1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_bmap.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_icreate_item.h" 25 #include "xfs_icache.h" 26 #include "xfs_trace.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap.h" 29 #include "xfs_ag.h" 30 #include "xfs_health.h" 31 32 /* 33 * Lookup a record by ino in the btree given by cur. 34 */ 35 int /* error */ 36 xfs_inobt_lookup( 37 struct xfs_btree_cur *cur, /* btree cursor */ 38 xfs_agino_t ino, /* starting inode of chunk */ 39 xfs_lookup_t dir, /* <=, >=, == */ 40 int *stat) /* success/failure */ 41 { 42 cur->bc_rec.i.ir_startino = ino; 43 cur->bc_rec.i.ir_holemask = 0; 44 cur->bc_rec.i.ir_count = 0; 45 cur->bc_rec.i.ir_freecount = 0; 46 cur->bc_rec.i.ir_free = 0; 47 return xfs_btree_lookup(cur, dir, stat); 48 } 49 50 /* 51 * Update the record referred to by cur to the value given. 52 * This either works (return 0) or gets an EFSCORRUPTED error. 53 */ 54 STATIC int /* error */ 55 xfs_inobt_update( 56 struct xfs_btree_cur *cur, /* btree cursor */ 57 xfs_inobt_rec_incore_t *irec) /* btree record */ 58 { 59 union xfs_btree_rec rec; 60 61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 62 if (xfs_has_sparseinodes(cur->bc_mp)) { 63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 64 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 66 } else { 67 /* ir_holemask/ir_count not supported on-disk */ 68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 69 } 70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 71 return xfs_btree_update(cur, &rec); 72 } 73 74 /* Convert on-disk btree record to incore inobt record. */ 75 void 76 xfs_inobt_btrec_to_irec( 77 struct xfs_mount *mp, 78 const union xfs_btree_rec *rec, 79 struct xfs_inobt_rec_incore *irec) 80 { 81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 82 if (xfs_has_sparseinodes(mp)) { 83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 84 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 86 } else { 87 /* 88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 89 * values for full inode chunks. 90 */ 91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 92 irec->ir_count = XFS_INODES_PER_CHUNK; 93 irec->ir_freecount = 94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 95 } 96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 97 } 98 99 /* Compute the freecount of an incore inode record. */ 100 uint8_t 101 xfs_inobt_rec_freecount( 102 const struct xfs_inobt_rec_incore *irec) 103 { 104 uint64_t realfree = irec->ir_free; 105 106 if (xfs_inobt_issparse(irec->ir_holemask)) 107 realfree &= xfs_inobt_irec_to_allocmask(irec); 108 return hweight64(realfree); 109 } 110 111 /* Simple checks for inode records. */ 112 xfs_failaddr_t 113 xfs_inobt_check_irec( 114 struct xfs_perag *pag, 115 const struct xfs_inobt_rec_incore *irec) 116 { 117 /* Record has to be properly aligned within the AG. */ 118 if (!xfs_verify_agino(pag, irec->ir_startino)) 119 return __this_address; 120 if (!xfs_verify_agino(pag, 121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) 122 return __this_address; 123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 124 irec->ir_count > XFS_INODES_PER_CHUNK) 125 return __this_address; 126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 127 return __this_address; 128 129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount) 130 return __this_address; 131 132 return NULL; 133 } 134 135 static inline int 136 xfs_inobt_complain_bad_rec( 137 struct xfs_btree_cur *cur, 138 xfs_failaddr_t fa, 139 const struct xfs_inobt_rec_incore *irec) 140 { 141 struct xfs_mount *mp = cur->bc_mp; 142 143 xfs_warn(mp, 144 "%sbt record corruption in AG %d detected at %pS!", 145 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); 146 xfs_warn(mp, 147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 148 irec->ir_startino, irec->ir_count, irec->ir_freecount, 149 irec->ir_free, irec->ir_holemask); 150 xfs_btree_mark_sick(cur); 151 return -EFSCORRUPTED; 152 } 153 154 /* 155 * Get the data from the pointed-to record. 156 */ 157 int 158 xfs_inobt_get_rec( 159 struct xfs_btree_cur *cur, 160 struct xfs_inobt_rec_incore *irec, 161 int *stat) 162 { 163 struct xfs_mount *mp = cur->bc_mp; 164 union xfs_btree_rec *rec; 165 xfs_failaddr_t fa; 166 int error; 167 168 error = xfs_btree_get_rec(cur, &rec, stat); 169 if (error || *stat == 0) 170 return error; 171 172 xfs_inobt_btrec_to_irec(mp, rec, irec); 173 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec); 174 if (fa) 175 return xfs_inobt_complain_bad_rec(cur, fa, irec); 176 177 return 0; 178 } 179 180 /* 181 * Insert a single inobt record. Cursor must already point to desired location. 182 */ 183 int 184 xfs_inobt_insert_rec( 185 struct xfs_btree_cur *cur, 186 uint16_t holemask, 187 uint8_t count, 188 int32_t freecount, 189 xfs_inofree_t free, 190 int *stat) 191 { 192 cur->bc_rec.i.ir_holemask = holemask; 193 cur->bc_rec.i.ir_count = count; 194 cur->bc_rec.i.ir_freecount = freecount; 195 cur->bc_rec.i.ir_free = free; 196 return xfs_btree_insert(cur, stat); 197 } 198 199 /* 200 * Insert records describing a newly allocated inode chunk into the inobt. 201 */ 202 STATIC int 203 xfs_inobt_insert( 204 struct xfs_perag *pag, 205 struct xfs_trans *tp, 206 struct xfs_buf *agbp, 207 xfs_agino_t newino, 208 xfs_agino_t newlen, 209 bool is_finobt) 210 { 211 struct xfs_btree_cur *cur; 212 xfs_agino_t thisino; 213 int i; 214 int error; 215 216 if (is_finobt) 217 cur = xfs_finobt_init_cursor(pag, tp, agbp); 218 else 219 cur = xfs_inobt_init_cursor(pag, tp, agbp); 220 221 for (thisino = newino; 222 thisino < newino + newlen; 223 thisino += XFS_INODES_PER_CHUNK) { 224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 225 if (error) { 226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 227 return error; 228 } 229 ASSERT(i == 0); 230 231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 232 XFS_INODES_PER_CHUNK, 233 XFS_INODES_PER_CHUNK, 234 XFS_INOBT_ALL_FREE, &i); 235 if (error) { 236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 237 return error; 238 } 239 ASSERT(i == 1); 240 } 241 242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 243 244 return 0; 245 } 246 247 /* 248 * Verify that the number of free inodes in the AGI is correct. 249 */ 250 #ifdef DEBUG 251 static int 252 xfs_check_agi_freecount( 253 struct xfs_btree_cur *cur) 254 { 255 if (cur->bc_nlevels == 1) { 256 xfs_inobt_rec_incore_t rec; 257 int freecount = 0; 258 int error; 259 int i; 260 261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 262 if (error) 263 return error; 264 265 do { 266 error = xfs_inobt_get_rec(cur, &rec, &i); 267 if (error) 268 return error; 269 270 if (i) { 271 freecount += rec.ir_freecount; 272 error = xfs_btree_increment(cur, 0, &i); 273 if (error) 274 return error; 275 } 276 } while (i == 1); 277 278 if (!xfs_is_shutdown(cur->bc_mp)) 279 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); 280 } 281 return 0; 282 } 283 #else 284 #define xfs_check_agi_freecount(cur) 0 285 #endif 286 287 /* 288 * Initialise a new set of inodes. When called without a transaction context 289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 290 * than logging them (which in a transaction context puts them into the AIL 291 * for writeback rather than the xfsbufd queue). 292 */ 293 int 294 xfs_ialloc_inode_init( 295 struct xfs_mount *mp, 296 struct xfs_trans *tp, 297 struct list_head *buffer_list, 298 int icount, 299 xfs_agnumber_t agno, 300 xfs_agblock_t agbno, 301 xfs_agblock_t length, 302 unsigned int gen) 303 { 304 struct xfs_buf *fbuf; 305 struct xfs_dinode *free; 306 int nbufs; 307 int version; 308 int i, j; 309 xfs_daddr_t d; 310 xfs_ino_t ino = 0; 311 int error; 312 313 /* 314 * Loop over the new block(s), filling in the inodes. For small block 315 * sizes, manipulate the inodes in buffers which are multiples of the 316 * blocks size. 317 */ 318 nbufs = length / M_IGEO(mp)->blocks_per_cluster; 319 320 /* 321 * Figure out what version number to use in the inodes we create. If 322 * the superblock version has caught up to the one that supports the new 323 * inode format, then use the new inode version. Otherwise use the old 324 * version so that old kernels will continue to be able to use the file 325 * system. 326 * 327 * For v3 inodes, we also need to write the inode number into the inode, 328 * so calculate the first inode number of the chunk here as 329 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 330 * across multiple filesystem blocks (such as a cluster) and so cannot 331 * be used in the cluster buffer loop below. 332 * 333 * Further, because we are writing the inode directly into the buffer 334 * and calculating a CRC on the entire inode, we have ot log the entire 335 * inode so that the entire range the CRC covers is present in the log. 336 * That means for v3 inode we log the entire buffer rather than just the 337 * inode cores. 338 */ 339 if (xfs_has_v3inodes(mp)) { 340 version = 3; 341 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 342 343 /* 344 * log the initialisation that is about to take place as an 345 * logical operation. This means the transaction does not 346 * need to log the physical changes to the inode buffers as log 347 * recovery will know what initialisation is actually needed. 348 * Hence we only need to log the buffers as "ordered" buffers so 349 * they track in the AIL as if they were physically logged. 350 */ 351 if (tp) 352 xfs_icreate_log(tp, agno, agbno, icount, 353 mp->m_sb.sb_inodesize, length, gen); 354 } else 355 version = 2; 356 357 for (j = 0; j < nbufs; j++) { 358 /* 359 * Get the block. 360 */ 361 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 362 (j * M_IGEO(mp)->blocks_per_cluster)); 363 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 364 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, 365 XBF_UNMAPPED, &fbuf); 366 if (error) 367 return error; 368 369 /* Initialize the inode buffers and log them appropriately. */ 370 fbuf->b_ops = &xfs_inode_buf_ops; 371 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 372 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { 373 int ioffset = i << mp->m_sb.sb_inodelog; 374 375 free = xfs_make_iptr(mp, fbuf, i); 376 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 377 free->di_version = version; 378 free->di_gen = cpu_to_be32(gen); 379 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 380 381 if (version == 3) { 382 free->di_ino = cpu_to_be64(ino); 383 ino++; 384 uuid_copy(&free->di_uuid, 385 &mp->m_sb.sb_meta_uuid); 386 xfs_dinode_calc_crc(mp, free); 387 } else if (tp) { 388 /* just log the inode core */ 389 xfs_trans_log_buf(tp, fbuf, ioffset, 390 ioffset + XFS_DINODE_SIZE(mp) - 1); 391 } 392 } 393 394 if (tp) { 395 /* 396 * Mark the buffer as an inode allocation buffer so it 397 * sticks in AIL at the point of this allocation 398 * transaction. This ensures the they are on disk before 399 * the tail of the log can be moved past this 400 * transaction (i.e. by preventing relogging from moving 401 * it forward in the log). 402 */ 403 xfs_trans_inode_alloc_buf(tp, fbuf); 404 if (version == 3) { 405 /* 406 * Mark the buffer as ordered so that they are 407 * not physically logged in the transaction but 408 * still tracked in the AIL as part of the 409 * transaction and pin the log appropriately. 