675 igeo->maxicount) 676 return -ENOSPC; 677 args.minlen = args.maxlen = igeo->ialloc_blks; 678 /* 679 * First try to allocate inodes contiguous with the last-allocated 680 * chunk of inodes. If the filesystem is striped, this will fill 681 * an entire stripe unit with inodes. 682 */ 683 agi = agbp->b_addr; 684 newino = be32_to_cpu(agi->agi_newino); 685 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 686 igeo->ialloc_blks; 687 if (do_sparse) 688 goto sparse_alloc; 689 if (likely(newino != NULLAGINO && 690 (args.agbno < be32_to_cpu(agi->agi_length)))) { 691 args.prod = 1; 692 693 /* 694 * We need to take into account alignment here to ensure that 695 * we don't modify the free list if we fail to have an exact 696 * block. If we don't have an exact match, and every oher 697 * attempt allocation attempt fails, we'll end up cancelling 698 * a dirty transaction and shutting down. 699 * 700 * For an exact allocation, alignment must be 1, 701 * however we need to take cluster alignment into account when 702 * fixing up the freelist. Use the minalignslop field to 703 * indicate that extra blocks might be required for alignment, 704 * but not to use them in the actual exact allocation. 705 */ 706 args.alignment = 1; 707 args.minalignslop = igeo->cluster_align - 1; 708 709 /* Allow space for the inode btree to split. */ 710 args.minleft = igeo->inobt_maxlevels; 711 error = xfs_alloc_vextent_exact_bno(&args, 712 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 713 args.agbno)); 714 if (error) 715 return error; 716 717 /* 718 * This request might have dirtied the transaction if the AG can 719 * satisfy the request, but the exact block was not available. 720 * If the allocation did fail, subsequent requests will relax 721 * the exact agbno requirement and increase the alignment 722 * instead. It is critical that the total size of the request 723 * (len + alignment + slop) does not increase from this point 724 * on, so reset minalignslop to ensure it is not included in 725 * subsequent requests. 726 */ 727 args.minalignslop = 0; 728 } 729 730 if (unlikely(args.fsbno == NULLFSBLOCK)) { 731 /* 732 * Set the alignment for the allocation. 733 * If stripe alignment is turned on then align at stripe unit 734 * boundary. 735 * If the cluster size is smaller than a filesystem block 736 * then we're doing I/O for inodes in filesystem block size 737 * pieces, so don't need alignment anyway. 738 */ 739 isaligned = 0; 740 if (igeo->ialloc_align) { 741 ASSERT(!xfs_has_noalign(args.mp)); 742 args.alignment = args.mp->m_dalign; 743 isaligned = 1; 744 } else 745 args.alignment = igeo->cluster_align; 746 /* 747 * Allocate a fixed-size extent of inodes. 748 */ 749 args.prod = 1; 750 /* 751 * Allow space for the inode btree to split. 752 */ 753 args.minleft = igeo->inobt_maxlevels; 754 error = xfs_alloc_vextent_near_bno(&args, 755 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 756 be32_to_cpu(agi->agi_root))); 757 if (error) 758 return error; 759 } 760 761 /* 762 * If stripe alignment is turned on, then try again with cluster 763 * alignment. 764 */ 765 if (isaligned && args.fsbno == NULLFSBLOCK) { 766 args.alignment = igeo->cluster_align; 767 error = xfs_alloc_vextent_near_bno(&args, 768 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 769 be32_to_cpu(agi->agi_root))); 770 if (error) 771 return error; 772 } 773 774 /* 775 * Finally, try a sparse allocation if the filesystem supports it and 776 * the sparse allocation length is smaller than a full chunk. 777 */ 778 if (xfs_has_sparseinodes(args.mp) && 779 igeo->ialloc_min_blks < igeo->ialloc_blks && 780 args.fsbno == NULLFSBLOCK) { 781 sparse_alloc: 782 args.alignment = args.mp->m_sb.sb_spino_align; 783 args.prod = 1; 784 785 args.minlen = igeo->ialloc_min_blks; 786 args.maxlen = args.minlen; 787 788 /* 789 * The inode record will be aligned to full chunk size. We must 790 * prevent sparse allocation from AG boundaries that result in 791 * invalid inode records, such as records that start at agbno 0 792 * or extend beyond the AG. 793 * 794 * Set min agbno to the first aligned, non-zero agbno and max to 795 * the last aligned agbno that is at least one full chunk from 796 * the end of the AG. 797 */ 798 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 799 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 800 args.mp->m_sb.sb_inoalignmt) - 801 igeo->ialloc_blks; 802 803 error = xfs_alloc_vextent_near_bno(&args, 804 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 805 be32_to_cpu(agi->agi_root))); 806 if (error) 807 return error; 808 809 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 810 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 811 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 812 } 813 814 if (args.fsbno == NULLFSBLOCK) 815 return -EAGAIN; 816 817 ASSERT(args.len == args.minlen); 818 819 /* 820 * Stamp and write the inode buffers. 821 * 822 * Seed the new inode cluster with a random generation number. This 823 * prevents short-term reuse of generation numbers if a chunk is 824 * freed and then immediately reallocated. We use random numbers 825 * rather than a linear progression to prevent the next generation 826 * number from being easily guessable. 827 */ 828 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, 829 args.agbno, args.len, get_random_u32()); 830 831 if (error) 832 return error; 833 /* 834 * Convert the results. 835 */ 836 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 837 838 if (xfs_inobt_issparse(~allocmask)) { 839 /* 840 * We've allocated a sparse chunk. Align the startino and mask. 841 */ 842 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 843 844 rec.ir_startino = newino; 845 rec.ir_holemask = ~allocmask; 846 rec.ir_count = newlen; 847 rec.ir_freecount = newlen; 848 rec.ir_free = XFS_INOBT_ALL_FREE; 849 850 /* 851 * Insert the sparse record into the inobt and allow for a merge 852 * if necessary. If a merge does occur, rec is updated to the 853 * merged record. 854 */ 855 error = xfs_inobt_insert_sprec(pag, tp, agbp, 856 XFS_BTNUM_INO, &rec, true); 857 if (error == -EFSCORRUPTED) { 858 xfs_alert(args.mp, 859 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 860 XFS_AGINO_TO_INO(args.mp, pag->pag_agno, 861 rec.ir_startino), 862 rec.ir_holemask, rec.ir_count); 863 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 864 } 865 if (error) 866 return error; 867 868 /* 869 * We can't merge the part we've just allocated as for the inobt 870 * due to finobt semantics. The original record may or may not 871 * exist independent of whether physical inodes exist in this 872 * sparse chunk. 873 * 874 * We must update the finobt record based on the inobt record. 875 * rec contains the fully merged and up to date inobt record 876 * from the previous call. Set merge false to replace any 877 * existing record with this one. 878 */ 879 if (xfs_has_finobt(args.mp)) { 880 error = xfs_inobt_insert_sprec(pag, tp, agbp, 881 XFS_BTNUM_FINO, &rec, false); 882 if (error) 883 return error; 884 } 885 } else { 886 /* full chunk - insert new records to both btrees */ 887 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, 888 XFS_BTNUM_INO); 889 if (error) 890 return error; 891 892 if (xfs_has_finobt(args.mp)) { 893 error = xfs_inobt_insert(pag, tp, agbp, newino, 894 newlen, XFS_BTNUM_FINO); 895 if (error) 896 return error; 897 } 898 } 899 900 /* 901 * Update AGI counts and newino. 902 */ 903 be32_add_cpu(&agi->agi_count, newlen); 904 be32_add_cpu(&agi->agi_freecount, newlen); 905 pag->pagi_freecount += newlen; 906 pag->pagi_count += newlen; 907 agi->agi_newino = cpu_to_be32(newino); 908 909 /* 910 * Log allocation group header fields 911 */ 912 xfs_ialloc_log_agi(tp, agbp, 913 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 914 /* 915 * Modify/log superblock values for inode count and inode free count. 