xref: /linux/fs/xfs/libxfs/xfs_ialloc.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41 
42 
43 /*
44  * Allocation group level functions.
45  */
46 static inline int
47 xfs_ialloc_cluster_alignment(
48 	struct xfs_mount	*mp)
49 {
50 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 	    mp->m_sb.sb_inoalignmt >=
52 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 		return mp->m_sb.sb_inoalignmt;
54 	return 1;
55 }
56 
57 /*
58  * Lookup a record by ino in the btree given by cur.
59  */
60 int					/* error */
61 xfs_inobt_lookup(
62 	struct xfs_btree_cur	*cur,	/* btree cursor */
63 	xfs_agino_t		ino,	/* starting inode of chunk */
64 	xfs_lookup_t		dir,	/* <=, >=, == */
65 	int			*stat)	/* success/failure */
66 {
67 	cur->bc_rec.i.ir_startino = ino;
68 	cur->bc_rec.i.ir_holemask = 0;
69 	cur->bc_rec.i.ir_count = 0;
70 	cur->bc_rec.i.ir_freecount = 0;
71 	cur->bc_rec.i.ir_free = 0;
72 	return xfs_btree_lookup(cur, dir, stat);
73 }
74 
75 /*
76  * Update the record referred to by cur to the value given.
77  * This either works (return 0) or gets an EFSCORRUPTED error.
78  */
79 STATIC int				/* error */
80 xfs_inobt_update(
81 	struct xfs_btree_cur	*cur,	/* btree cursor */
82 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
83 {
84 	union xfs_btree_rec	rec;
85 
86 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
87 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
88 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
89 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
90 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
91 	} else {
92 		/* ir_holemask/ir_count not supported on-disk */
93 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
94 	}
95 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
96 	return xfs_btree_update(cur, &rec);
97 }
98 
99 /*
100  * Get the data from the pointed-to record.
101  */
102 int					/* error */
103 xfs_inobt_get_rec(
104 	struct xfs_btree_cur	*cur,	/* btree cursor */
105 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
106 	int			*stat)	/* output: success/failure */
107 {
108 	union xfs_btree_rec	*rec;
109 	int			error;
110 
111 	error = xfs_btree_get_rec(cur, &rec, stat);
112 	if (error || *stat == 0)
113 		return error;
114 
115 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
116 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
117 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
118 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
119 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
120 	} else {
121 		/*
122 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 		 * values for full inode chunks.
124 		 */
125 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
126 		irec->ir_count = XFS_INODES_PER_CHUNK;
127 		irec->ir_freecount =
128 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
129 	}
130 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
131 
132 	return 0;
133 }
134 
135 /*
136  * Insert a single inobt record. Cursor must already point to desired location.
137  */
138 STATIC int
139 xfs_inobt_insert_rec(
140 	struct xfs_btree_cur	*cur,
141 	__uint16_t		holemask,
142 	__uint8_t		count,
143 	__int32_t		freecount,
144 	xfs_inofree_t		free,
145 	int			*stat)
146 {
147 	cur->bc_rec.i.ir_holemask = holemask;
148 	cur->bc_rec.i.ir_count = count;
149 	cur->bc_rec.i.ir_freecount = freecount;
150 	cur->bc_rec.i.ir_free = free;
151 	return xfs_btree_insert(cur, stat);
152 }
153 
154 /*
155  * Insert records describing a newly allocated inode chunk into the inobt.
156  */
157 STATIC int
158 xfs_inobt_insert(
159 	struct xfs_mount	*mp,
160 	struct xfs_trans	*tp,
161 	struct xfs_buf		*agbp,
162 	xfs_agino_t		newino,
163 	xfs_agino_t		newlen,
164 	xfs_btnum_t		btnum)
165 {
166 	struct xfs_btree_cur	*cur;
167 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
168 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
169 	xfs_agino_t		thisino;
170 	int			i;
171 	int			error;
172 
173 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
174 
175 	for (thisino = newino;
176 	     thisino < newino + newlen;
177 	     thisino += XFS_INODES_PER_CHUNK) {
178 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
179 		if (error) {
180 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
181 			return error;
182 		}
183 		ASSERT(i == 0);
184 
185 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
186 					     XFS_INODES_PER_CHUNK,
187 					     XFS_INODES_PER_CHUNK,
188 					     XFS_INOBT_ALL_FREE, &i);
189 		if (error) {
190 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
191 			return error;
192 		}
193 		ASSERT(i == 1);
194 	}
195 
196 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
197 
198 	return 0;
199 }
200 
201 /*
202  * Verify that the number of free inodes in the AGI is correct.