410 */ 411 xfs_trans_ordered_buf(tp, fbuf); 412 } 413 } else { 414 fbuf->b_flags |= XBF_DONE; 415 xfs_buf_delwri_queue(fbuf, buffer_list); 416 xfs_buf_relse(fbuf); 417 } 418 } 419 return 0; 420 } 421 422 /* 423 * Align startino and allocmask for a recently allocated sparse chunk such that 424 * they are fit for insertion (or merge) into the on-disk inode btrees. 425 * 426 * Background: 427 * 428 * When enabled, sparse inode support increases the inode alignment from cluster 429 * size to inode chunk size. This means that the minimum range between two 430 * non-adjacent inode records in the inobt is large enough for a full inode 431 * record. This allows for cluster sized, cluster aligned block allocation 432 * without need to worry about whether the resulting inode record overlaps with 433 * another record in the tree. Without this basic rule, we would have to deal 434 * with the consequences of overlap by potentially undoing recent allocations in 435 * the inode allocation codepath. 436 * 437 * Because of this alignment rule (which is enforced on mount), there are two 438 * inobt possibilities for newly allocated sparse chunks. One is that the 439 * aligned inode record for the chunk covers a range of inodes not already 440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 441 * other is that a record already exists at the aligned startino that considers 442 * the newly allocated range as sparse. In the latter case, record content is 443 * merged in hope that sparse inode chunks fill to full chunks over time. 444 */ 445 STATIC void 446 xfs_align_sparse_ino( 447 struct xfs_mount *mp, 448 xfs_agino_t *startino, 449 uint16_t *allocmask) 450 { 451 xfs_agblock_t agbno; 452 xfs_agblock_t mod; 453 int offset; 454 455 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 456 mod = agbno % mp->m_sb.sb_inoalignmt; 457 if (!mod) 458 return; 459 460 /* calculate the inode offset and align startino */ 461 offset = XFS_AGB_TO_AGINO(mp, mod); 462 *startino -= offset; 463 464 /* 465 * Since startino has been aligned down, left shift allocmask such that 466 * it continues to represent the same physical inodes relative to the 467 * new startino. 468 */ 469 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 470 } 471 472 /* 473 * Determine whether the source inode record can merge into the target. Both 474 * records must be sparse, the inode ranges must match and there must be no 475 * allocation overlap between the records. 476 */ 477 STATIC bool 478 __xfs_inobt_can_merge( 479 struct xfs_inobt_rec_incore *trec, /* tgt record */ 480 struct xfs_inobt_rec_incore *srec) /* src record */ 481 { 482 uint64_t talloc; 483 uint64_t salloc; 484 485 /* records must cover the same inode range */ 486 if (trec->ir_startino != srec->ir_startino) 487 return false; 488 489 /* both records must be sparse */ 490 if (!xfs_inobt_issparse(trec->ir_holemask) || 491 !xfs_inobt_issparse(srec->ir_holemask)) 492 return false; 493 494 /* both records must track some inodes */ 495 if (!trec->ir_count || !srec->ir_count) 496 return false; 497 498 /* can't exceed capacity of a full record */ 499 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 500 return false; 501 502 /* verify there is no allocation overlap */ 503 talloc = xfs_inobt_irec_to_allocmask(trec); 504 salloc = xfs_inobt_irec_to_allocmask(srec); 505 if (talloc & salloc) 506 return false; 507 508 return true; 509 } 510 511 /* 512 * Merge the source inode record into the target. The caller must call 513 * __xfs_inobt_can_merge() to ensure the merge is valid. 514 */ 515 STATIC void 516 __xfs_inobt_rec_merge( 517 struct xfs_inobt_rec_incore *trec, /* target */ 518 struct xfs_inobt_rec_incore *srec) /* src */ 519 { 520 ASSERT(trec->ir_startino == srec->ir_startino); 521 522 /* combine the counts */ 523 trec->ir_count += srec->ir_count; 524 trec->ir_freecount += srec->ir_freecount; 525 526 /* 527 * Merge the holemask and free mask. For both fields, 0 bits refer to 528 * allocated inodes. We combine the allocated ranges with bitwise AND. 529 */ 530 trec->ir_holemask &= srec->ir_holemask; 531 trec->ir_free &= srec->ir_free; 532 } 533 534 /* 535 * Insert a new sparse inode chunk into the associated inode allocation btree. 536 * The inode record for the sparse chunk is pre-aligned to a startino that 537 * should match any pre-existing sparse inode record in the tree. This allows 538 * sparse chunks to fill over time. 539 * 540 * If no preexisting record exists, the provided record is inserted. 541 * If there is a preexisting record, the provided record is merged with the 542 * existing record and updated in place. The merged record is returned in nrec. 543 * 544 * It is considered corruption if a merge is requested and not possible. Given 545 * the sparse inode alignment constraints, this should never happen. 546 */ 547 STATIC int 548 xfs_inobt_insert_sprec( 549 struct xfs_perag *pag, 550 struct xfs_trans *tp, 551 struct xfs_buf *agbp, 552 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */ 553 { 554 struct xfs_mount *mp = pag->pag_mount; 555 struct xfs_btree_cur *cur; 556 int error; 557 int i; 558 struct xfs_inobt_rec_incore rec; 559 560 cur = xfs_inobt_init_cursor(pag, tp, agbp); 561 562 /* the new record is pre-aligned so we know where to look */ 563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 564 if (error) 565 goto error; 566 /* if nothing there, insert a new record and return */ 567 if (i == 0) { 568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 569 nrec->ir_count, nrec->ir_freecount, 570 nrec->ir_free, &i); 571 if (error) 572 goto error; 573 if (XFS_IS_CORRUPT(mp, i != 1)) { 574 xfs_btree_mark_sick(cur); 575 error = -EFSCORRUPTED; 576 goto error; 577 } 578 579 goto out; 580 } 581 582 /* 583 * A record exists at this startino. Merge the records. 584 */ 585 error = xfs_inobt_get_rec(cur, &rec, &i); 586 if (error) 587 goto error; 588 if (XFS_IS_CORRUPT(mp, i != 1)) { 589 xfs_btree_mark_sick(cur); 590 error = -EFSCORRUPTED; 591 goto error; 592 } 593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { 594 xfs_btree_mark_sick(cur); 595 error = -EFSCORRUPTED; 596 goto error; 597 } 598 599 /* 600 * This should never fail. If we have coexisting records that 601 * cannot merge, something is seriously wrong. 602 */ 603 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { 604 xfs_btree_mark_sick(cur); 605 error = -EFSCORRUPTED; 606 goto error; 607 } 608 609 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, 610 rec.ir_holemask, nrec->ir_startino, 611 nrec->ir_holemask); 612 613 /* merge to nrec to output the updated record */ 614 __xfs_inobt_rec_merge(nrec, &rec); 615 616 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, 617 nrec->ir_holemask); 618 619 error = xfs_inobt_rec_check_count(mp, nrec); 620 if (error) 621 goto error; 622 623 error = xfs_inobt_update(cur, nrec); 624 if (error) 625 goto error; 626 627 out: 628 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 629 return 0; 630 error: 631 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 632 return error; 633 } 634 635 /* 636 * Insert a new sparse inode chunk into the free inode btree. The inode 637 * record for the sparse chunk is pre-aligned to a startino that should match 638 * any pre-existing sparse inode record in the tree. This allows sparse chunks 639 * to fill over time. 640 * 641 * The new record is always inserted, overwriting a pre-existing record if 642 * there is one. 643 */ 644 STATIC int 645 xfs_finobt_insert_sprec( 646 struct xfs_perag *pag, 647 struct xfs_trans *tp, 648 struct xfs_buf *agbp, 649 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */ 650 { 651 struct xfs_mount *mp = pag->pag_mount; 652 struct xfs_btree_cur *cur; 653 int error; 654 int i; 655 656 cur = xfs_finobt_init_cursor(pag, tp, agbp); 657 658 /* the new record is pre-aligned so we know where to look */ 659 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 660 if (error) 661 goto error; 662 /* if nothing there, insert a new record and return */ 663 if (i == 0) { 664 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 665 nrec->ir_count, nrec->ir_freecount, 666 nrec->ir_free, &i); 667 if (error) 668 goto error; 669 if (XFS_IS_CORRUPT(mp, i != 1)) { 670 xfs_btree_mark_sick(cur); 671 error = -EFSCORRUPTED; 672 goto error; 673 } 674 } else { 675 error = xfs_inobt_update(cur, nrec); 676 if (error) 677 goto error; 678 } 679 680 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 681 return 0; 682 error: 683 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 684 return error; 685 } 686 687 688 /* 689 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if 690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so 691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum 692 * inode count threshold, or the usual negative error code for other errors. 693 */ 694 STATIC int 695 xfs_ialloc_ag_alloc( 696 struct xfs_perag *pag, 697 struct xfs_trans *tp, 698 struct xfs_buf *agbp) 699 { 700 struct xfs_agi *agi; 701 struct xfs_alloc_arg args; 702 int error; 703 xfs_agino_t newino; /* new first inode's number */ 704 xfs_agino_t newlen; /* new number of inodes */ 705 int isaligned = 0; /* inode allocation at stripe */ 706 /* unit boundary */ 707 /* init. to full chunk */ 708 struct xfs_inobt_rec_incore rec; 709 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); 710 uint16_t allocmask = (uint16_t) -1; 711 int do_sparse = 0; 712 713 memset(&args, 0, sizeof(args)); 714 args.tp = tp; 715 args.mp = tp->t_mountp; 716 args.fsbno = NULLFSBLOCK; 717 args.oinfo = XFS_RMAP_OINFO_INODES; 718 args.pag = pag; 719 720 #ifdef DEBUG 721 /* randomly do sparse inode allocations */ 722 if (xfs_has_sparseinodes(tp->t_mountp) && 723 igeo->ialloc_min_blks < igeo->ialloc_blks) 724 do_sparse = get_random_u32_below(2); 725 #endif 726 727 /* 728 * Locking will ensure that we don't have two callers in here 729 * at one time. 730 */ 731 newlen = igeo->ialloc_inos; 732 if (igeo->maxicount && 733 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 734 igeo->maxicount) 735 return -ENOSPC; 736 args.minlen = args.maxlen = igeo->ialloc_blks; 737 /* 738 * First try to allocate inodes contiguous with the last-allocated 739 * chunk of inodes. If the filesystem is striped, this will fill 740 * an entire stripe unit with inodes. 741 */ 742 agi = agbp->b_addr; 743 newino = be32_to_cpu(agi->agi_newino); 744 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 745 igeo->ialloc_blks; 746 if (do_sparse) 747 goto sparse_alloc; 748 if (likely(newino != NULLAGINO && 749 (args.agbno < be32_to_cpu(agi->agi_length)))) { 750 args.prod = 1; 751 752 /* 753 * We need to take into account alignment here to ensure that 754 * we don't modify the free list if we fail to have an exact 755 * block. If we don't have an exact match, and every oher 756 * attempt allocation attempt fails, we'll end up cancelling 757 * a dirty transaction and shutting down. 758 * 759 * For an exact allocation, alignment must be 1, 760 * however we need to take cluster alignment into account when 761 * fixing up the freelist. Use the minalignslop field to 762 * indicate that extra blocks might be required for alignment, 763 * but not to use them in the actual exact allocation. 764 */ 765 args.alignment = 1; 766 args.minalignslop = igeo->cluster_align - 1; 767 768 /* Allow space for the inode btree to split. */ 769 args.minleft = igeo->inobt_maxlevels; 770 error = xfs_alloc_vextent_exact_bno(&args, 771 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 772 args.agbno)); 773 if (error) 774 return error; 775 776 /* 777 * This request might have dirtied the transaction if the AG can 778 * satisfy the request, but the exact block was not available. 