916 */ 917 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 918 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 919 return 0; 920 } 921 922 /* 923 * Try to retrieve the next record to the left/right from the current one. 924 */ 925 STATIC int 926 xfs_ialloc_next_rec( 927 struct xfs_btree_cur *cur, 928 xfs_inobt_rec_incore_t *rec, 929 int *done, 930 int left) 931 { 932 int error; 933 int i; 934 935 if (left) 936 error = xfs_btree_decrement(cur, 0, &i); 937 else 938 error = xfs_btree_increment(cur, 0, &i); 939 940 if (error) 941 return error; 942 *done = !i; 943 if (i) { 944 error = xfs_inobt_get_rec(cur, rec, &i); 945 if (error) 946 return error; 947 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 948 return -EFSCORRUPTED; 949 } 950 951 return 0; 952 } 953 954 STATIC int 955 xfs_ialloc_get_rec( 956 struct xfs_btree_cur *cur, 957 xfs_agino_t agino, 958 xfs_inobt_rec_incore_t *rec, 959 int *done) 960 { 961 int error; 962 int i; 963 964 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 965 if (error) 966 return error; 967 *done = !i; 968 if (i) { 969 error = xfs_inobt_get_rec(cur, rec, &i); 970 if (error) 971 return error; 972 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 973 return -EFSCORRUPTED; 974 } 975 976 return 0; 977 } 978 979 /* 980 * Return the offset of the first free inode in the record. If the inode chunk 981 * is sparsely allocated, we convert the record holemask to inode granularity 982 * and mask off the unallocated regions from the inode free mask. 983 */ 984 STATIC int 985 xfs_inobt_first_free_inode( 986 struct xfs_inobt_rec_incore *rec) 987 { 988 xfs_inofree_t realfree; 989 990 /* if there are no holes, return the first available offset */ 991 if (!xfs_inobt_issparse(rec->ir_holemask)) 992 return xfs_lowbit64(rec->ir_free); 993 994 realfree = xfs_inobt_irec_to_allocmask(rec); 995 realfree &= rec->ir_free; 996 997 return xfs_lowbit64(realfree); 998 } 999 1000 /* 1001 * Allocate an inode using the inobt-only algorithm. 1002 */ 1003 STATIC int 1004 xfs_dialloc_ag_inobt( 1005 struct xfs_perag *pag, 1006 struct xfs_trans *tp, 1007 struct xfs_buf *agbp, 1008 xfs_ino_t parent, 1009 xfs_ino_t *inop) 1010 { 1011 struct xfs_mount *mp = tp->t_mountp; 1012 struct xfs_agi *agi = agbp->b_addr; 1013 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1014 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1015 struct xfs_btree_cur *cur, *tcur; 1016 struct xfs_inobt_rec_incore rec, trec; 1017 xfs_ino_t ino; 1018 int error; 1019 int offset; 1020 int i, j; 1021 int searchdistance = 10; 1022 1023 ASSERT(xfs_perag_initialised_agi(pag)); 1024 ASSERT(xfs_perag_allows_inodes(pag)); 1025 ASSERT(pag->pagi_freecount > 0); 1026 1027 restart_pagno: 1028 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); 1029 /* 1030 * If pagino is 0 (this is the root inode allocation) use newino. 1031 * This must work because we've just allocated some. 1032 */ 1033 if (!pagino) 1034 pagino = be32_to_cpu(agi->agi_newino); 1035 1036 error = xfs_check_agi_freecount(cur); 1037 if (error) 1038 goto error0; 1039 1040 /* 1041 * If in the same AG as the parent, try to get near the parent. 1042 */ 1043 if (pagno == pag->pag_agno) { 1044 int doneleft; /* done, to the left */ 1045 int doneright; /* done, to the right */ 1046 1047 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1048 if (error) 1049 goto error0; 1050 if (XFS_IS_CORRUPT(mp, i != 1)) { 1051 error = -EFSCORRUPTED; 1052 goto error0; 1053 } 1054 1055 error = xfs_inobt_get_rec(cur, &rec, &j); 1056 if (error) 1057 goto error0; 1058 if (XFS_IS_CORRUPT(mp, j != 1)) { 1059 error = -EFSCORRUPTED; 1060 goto error0; 1061 } 1062 1063 if (rec.ir_freecount > 0) { 1064 /* 1065 * Found a free inode in the same chunk 1066 * as the parent, done. 1067 */ 1068 goto alloc_inode; 1069 } 1070 1071 1072 /* 1073 * In the same AG as parent, but parent's chunk is full. 1074 */ 1075 1076 /* duplicate the cursor, search left & right simultaneously */ 1077 error = xfs_btree_dup_cursor(cur, &tcur); 1078 if (error) 1079 goto error0; 1080 1081 /* 1082 * Skip to last blocks looked up if same parent inode. 1083 */ 1084 if (pagino != NULLAGINO && 1085 pag->pagl_pagino == pagino && 1086 pag->pagl_leftrec != NULLAGINO && 1087 pag->pagl_rightrec != NULLAGINO) { 1088 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1089 &trec, &doneleft); 1090 if (error) 1091 goto error1; 1092 1093 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1094 &rec, &doneright); 1095 if (error) 1096 goto error1; 1097 } else { 1098 /* search left with tcur, back up 1 record */ 1099 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1100 if (error) 1101 goto error1; 1102 1103 /* search right with cur, go forward 1 record. */ 1104 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1105 if (error) 1106 goto error1; 1107 } 1108 1109 /* 1110 * Loop until we find an inode chunk with a free inode. 1111 */ 1112 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1113 int useleft; /* using left inode chunk this time */ 1114 1115 /* figure out the closer block if both are valid. */ 1116 if (!doneleft && !doneright) { 1117 useleft = pagino - 1118 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1119 rec.ir_startino - pagino; 1120 } else { 1121 useleft = !doneleft; 1122 } 1123 1124 /* free inodes to the left? */ 1125 if (useleft && trec.ir_freecount) { 1126 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1127 cur = tcur; 1128 1129 pag->pagl_leftrec = trec.ir_startino; 1130 pag->pagl_rightrec = rec.ir_startino; 1131 pag->pagl_pagino = pagino; 1132 rec = trec; 1133 goto alloc_inode; 1134 } 1135 1136 /* free inodes to the right? */ 1137 if (!useleft && rec.ir_freecount) { 1138 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1139 1140 pag->pagl_leftrec = trec.ir_startino; 1141 pag->pagl_rightrec = rec.ir_startino; 1142 pag->pagl_pagino = pagino; 1143 goto alloc_inode; 1144 } 1145 1146 /* get next record to check */ 1147 if (useleft) { 1148 error = xfs_ialloc_next_rec(tcur, &trec, 1149 &doneleft, 1); 1150 } else { 1151 error = xfs_ialloc_next_rec(cur, &rec, 1152 &doneright, 0); 1153 } 1154 if (error) 1155 goto error1; 1156 } 1157 1158 if (searchdistance <= 0) { 1159 /* 1160 * Not in range - save last search 1161 * location and allocate a new inode 1162 */ 1163 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1164 pag->pagl_leftrec = trec.ir_startino; 1165 pag->pagl_rightrec = rec.ir_startino; 1166 pag->pagl_pagino = pagino; 1167 1168 } else { 1169 /* 1170 * We've reached the end of the btree. because 1171 * we are only searching a small chunk of the 1172 * btree each search, there is obviously free 1173 * inodes closer to the parent inode than we 1174 * are now. restart the search again. 1175 */ 1176 pag->pagl_pagino = NULLAGINO; 1177 pag->pagl_leftrec = NULLAGINO; 1178 pag->pagl_rightrec = NULLAGINO; 1179 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1180 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1181 goto restart_pagno; 1182 } 1183 } 1184 1185 /* 1186 * In a different AG from the parent. 1187 * See if the most recently allocated block has any free. 1188 */ 1189 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1190 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1191 XFS_LOOKUP_EQ, &i); 1192 if (error) 1193 goto error0; 1194 1195 if (i == 1) { 1196 error = xfs_inobt_get_rec(cur, &rec, &j); 1197 if (error) 1198 goto error0; 1199 1200 if (j == 1 && rec.ir_freecount > 0) { 1201 /* 1202 * The last chunk allocated in the group 1203 * still has a free inode. 1204 */ 1205 goto alloc_inode; 1206 } 1207 } 1208 } 1209 1210 /* 1211 * None left in the last group, search the whole AG 1212 */ 1213 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1214 if (error) 1215 goto error0; 1216 if (XFS_IS_CORRUPT(mp, i != 1)) { 1217 error = -EFSCORRUPTED; 1218 goto error0; 1219 } 1220 1221 for (;;) { 1222 error = xfs_inobt_get_rec(cur, &rec, &i); 1223 if (error) 1224 goto error0; 1225 if (XFS_IS_CORRUPT(mp, i != 1)) { 1226 error = -EFSCORRUPTED; 1227 goto error0; 1228 } 1229 if (rec.ir_freecount > 0) 1230 break; 1231 error = xfs_btree_increment(cur, 0, &i); 1232 if (error) 1233 goto error0; 1234 if (XFS_IS_CORRUPT(mp, i != 1)) { 1235 error = -EFSCORRUPTED; 1236 goto error0; 1237 } 1238 } 1239 1240 alloc_inode: 1241 offset = xfs_inobt_first_free_inode(&rec); 1242 ASSERT(offset >= 0); 1243 ASSERT(offset < XFS_INODES_PER_CHUNK); 1244 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1245 XFS_INODES_PER_CHUNK) == 0); 1246 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1247 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1248 rec.ir_freecount--; 1249 error = xfs_inobt_update(cur, &rec); 1250 if (error) 1251 goto error0; 1252 be32_add_cpu(&agi->agi_freecount, -1); 1253 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1254 pag->pagi_freecount--; 1255 1256 error = xfs_check_agi_freecount(cur); 1257 if (error) 1258 goto error0; 1259 1260 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1261 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1262 *inop = ino; 1263 return 0; 1264 error1: 1265 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1266 error0: 1267 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1268 return error; 1269 } 1270 1271 /* 1272 * Use the free inode btree to allocate an inode based on distance from the 1273 * parent. Note that the provided cursor may be deleted and replaced. 