203  */
204 #ifdef DEBUG
205 STATIC int
206 xfs_check_agi_freecount(
207 	struct xfs_btree_cur	*cur,
208 	struct xfs_agi		*agi)
209 {
210 	if (cur->bc_nlevels == 1) {
211 		xfs_inobt_rec_incore_t rec;
212 		int		freecount = 0;
213 		int		error;
214 		int		i;
215 
216 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
217 		if (error)
218 			return error;
219 
220 		do {
221 			error = xfs_inobt_get_rec(cur, &rec, &i);
222 			if (error)
223 				return error;
224 
225 			if (i) {
226 				freecount += rec.ir_freecount;
227 				error = xfs_btree_increment(cur, 0, &i);
228 				if (error)
229 					return error;
230 			}
231 		} while (i == 1);
232 
233 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
234 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
235 	}
236 	return 0;
237 }
238 #else
239 #define xfs_check_agi_freecount(cur, agi)	0
240 #endif
241 
242 /*
243  * Initialise a new set of inodes. When called without a transaction context
244  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245  * than logging them (which in a transaction context puts them into the AIL
246  * for writeback rather than the xfsbufd queue).
247  */
248 int
249 xfs_ialloc_inode_init(
250 	struct xfs_mount	*mp,
251 	struct xfs_trans	*tp,
252 	struct list_head	*buffer_list,
253 	int			icount,
254 	xfs_agnumber_t		agno,
255 	xfs_agblock_t		agbno,
256 	xfs_agblock_t		length,
257 	unsigned int		gen)
258 {
259 	struct xfs_buf		*fbuf;
260 	struct xfs_dinode	*free;
261 	int			nbufs, blks_per_cluster, inodes_per_cluster;
262 	int			version;
263 	int			i, j;
264 	xfs_daddr_t		d;
265 	xfs_ino_t		ino = 0;
266 
267 	/*
268 	 * Loop over the new block(s), filling in the inodes.  For small block
269 	 * sizes, manipulate the inodes in buffers  which are multiples of the
270 	 * blocks size.
271 	 */
272 	blks_per_cluster = xfs_icluster_size_fsb(mp);
273 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
274 	nbufs = length / blks_per_cluster;
275 
276 	/*
277 	 * Figure out what version number to use in the inodes we create.  If
278 	 * the superblock version has caught up to the one that supports the new
279 	 * inode format, then use the new inode version.  Otherwise use the old
280 	 * version so that old kernels will continue to be able to use the file
281 	 * system.
282 	 *
283 	 * For v3 inodes, we also need to write the inode number into the inode,
284 	 * so calculate the first inode number of the chunk here as
285 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 	 * across multiple filesystem blocks (such as a cluster) and so cannot
287 	 * be used in the cluster buffer loop below.
288 	 *
289 	 * Further, because we are writing the inode directly into the buffer
290 	 * and calculating a CRC on the entire inode, we have ot log the entire
291 	 * inode so that the entire range the CRC covers is present in the log.
292 	 * That means for v3 inode we log the entire buffer rather than just the
293 	 * inode cores.
294 	 */
295 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
296 		version = 3;
297 		ino = XFS_AGINO_TO_INO(mp, agno,
298 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
299 
300 		/*
301 		 * log the initialisation that is about to take place as an
302 		 * logical operation. This means the transaction does not
303 		 * need to log the physical changes to the inode buffers as log
304 		 * recovery will know what initialisation is actually needed.
305 		 * Hence we only need to log the buffers as "ordered" buffers so
306 		 * they track in the AIL as if they were physically logged.
307 		 */
308 		if (tp)
309 			xfs_icreate_log(tp, agno, agbno, icount,
310 					mp->m_sb.sb_inodesize, length, gen);
311 	} else
312 		version = 2;
313 
314 	for (j = 0; j < nbufs; j++) {
315 		/*
316 		 * Get the block.
317 		 */
318 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
319 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
320 					 mp->m_bsize * blks_per_cluster,
321 					 XBF_UNMAPPED);
322 		if (!fbuf)
323 			return -ENOMEM;
324 
325 		/* Initialize the inode buffers and log them appropriately. */
326 		fbuf->b_ops = &xfs_inode_buf_ops;
327 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
328 		for (i = 0; i < inodes_per_cluster; i++) {
329 			int	ioffset = i << mp->m_sb.sb_inodelog;
330 			uint	isize = xfs_dinode_size(version);
331 
332 			free = xfs_make_iptr(mp, fbuf, i);
333 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
334 			free->di_version = version;
335 			free->di_gen = cpu_to_be32(gen);
336 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
337 
338 			if (version == 3) {
339 				free->di_ino = cpu_to_be64(ino);
340 				ino++;
341 				uuid_copy(&free->di_uuid,
342 					  &mp->m_sb.sb_meta_uuid);
343 				xfs_dinode_calc_crc(mp, free);
344 			} else if (tp) {
345 				/* just log the inode core */
346 				xfs_trans_log_buf(tp, fbuf, ioffset,
347 						  ioffset + isize - 1);
348 			}
349 		}
350 
351 		if (tp) {
352 			/*
353 			 * Mark the buffer as an inode allocation buffer so it
354 			 * sticks in AIL at the point of this allocation
355 			 * transaction. This ensures the they are on disk before
356 			 * the tail of the log can be moved past this
357 			 * transaction (i.e. by preventing relogging from moving
358 			 * it forward in the log).