779 * If the allocation did fail, subsequent requests will relax 780 * the exact agbno requirement and increase the alignment 781 * instead. It is critical that the total size of the request 782 * (len + alignment + slop) does not increase from this point 783 * on, so reset minalignslop to ensure it is not included in 784 * subsequent requests. 785 */ 786 args.minalignslop = 0; 787 } 788 789 if (unlikely(args.fsbno == NULLFSBLOCK)) { 790 /* 791 * Set the alignment for the allocation. 792 * If stripe alignment is turned on then align at stripe unit 793 * boundary. 794 * If the cluster size is smaller than a filesystem block 795 * then we're doing I/O for inodes in filesystem block size 796 * pieces, so don't need alignment anyway. 797 */ 798 isaligned = 0; 799 if (igeo->ialloc_align) { 800 ASSERT(!xfs_has_noalign(args.mp)); 801 args.alignment = args.mp->m_dalign; 802 isaligned = 1; 803 } else 804 args.alignment = igeo->cluster_align; 805 /* 806 * Allocate a fixed-size extent of inodes. 807 */ 808 args.prod = 1; 809 /* 810 * Allow space for the inode btree to split. 811 */ 812 args.minleft = igeo->inobt_maxlevels; 813 error = xfs_alloc_vextent_near_bno(&args, 814 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 815 be32_to_cpu(agi->agi_root))); 816 if (error) 817 return error; 818 } 819 820 /* 821 * If stripe alignment is turned on, then try again with cluster 822 * alignment. 823 */ 824 if (isaligned && args.fsbno == NULLFSBLOCK) { 825 args.alignment = igeo->cluster_align; 826 error = xfs_alloc_vextent_near_bno(&args, 827 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 828 be32_to_cpu(agi->agi_root))); 829 if (error) 830 return error; 831 } 832 833 /* 834 * Finally, try a sparse allocation if the filesystem supports it and 835 * the sparse allocation length is smaller than a full chunk. 836 */ 837 if (xfs_has_sparseinodes(args.mp) && 838 igeo->ialloc_min_blks < igeo->ialloc_blks && 839 args.fsbno == NULLFSBLOCK) { 840 sparse_alloc: 841 args.alignment = args.mp->m_sb.sb_spino_align; 842 args.prod = 1; 843 844 args.minlen = igeo->ialloc_min_blks; 845 args.maxlen = args.minlen; 846 847 /* 848 * The inode record will be aligned to full chunk size. We must 849 * prevent sparse allocation from AG boundaries that result in 850 * invalid inode records, such as records that start at agbno 0 851 * or extend beyond the AG. 852 * 853 * Set min agbno to the first aligned, non-zero agbno and max to 854 * the last aligned agbno that is at least one full chunk from 855 * the end of the AG. 856 */ 857 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 858 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 859 args.mp->m_sb.sb_inoalignmt) - 860 igeo->ialloc_blks; 861 862 error = xfs_alloc_vextent_near_bno(&args, 863 XFS_AGB_TO_FSB(args.mp, pag->pag_agno, 864 be32_to_cpu(agi->agi_root))); 865 if (error) 866 return error; 867 868 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 869 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 870 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 871 } 872 873 if (args.fsbno == NULLFSBLOCK) 874 return -EAGAIN; 875 876 ASSERT(args.len == args.minlen); 877 878 /* 879 * Stamp and write the inode buffers. 880 * 881 * Seed the new inode cluster with a random generation number. This 882 * prevents short-term reuse of generation numbers if a chunk is 883 * freed and then immediately reallocated. We use random numbers 884 * rather than a linear progression to prevent the next generation 885 * number from being easily guessable. 886 */ 887 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, 888 args.agbno, args.len, get_random_u32()); 889 890 if (error) 891 return error; 892 /* 893 * Convert the results. 894 */ 895 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 896 897 if (xfs_inobt_issparse(~allocmask)) { 898 /* 899 * We've allocated a sparse chunk. Align the startino and mask. 900 */ 901 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 902 903 rec.ir_startino = newino; 904 rec.ir_holemask = ~allocmask; 905 rec.ir_count = newlen; 906 rec.ir_freecount = newlen; 907 rec.ir_free = XFS_INOBT_ALL_FREE; 908 909 /* 910 * Insert the sparse record into the inobt and allow for a merge 911 * if necessary. If a merge does occur, rec is updated to the 912 * merged record. 913 */ 914 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec); 915 if (error == -EFSCORRUPTED) { 916 xfs_alert(args.mp, 917 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 918 XFS_AGINO_TO_INO(args.mp, pag->pag_agno, 919 rec.ir_startino), 920 rec.ir_holemask, rec.ir_count); 921 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 922 } 923 if (error) 924 return error; 925 926 /* 927 * We can't merge the part we've just allocated as for the inobt 928 * due to finobt semantics. The original record may or may not 929 * exist independent of whether physical inodes exist in this 930 * sparse chunk. 931 * 932 * We must update the finobt record based on the inobt record. 933 * rec contains the fully merged and up to date inobt record 934 * from the previous call. Set merge false to replace any 935 * existing record with this one. 936 */ 937 if (xfs_has_finobt(args.mp)) { 938 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec); 939 if (error) 940 return error; 941 } 942 } else { 943 /* full chunk - insert new records to both btrees */ 944 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false); 945 if (error) 946 return error; 947 948 if (xfs_has_finobt(args.mp)) { 949 error = xfs_inobt_insert(pag, tp, agbp, newino, 950 newlen, true); 951 if (error) 952 return error; 953 } 954 } 955 956 /* 957 * Update AGI counts and newino. 958 */ 959 be32_add_cpu(&agi->agi_count, newlen); 960 be32_add_cpu(&agi->agi_freecount, newlen); 961 pag->pagi_freecount += newlen; 962 pag->pagi_count += newlen; 963 agi->agi_newino = cpu_to_be32(newino); 964 965 /* 966 * Log allocation group header fields 967 */ 968 xfs_ialloc_log_agi(tp, agbp, 969 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 970 /* 971 * Modify/log superblock values for inode count and inode free count. 972 */ 973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 975 return 0; 976 } 977 978 /* 979 * Try to retrieve the next record to the left/right from the current one. 980 */ 981 STATIC int 982 xfs_ialloc_next_rec( 983 struct xfs_btree_cur *cur, 984 xfs_inobt_rec_incore_t *rec, 985 int *done, 986 int left) 987 { 988 int error; 989 int i; 990 991 if (left) 992 error = xfs_btree_decrement(cur, 0, &i); 993 else 994 error = xfs_btree_increment(cur, 0, &i); 995 996 if (error) 997 return error; 998 *done = !i; 999 if (i) { 1000 error = xfs_inobt_get_rec(cur, rec, &i); 1001 if (error) 1002 return error; 1003 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1004 xfs_btree_mark_sick(cur); 1005 return -EFSCORRUPTED; 1006 } 1007 } 1008 1009 return 0; 1010 } 1011 1012 STATIC int 1013 xfs_ialloc_get_rec( 1014 struct xfs_btree_cur *cur, 1015 xfs_agino_t agino, 1016 xfs_inobt_rec_incore_t *rec, 1017 int *done) 1018 { 1019 int error; 1020 int i; 1021 1022 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1023 if (error) 1024 return error; 1025 *done = !i; 1026 if (i) { 1027 error = xfs_inobt_get_rec(cur, rec, &i); 1028 if (error) 1029 return error; 1030 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1031 xfs_btree_mark_sick(cur); 1032 return -EFSCORRUPTED; 1033 } 1034 } 1035 1036 return 0; 1037 } 1038 1039 /* 1040 * Return the offset of the first free inode in the record. If the inode chunk 1041 * is sparsely allocated, we convert the record holemask to inode granularity 1042 * and mask off the unallocated regions from the inode free mask. 1043 */ 1044 STATIC int 1045 xfs_inobt_first_free_inode( 1046 struct xfs_inobt_rec_incore *rec) 1047 { 1048 xfs_inofree_t realfree; 1049 1050 /* if there are no holes, return the first available offset */ 1051 if (!xfs_inobt_issparse(rec->ir_holemask)) 1052 return xfs_lowbit64(rec->ir_free); 1053 1054 realfree = xfs_inobt_irec_to_allocmask(rec); 1055 realfree &= rec->ir_free; 1056 1057 return xfs_lowbit64(realfree); 1058 } 1059 1060 /* 1061 * Allocate an inode using the inobt-only algorithm. 1062 */ 1063 STATIC int 1064 xfs_dialloc_ag_inobt( 1065 struct xfs_perag *pag, 1066 struct xfs_trans *tp, 1067 struct xfs_buf *agbp, 1068 xfs_ino_t parent, 1069 xfs_ino_t *inop) 1070 { 1071 struct xfs_mount *mp = tp->t_mountp; 1072 struct xfs_agi *agi = agbp->b_addr; 1073 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1074 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1075 struct xfs_btree_cur *cur, *tcur; 1076 struct xfs_inobt_rec_incore rec, trec; 1077 xfs_ino_t ino; 1078 int error; 1079 int offset; 1080 int i, j; 1081 int searchdistance = 10; 1082 1083 ASSERT(xfs_perag_initialised_agi(pag)); 1084 ASSERT(xfs_perag_allows_inodes(pag)); 1085 ASSERT(pag->pagi_freecount > 0); 1086 1087 restart_pagno: 1088 cur = xfs_inobt_init_cursor(pag, tp, agbp); 1089 /* 1090 * If pagino is 0 (this is the root inode allocation) use newino. 1091 * This must work because we've just allocated some. 1092 */ 1093 if (!pagino) 1094 pagino = be32_to_cpu(agi->agi_newino); 1095 1096 error = xfs_check_agi_freecount(cur); 1097 if (error) 1098 goto error0; 1099 1100 /* 1101 * If in the same AG as the parent, try to get near the parent. 1102 */ 1103 if (pagno == pag->pag_agno) { 1104 int doneleft; /* done, to the left */ 1105 int doneright; /* done, to the right */ 1106 1107 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1108 if (error) 1109 goto error0; 1110 if (XFS_IS_CORRUPT(mp, i != 1)) { 1111 xfs_btree_mark_sick(cur); 1112 error = -EFSCORRUPTED; 1113 goto error0; 1114 } 1115 1116 error = xfs_inobt_get_rec(cur, &rec, &j); 1117 if (error) 1118 goto error0; 1119 if (XFS_IS_CORRUPT(mp, j != 1)) { 1120 xfs_btree_mark_sick(cur); 1121 error = -EFSCORRUPTED; 1122 goto error0; 1123 } 1124 1125 if (rec.ir_freecount > 0) { 1126 /* 1127 * Found a free inode in the same chunk 1128 * as the parent, done. 1129 */ 1130 goto alloc_inode; 1131 } 1132 1133 1134 /* 1135 * In the same AG as parent, but parent's chunk is full. 1136 */ 1137 1138 /* duplicate the cursor, search left & right simultaneously */ 1139 error = xfs_btree_dup_cursor(cur, &tcur); 1140 if (error) 1141 goto error0; 1142 1143 /* 1144 * Skip to last blocks looked up if same parent inode. 1145 */ 1146 if (pagino != NULLAGINO && 1147 pag->pagl_pagino == pagino && 1148 pag->pagl_leftrec != NULLAGINO && 1149 pag->pagl_rightrec != NULLAGINO) { 1150 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1151 &trec, &doneleft); 1152 if (error) 1153 goto error1; 1154 1155 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1156 &rec, &doneright); 1157 if (error) 1158 goto error1; 1159 } else { 1160 /* search left with tcur, back up 1 record */ 1161 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1162 if (error) 1163 goto error1; 1164 1165 /* search right with cur, go forward 1 record. */ 1166 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1167 if (error) 1168 goto error1; 1169 } 1170 1171 /* 1172 * Loop until we find an inode chunk with a free inode. 