1274 */ 1275 STATIC int 1276 xfs_dialloc_ag_finobt_near( 1277 xfs_agino_t pagino, 1278 struct xfs_btree_cur **ocur, 1279 struct xfs_inobt_rec_incore *rec) 1280 { 1281 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1282 struct xfs_btree_cur *rcur; /* right search cursor */ 1283 struct xfs_inobt_rec_incore rrec; 1284 int error; 1285 int i, j; 1286 1287 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1288 if (error) 1289 return error; 1290 1291 if (i == 1) { 1292 error = xfs_inobt_get_rec(lcur, rec, &i); 1293 if (error) 1294 return error; 1295 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) 1296 return -EFSCORRUPTED; 1297 1298 /* 1299 * See if we've landed in the parent inode record. The finobt 1300 * only tracks chunks with at least one free inode, so record 1301 * existence is enough. 1302 */ 1303 if (pagino >= rec->ir_startino && 1304 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1305 return 0; 1306 } 1307 1308 error = xfs_btree_dup_cursor(lcur, &rcur); 1309 if (error) 1310 return error; 1311 1312 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1313 if (error) 1314 goto error_rcur; 1315 if (j == 1) { 1316 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1317 if (error) 1318 goto error_rcur; 1319 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { 1320 error = -EFSCORRUPTED; 1321 goto error_rcur; 1322 } 1323 } 1324 1325 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { 1326 error = -EFSCORRUPTED; 1327 goto error_rcur; 1328 } 1329 if (i == 1 && j == 1) { 1330 /* 1331 * Both the left and right records are valid. Choose the closer 1332 * inode chunk to the target. 1333 */ 1334 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1335 (rrec.ir_startino - pagino)) { 1336 *rec = rrec; 1337 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1338 *ocur = rcur; 1339 } else { 1340 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1341 } 1342 } else if (j == 1) { 1343 /* only the right record is valid */ 1344 *rec = rrec; 1345 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1346 *ocur = rcur; 1347 } else if (i == 1) { 1348 /* only the left record is valid */ 1349 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1350 } 1351 1352 return 0; 1353 1354 error_rcur: 1355 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1356 return error; 1357 } 1358 1359 /* 1360 * Use the free inode btree to find a free inode based on a newino hint. If 1361 * the hint is NULL, find the first free inode in the AG. 1362 */ 1363 STATIC int 1364 xfs_dialloc_ag_finobt_newino( 1365 struct xfs_agi *agi, 1366 struct xfs_btree_cur *cur, 1367 struct xfs_inobt_rec_incore *rec) 1368 { 1369 int error; 1370 int i; 1371 1372 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1373 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1374 XFS_LOOKUP_EQ, &i); 1375 if (error) 1376 return error; 1377 if (i == 1) { 1378 error = xfs_inobt_get_rec(cur, rec, &i); 1379 if (error) 1380 return error; 1381 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1382 return -EFSCORRUPTED; 1383 return 0; 1384 } 1385 } 1386 1387 /* 1388 * Find the first inode available in the AG. 1389 */ 1390 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1391 if (error) 1392 return error; 1393 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1394 return -EFSCORRUPTED; 1395 1396 error = xfs_inobt_get_rec(cur, rec, &i); 1397 if (error) 1398 return error; 1399 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1400 return -EFSCORRUPTED; 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * Update the inobt based on a modification made to the finobt. Also ensure that 1407 * the records from both trees are equivalent post-modification. 1408 */ 1409 STATIC int 1410 xfs_dialloc_ag_update_inobt( 1411 struct xfs_btree_cur *cur, /* inobt cursor */ 1412 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1413 int offset) /* inode offset */ 1414 { 1415 struct xfs_inobt_rec_incore rec; 1416 int error; 1417 int i; 1418 1419 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1420 if (error) 1421 return error; 1422 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1423 return -EFSCORRUPTED; 1424 1425 error = xfs_inobt_get_rec(cur, &rec, &i); 1426 if (error) 1427 return error; 1428 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1429 return -EFSCORRUPTED; 1430 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1431 XFS_INODES_PER_CHUNK) == 0); 1432 1433 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1434 rec.ir_freecount--; 1435 1436 if (XFS_IS_CORRUPT(cur->bc_mp, 1437 rec.ir_free != frec->ir_free || 1438 rec.ir_freecount != frec->ir_freecount)) 1439 return -EFSCORRUPTED; 1440 1441 return xfs_inobt_update(cur, &rec); 1442 } 1443 1444 /* 1445 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1446 * back to the inobt search algorithm. 1447 * 1448 * The caller selected an AG for us, and made sure that free inodes are 1449 * available. 1450 */ 1451 static int 1452 xfs_dialloc_ag( 1453 struct xfs_perag *pag, 1454 struct xfs_trans *tp, 1455 struct xfs_buf *agbp, 1456 xfs_ino_t parent, 1457 xfs_ino_t *inop) 1458 { 1459 struct xfs_mount *mp = tp->t_mountp; 1460 struct xfs_agi *agi = agbp->b_addr; 1461 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1462 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1463 struct xfs_btree_cur *cur; /* finobt cursor */ 1464 struct xfs_btree_cur *icur; /* inobt cursor */ 1465 struct xfs_inobt_rec_incore rec; 1466 xfs_ino_t ino; 1467 int error; 1468 int offset; 1469 int i; 1470 1471 if (!xfs_has_finobt(mp)) 1472 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); 1473 1474 /* 1475 * If pagino is 0 (this is the root inode allocation) use newino. 1476 * This must work because we've just allocated some. 1477 */ 1478 if (!pagino) 1479 pagino = be32_to_cpu(agi->agi_newino); 1480 1481 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO); 1482 1483 error = xfs_check_agi_freecount(cur); 1484 if (error) 1485 goto error_cur; 1486 1487 /* 1488 * The search algorithm depends on whether we're in the same AG as the 1489 * parent. If so, find the closest available inode to the parent. If 1490 * not, consider the agi hint or find the first free inode in the AG. 1491 */ 1492 if (pag->pag_agno == pagno) 1493 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1494 else 1495 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1496 if (error) 1497 goto error_cur; 1498 1499 offset = xfs_inobt_first_free_inode(&rec); 1500 ASSERT(offset >= 0); 1501 ASSERT(offset < XFS_INODES_PER_CHUNK); 1502 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1503 XFS_INODES_PER_CHUNK) == 0); 1504 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1505 1506 /* 1507 * Modify or remove the finobt record. 1508 */ 1509 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1510 rec.ir_freecount--; 1511 if (rec.ir_freecount) 1512 error = xfs_inobt_update(cur, &rec); 1513 else 1514 error = xfs_btree_delete(cur, &i); 1515 if (error) 1516 goto error_cur; 1517 1518 /* 1519 * The finobt has now been updated appropriately. We haven't updated the 1520 * agi and superblock yet, so we can create an inobt cursor and validate 1521 * the original freecount. If all is well, make the equivalent update to 1522 * the inobt using the finobt record and offset information. 1523 */ 1524 icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); 1525 1526 error = xfs_check_agi_freecount(icur); 1527 if (error) 1528 goto error_icur; 1529 1530 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1531 if (error) 1532 goto error_icur; 1533 1534 /* 1535 * Both trees have now been updated. We must update the perag and 1536 * superblock before we can check the freecount for each btree. 1537 */ 1538 be32_add_cpu(&agi->agi_freecount, -1); 1539 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1540 pag->pagi_freecount--; 1541 1542 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1543 1544 error = xfs_check_agi_freecount(icur); 1545 if (error) 1546 goto error_icur; 1547 error = xfs_check_agi_freecount(cur); 1548 if (error) 1549 goto error_icur; 1550 1551 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1552 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1553 *inop = ino; 1554 return 0; 1555 1556 error_icur: 1557 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1558 error_cur: 1559 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1560 return error; 1561 } 1562 1563 static int 1564 xfs_dialloc_roll( 1565 struct xfs_trans **tpp, 1566 struct xfs_buf *agibp) 1567 { 1568 struct xfs_trans *tp = *tpp; 1569 struct xfs_dquot_acct *dqinfo; 1570 int error; 1571 1572 /* 1573 * Hold to on to the agibp across the commit so no other allocation can 1574 * come in and take the free inodes we just allocated for our caller. 