1173 */ 1174 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1175 int useleft; /* using left inode chunk this time */ 1176 1177 /* figure out the closer block if both are valid. */ 1178 if (!doneleft && !doneright) { 1179 useleft = pagino - 1180 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1181 rec.ir_startino - pagino; 1182 } else { 1183 useleft = !doneleft; 1184 } 1185 1186 /* free inodes to the left? */ 1187 if (useleft && trec.ir_freecount) { 1188 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1189 cur = tcur; 1190 1191 pag->pagl_leftrec = trec.ir_startino; 1192 pag->pagl_rightrec = rec.ir_startino; 1193 pag->pagl_pagino = pagino; 1194 rec = trec; 1195 goto alloc_inode; 1196 } 1197 1198 /* free inodes to the right? */ 1199 if (!useleft && rec.ir_freecount) { 1200 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1201 1202 pag->pagl_leftrec = trec.ir_startino; 1203 pag->pagl_rightrec = rec.ir_startino; 1204 pag->pagl_pagino = pagino; 1205 goto alloc_inode; 1206 } 1207 1208 /* get next record to check */ 1209 if (useleft) { 1210 error = xfs_ialloc_next_rec(tcur, &trec, 1211 &doneleft, 1); 1212 } else { 1213 error = xfs_ialloc_next_rec(cur, &rec, 1214 &doneright, 0); 1215 } 1216 if (error) 1217 goto error1; 1218 } 1219 1220 if (searchdistance <= 0) { 1221 /* 1222 * Not in range - save last search 1223 * location and allocate a new inode 1224 */ 1225 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1226 pag->pagl_leftrec = trec.ir_startino; 1227 pag->pagl_rightrec = rec.ir_startino; 1228 pag->pagl_pagino = pagino; 1229 1230 } else { 1231 /* 1232 * We've reached the end of the btree. because 1233 * we are only searching a small chunk of the 1234 * btree each search, there is obviously free 1235 * inodes closer to the parent inode than we 1236 * are now. restart the search again. 1237 */ 1238 pag->pagl_pagino = NULLAGINO; 1239 pag->pagl_leftrec = NULLAGINO; 1240 pag->pagl_rightrec = NULLAGINO; 1241 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1243 goto restart_pagno; 1244 } 1245 } 1246 1247 /* 1248 * In a different AG from the parent. 1249 * See if the most recently allocated block has any free. 1250 */ 1251 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1252 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1253 XFS_LOOKUP_EQ, &i); 1254 if (error) 1255 goto error0; 1256 1257 if (i == 1) { 1258 error = xfs_inobt_get_rec(cur, &rec, &j); 1259 if (error) 1260 goto error0; 1261 1262 if (j == 1 && rec.ir_freecount > 0) { 1263 /* 1264 * The last chunk allocated in the group 1265 * still has a free inode. 1266 */ 1267 goto alloc_inode; 1268 } 1269 } 1270 } 1271 1272 /* 1273 * None left in the last group, search the whole AG 1274 */ 1275 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1276 if (error) 1277 goto error0; 1278 if (XFS_IS_CORRUPT(mp, i != 1)) { 1279 xfs_btree_mark_sick(cur); 1280 error = -EFSCORRUPTED; 1281 goto error0; 1282 } 1283 1284 for (;;) { 1285 error = xfs_inobt_get_rec(cur, &rec, &i); 1286 if (error) 1287 goto error0; 1288 if (XFS_IS_CORRUPT(mp, i != 1)) { 1289 xfs_btree_mark_sick(cur); 1290 error = -EFSCORRUPTED; 1291 goto error0; 1292 } 1293 if (rec.ir_freecount > 0) 1294 break; 1295 error = xfs_btree_increment(cur, 0, &i); 1296 if (error) 1297 goto error0; 1298 if (XFS_IS_CORRUPT(mp, i != 1)) { 1299 xfs_btree_mark_sick(cur); 1300 error = -EFSCORRUPTED; 1301 goto error0; 1302 } 1303 } 1304 1305 alloc_inode: 1306 offset = xfs_inobt_first_free_inode(&rec); 1307 ASSERT(offset >= 0); 1308 ASSERT(offset < XFS_INODES_PER_CHUNK); 1309 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1310 XFS_INODES_PER_CHUNK) == 0); 1311 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1312 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1313 rec.ir_freecount--; 1314 error = xfs_inobt_update(cur, &rec); 1315 if (error) 1316 goto error0; 1317 be32_add_cpu(&agi->agi_freecount, -1); 1318 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1319 pag->pagi_freecount--; 1320 1321 error = xfs_check_agi_freecount(cur); 1322 if (error) 1323 goto error0; 1324 1325 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1326 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1327 *inop = ino; 1328 return 0; 1329 error1: 1330 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1331 error0: 1332 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1333 return error; 1334 } 1335 1336 /* 1337 * Use the free inode btree to allocate an inode based on distance from the 1338 * parent. Note that the provided cursor may be deleted and replaced. 1339 */ 1340 STATIC int 1341 xfs_dialloc_ag_finobt_near( 1342 xfs_agino_t pagino, 1343 struct xfs_btree_cur **ocur, 1344 struct xfs_inobt_rec_incore *rec) 1345 { 1346 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1347 struct xfs_btree_cur *rcur; /* right search cursor */ 1348 struct xfs_inobt_rec_incore rrec; 1349 int error; 1350 int i, j; 1351 1352 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1353 if (error) 1354 return error; 1355 1356 if (i == 1) { 1357 error = xfs_inobt_get_rec(lcur, rec, &i); 1358 if (error) 1359 return error; 1360 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) { 1361 xfs_btree_mark_sick(lcur); 1362 return -EFSCORRUPTED; 1363 } 1364 1365 /* 1366 * See if we've landed in the parent inode record. The finobt 1367 * only tracks chunks with at least one free inode, so record 1368 * existence is enough. 1369 */ 1370 if (pagino >= rec->ir_startino && 1371 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1372 return 0; 1373 } 1374 1375 error = xfs_btree_dup_cursor(lcur, &rcur); 1376 if (error) 1377 return error; 1378 1379 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1380 if (error) 1381 goto error_rcur; 1382 if (j == 1) { 1383 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1384 if (error) 1385 goto error_rcur; 1386 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { 1387 xfs_btree_mark_sick(lcur); 1388 error = -EFSCORRUPTED; 1389 goto error_rcur; 1390 } 1391 } 1392 1393 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { 1394 xfs_btree_mark_sick(lcur); 1395 error = -EFSCORRUPTED; 1396 goto error_rcur; 1397 } 1398 if (i == 1 && j == 1) { 1399 /* 1400 * Both the left and right records are valid. Choose the closer 1401 * inode chunk to the target. 1402 */ 1403 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1404 (rrec.ir_startino - pagino)) { 1405 *rec = rrec; 1406 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1407 *ocur = rcur; 1408 } else { 1409 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1410 } 1411 } else if (j == 1) { 1412 /* only the right record is valid */ 1413 *rec = rrec; 1414 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1415 *ocur = rcur; 1416 } else if (i == 1) { 1417 /* only the left record is valid */ 1418 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1419 } 1420 1421 return 0; 1422 1423 error_rcur: 1424 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1425 return error; 1426 } 1427 1428 /* 1429 * Use the free inode btree to find a free inode based on a newino hint. If 1430 * the hint is NULL, find the first free inode in the AG. 1431 */ 1432 STATIC int 1433 xfs_dialloc_ag_finobt_newino( 1434 struct xfs_agi *agi, 1435 struct xfs_btree_cur *cur, 1436 struct xfs_inobt_rec_incore *rec) 1437 { 1438 int error; 1439 int i; 1440 1441 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1442 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1443 XFS_LOOKUP_EQ, &i); 1444 if (error) 1445 return error; 1446 if (i == 1) { 1447 error = xfs_inobt_get_rec(cur, rec, &i); 1448 if (error) 1449 return error; 1450 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1451 xfs_btree_mark_sick(cur); 1452 return -EFSCORRUPTED; 1453 } 1454 return 0; 1455 } 1456 } 1457 1458 /* 1459 * Find the first inode available in the AG. 1460 */ 1461 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1462 if (error) 1463 return error; 1464 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1465 xfs_btree_mark_sick(cur); 1466 return -EFSCORRUPTED; 1467 } 1468 1469 error = xfs_inobt_get_rec(cur, rec, &i); 1470 if (error) 1471 return error; 1472 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1473 xfs_btree_mark_sick(cur); 1474 return -EFSCORRUPTED; 1475 } 1476 1477 return 0; 1478 } 1479 1480 /* 1481 * Update the inobt based on a modification made to the finobt. Also ensure that 1482 * the records from both trees are equivalent post-modification. 1483 */ 1484 STATIC int 1485 xfs_dialloc_ag_update_inobt( 1486 struct xfs_btree_cur *cur, /* inobt cursor */ 1487 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1488 int offset) /* inode offset */ 1489 { 1490 struct xfs_inobt_rec_incore rec; 1491 int error; 1492 int i; 1493 1494 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1495 if (error) 1496 return error; 1497 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1498 xfs_btree_mark_sick(cur); 1499 return -EFSCORRUPTED; 1500 } 1501 1502 error = xfs_inobt_get_rec(cur, &rec, &i); 1503 if (error) 1504 return error; 1505 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 1506 xfs_btree_mark_sick(cur); 1507 return -EFSCORRUPTED; 1508 } 1509 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1510 XFS_INODES_PER_CHUNK) == 0); 1511 1512 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1513 rec.ir_freecount--; 1514 1515 if (XFS_IS_CORRUPT(cur->bc_mp, 1516 rec.ir_free != frec->ir_free || 1517 rec.ir_freecount != frec->ir_freecount)) { 1518 xfs_btree_mark_sick(cur); 1519 return -EFSCORRUPTED; 1520 } 1521 1522 return xfs_inobt_update(cur, &rec); 1523 } 1524 1525 /* 1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1527 * back to the inobt search algorithm. 1528 * 1529 * The caller selected an AG for us, and made sure that free inodes are 1530 * available. 1531 */ 1532 static int 1533 xfs_dialloc_ag( 1534 struct xfs_perag *pag, 1535 struct xfs_trans *tp, 1536 struct xfs_buf *agbp, 1537 xfs_ino_t parent, 1538 xfs_ino_t *inop) 1539 { 1540 struct xfs_mount *mp = tp->t_mountp; 1541 struct xfs_agi *agi = agbp->b_addr; 1542 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1543 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1544 struct xfs_btree_cur *cur; /* finobt cursor */ 1545 struct xfs_btree_cur *icur; /* inobt cursor */ 1546 struct xfs_inobt_rec_incore rec; 1547 xfs_ino_t ino; 1548 int error; 1549 int offset; 1550 int i; 1551 1552 if (!xfs_has_finobt(mp)) 1553 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); 1554 1555 /* 1556 * If pagino is 0 (this is the root inode allocation) use newino. 1557 * This must work because we've just allocated some. 1558 */ 1559 if (!pagino) 1560 pagino = be32_to_cpu(agi->agi_newino); 1561 1562 cur = xfs_finobt_init_cursor(pag, tp, agbp); 1563 1564 error = xfs_check_agi_freecount(cur); 1565 if (error) 1566 goto error_cur; 1567 1568 /* 1569 * The search algorithm depends on whether we're in the same AG as the 1570 * parent. If so, find the closest available inode to the parent. If 1571 * not, consider the agi hint or find the first free inode in the AG. 1572 */ 1573 if (pag->pag_agno == pagno) 1574 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1575 else 1576 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1577 if (error) 1578 goto error_cur; 1579 1580 offset = xfs_inobt_first_free_inode(&rec); 1581 ASSERT(offset >= 0); 1582 ASSERT(offset < XFS_INODES_PER_CHUNK); 1583 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1584 XFS_INODES_PER_CHUNK) == 0); 1585 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1586 1587 /* 1588 * Modify or remove the finobt record. 1589 */ 1590 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1591 rec.ir_freecount--; 1592 if (rec.ir_freecount) 1593 error = xfs_inobt_update(cur, &rec); 1594 else 1595 error = xfs_btree_delete(cur, &i); 1596 if (error) 1597 goto error_cur; 1598 1599 /* 1600 * The finobt has now been updated appropriately. We haven't updated the 1601 * agi and superblock yet, so we can create an inobt cursor and validate 1602 * the original freecount. If all is well, make the equivalent update to 1603 * the inobt using the finobt record and offset information. 1604 */ 1605 icur = xfs_inobt_init_cursor(pag, tp, agbp); 1606 1607 error = xfs_check_agi_freecount(icur); 1608 if (error) 1609 goto error_icur; 1610 1611 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1612 if (error) 1613 goto error_icur; 1614 1615 /* 1616 * Both trees have now been updated. We must update the perag and 1617 * superblock before we can check the freecount for each btree. 1618 */ 1619 be32_add_cpu(&agi->agi_freecount, -1); 1620 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1621 pag->pagi_freecount--; 1622 1623 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1624 1625 error = xfs_check_agi_freecount(icur); 1626 if (error) 1627 goto error_icur; 1628 error = xfs_check_agi_freecount(cur); 1629 if (error) 1630 goto error_icur; 1631 1632 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1633 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1634 *inop = ino; 1635 return 0; 1636 1637 error_icur: 1638 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1639 error_cur: 1640 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1641 return error; 1642 } 1643 1644 static int 1645 xfs_dialloc_roll( 1646 struct xfs_trans **tpp, 1647 struct xfs_buf *agibp) 1648 { 1649 struct xfs_trans *tp = *tpp; 1650 struct xfs_dquot_acct *dqinfo; 1651 int error; 1652 1653 /* 1654 * Hold to on to the agibp across the commit so no other allocation can 1655 * come in and take the free inodes we just allocated for our caller. 1656 */ 1657 xfs_trans_bhold(tp, agibp); 1658 1659 /* 1660 * We want the quota changes to be associated with the next transaction, 1661 * NOT this one. So, detach the dqinfo from this and attach it to the 1662 * next transaction. 1663 */ 1664 dqinfo = tp->t_dqinfo; 1665 tp->t_dqinfo = NULL; 1666 1667 error = xfs_trans_roll(&tp); 1668 1669 /* Re-attach the quota info that we detached from prev trx. */ 1670 tp->t_dqinfo = dqinfo; 1671 1672 /* 1673 * Join the buffer even on commit error so that the buffer is released 1674 * when the caller cancels the transaction and doesn't have to handle 1675 * this error case specially. 1676 */ 1677 xfs_trans_bjoin(tp, agibp); 1678 *tpp = tp; 1679 return error; 1680 } 1681 1682 static bool 1683 xfs_dialloc_good_ag( 1684 struct xfs_perag *pag, 1685 struct xfs_trans *tp, 1686 umode_t mode, 1687 int flags, 1688 bool ok_alloc) 1689 { 1690 struct xfs_mount *mp = tp->t_mountp; 1691 xfs_extlen_t ineed; 1692 xfs_extlen_t longest = 0; 1693 int needspace; 1694 int error; 1695 1696 if (!pag) 1697 return false; 1698 if (!xfs_perag_allows_inodes(pag)) 1699 return false; 1700 1701 if (!xfs_perag_initialised_agi(pag)) { 1702 error = xfs_ialloc_read_agi(pag, tp, NULL); 1703 if (error) 1704 return false; 1705 } 1706 1707 if (pag->pagi_freecount) 1708 return true; 1709 if (!ok_alloc) 1710 return false; 1711 1712 if (!xfs_perag_initialised_agf(pag)) { 1713 error = xfs_alloc_read_agf(pag, tp, flags, NULL); 1714 if (error) 1715 return false; 1716 } 1717 1718 /* 1719 * Check that there is enough free space for the file plus a chunk of 1720 * inodes if we need to allocate some. If this is the first pass across 1721 * the AGs, take into account the potential space needed for alignment 1722 * of inode chunks when checking the longest contiguous free space in 1723 * the AG - this prevents us from getting ENOSPC because we have free 1724 * space larger than ialloc_blks but alignment constraints prevent us 1725 * from using it. 1726 * 1727 * If we can't find an AG with space for full alignment slack to be 1728 * taken into account, we must be near ENOSPC in all AGs. Hence we 1729 * don't include alignment for the second pass and so if we fail 1730 * allocation due to alignment issues then it is most likely a real 1731 * ENOSPC condition. 1732 * 1733 * XXX(dgc): this calculation is now bogus thanks to the per-ag 1734 * reservations that xfs_alloc_fix_freelist() now does via 1735 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will 1736 * be more than large enough for the check below to succeed, but 1737 * xfs_alloc_space_available() will fail because of the non-zero 1738 * metadata reservation and hence we won't actually be able to allocate 1739 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC 1740 * because of this. 1741 */ 1742 ineed = M_IGEO(mp)->ialloc_min_blks; 1743 if (flags && ineed > 1) 1744 ineed += M_IGEO(mp)->cluster_align; 1745 longest = pag->pagf_longest; 1746 if (!longest) 1747 longest = pag->pagf_flcount > 0; 1748 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 1749 1750 if (pag->pagf_freeblks < needspace + ineed || longest < ineed) 1751 return false; 1752 return true; 1753 } 1754 1755 static int 1756 xfs_dialloc_try_ag( 1757 struct xfs_perag *pag, 1758 struct xfs_trans **tpp, 1759 xfs_ino_t parent, 1760 xfs_ino_t *new_ino, 1761 bool ok_alloc) 1762 { 1763 struct xfs_buf *agbp; 1764 xfs_ino_t ino; 1765 int error; 1766 1767 /* 1768 * Then read in the AGI buffer and recheck with the AGI buffer 1769 * lock held. 1770 */ 1771 error = xfs_ialloc_read_agi(pag, *tpp, &agbp); 1772 if (error) 1773 return error; 1774 1775 if (!pag->pagi_freecount) { 1776 if (!ok_alloc) { 1777 error = -EAGAIN; 1778 goto out_release; 1779 } 1780 1781 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); 1782 if (error < 0) 1783 goto out_release; 1784 1785 /* 1786 * We successfully allocated space for an inode cluster in this 1787 * AG. Roll the transaction so that we can allocate one of the 1788 * new inodes. 1789 */ 1790 ASSERT(pag->pagi_freecount > 0); 1791 error = xfs_dialloc_roll(tpp, agbp); 1792 if (error) 1793 goto out_release; 1794 } 1795 1796 /* Allocate an inode in the found AG */ 1797 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); 1798 if (!error) 1799 *new_ino = ino; 1800 return error; 1801 1802 out_release: 1803 xfs_trans_brelse(*tpp, agbp); 1804 return error; 1805 } 1806 1807 /* 1808 * Allocate an on-disk inode. 1809 * 1810 * Mode is used to tell whether the new inode is a directory and hence where to 1811 * locate it. The on-disk inode that is allocated will be returned in @new_ino 1812 * on success, otherwise an error will be set to indicate the failure (e.g. 1813 * -ENOSPC). 1814 */ 1815 int 1816 xfs_dialloc( 1817 struct xfs_trans **tpp, 1818 xfs_ino_t parent, 1819 umode_t mode, 1820 xfs_ino_t *new_ino) 1821 { 1822 struct xfs_mount *mp = (*tpp)->t_mountp; 1823 xfs_agnumber_t agno; 1824 int error = 0; 1825 xfs_agnumber_t start_agno; 1826 struct xfs_perag *pag; 1827 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1828 bool ok_alloc = true; 1829 bool low_space = false; 1830 int flags; 1831 xfs_ino_t ino = NULLFSINO; 1832 1833 /* 1834 * Directories, symlinks, and regular files frequently allocate at least 1835 * one block, so factor that potential expansion when we examine whether 1836 * an AG has enough space for file creation. 1837 */ 1838 if (S_ISDIR(mode)) 1839 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % 1840 mp->m_maxagi; 1841 else { 1842 start_agno = XFS_INO_TO_AGNO(mp, parent); 1843 if (start_agno >= mp->m_maxagi) 1844 start_agno = 0; 1845 } 1846 1847 /* 1848 * If we have already hit the ceiling of inode blocks then clear 1849 * ok_alloc so we scan all available agi structures for a free 1850 * inode. 1851 * 1852 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1853 * which will sacrifice the preciseness but improve the performance. 1854 */ 1855 if (igeo->maxicount && 1856 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos 1857 > igeo->maxicount) { 1858 ok_alloc = false; 1859 } 1860 1861 /* 1862 * If we are near to ENOSPC, we want to prefer allocation from AGs that 1863 * have free inodes in them rather than use up free space allocating new 1864 * inode chunks. Hence we turn off allocation for the first non-blocking 1865 * pass through the AGs if we are near ENOSPC to consume free inodes 1866 * that we can immediately allocate, but then we allow allocation on the 1867 * second pass if we fail to find an AG with free inodes in it. 1868 */ 1869 if (percpu_counter_read_positive(&mp->m_fdblocks) < 1870 mp->m_low_space[XFS_LOWSP_1_PCNT]) { 1871 ok_alloc = false; 1872 low_space = true; 1873 } 1874 1875 /* 1876 * Loop until we find an allocation group that either has free inodes 1877 * or in which we can allocate some inodes. Iterate through the 1878 * allocation groups upward, wrapping at the end. 1879 */ 1880 flags = XFS_ALLOC_FLAG_TRYLOCK; 1881 retry: 1882 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { 1883 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { 1884 error = xfs_dialloc_try_ag(pag, tpp, parent, 1885 &ino, ok_alloc); 1886 if (error != -EAGAIN) 1887 break; 1888 error = 0; 1889 } 1890 1891 if (xfs_is_shutdown(mp)) { 1892 error = -EFSCORRUPTED; 1893 break; 1894 } 1895 } 1896 if (pag) 1897 xfs_perag_rele(pag); 1898 if (error) 1899 return error; 1900 if (ino == NULLFSINO) { 1901 if (flags) { 1902 flags = 0; 1903 if (low_space) 1904 ok_alloc = true; 1905 goto retry; 1906 } 1907 return -ENOSPC; 1908 } 1909 *new_ino = ino; 1910 return 0; 1911 } 1912 1913 /* 1914 * Free the blocks of an inode chunk. We must consider that the inode chunk 1915 * might be sparse and only free the regions that are allocated as part of the 1916 * chunk. 1917 */ 1918 static int 1919 xfs_difree_inode_chunk( 1920 struct xfs_trans *tp, 1921 xfs_agnumber_t agno, 1922 struct xfs_inobt_rec_incore *rec) 1923 { 1924 struct xfs_mount *mp = tp->t_mountp; 1925 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1926 rec->ir_startino); 1927 int startidx, endidx; 1928 int nextbit; 1929 xfs_agblock_t agbno; 1930 int contigblk; 1931 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1932 1933 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1934 /* not sparse, calculate extent info directly */ 1935 return xfs_free_extent_later(tp, 1936 XFS_AGB_TO_FSB(mp, agno, sagbno), 1937 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, 1938 XFS_AG_RESV_NONE, false); 1939 } 1940 1941 /* holemask is only 16-bits (fits in an unsigned long) */ 1942 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1943 holemask[0] = rec->ir_holemask; 1944 1945 /* 1946 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1947 * holemask and convert the start/end index of each range to an extent. 1948 * We start with the start and end index both pointing at the first 0 in 1949 * the mask. 1950 */ 1951 startidx = endidx = find_first_zero_bit(holemask, 1952 XFS_INOBT_HOLEMASK_BITS); 1953 nextbit = startidx + 1; 1954 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1955 int error; 1956 1957 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1958 nextbit); 1959 /* 1960 * If the next zero bit is contiguous, update the end index of 1961 * the current range and continue. 