1575 */ 1576 xfs_trans_bhold(tp, agibp); 1577 1578 /* 1579 * We want the quota changes to be associated with the next transaction, 1580 * NOT this one. So, detach the dqinfo from this and attach it to the 1581 * next transaction. 1582 */ 1583 dqinfo = tp->t_dqinfo; 1584 tp->t_dqinfo = NULL; 1585 1586 error = xfs_trans_roll(&tp); 1587 1588 /* Re-attach the quota info that we detached from prev trx. */ 1589 tp->t_dqinfo = dqinfo; 1590 1591 /* 1592 * Join the buffer even on commit error so that the buffer is released 1593 * when the caller cancels the transaction and doesn't have to handle 1594 * this error case specially. 1595 */ 1596 xfs_trans_bjoin(tp, agibp); 1597 *tpp = tp; 1598 return error; 1599 } 1600 1601 static bool 1602 xfs_dialloc_good_ag( 1603 struct xfs_perag *pag, 1604 struct xfs_trans *tp, 1605 umode_t mode, 1606 int flags, 1607 bool ok_alloc) 1608 { 1609 struct xfs_mount *mp = tp->t_mountp; 1610 xfs_extlen_t ineed; 1611 xfs_extlen_t longest = 0; 1612 int needspace; 1613 int error; 1614 1615 if (!pag) 1616 return false; 1617 if (!xfs_perag_allows_inodes(pag)) 1618 return false; 1619 1620 if (!xfs_perag_initialised_agi(pag)) { 1621 error = xfs_ialloc_read_agi(pag, tp, NULL); 1622 if (error) 1623 return false; 1624 } 1625 1626 if (pag->pagi_freecount) 1627 return true; 1628 if (!ok_alloc) 1629 return false; 1630 1631 if (!xfs_perag_initialised_agf(pag)) { 1632 error = xfs_alloc_read_agf(pag, tp, flags, NULL); 1633 if (error) 1634 return false; 1635 } 1636 1637 /* 1638 * Check that there is enough free space for the file plus a chunk of 1639 * inodes if we need to allocate some. If this is the first pass across 1640 * the AGs, take into account the potential space needed for alignment 1641 * of inode chunks when checking the longest contiguous free space in 1642 * the AG - this prevents us from getting ENOSPC because we have free 1643 * space larger than ialloc_blks but alignment constraints prevent us 1644 * from using it. 1645 * 1646 * If we can't find an AG with space for full alignment slack to be 1647 * taken into account, we must be near ENOSPC in all AGs. Hence we 1648 * don't include alignment for the second pass and so if we fail 1649 * allocation due to alignment issues then it is most likely a real 1650 * ENOSPC condition. 1651 * 1652 * XXX(dgc): this calculation is now bogus thanks to the per-ag 1653 * reservations that xfs_alloc_fix_freelist() now does via 1654 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will 1655 * be more than large enough for the check below to succeed, but 1656 * xfs_alloc_space_available() will fail because of the non-zero 1657 * metadata reservation and hence we won't actually be able to allocate 1658 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC 1659 * because of this. 1660 */ 1661 ineed = M_IGEO(mp)->ialloc_min_blks; 1662 if (flags && ineed > 1) 1663 ineed += M_IGEO(mp)->cluster_align; 1664 longest = pag->pagf_longest; 1665 if (!longest) 1666 longest = pag->pagf_flcount > 0; 1667 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 1668 1669 if (pag->pagf_freeblks < needspace + ineed || longest < ineed) 1670 return false; 1671 return true; 1672 } 1673 1674 static int 1675 xfs_dialloc_try_ag( 1676 struct xfs_perag *pag, 1677 struct xfs_trans **tpp, 1678 xfs_ino_t parent, 1679 xfs_ino_t *new_ino, 1680 bool ok_alloc) 1681 { 1682 struct xfs_buf *agbp; 1683 xfs_ino_t ino; 1684 int error; 1685 1686 /* 1687 * Then read in the AGI buffer and recheck with the AGI buffer 1688 * lock held. 1689 */ 1690 error = xfs_ialloc_read_agi(pag, *tpp, &agbp); 1691 if (error) 1692 return error; 1693 1694 if (!pag->pagi_freecount) { 1695 if (!ok_alloc) { 1696 error = -EAGAIN; 1697 goto out_release; 1698 } 1699 1700 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); 1701 if (error < 0) 1702 goto out_release; 1703 1704 /* 1705 * We successfully allocated space for an inode cluster in this 1706 * AG. Roll the transaction so that we can allocate one of the 1707 * new inodes. 1708 */ 1709 ASSERT(pag->pagi_freecount > 0); 1710 error = xfs_dialloc_roll(tpp, agbp); 1711 if (error) 1712 goto out_release; 1713 } 1714 1715 /* Allocate an inode in the found AG */ 1716 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); 1717 if (!error) 1718 *new_ino = ino; 1719 return error; 1720 1721 out_release: 1722 xfs_trans_brelse(*tpp, agbp); 1723 return error; 1724 } 1725 1726 /* 1727 * Allocate an on-disk inode. 1728 * 1729 * Mode is used to tell whether the new inode is a directory and hence where to 1730 * locate it. The on-disk inode that is allocated will be returned in @new_ino 1731 * on success, otherwise an error will be set to indicate the failure (e.g. 1732 * -ENOSPC). 1733 */ 1734 int 1735 xfs_dialloc( 1736 struct xfs_trans **tpp, 1737 xfs_ino_t parent, 1738 umode_t mode, 1739 xfs_ino_t *new_ino) 1740 { 1741 struct xfs_mount *mp = (*tpp)->t_mountp; 1742 xfs_agnumber_t agno; 1743 int error = 0; 1744 xfs_agnumber_t start_agno; 1745 struct xfs_perag *pag; 1746 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1747 bool ok_alloc = true; 1748 bool low_space = false; 1749 int flags; 1750 xfs_ino_t ino = NULLFSINO; 1751 1752 /* 1753 * Directories, symlinks, and regular files frequently allocate at least 1754 * one block, so factor that potential expansion when we examine whether 1755 * an AG has enough space for file creation. 1756 */ 1757 if (S_ISDIR(mode)) 1758 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % 1759 mp->m_maxagi; 1760 else { 1761 start_agno = XFS_INO_TO_AGNO(mp, parent); 1762 if (start_agno >= mp->m_maxagi) 1763 start_agno = 0; 1764 } 1765 1766 /* 1767 * If we have already hit the ceiling of inode blocks then clear 1768 * ok_alloc so we scan all available agi structures for a free 1769 * inode. 1770 * 1771 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1772 * which will sacrifice the preciseness but improve the performance. 1773 */ 1774 if (igeo->maxicount && 1775 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos 1776 > igeo->maxicount) { 1777 ok_alloc = false; 1778 } 1779 1780 /* 1781 * If we are near to ENOSPC, we want to prefer allocation from AGs that 1782 * have free inodes in them rather than use up free space allocating new 1783 * inode chunks. Hence we turn off allocation for the first non-blocking 1784 * pass through the AGs if we are near ENOSPC to consume free inodes 1785 * that we can immediately allocate, but then we allow allocation on the 1786 * second pass if we fail to find an AG with free inodes in it. 1787 */ 1788 if (percpu_counter_read_positive(&mp->m_fdblocks) < 1789 mp->m_low_space[XFS_LOWSP_1_PCNT]) { 1790 ok_alloc = false; 1791 low_space = true; 1792 } 1793 1794 /* 1795 * Loop until we find an allocation group that either has free inodes 1796 * or in which we can allocate some inodes. Iterate through the 1797 * allocation groups upward, wrapping at the end. 1798 */ 1799 flags = XFS_ALLOC_FLAG_TRYLOCK; 1800 retry: 1801 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { 1802 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { 1803 error = xfs_dialloc_try_ag(pag, tpp, parent, 1804 &ino, ok_alloc); 1805 if (error != -EAGAIN) 1806 break; 1807 error = 0; 1808 } 1809 1810 if (xfs_is_shutdown(mp)) { 1811 error = -EFSCORRUPTED; 1812 break; 1813 } 1814 } 1815 if (pag) 1816 xfs_perag_rele(pag); 1817 if (error) 1818 return error; 1819 if (ino == NULLFSINO) { 1820 if (flags) { 1821 flags = 0; 1822 if (low_space) 1823 ok_alloc = true; 1824 goto retry; 1825 } 1826 return -ENOSPC; 1827 } 1828 *new_ino = ino; 1829 return 0; 1830 } 1831 1832 /* 1833 * Free the blocks of an inode chunk. We must consider that the inode chunk 1834 * might be sparse and only free the regions that are allocated as part of the 1835 * chunk. 1836 */ 1837 static int 1838 xfs_difree_inode_chunk( 1839 struct xfs_trans *tp, 1840 xfs_agnumber_t agno, 1841 struct xfs_inobt_rec_incore *rec) 1842 { 1843 struct xfs_mount *mp = tp->t_mountp; 1844 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1845 rec->ir_startino); 1846 int startidx, endidx; 1847 int nextbit; 1848 xfs_agblock_t agbno; 1849 int contigblk; 1850 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1851 1852 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1853 /* not sparse, calculate extent info directly */ 1854 return xfs_free_extent_later(tp, 1855 XFS_AGB_TO_FSB(mp, agno, sagbno), 1856 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, 1857 XFS_AG_RESV_NONE); 1858 } 1859 1860 /* holemask is only 16-bits (fits in an unsigned long) */ 1861 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1862 holemask[0] = rec->ir_holemask; 1863 1864 /* 1865 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1866 * holemask and convert the start/end index of each range to an extent. 