1962 */ 1963 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1964 nextbit == endidx + 1) { 1965 endidx = nextbit; 1966 goto next; 1967 } 1968 1969 /* 1970 * nextbit is not contiguous with the current end index. Convert 1971 * the current start/end to an extent and add it to the free 1972 * list. 1973 */ 1974 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1975 mp->m_sb.sb_inopblock; 1976 contigblk = ((endidx - startidx + 1) * 1977 XFS_INODES_PER_HOLEMASK_BIT) / 1978 mp->m_sb.sb_inopblock; 1979 1980 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1981 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1982 error = xfs_free_extent_later(tp, 1983 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, 1984 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 1985 false); 1986 if (error) 1987 return error; 1988 1989 /* reset range to current bit and carry on... */ 1990 startidx = endidx = nextbit; 1991 1992 next: 1993 nextbit++; 1994 } 1995 return 0; 1996 } 1997 1998 STATIC int 1999 xfs_difree_inobt( 2000 struct xfs_perag *pag, 2001 struct xfs_trans *tp, 2002 struct xfs_buf *agbp, 2003 xfs_agino_t agino, 2004 struct xfs_icluster *xic, 2005 struct xfs_inobt_rec_incore *orec) 2006 { 2007 struct xfs_mount *mp = pag->pag_mount; 2008 struct xfs_agi *agi = agbp->b_addr; 2009 struct xfs_btree_cur *cur; 2010 struct xfs_inobt_rec_incore rec; 2011 int ilen; 2012 int error; 2013 int i; 2014 int off; 2015 2016 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2017 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 2018 2019 /* 2020 * Initialize the cursor. 2021 */ 2022 cur = xfs_inobt_init_cursor(pag, tp, agbp); 2023 2024 error = xfs_check_agi_freecount(cur); 2025 if (error) 2026 goto error0; 2027 2028 /* 2029 * Look for the entry describing this inode. 2030 */ 2031 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 2032 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 2033 __func__, error); 2034 goto error0; 2035 } 2036 if (XFS_IS_CORRUPT(mp, i != 1)) { 2037 xfs_btree_mark_sick(cur); 2038 error = -EFSCORRUPTED; 2039 goto error0; 2040 } 2041 error = xfs_inobt_get_rec(cur, &rec, &i); 2042 if (error) { 2043 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 2044 __func__, error); 2045 goto error0; 2046 } 2047 if (XFS_IS_CORRUPT(mp, i != 1)) { 2048 xfs_btree_mark_sick(cur); 2049 error = -EFSCORRUPTED; 2050 goto error0; 2051 } 2052 /* 2053 * Get the offset in the inode chunk. 2054 */ 2055 off = agino - rec.ir_startino; 2056 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 2057 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 2058 /* 2059 * Mark the inode free & increment the count. 2060 */ 2061 rec.ir_free |= XFS_INOBT_MASK(off); 2062 rec.ir_freecount++; 2063 2064 /* 2065 * When an inode chunk is free, it becomes eligible for removal. Don't 2066 * remove the chunk if the block size is large enough for multiple inode 2067 * chunks (that might not be free). 2068 */ 2069 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2070 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2071 xic->deleted = true; 2072 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, 2073 rec.ir_startino); 2074 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 2075 2076 /* 2077 * Remove the inode cluster from the AGI B+Tree, adjust the 2078 * AGI and Superblock inode counts, and mark the disk space 2079 * to be freed when the transaction is committed. 2080 */ 2081 ilen = rec.ir_freecount; 2082 be32_add_cpu(&agi->agi_count, -ilen); 2083 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 2084 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 2085 pag->pagi_freecount -= ilen - 1; 2086 pag->pagi_count -= ilen; 2087 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 2088 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 2089 2090 if ((error = xfs_btree_delete(cur, &i))) { 2091 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 2092 __func__, error); 2093 goto error0; 2094 } 2095 2096 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); 2097 if (error) 2098 goto error0; 2099 } else { 2100 xic->deleted = false; 2101 2102 error = xfs_inobt_update(cur, &rec); 2103 if (error) { 2104 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2105 __func__, error); 2106 goto error0; 2107 } 2108 2109 /* 2110 * Change the inode free counts and log the ag/sb changes. 2111 */ 2112 be32_add_cpu(&agi->agi_freecount, 1); 2113 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2114 pag->pagi_freecount++; 2115 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2116 } 2117 2118 error = xfs_check_agi_freecount(cur); 2119 if (error) 2120 goto error0; 2121 2122 *orec = rec; 2123 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2124 return 0; 2125 2126 error0: 2127 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2128 return error; 2129 } 2130 2131 /* 2132 * Free an inode in the free inode btree. 2133 */ 2134 STATIC int 2135 xfs_difree_finobt( 2136 struct xfs_perag *pag, 2137 struct xfs_trans *tp, 2138 struct xfs_buf *agbp, 2139 xfs_agino_t agino, 2140 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2141 { 2142 struct xfs_mount *mp = pag->pag_mount; 2143 struct xfs_btree_cur *cur; 2144 struct xfs_inobt_rec_incore rec; 2145 int offset = agino - ibtrec->ir_startino; 2146 int error; 2147 int i; 2148 2149 cur = xfs_finobt_init_cursor(pag, tp, agbp); 2150 2151 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2152 if (error) 2153 goto error; 2154 if (i == 0) { 2155 /* 2156 * If the record does not exist in the finobt, we must have just 2157 * freed an inode in a previously fully allocated chunk. If not, 2158 * something is out of sync. 2159 */ 2160 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { 2161 xfs_btree_mark_sick(cur); 2162 error = -EFSCORRUPTED; 2163 goto error; 2164 } 2165 2166 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2167 ibtrec->ir_count, 2168 ibtrec->ir_freecount, 2169 ibtrec->ir_free, &i); 2170 if (error) 2171 goto error; 2172 ASSERT(i == 1); 2173 2174 goto out; 2175 } 2176 2177 /* 2178 * Read and update the existing record. We could just copy the ibtrec 2179 * across here, but that would defeat the purpose of having redundant 2180 * metadata. By making the modifications independently, we can catch 2181 * corruptions that we wouldn't see if we just copied from one record 2182 * to another. 2183 */ 2184 error = xfs_inobt_get_rec(cur, &rec, &i); 2185 if (error) 2186 goto error; 2187 if (XFS_IS_CORRUPT(mp, i != 1)) { 2188 xfs_btree_mark_sick(cur); 2189 error = -EFSCORRUPTED; 2190 goto error; 2191 } 2192 2193 rec.ir_free |= XFS_INOBT_MASK(offset); 2194 rec.ir_freecount++; 2195 2196 if (XFS_IS_CORRUPT(mp, 2197 rec.ir_free != ibtrec->ir_free || 2198 rec.ir_freecount != ibtrec->ir_freecount)) { 2199 xfs_btree_mark_sick(cur); 2200 error = -EFSCORRUPTED; 2201 goto error; 2202 } 2203 2204 /* 2205 * The content of inobt records should always match between the inobt 2206 * and finobt. The lifecycle of records in the finobt is different from 2207 * the inobt in that the finobt only tracks records with at least one 2208 * free inode. Hence, if all of the inodes are free and we aren't 2209 * keeping inode chunks permanently on disk, remove the record. 2210 * Otherwise, update the record with the new information. 2211 * 2212 * Note that we currently can't free chunks when the block size is large 2213 * enough for multiple chunks. Leave the finobt record to remain in sync 2214 * with the inobt. 2215 */ 2216 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2217 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2218 error = xfs_btree_delete(cur, &i); 2219 if (error) 2220 goto error; 2221 ASSERT(i == 1); 2222 } else { 2223 error = xfs_inobt_update(cur, &rec); 2224 if (error) 2225 goto error; 2226 } 2227 2228 out: 2229 error = xfs_check_agi_freecount(cur); 2230 if (error) 2231 goto error; 2232 2233 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2234 return 0; 2235 2236 error: 2237 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2238 return error; 2239 } 2240 2241 /* 2242 * Free disk inode. Carefully avoids touching the incore inode, all 2243 * manipulations incore are the caller's responsibility. 2244 * The on-disk inode is not changed by this operation, only the 2245 * btree (free inode mask) is changed. 2246 */ 2247 int 2248 xfs_difree( 2249 struct xfs_trans *tp, 2250 struct xfs_perag *pag, 2251 xfs_ino_t inode, 2252 struct xfs_icluster *xic) 2253 { 2254 /* REFERENCED */ 2255 xfs_agblock_t agbno; /* block number containing inode */ 2256 struct xfs_buf *agbp; /* buffer for allocation group header */ 2257 xfs_agino_t agino; /* allocation group inode number */ 2258 int error; /* error return value */ 2259 struct xfs_mount *mp = tp->t_mountp; 2260 struct xfs_inobt_rec_incore rec;/* btree record */ 2261 2262 /* 2263 * Break up inode number into its components. 2264 */ 2265 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { 2266 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", 2267 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); 2268 ASSERT(0); 2269 return -EINVAL; 2270 } 2271 agino = XFS_INO_TO_AGINO(mp, inode); 2272 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2273 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2274 __func__, (unsigned long long)inode, 2275 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2276 ASSERT(0); 2277 return -EINVAL; 2278 } 2279 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2280 if (agbno >= mp->m_sb.sb_agblocks) { 2281 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2282 __func__, agbno, mp->m_sb.sb_agblocks); 2283 ASSERT(0); 2284 return -EINVAL; 2285 } 2286 /* 2287 * Get the allocation group header. 2288 */ 2289 error = xfs_ialloc_read_agi(pag, tp, &agbp); 2290 if (error) { 2291 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2292 __func__, error); 2293 return error; 2294 } 2295 2296 /* 2297 * Fix up the inode allocation btree. 2298 */ 2299 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); 2300 if (error) 2301 goto error0; 2302 2303 /* 2304 * Fix up the free inode btree. 2305 */ 2306 if (xfs_has_finobt(mp)) { 2307 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); 2308 if (error) 2309 goto error0; 2310 } 2311 2312 return 0; 2313 2314 error0: 2315 return error; 2316 } 2317 2318 STATIC int 2319 xfs_imap_lookup( 2320 struct xfs_perag *pag, 2321 struct xfs_trans *tp, 2322 xfs_agino_t agino, 2323 xfs_agblock_t agbno, 2324 xfs_agblock_t *chunk_agbno, 2325 xfs_agblock_t *offset_agbno, 2326 int flags) 2327 { 2328 struct xfs_mount *mp = pag->pag_mount; 2329 struct xfs_inobt_rec_incore rec; 2330 struct xfs_btree_cur *cur; 2331 struct xfs_buf *agbp; 2332 int error; 2333 int i; 2334 2335 error = xfs_ialloc_read_agi(pag, tp, &agbp); 2336 if (error) { 2337 xfs_alert(mp, 2338 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2339 __func__, error, pag->pag_agno); 2340 return error; 2341 } 2342 2343 /* 2344 * Lookup the inode record for the given agino. If the record cannot be 2345 * found, then it's an invalid inode number and we should abort. Once 2346 * we have a record, we need to ensure it contains the inode number 2347 * we are looking up. 2348 */ 2349 cur = xfs_inobt_init_cursor(pag, tp, agbp); 2350 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2351 if (!error) { 2352 if (i) 2353 error = xfs_inobt_get_rec(cur, &rec, &i); 2354 if (!error && i == 0) 2355 error = -EINVAL; 2356 } 2357 2358 xfs_trans_brelse(tp, agbp); 2359 xfs_btree_del_cursor(cur, error); 2360 if (error) 2361 return error; 2362 2363 /* check that the returned record contains the required inode */ 2364 if (rec.ir_startino > agino || 2365 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) 2366 return -EINVAL; 2367 2368 /* for untrusted inodes check it is allocated first */ 2369 if ((flags & XFS_IGET_UNTRUSTED) && 2370 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2371 return -EINVAL; 2372 2373 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2374 *offset_agbno = agbno - *chunk_agbno; 2375 return 0; 2376 } 2377 2378 /* 2379 * Return the location of the inode in imap, for mapping it into a buffer. 2380 */ 2381 int 2382 xfs_imap( 2383 struct xfs_perag *pag, 2384 struct xfs_trans *tp, 2385 xfs_ino_t ino, /* inode to locate */ 2386 struct xfs_imap *imap, /* location map structure */ 2387 uint flags) /* flags for inode btree lookup */ 2388 { 2389 struct xfs_mount *mp = pag->pag_mount; 2390 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2391 xfs_agino_t agino; /* inode number within alloc group */ 2392 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2393 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2394 int error; /* error code */ 2395 int offset; /* index of inode in its buffer */ 2396 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2397 2398 ASSERT(ino != NULLFSINO); 2399 2400 /* 2401 * Split up the inode number into its parts. 2402 */ 2403 agino = XFS_INO_TO_AGINO(mp, ino); 2404 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2405 if (agbno >= mp->m_sb.sb_agblocks || 2406 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2407 error = -EINVAL; 2408 #ifdef DEBUG 2409 /* 2410 * Don't output diagnostic information for untrusted inodes 2411 * as they can be invalid without implying corruption. 2412 */ 2413 if (flags & XFS_IGET_UNTRUSTED) 2414 return error; 2415 if (agbno >= mp->m_sb.sb_agblocks) { 2416 xfs_alert(mp, 2417 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2418 __func__, (unsigned long long)agbno, 2419 (unsigned long)mp->m_sb.sb_agblocks); 2420 } 2421 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2422 xfs_alert(mp, 2423 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2424 __func__, ino, 2425 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2426 } 2427 xfs_stack_trace(); 2428 #endif /* DEBUG */ 2429 return error; 2430 } 2431 2432 /* 2433 * For bulkstat and handle lookups, we have an untrusted inode number 2434 * that we have to verify is valid. We cannot do this just by reading 2435 * the inode buffer as it may have been unlinked and removed leaving 2436 * inodes in stale state on disk. Hence we have to do a btree lookup 2437 * in all cases where an untrusted inode number is passed. 2438 */ 2439 if (flags & XFS_IGET_UNTRUSTED) { 2440 error = xfs_imap_lookup(pag, tp, agino, agbno, 2441 &chunk_agbno, &offset_agbno, flags); 2442 if (error) 2443 return error; 2444 goto out_map; 2445 } 2446 2447 /* 2448 * If the inode cluster size is the same as the blocksize or 2449 * smaller we get to the buffer by simple arithmetics. 2450 */ 2451 if (M_IGEO(mp)->blocks_per_cluster == 1) { 2452 offset = XFS_INO_TO_OFFSET(mp, ino); 2453 ASSERT(offset < mp->m_sb.sb_inopblock); 2454 2455 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); 2456 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2457 imap->im_boffset = (unsigned short)(offset << 2458 mp->m_sb.sb_inodelog); 2459 return 0; 2460 } 2461 2462 /* 2463 * If the inode chunks are aligned then use simple maths to 2464 * find the location. Otherwise we have to do a btree 2465 * lookup to find the location. 2466 */ 2467 if (M_IGEO(mp)->inoalign_mask) { 2468 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; 2469 chunk_agbno = agbno - offset_agbno; 2470 } else { 2471 error = xfs_imap_lookup(pag, tp, agino, agbno, 2472 &chunk_agbno, &offset_agbno, flags); 2473 if (error) 2474 return error; 2475 } 2476 2477 out_map: 2478 ASSERT(agbno >= chunk_agbno); 2479 cluster_agbno = chunk_agbno + 2480 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * 2481 M_IGEO(mp)->blocks_per_cluster); 2482 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2483 XFS_INO_TO_OFFSET(mp, ino); 2484 2485 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); 2486 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); 2487 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2488 2489 /* 2490 * If the inode number maps to a block outside the bounds 2491 * of the file system then return NULL rather than calling 2492 * read_buf and panicing when we get an error from the 2493 * driver. 2494 */ 2495 if ((imap->im_blkno + imap->im_len) > 2496 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2497 xfs_alert(mp, 2498 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2499 __func__, (unsigned long long) imap->im_blkno, 2500 (unsigned long long) imap->im_len, 2501 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2502 return -EINVAL; 2503 } 2504 return 0; 2505 } 2506 2507 /* 2508 * Log specified fields for the ag hdr (inode section). The growth of the agi 2509 * structure over time requires that we interpret the buffer as two logical 2510 * regions delineated by the end of the unlinked list. This is due to the size 2511 * of the hash table and its location in the middle of the agi. 2512 * 2513 * For example, a request to log a field before agi_unlinked and a field after 2514 * agi_unlinked could cause us to log the entire hash table and use an excessive 2515 * amount of log space. To avoid this behavior, log the region up through 2516 * agi_unlinked in one call and the region after agi_unlinked through the end of 2517 * the structure in another. 2518 */ 2519 void 2520 xfs_ialloc_log_agi( 2521 struct xfs_trans *tp, 2522 struct xfs_buf *bp, 2523 uint32_t fields) 2524 { 2525 int first; /* first byte number */ 2526 int last; /* last byte number */ 2527 static const short offsets[] = { /* field starting offsets */ 2528 /* keep in sync with bit definitions */ 2529 offsetof(xfs_agi_t, agi_magicnum), 2530 offsetof(xfs_agi_t, agi_versionnum), 2531 offsetof(xfs_agi_t, agi_seqno), 2532 offsetof(xfs_agi_t, agi_length), 2533 offsetof(xfs_agi_t, agi_count), 2534 offsetof(xfs_agi_t, agi_root), 2535 offsetof(xfs_agi_t, agi_level), 2536 offsetof(xfs_agi_t, agi_freecount), 2537 offsetof(xfs_agi_t, agi_newino), 2538 offsetof(xfs_agi_t, agi_dirino), 2539 offsetof(xfs_agi_t, agi_unlinked), 2540 offsetof(xfs_agi_t, agi_free_root), 2541 offsetof(xfs_agi_t, agi_free_level), 2542 offsetof(xfs_agi_t, agi_iblocks), 2543 sizeof(xfs_agi_t) 2544 }; 2545 #ifdef DEBUG 2546 struct xfs_agi *agi = bp->b_addr; 2547 2548 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2549 #endif 2550 2551 /* 2552 * Compute byte offsets for the first and last fields in the first 2553 * region and log the agi buffer. This only logs up through 2554 * agi_unlinked. 2555 */ 2556 if (fields & XFS_AGI_ALL_BITS_R1) { 2557 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2558 &first, &last); 2559 xfs_trans_log_buf(tp, bp, first, last); 2560 } 2561 2562 /* 2563 * Mask off the bits in the first region and calculate the first and 2564 * last field offsets for any bits in the second region. 2565 */ 2566 fields &= ~XFS_AGI_ALL_BITS_R1; 2567 if (fields) { 2568 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2569 &first, &last); 2570 xfs_trans_log_buf(tp, bp, first, last); 2571 } 2572 } 2573 2574 static xfs_failaddr_t 2575 xfs_agi_verify( 2576 struct xfs_buf *bp) 2577 { 2578 struct xfs_mount *mp = bp->b_mount; 2579 struct xfs_agi *agi = bp->b_addr; 2580 xfs_failaddr_t fa; 2581 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); 2582 uint32_t agi_length = be32_to_cpu(agi->agi_length); 2583 int i; 2584 2585 if (xfs_has_crc(mp)) { 2586 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2587 return __this_address; 2588 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) 2589 return __this_address; 2590 } 2591 2592 /* 2593 * Validate the magic number of the agi block. 2594 */ 2595 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2596 return __this_address; 2597 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2598 return __this_address; 2599 2600 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); 2601 if (fa) 2602 return fa; 2603 2604 if (be32_to_cpu(agi->agi_level) < 1 || 2605 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) 2606 return __this_address; 2607 2608 if (xfs_has_finobt(mp) && 2609 (be32_to_cpu(agi->agi_free_level) < 1 || 2610 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) 2611 return __this_address; 2612 2613 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2614 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2615 continue; 2616 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2617 return __this_address; 2618 } 2619 2620 return NULL; 2621 } 2622 2623 static void 2624 xfs_agi_read_verify( 2625 struct xfs_buf *bp) 2626 { 2627 struct xfs_mount *mp = bp->b_mount; 2628 xfs_failaddr_t fa; 2629 2630 if (xfs_has_crc(mp) && 2631 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2632 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2633 else { 2634 fa = xfs_agi_verify(bp); 2635 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2636 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2637 } 2638 } 2639 2640 static void 2641 xfs_agi_write_verify( 2642 struct xfs_buf *bp) 2643 { 2644 struct xfs_mount *mp = bp->b_mount; 2645 struct xfs_buf_log_item *bip = bp->b_log_item; 2646 struct xfs_agi *agi = bp->b_addr; 2647 xfs_failaddr_t fa; 2648 2649 fa = xfs_agi_verify(bp); 2650 if (fa) { 2651 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2652 return; 2653 } 2654 2655 if (!xfs_has_crc(mp)) 2656 return; 2657 2658 if (bip) 2659 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2660 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2661 } 2662 2663 const struct xfs_buf_ops xfs_agi_buf_ops = { 2664 .name = "xfs_agi", 2665 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2666 .verify_read = xfs_agi_read_verify, 2667 .verify_write = xfs_agi_write_verify, 2668 .verify_struct = xfs_agi_verify, 2669 }; 2670 2671 /* 2672 * Read in the allocation group header (inode allocation section) 2673 */ 2674 int 2675 xfs_read_agi( 2676 struct xfs_perag *pag, 2677 struct xfs_trans *tp, 2678 struct xfs_buf **agibpp) 2679 { 2680 struct xfs_mount *mp = pag->pag_mount; 2681 int error; 2682 2683 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); 2684 2685 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2686 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), 2687 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops); 2688 if (xfs_metadata_is_sick(error)) 2689 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); 2690 if (error) 2691 return error; 2692 if (tp) 2693 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); 2694 2695 xfs_buf_set_ref(*agibpp, XFS_AGI_REF); 2696 return 0; 2697 } 2698 2699 /* 2700 * Read in the agi and initialise the per-ag data. If the caller supplies a 2701 * @agibpp, return the locked AGI buffer to them, otherwise release it. 2702 */ 2703 int 2704 xfs_ialloc_read_agi( 2705 struct xfs_perag *pag, 2706 struct xfs_trans *tp, 2707 struct xfs_buf **agibpp) 2708 { 2709 struct xfs_buf *agibp; 2710 struct xfs_agi *agi; 2711 int error; 2712 2713 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); 2714 2715 error = xfs_read_agi(pag, tp, &agibp); 2716 if (error) 2717 return error; 2718 2719 agi = agibp->b_addr; 2720 if (!xfs_perag_initialised_agi(pag)) { 2721 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2722 pag->pagi_count = be32_to_cpu(agi->agi_count); 2723 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 2724 } 2725 2726 /* 2727 * It's possible for these to be out of sync if 2728 * we are in the middle of a forced shutdown. 