1867 * We start with the start and end index both pointing at the first 0 in 1868 * the mask. 1869 */ 1870 startidx = endidx = find_first_zero_bit(holemask, 1871 XFS_INOBT_HOLEMASK_BITS); 1872 nextbit = startidx + 1; 1873 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1874 int error; 1875 1876 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1877 nextbit); 1878 /* 1879 * If the next zero bit is contiguous, update the end index of 1880 * the current range and continue. 1881 */ 1882 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1883 nextbit == endidx + 1) { 1884 endidx = nextbit; 1885 goto next; 1886 } 1887 1888 /* 1889 * nextbit is not contiguous with the current end index. Convert 1890 * the current start/end to an extent and add it to the free 1891 * list. 1892 */ 1893 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1894 mp->m_sb.sb_inopblock; 1895 contigblk = ((endidx - startidx + 1) * 1896 XFS_INODES_PER_HOLEMASK_BIT) / 1897 mp->m_sb.sb_inopblock; 1898 1899 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1900 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1901 error = xfs_free_extent_later(tp, 1902 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, 1903 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE); 1904 if (error) 1905 return error; 1906 1907 /* reset range to current bit and carry on... */ 1908 startidx = endidx = nextbit; 1909 1910 next: 1911 nextbit++; 1912 } 1913 return 0; 1914 } 1915 1916 STATIC int 1917 xfs_difree_inobt( 1918 struct xfs_perag *pag, 1919 struct xfs_trans *tp, 1920 struct xfs_buf *agbp, 1921 xfs_agino_t agino, 1922 struct xfs_icluster *xic, 1923 struct xfs_inobt_rec_incore *orec) 1924 { 1925 struct xfs_mount *mp = pag->pag_mount; 1926 struct xfs_agi *agi = agbp->b_addr; 1927 struct xfs_btree_cur *cur; 1928 struct xfs_inobt_rec_incore rec; 1929 int ilen; 1930 int error; 1931 int i; 1932 int off; 1933 1934 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1935 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1936 1937 /* 1938 * Initialize the cursor. 1939 */ 1940 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); 1941 1942 error = xfs_check_agi_freecount(cur); 1943 if (error) 1944 goto error0; 1945 1946 /* 1947 * Look for the entry describing this inode. 1948 */ 1949 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1950 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1951 __func__, error); 1952 goto error0; 1953 } 1954 if (XFS_IS_CORRUPT(mp, i != 1)) { 1955 error = -EFSCORRUPTED; 1956 goto error0; 1957 } 1958 error = xfs_inobt_get_rec(cur, &rec, &i); 1959 if (error) { 1960 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1961 __func__, error); 1962 goto error0; 1963 } 1964 if (XFS_IS_CORRUPT(mp, i != 1)) { 1965 error = -EFSCORRUPTED; 1966 goto error0; 1967 } 1968 /* 1969 * Get the offset in the inode chunk. 1970 */ 1971 off = agino - rec.ir_startino; 1972 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1973 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1974 /* 1975 * Mark the inode free & increment the count. 1976 */ 1977 rec.ir_free |= XFS_INOBT_MASK(off); 1978 rec.ir_freecount++; 1979 1980 /* 1981 * When an inode chunk is free, it becomes eligible for removal. Don't 1982 * remove the chunk if the block size is large enough for multiple inode 1983 * chunks (that might not be free). 1984 */ 1985 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 1986 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1987 xic->deleted = true; 1988 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, 1989 rec.ir_startino); 1990 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1991 1992 /* 1993 * Remove the inode cluster from the AGI B+Tree, adjust the 1994 * AGI and Superblock inode counts, and mark the disk space 1995 * to be freed when the transaction is committed. 1996 */ 1997 ilen = rec.ir_freecount; 1998 be32_add_cpu(&agi->agi_count, -ilen); 1999 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 2000 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 2001 pag->pagi_freecount -= ilen - 1; 2002 pag->pagi_count -= ilen; 2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 2004 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 2005 2006 if ((error = xfs_btree_delete(cur, &i))) { 2007 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 2008 __func__, error); 2009 goto error0; 2010 } 2011 2012 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); 2013 if (error) 2014 goto error0; 2015 } else { 2016 xic->deleted = false; 2017 2018 error = xfs_inobt_update(cur, &rec); 2019 if (error) { 2020 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2021 __func__, error); 2022 goto error0; 2023 } 2024 2025 /* 2026 * Change the inode free counts and log the ag/sb changes. 2027 */ 2028 be32_add_cpu(&agi->agi_freecount, 1); 2029 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2030 pag->pagi_freecount++; 2031 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2032 } 2033 2034 error = xfs_check_agi_freecount(cur); 2035 if (error) 2036 goto error0; 2037 2038 *orec = rec; 2039 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2040 return 0; 2041 2042 error0: 2043 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2044 return error; 2045 } 2046 2047 /* 2048 * Free an inode in the free inode btree. 2049 */ 2050 STATIC int 2051 xfs_difree_finobt( 2052 struct xfs_perag *pag, 2053 struct xfs_trans *tp, 2054 struct xfs_buf *agbp, 2055 xfs_agino_t agino, 2056 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2057 { 2058 struct xfs_mount *mp = pag->pag_mount; 2059 struct xfs_btree_cur *cur; 2060 struct xfs_inobt_rec_incore rec; 2061 int offset = agino - ibtrec->ir_startino; 2062 int error; 2063 int i; 2064 2065 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO); 2066 2067 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2068 if (error) 2069 goto error; 2070 if (i == 0) { 2071 /* 2072 * If the record does not exist in the finobt, we must have just 2073 * freed an inode in a previously fully allocated chunk. If not, 2074 * something is out of sync. 2075 */ 2076 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { 2077 error = -EFSCORRUPTED; 2078 goto error; 2079 } 2080 2081 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2082 ibtrec->ir_count, 2083 ibtrec->ir_freecount, 2084 ibtrec->ir_free, &i); 2085 if (error) 2086 goto error; 2087 ASSERT(i == 1); 2088 2089 goto out; 2090 } 2091 2092 /* 2093 * Read and update the existing record. We could just copy the ibtrec 2094 * across here, but that would defeat the purpose of having redundant 2095 * metadata. By making the modifications independently, we can catch 2096 * corruptions that we wouldn't see if we just copied from one record 2097 * to another. 2098 */ 2099 error = xfs_inobt_get_rec(cur, &rec, &i); 2100 if (error) 2101 goto error; 2102 if (XFS_IS_CORRUPT(mp, i != 1)) { 2103 error = -EFSCORRUPTED; 2104 goto error; 2105 } 2106 2107 rec.ir_free |= XFS_INOBT_MASK(offset); 2108 rec.ir_freecount++; 2109 2110 if (XFS_IS_CORRUPT(mp, 2111 rec.ir_free != ibtrec->ir_free || 2112 rec.ir_freecount != ibtrec->ir_freecount)) { 2113 error = -EFSCORRUPTED; 2114 goto error; 2115 } 2116 2117 /* 2118 * The content of inobt records should always match between the inobt 2119 * and finobt. The lifecycle of records in the finobt is different from 2120 * the inobt in that the finobt only tracks records with at least one 2121 * free inode. Hence, if all of the inodes are free and we aren't 2122 * keeping inode chunks permanently on disk, remove the record. 2123 * Otherwise, update the record with the new information. 2124 * 2125 * Note that we currently can't free chunks when the block size is large 2126 * enough for multiple chunks. Leave the finobt record to remain in sync 2127 * with the inobt. 2128 */ 2129 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2130 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2131 error = xfs_btree_delete(cur, &i); 2132 if (error) 2133 goto error; 2134 ASSERT(i == 1); 2135 } else { 2136 error = xfs_inobt_update(cur, &rec); 2137 if (error) 2138 goto error; 2139 } 2140 2141 out: 2142 error = xfs_check_agi_freecount(cur); 2143 if (error) 2144 goto error; 2145 2146 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2147 return 0; 2148 2149 error: 2150 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2151 return error; 2152 } 2153 2154 /* 2155 * Free disk inode. Carefully avoids touching the incore inode, all 2156 * manipulations incore are the caller's responsibility. 2157 * The on-disk inode is not changed by this operation, only the 2158 * btree (free inode mask) is changed. 