2729 */ 2730 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2731 xfs_is_shutdown(pag->pag_mount)); 2732 if (agibpp) 2733 *agibpp = agibp; 2734 else 2735 xfs_trans_brelse(tp, agibp); 2736 return 0; 2737 } 2738 2739 /* How many inodes are backed by inode clusters ondisk? */ 2740 STATIC int 2741 xfs_ialloc_count_ondisk( 2742 struct xfs_btree_cur *cur, 2743 xfs_agino_t low, 2744 xfs_agino_t high, 2745 unsigned int *allocated) 2746 { 2747 struct xfs_inobt_rec_incore irec; 2748 unsigned int ret = 0; 2749 int has_record; 2750 int error; 2751 2752 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2753 if (error) 2754 return error; 2755 2756 while (has_record) { 2757 unsigned int i, hole_idx; 2758 2759 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2760 if (error) 2761 return error; 2762 if (irec.ir_startino > high) 2763 break; 2764 2765 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { 2766 if (irec.ir_startino + i < low) 2767 continue; 2768 if (irec.ir_startino + i > high) 2769 break; 2770 2771 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; 2772 if (!(irec.ir_holemask & (1U << hole_idx))) 2773 ret++; 2774 } 2775 2776 error = xfs_btree_increment(cur, 0, &has_record); 2777 if (error) 2778 return error; 2779 } 2780 2781 *allocated = ret; 2782 return 0; 2783 } 2784 2785 /* Is there an inode record covering a given extent? */ 2786 int 2787 xfs_ialloc_has_inodes_at_extent( 2788 struct xfs_btree_cur *cur, 2789 xfs_agblock_t bno, 2790 xfs_extlen_t len, 2791 enum xbtree_recpacking *outcome) 2792 { 2793 xfs_agino_t agino; 2794 xfs_agino_t last_agino; 2795 unsigned int allocated; 2796 int error; 2797 2798 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2799 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2800 2801 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); 2802 if (error) 2803 return error; 2804 2805 if (allocated == 0) 2806 *outcome = XBTREE_RECPACKING_EMPTY; 2807 else if (allocated == last_agino - agino + 1) 2808 *outcome = XBTREE_RECPACKING_FULL; 2809 else 2810 *outcome = XBTREE_RECPACKING_SPARSE; 2811 return 0; 2812 } 2813 2814 struct xfs_ialloc_count_inodes { 2815 xfs_agino_t count; 2816 xfs_agino_t freecount; 2817 }; 2818 2819 /* Record inode counts across all inobt records. */ 2820 STATIC int 2821 xfs_ialloc_count_inodes_rec( 2822 struct xfs_btree_cur *cur, 2823 const union xfs_btree_rec *rec, 2824 void *priv) 2825 { 2826 struct xfs_inobt_rec_incore irec; 2827 struct xfs_ialloc_count_inodes *ci = priv; 2828 xfs_failaddr_t fa; 2829 2830 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2831 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec); 2832 if (fa) 2833 return xfs_inobt_complain_bad_rec(cur, fa, &irec); 2834 2835 ci->count += irec.ir_count; 2836 ci->freecount += irec.ir_freecount; 2837 2838 return 0; 2839 } 2840 2841 /* Count allocated and free inodes under an inobt. */ 2842 int 2843 xfs_ialloc_count_inodes( 2844 struct xfs_btree_cur *cur, 2845 xfs_agino_t *count, 2846 xfs_agino_t *freecount) 2847 { 2848 struct xfs_ialloc_count_inodes ci = {0}; 2849 int error; 2850 2851 ASSERT(xfs_btree_is_ino(cur->bc_ops)); 2852 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2853 if (error) 2854 return error; 2855 2856 *count = ci.count; 2857 *freecount = ci.freecount; 2858 return 0; 2859 } 2860 2861 /* 2862 * Initialize inode-related geometry information. 2863 * 2864 * Compute the inode btree min and max levels and set maxicount. 2865 * 2866 * Set the inode cluster size. This may still be overridden by the file 2867 * system block size if it is larger than the chosen cluster size. 2868 * 2869 * For v5 filesystems, scale the cluster size with the inode size to keep a 2870 * constant ratio of inode per cluster buffer, but only if mkfs has set the 2871 * inode alignment value appropriately for larger cluster sizes. 2872 * 2873 * Then compute the inode cluster alignment information. 2874 */ 2875 void 2876 xfs_ialloc_setup_geometry( 2877 struct xfs_mount *mp) 2878 { 2879 struct xfs_sb *sbp = &mp->m_sb; 2880 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2881 uint64_t icount; 2882 uint inodes; 2883 2884 igeo->new_diflags2 = 0; 2885 if (xfs_has_bigtime(mp)) 2886 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; 2887 if (xfs_has_large_extent_counts(mp)) 2888 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; 2889 2890 /* Compute inode btree geometry. */ 2891 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 2892 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 2893 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 2894 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; 2895 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; 2896 2897 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 2898 sbp->sb_inopblock); 2899 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; 2900 2901 if (sbp->sb_spino_align) 2902 igeo->ialloc_min_blks = sbp->sb_spino_align; 2903 else 2904 igeo->ialloc_min_blks = igeo->ialloc_blks; 2905 2906 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ 2907 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2908 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, 2909 inodes); 2910 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); 2911 2912 /* 2913 * Set the maximum inode count for this filesystem, being careful not 2914 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular 2915 * users should never get here due to failing sb verification, but 2916 * certain users (xfs_db) need to be usable even with corrupt metadata. 2917 */ 2918 if (sbp->sb_imax_pct && igeo->ialloc_blks) { 2919 /* 2920 * Make sure the maximum inode count is a multiple 2921 * of the units we allocate inodes in. 2922 */ 2923 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 2924 do_div(icount, 100); 2925 do_div(icount, igeo->ialloc_blks); 2926 igeo->maxicount = XFS_FSB_TO_INO(mp, 2927 icount * igeo->ialloc_blks); 2928 } else { 2929 igeo->maxicount = 0; 2930 } 2931 2932 /* 2933 * Compute the desired size of an inode cluster buffer size, which 2934 * starts at 8K and (on v5 filesystems) scales up with larger inode 2935 * sizes. 2936 * 2937 * Preserve the desired inode cluster size because the sparse inodes 2938 * feature uses that desired size (not the actual size) to compute the 2939 * sparse inode alignment. The mount code validates this value, so we 2940 * cannot change the behavior. 2941 */ 2942 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; 2943 if (xfs_has_v3inodes(mp)) { 2944 int new_size = igeo->inode_cluster_size_raw; 2945 2946 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 2947 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 2948 igeo->inode_cluster_size_raw = new_size; 2949 } 2950 2951 /* Calculate inode cluster ratios. */ 2952 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) 2953 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, 2954 igeo->inode_cluster_size_raw); 2955 else 2956 igeo->blocks_per_cluster = 1; 2957 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); 2958 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); 2959 2960 /* Calculate inode cluster alignment. */ 2961 if (xfs_has_align(mp) && 2962 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) 2963 igeo->cluster_align = mp->m_sb.sb_inoalignmt; 2964 else 2965 igeo->cluster_align = 1; 2966 igeo->inoalign_mask = igeo->cluster_align - 1; 2967 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); 2968 2969 /* 2970 * If we are using stripe alignment, check whether 2971 * the stripe unit is a multiple of the inode alignment 2972 */ 2973 if (mp->m_dalign && igeo->inoalign_mask && 2974 !(mp->m_dalign & igeo->inoalign_mask)) 2975 igeo->ialloc_align = mp->m_dalign; 2976 else 2977 igeo->ialloc_align = 0; 2978 } 2979 2980 /* Compute the location of the root directory inode that is laid out by mkfs. */ 2981 xfs_ino_t 2982 xfs_ialloc_calc_rootino( 2983 struct xfs_mount *mp, 2984 int sunit) 2985 { 2986 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2987 xfs_agblock_t first_bno; 2988 2989 /* 2990 * Pre-calculate the geometry of AG 0. We know what it looks like 2991 * because libxfs knows how to create allocation groups now. 2992 * 2993 * first_bno is the first block in which mkfs could possibly have 2994 * allocated the root directory inode, once we factor in the metadata 2995 * that mkfs formats before it. Namely, the four AG headers... 2996 */ 2997 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); 2998 2999 /* ...the two free space btree roots... */ 3000 first_bno += 2; 3001 3002 /* ...the inode btree root... */ 3003 first_bno += 1; 3004 3005 /* ...the initial AGFL... */ 3006 first_bno += xfs_alloc_min_freelist(mp, NULL); 3007 3008 /* ...the free inode btree root... */ 3009 if (xfs_has_finobt(mp)) 3010 first_bno++; 3011 3012 /* ...the reverse mapping btree root... */ 3013 if (xfs_has_rmapbt(mp)) 3014 first_bno++; 3015 3016 /* ...the reference count btree... */ 3017 if (xfs_has_reflink(mp)) 3018 first_bno++; 3019 3020 /* 3021 * ...and the log, if it is allocated in the first allocation group. 3022 * 3023 * This can happen with filesystems that only have a single 3024 * allocation group, or very odd geometries created by old mkfs 3025 * versions on very small filesystems. 3026 */ 3027 if (xfs_ag_contains_log(mp, 0)) 3028 first_bno += mp->m_sb.sb_logblocks; 3029 3030 /* 3031 * Now round first_bno up to whatever allocation alignment is given 3032 * by the filesystem or was passed in. 3033 */ 3034 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) 3035 first_bno = roundup(first_bno, sunit); 3036 else if (xfs_has_align(mp) && 3037 mp->m_sb.sb_inoalignmt > 1) 3038 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); 3039 3040 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); 3041 } 3042 3043 /* 3044 * Ensure there are not sparse inode clusters that cross the new EOAG. 3045 * 3046 * This is a no-op for non-spinode filesystems since clusters are always fully 3047 * allocated and checking the bnobt suffices. However, a spinode filesystem 3048 * could have a record where the upper inodes are free blocks. If those blocks 3049 * were removed from the filesystem, the inode record would extend beyond EOAG, 3050 * which will be flagged as corruption. 3051 */ 3052 int 3053 xfs_ialloc_check_shrink( 3054 struct xfs_perag *pag, 3055 struct xfs_trans *tp, 3056 struct xfs_buf *agibp, 3057 xfs_agblock_t new_length) 3058 { 3059 struct xfs_inobt_rec_incore rec; 3060 struct xfs_btree_cur *cur; 3061 xfs_agino_t agino; 3062 int has; 3063 int error; 3064 3065 if (!xfs_has_sparseinodes(pag->pag_mount)) 3066 return 0; 3067 3068 cur = xfs_inobt_init_cursor(pag, tp, agibp); 3069 3070 /* Look up the inobt record that would correspond to the new EOFS. */ 3071 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); 3072 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); 3073 if (error || !has) 3074 goto out; 3075 3076 error = xfs_inobt_get_rec(cur, &rec, &has); 3077 if (error) 3078 goto out; 3079 3080 if (!has) { 3081 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT); 3082 error = -EFSCORRUPTED; 3083 goto out; 3084 } 3085 3086 /* If the record covers inodes that would be beyond EOFS, bail out. */ 3087 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { 3088 error = -ENOSPC; 3089 goto out; 3090 } 3091 out: 3092 xfs_btree_del_cursor(cur, error); 3093 return error; 3094 } 3095