2159 */ 2160 int 2161 xfs_difree( 2162 struct xfs_trans *tp, 2163 struct xfs_perag *pag, 2164 xfs_ino_t inode, 2165 struct xfs_icluster *xic) 2166 { 2167 /* REFERENCED */ 2168 xfs_agblock_t agbno; /* block number containing inode */ 2169 struct xfs_buf *agbp; /* buffer for allocation group header */ 2170 xfs_agino_t agino; /* allocation group inode number */ 2171 int error; /* error return value */ 2172 struct xfs_mount *mp = tp->t_mountp; 2173 struct xfs_inobt_rec_incore rec;/* btree record */ 2174 2175 /* 2176 * Break up inode number into its components. 2177 */ 2178 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { 2179 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", 2180 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); 2181 ASSERT(0); 2182 return -EINVAL; 2183 } 2184 agino = XFS_INO_TO_AGINO(mp, inode); 2185 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2186 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2187 __func__, (unsigned long long)inode, 2188 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2189 ASSERT(0); 2190 return -EINVAL; 2191 } 2192 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2193 if (agbno >= mp->m_sb.sb_agblocks) { 2194 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2195 __func__, agbno, mp->m_sb.sb_agblocks); 2196 ASSERT(0); 2197 return -EINVAL; 2198 } 2199 /* 2200 * Get the allocation group header. 2201 */ 2202 error = xfs_ialloc_read_agi(pag, tp, &agbp); 2203 if (error) { 2204 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2205 __func__, error); 2206 return error; 2207 } 2208 2209 /* 2210 * Fix up the inode allocation btree. 2211 */ 2212 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); 2213 if (error) 2214 goto error0; 2215 2216 /* 2217 * Fix up the free inode btree. 2218 */ 2219 if (xfs_has_finobt(mp)) { 2220 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); 2221 if (error) 2222 goto error0; 2223 } 2224 2225 return 0; 2226 2227 error0: 2228 return error; 2229 } 2230 2231 STATIC int 2232 xfs_imap_lookup( 2233 struct xfs_perag *pag, 2234 struct xfs_trans *tp, 2235 xfs_agino_t agino, 2236 xfs_agblock_t agbno, 2237 xfs_agblock_t *chunk_agbno, 2238 xfs_agblock_t *offset_agbno, 2239 int flags) 2240 { 2241 struct xfs_mount *mp = pag->pag_mount; 2242 struct xfs_inobt_rec_incore rec; 2243 struct xfs_btree_cur *cur; 2244 struct xfs_buf *agbp; 2245 int error; 2246 int i; 2247 2248 error = xfs_ialloc_read_agi(pag, tp, &agbp); 2249 if (error) { 2250 xfs_alert(mp, 2251 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2252 __func__, error, pag->pag_agno); 2253 return error; 2254 } 2255 2256 /* 2257 * Lookup the inode record for the given agino. If the record cannot be 2258 * found, then it's an invalid inode number and we should abort. Once 2259 * we have a record, we need to ensure it contains the inode number 2260 * we are looking up. 2261 */ 2262 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); 2263 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2264 if (!error) { 2265 if (i) 2266 error = xfs_inobt_get_rec(cur, &rec, &i); 2267 if (!error && i == 0) 2268 error = -EINVAL; 2269 } 2270 2271 xfs_trans_brelse(tp, agbp); 2272 xfs_btree_del_cursor(cur, error); 2273 if (error) 2274 return error; 2275 2276 /* check that the returned record contains the required inode */ 2277 if (rec.ir_startino > agino || 2278 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) 2279 return -EINVAL; 2280 2281 /* for untrusted inodes check it is allocated first */ 2282 if ((flags & XFS_IGET_UNTRUSTED) && 2283 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2284 return -EINVAL; 2285 2286 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2287 *offset_agbno = agbno - *chunk_agbno; 2288 return 0; 2289 } 2290 2291 /* 2292 * Return the location of the inode in imap, for mapping it into a buffer. 2293 */ 2294 int 2295 xfs_imap( 2296 struct xfs_perag *pag, 2297 struct xfs_trans *tp, 2298 xfs_ino_t ino, /* inode to locate */ 2299 struct xfs_imap *imap, /* location map structure */ 2300 uint flags) /* flags for inode btree lookup */ 2301 { 2302 struct xfs_mount *mp = pag->pag_mount; 2303 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2304 xfs_agino_t agino; /* inode number within alloc group */ 2305 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2306 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2307 int error; /* error code */ 2308 int offset; /* index of inode in its buffer */ 2309 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2310 2311 ASSERT(ino != NULLFSINO); 2312 2313 /* 2314 * Split up the inode number into its parts. 2315 */ 2316 agino = XFS_INO_TO_AGINO(mp, ino); 2317 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2318 if (agbno >= mp->m_sb.sb_agblocks || 2319 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2320 error = -EINVAL; 2321 #ifdef DEBUG 2322 /* 2323 * Don't output diagnostic information for untrusted inodes 2324 * as they can be invalid without implying corruption. 2325 */ 2326 if (flags & XFS_IGET_UNTRUSTED) 2327 return error; 2328 if (agbno >= mp->m_sb.sb_agblocks) { 2329 xfs_alert(mp, 2330 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2331 __func__, (unsigned long long)agbno, 2332 (unsigned long)mp->m_sb.sb_agblocks); 2333 } 2334 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2335 xfs_alert(mp, 2336 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2337 __func__, ino, 2338 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2339 } 2340 xfs_stack_trace(); 2341 #endif /* DEBUG */ 2342 return error; 2343 } 2344 2345 /* 2346 * For bulkstat and handle lookups, we have an untrusted inode number 2347 * that we have to verify is valid. We cannot do this just by reading 2348 * the inode buffer as it may have been unlinked and removed leaving 2349 * inodes in stale state on disk. Hence we have to do a btree lookup 2350 * in all cases where an untrusted inode number is passed. 2351 */ 2352 if (flags & XFS_IGET_UNTRUSTED) { 2353 error = xfs_imap_lookup(pag, tp, agino, agbno, 2354 &chunk_agbno, &offset_agbno, flags); 2355 if (error) 2356 return error; 2357 goto out_map; 2358 } 2359 2360 /* 2361 * If the inode cluster size is the same as the blocksize or 2362 * smaller we get to the buffer by simple arithmetics. 2363 */ 2364 if (M_IGEO(mp)->blocks_per_cluster == 1) { 2365 offset = XFS_INO_TO_OFFSET(mp, ino); 2366 ASSERT(offset < mp->m_sb.sb_inopblock); 2367 2368 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); 2369 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2370 imap->im_boffset = (unsigned short)(offset << 2371 mp->m_sb.sb_inodelog); 2372 return 0; 2373 } 2374 2375 /* 2376 * If the inode chunks are aligned then use simple maths to 2377 * find the location. Otherwise we have to do a btree 2378 * lookup to find the location. 2379 */ 2380 if (M_IGEO(mp)->inoalign_mask) { 2381 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; 2382 chunk_agbno = agbno - offset_agbno; 2383 } else { 2384 error = xfs_imap_lookup(pag, tp, agino, agbno, 2385 &chunk_agbno, &offset_agbno, flags); 2386 if (error) 2387 return error; 2388 } 2389 2390 out_map: 2391 ASSERT(agbno >= chunk_agbno); 2392 cluster_agbno = chunk_agbno + 2393 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * 2394 M_IGEO(mp)->blocks_per_cluster); 2395 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2396 XFS_INO_TO_OFFSET(mp, ino); 2397 2398 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); 2399 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); 2400 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2401 2402 /* 2403 * If the inode number maps to a block outside the bounds 2404 * of the file system then return NULL rather than calling 2405 * read_buf and panicing when we get an error from the 2406 * driver. 2407 */ 2408 if ((imap->im_blkno + imap->im_len) > 2409 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2410 xfs_alert(mp, 2411 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2412 __func__, (unsigned long long) imap->im_blkno, 2413 (unsigned long long) imap->im_len, 2414 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2415 return -EINVAL; 2416 } 2417 return 0; 2418 } 2419 2420 /* 2421 * Log specified fields for the ag hdr (inode section). The growth of the agi 2422 * structure over time requires that we interpret the buffer as two logical 2423 * regions delineated by the end of the unlinked list. This is due to the size 2424 * of the hash table and its location in the middle of the agi. 2425 * 2426 * For example, a request to log a field before agi_unlinked and a field after 2427 * agi_unlinked could cause us to log the entire hash table and use an excessive 2428 * amount of log space. To avoid this behavior, log the region up through 2429 * agi_unlinked in one call and the region after agi_unlinked through the end of 2430 * the structure in another. 2431 */ 2432 void 2433 xfs_ialloc_log_agi( 2434 struct xfs_trans *tp, 2435 struct xfs_buf *bp, 2436 uint32_t fields) 2437 { 2438 int first; /* first byte number */ 2439 int last; /* last byte number */ 2440 static const short offsets[] = { /* field starting offsets */ 2441 /* keep in sync with bit definitions */ 2442 offsetof(xfs_agi_t, agi_magicnum), 2443 offsetof(xfs_agi_t, agi_versionnum), 2444 offsetof(xfs_agi_t, agi_seqno), 2445 offsetof(xfs_agi_t, agi_length), 2446 offsetof(xfs_agi_t, agi_count), 2447 offsetof(xfs_agi_t, agi_root), 2448 offsetof(xfs_agi_t, agi_level), 2449 offsetof(xfs_agi_t, agi_freecount), 2450 offsetof(xfs_agi_t, agi_newino), 2451 offsetof(xfs_agi_t, agi_dirino), 2452 offsetof(xfs_agi_t, agi_unlinked), 2453 offsetof(xfs_agi_t, agi_free_root), 2454 offsetof(xfs_agi_t, agi_free_level), 2455 offsetof(xfs_agi_t, agi_iblocks), 2456 sizeof(xfs_agi_t) 2457 }; 2458 #ifdef DEBUG 2459 struct xfs_agi *agi = bp->b_addr; 2460 2461 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2462 #endif 2463 2464 /* 2465 * Compute byte offsets for the first and last fields in the first 2466 * region and log the agi buffer. This only logs up through 2467 * agi_unlinked. 2468 */ 2469 if (fields & XFS_AGI_ALL_BITS_R1) { 2470 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2471 &first, &last); 2472 xfs_trans_log_buf(tp, bp, first, last); 2473 } 2474 2475 /* 2476 * Mask off the bits in the first region and calculate the first and 2477 * last field offsets for any bits in the second region. 2478 */ 2479 fields &= ~XFS_AGI_ALL_BITS_R1; 2480 if (fields) { 2481 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2482 &first, &last); 2483 xfs_trans_log_buf(tp, bp, first, last); 2484 } 2485 } 2486 2487 static xfs_failaddr_t 2488 xfs_agi_verify( 2489 struct xfs_buf *bp) 2490 { 2491 struct xfs_mount *mp = bp->b_mount; 2492 struct xfs_agi *agi = bp->b_addr; 2493 xfs_failaddr_t fa; 2494 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); 2495 uint32_t agi_length = be32_to_cpu(agi->agi_length); 2496 int i; 2497 2498 if (xfs_has_crc(mp)) { 2499 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2500 return __this_address; 2501 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) 2502 return __this_address; 2503 } 2504 2505 /* 2506 * Validate the magic number of the agi block. 2507 */ 2508 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2509 return __this_address; 2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2511 return __this_address; 2512 2513 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); 2514 if (fa) 2515 return fa; 2516 2517 if (be32_to_cpu(agi->agi_level) < 1 || 2518 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) 2519 return __this_address; 2520 2521 if (xfs_has_finobt(mp) && 2522 (be32_to_cpu(agi->agi_free_level) < 1 || 2523 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) 2524 return __this_address; 2525 2526 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2527 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2528 continue; 2529 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2530 return __this_address; 2531 } 2532 2533 return NULL; 2534 } 2535 2536 static void 2537 xfs_agi_read_verify( 2538 struct xfs_buf *bp) 2539 { 2540 struct xfs_mount *mp = bp->b_mount; 2541 xfs_failaddr_t fa; 2542 2543 if (xfs_has_crc(mp) && 2544 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2545 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2546 else { 2547 fa = xfs_agi_verify(bp); 2548 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2549 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2550 } 2551 } 2552 2553 static void 2554 xfs_agi_write_verify( 2555 struct xfs_buf *bp) 2556 { 2557 struct xfs_mount *mp = bp->b_mount; 2558 struct xfs_buf_log_item *bip = bp->b_log_item; 2559 struct xfs_agi *agi = bp->b_addr; 2560 xfs_failaddr_t fa; 2561 2562 fa = xfs_agi_verify(bp); 2563 if (fa) { 2564 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2565 return; 2566 } 2567 2568 if (!xfs_has_crc(mp)) 2569 return; 2570 2571 if (bip) 2572 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2573 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2574 } 2575 2576 const struct xfs_buf_ops xfs_agi_buf_ops = { 2577 .name = "xfs_agi", 2578 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2579 .verify_read = xfs_agi_read_verify, 2580 .verify_write = xfs_agi_write_verify, 2581 .verify_struct = xfs_agi_verify, 2582 }; 2583 2584 /* 2585 * Read in the allocation group header (inode allocation section) 2586 */ 2587 int 2588 xfs_read_agi( 2589 struct xfs_perag *pag, 2590 struct xfs_trans *tp, 2591 struct xfs_buf **agibpp) 2592 { 2593 struct xfs_mount *mp = pag->pag_mount; 2594 int error; 2595 2596 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); 2597 2598 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2599 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), 2600 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops); 2601 if (error) 2602 return error; 2603 if (tp) 2604 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); 2605 2606 xfs_buf_set_ref(*agibpp, XFS_AGI_REF); 2607 return 0; 2608 } 2609 2610 /* 2611 * Read in the agi and initialise the per-ag data. If the caller supplies a 2612 * @agibpp, return the locked AGI buffer to them, otherwise release it. 2613 */ 2614 int 2615 xfs_ialloc_read_agi( 2616 struct xfs_perag *pag, 2617 struct xfs_trans *tp, 2618 struct xfs_buf **agibpp) 2619 { 2620 struct xfs_buf *agibp; 2621 struct xfs_agi *agi; 2622 int error; 2623 2624 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); 2625 2626 error = xfs_read_agi(pag, tp, &agibp); 2627 if (error) 2628 return error; 2629 2630 agi = agibp->b_addr; 2631 if (!xfs_perag_initialised_agi(pag)) { 2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2633 pag->pagi_count = be32_to_cpu(agi->agi_count); 2634 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 2635 } 2636 2637 /* 2638 * It's possible for these to be out of sync if 2639 * we are in the middle of a forced shutdown. 2640 */ 2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2642 xfs_is_shutdown(pag->pag_mount)); 2643 if (agibpp) 2644 *agibpp = agibp; 2645 else 2646 xfs_trans_brelse(tp, agibp); 2647 return 0; 2648 } 2649 2650 /* How many inodes are backed by inode clusters ondisk? */ 2651 STATIC int 2652 xfs_ialloc_count_ondisk( 2653 struct xfs_btree_cur *cur, 2654 xfs_agino_t low, 2655 xfs_agino_t high, 2656 unsigned int *allocated) 2657 { 2658 struct xfs_inobt_rec_incore irec; 2659 unsigned int ret = 0; 2660 int has_record; 2661 int error; 2662 2663 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2664 if (error) 2665 return error; 2666 2667 while (has_record) { 2668 unsigned int i, hole_idx; 2669 2670 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2671 if (error) 2672 return error; 2673 if (irec.ir_startino > high) 2674 break; 2675 2676 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { 2677 if (irec.ir_startino + i < low) 2678 continue; 2679 if (irec.ir_startino + i > high) 2680 break; 2681 2682 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; 2683 if (!(irec.ir_holemask & (1U << hole_idx))) 2684 ret++; 2685 } 2686 2687 error = xfs_btree_increment(cur, 0, &has_record); 2688 if (error) 2689 return error; 2690 } 2691 2692 *allocated = ret; 2693 return 0; 2694 } 2695 2696 /* Is there an inode record covering a given extent? */ 2697 int 2698 xfs_ialloc_has_inodes_at_extent( 2699 struct xfs_btree_cur *cur, 2700 xfs_agblock_t bno, 2701 xfs_extlen_t len, 2702 enum xbtree_recpacking *outcome) 2703 { 2704 xfs_agino_t agino; 2705 xfs_agino_t last_agino; 2706 unsigned int allocated; 2707 int error; 2708 2709 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2710 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2711 2712 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); 2713 if (error) 2714 return error; 2715 2716 if (allocated == 0) 2717 *outcome = XBTREE_RECPACKING_EMPTY; 2718 else if (allocated == last_agino - agino + 1) 2719 *outcome = XBTREE_RECPACKING_FULL; 2720 else 2721 *outcome = XBTREE_RECPACKING_SPARSE; 2722 return 0; 2723 } 2724 2725 struct xfs_ialloc_count_inodes { 2726 xfs_agino_t count; 2727 xfs_agino_t freecount; 2728 }; 2729 2730 /* Record inode counts across all inobt records. */ 2731 STATIC int 2732 xfs_ialloc_count_inodes_rec( 2733 struct xfs_btree_cur *cur, 2734 const union xfs_btree_rec *rec, 2735 void *priv) 2736 { 2737 struct xfs_inobt_rec_incore irec; 2738 struct xfs_ialloc_count_inodes *ci = priv; 2739 xfs_failaddr_t fa; 2740 2741 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2742 fa = xfs_inobt_check_irec(cur, &irec); 2743 if (fa) 2744 return xfs_inobt_complain_bad_rec(cur, fa, &irec); 2745 2746 ci->count += irec.ir_count; 2747 ci->freecount += irec.ir_freecount; 2748 2749 return 0; 2750 } 2751 2752 /* Count allocated and free inodes under an inobt. */ 2753 int 2754 xfs_ialloc_count_inodes( 2755 struct xfs_btree_cur *cur, 2756 xfs_agino_t *count, 2757 xfs_agino_t *freecount) 2758 { 2759 struct xfs_ialloc_count_inodes ci = {0}; 2760 int error; 2761 2762 ASSERT(cur->bc_btnum == XFS_BTNUM_INO); 2763 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2764 if (error) 2765 return error; 2766 2767 *count = ci.count; 2768 *freecount = ci.freecount; 2769 return 0; 2770 } 2771 2772 /* 2773 * Initialize inode-related geometry information. 2774 * 2775 * Compute the inode btree min and max levels and set maxicount. 2776 * 2777 * Set the inode cluster size. This may still be overridden by the file 2778 * system block size if it is larger than the chosen cluster size. 2779 * 2780 * For v5 filesystems, scale the cluster size with the inode size to keep a 2781 * constant ratio of inode per cluster buffer, but only if mkfs has set the 2782 * inode alignment value appropriately for larger cluster sizes. 2783 * 2784 * Then compute the inode cluster alignment information. 2785 */ 2786 void 2787 xfs_ialloc_setup_geometry( 2788 struct xfs_mount *mp) 2789 { 2790 struct xfs_sb *sbp = &mp->m_sb; 2791 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2792 uint64_t icount; 2793 uint inodes; 2794 2795 igeo->new_diflags2 = 0; 2796 if (xfs_has_bigtime(mp)) 2797 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; 2798 if (xfs_has_large_extent_counts(mp)) 2799 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; 2800 2801 /* Compute inode btree geometry. */ 2802 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 2803 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 2804 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 2805 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; 2806 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; 2807 2808 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 2809 sbp->sb_inopblock); 2810 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; 2811 2812 if (sbp->sb_spino_align) 2813 igeo->ialloc_min_blks = sbp->sb_spino_align; 2814 else 2815 igeo->ialloc_min_blks = igeo->ialloc_blks; 2816 2817 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ 2818 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2819 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, 2820 inodes); 2821 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); 2822 2823 /* 2824 * Set the maximum inode count for this filesystem, being careful not 2825 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular 2826 * users should never get here due to failing sb verification, but 2827 * certain users (xfs_db) need to be usable even with corrupt metadata. 2828 */ 2829 if (sbp->sb_imax_pct && igeo->ialloc_blks) { 2830 /* 2831 * Make sure the maximum inode count is a multiple 2832 * of the units we allocate inodes in. 2833 */ 2834 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 2835 do_div(icount, 100); 2836 do_div(icount, igeo->ialloc_blks); 2837 igeo->maxicount = XFS_FSB_TO_INO(mp, 2838 icount * igeo->ialloc_blks); 2839 } else { 2840 igeo->maxicount = 0; 2841 } 2842 2843 /* 2844 * Compute the desired size of an inode cluster buffer size, which 2845 * starts at 8K and (on v5 filesystems) scales up with larger inode 2846 * sizes. 2847 * 2848 * Preserve the desired inode cluster size because the sparse inodes 2849 * feature uses that desired size (not the actual size) to compute the 2850 * sparse inode alignment. The mount code validates this value, so we 2851 * cannot change the behavior. 2852 */ 2853 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; 2854 if (xfs_has_v3inodes(mp)) { 2855 int new_size = igeo->inode_cluster_size_raw; 2856 2857 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 2858 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 2859 igeo->inode_cluster_size_raw = new_size; 2860 } 2861 2862 /* Calculate inode cluster ratios. */ 2863 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) 2864 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, 2865 igeo->inode_cluster_size_raw); 2866 else 2867 igeo->blocks_per_cluster = 1; 2868 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); 2869 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); 2870 2871 /* Calculate inode cluster alignment. */ 2872 if (xfs_has_align(mp) && 2873 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) 2874 igeo->cluster_align = mp->m_sb.sb_inoalignmt; 2875 else 2876 igeo->cluster_align = 1; 2877 igeo->inoalign_mask = igeo->cluster_align - 1; 2878 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); 2879 2880 /* 2881 * If we are using stripe alignment, check whether 2882 * the stripe unit is a multiple of the inode alignment 2883 */ 2884 if (mp->m_dalign && igeo->inoalign_mask && 2885 !(mp->m_dalign & igeo->inoalign_mask)) 2886 igeo->ialloc_align = mp->m_dalign; 2887 else 2888 igeo->ialloc_align = 0; 2889 } 2890 2891 /* Compute the location of the root directory inode that is laid out by mkfs. */ 2892 xfs_ino_t 2893 xfs_ialloc_calc_rootino( 2894 struct xfs_mount *mp, 2895 int sunit) 2896 { 2897 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2898 xfs_agblock_t first_bno; 2899 2900 /* 2901 * Pre-calculate the geometry of AG 0. We know what it looks like 2902 * because libxfs knows how to create allocation groups now. 2903 * 2904 * first_bno is the first block in which mkfs could possibly have 2905 * allocated the root directory inode, once we factor in the metadata 2906 * that mkfs formats before it. Namely, the four AG headers... 2907 */ 2908 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); 2909 2910 /* ...the two free space btree roots... */ 2911 first_bno += 2; 2912 2913 /* ...the inode btree root... */ 2914 first_bno += 1; 2915 2916 /* ...the initial AGFL... */ 2917 first_bno += xfs_alloc_min_freelist(mp, NULL); 2918 2919 /* ...the free inode btree root... */ 2920 if (xfs_has_finobt(mp)) 2921 first_bno++; 2922 2923 /* ...the reverse mapping btree root... */ 2924 if (xfs_has_rmapbt(mp)) 2925 first_bno++; 2926 2927 /* ...the reference count btree... */ 2928 if (xfs_has_reflink(mp)) 2929 first_bno++; 2930 2931 /* 2932 * ...and the log, if it is allocated in the first allocation group. 2933 * 2934 * This can happen with filesystems that only have a single 2935 * allocation group, or very odd geometries created by old mkfs 2936 * versions on very small filesystems. 2937 */ 2938 if (xfs_ag_contains_log(mp, 0)) 2939 first_bno += mp->m_sb.sb_logblocks; 2940 2941 /* 2942 * Now round first_bno up to whatever allocation alignment is given 2943 * by the filesystem or was passed in. 2944 */ 2945 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) 2946 first_bno = roundup(first_bno, sunit); 2947 else if (xfs_has_align(mp) && 2948 mp->m_sb.sb_inoalignmt > 1) 2949 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); 2950 2951 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); 2952 } 2953 2954 /* 2955 * Ensure there are not sparse inode clusters that cross the new EOAG. 2956 * 2957 * This is a no-op for non-spinode filesystems since clusters are always fully 2958 * allocated and checking the bnobt suffices. However, a spinode filesystem 2959 * could have a record where the upper inodes are free blocks. If those blocks 2960 * were removed from the filesystem, the inode record would extend beyond EOAG, 2961 * which will be flagged as corruption. 2962 */ 2963 int 2964 xfs_ialloc_check_shrink( 2965 struct xfs_perag *pag, 2966 struct xfs_trans *tp, 2967 struct xfs_buf *agibp, 2968 xfs_agblock_t new_length) 2969 { 2970 struct xfs_inobt_rec_incore rec; 2971 struct xfs_btree_cur *cur; 2972 xfs_agino_t agino; 2973 int has; 2974 int error; 2975 2976 if (!xfs_has_sparseinodes(pag->pag_mount)) 2977 return 0; 2978 2979 cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO); 2980 2981 /* Look up the inobt record that would correspond to the new EOFS. */ 2982 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); 2983 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); 2984 if (error || !has) 2985 goto out; 2986 2987 error = xfs_inobt_get_rec(cur, &rec, &has); 2988 if (error) 2989 goto out; 2990 2991 if (!has) { 2992 error = -EFSCORRUPTED; 2993 goto out; 2994 } 2995 2996 /* If the record covers inodes that would be beyond EOFS, bail out. */ 2997 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { 2998 error = -ENOSPC; 2999 goto out; 3000 } 3001 out: 3002 xfs_btree_del_cursor(cur, error); 3003 return error; 3004 } 3005