359 			 */
360 			xfs_trans_inode_alloc_buf(tp, fbuf);
361 			if (version == 3) {
362 				/*
363 				 * Mark the buffer as ordered so that they are
364 				 * not physically logged in the transaction but
365 				 * still tracked in the AIL as part of the
366 				 * transaction and pin the log appropriately.
367 				 */
368 				xfs_trans_ordered_buf(tp, fbuf);
369 				xfs_trans_log_buf(tp, fbuf, 0,
370 						  BBTOB(fbuf->b_length) - 1);
371 			}
372 		} else {
373 			fbuf->b_flags |= XBF_DONE;
374 			xfs_buf_delwri_queue(fbuf, buffer_list);
375 			xfs_buf_relse(fbuf);
376 		}
377 	}
378 	return 0;
379 }
380 
381 /*
382  * Align startino and allocmask for a recently allocated sparse chunk such that
383  * they are fit for insertion (or merge) into the on-disk inode btrees.
384  *
385  * Background:
386  *
387  * When enabled, sparse inode support increases the inode alignment from cluster
388  * size to inode chunk size. This means that the minimum range between two
389  * non-adjacent inode records in the inobt is large enough for a full inode
390  * record. This allows for cluster sized, cluster aligned block allocation
391  * without need to worry about whether the resulting inode record overlaps with
392  * another record in the tree. Without this basic rule, we would have to deal
393  * with the consequences of overlap by potentially undoing recent allocations in
394  * the inode allocation codepath.
395  *
396  * Because of this alignment rule (which is enforced on mount), there are two
397  * inobt possibilities for newly allocated sparse chunks. One is that the
398  * aligned inode record for the chunk covers a range of inodes not already
399  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
400  * other is that a record already exists at the aligned startino that considers
401  * the newly allocated range as sparse. In the latter case, record content is
402  * merged in hope that sparse inode chunks fill to full chunks over time.
403  */
404 STATIC void
405 xfs_align_sparse_ino(
406 	struct xfs_mount		*mp,
407 	xfs_agino_t			*startino,
408 	uint16_t			*allocmask)
409 {
410 	xfs_agblock_t			agbno;
411 	xfs_agblock_t			mod;
412 	int				offset;
413 
414 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
415 	mod = agbno % mp->m_sb.sb_inoalignmt;
416 	if (!mod)
417 		return;
418 
419 	/* calculate the inode offset and align startino */
420 	offset = mod << mp->m_sb.sb_inopblog;
421 	*startino -= offset;
422 
423 	/*
424 	 * Since startino has been aligned down, left shift allocmask such that
425 	 * it continues to represent the same physical inodes relative to the
426 	 * new startino.
427 	 */
428 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
429 }
430 
431 /*
432  * Determine whether the source inode record can merge into the target. Both
433  * records must be sparse, the inode ranges must match and there must be no
434  * allocation overlap between the records.
435  */
436 STATIC bool
437 __xfs_inobt_can_merge(
438 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
439 	struct xfs_inobt_rec_incore	*srec)	/* src record */
440 {
441 	uint64_t			talloc;
442 	uint64_t			salloc;
443 
444 	/* records must cover the same inode range */
445 	if (trec->ir_startino != srec->ir_startino)
446 		return false;
447 
448 	/* both records must be sparse */
449 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
450 	    !xfs_inobt_issparse(srec->ir_holemask))
451 		return false;
452 
453 	/* both records must track some inodes */
454 	if (!trec->ir_count || !srec->ir_count)
455 		return false;
456 
457 	/* can't exceed capacity of a full record */
458 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
459 		return false;
460 
461 	/* verify there is no allocation overlap */
462 	talloc = xfs_inobt_irec_to_allocmask(trec);
463 	salloc = xfs_inobt_irec_to_allocmask(srec);
464 	if (talloc & salloc)
465 		return false;
466 
467 	return true;
468 }
469 
470 /*
471  * Merge the source inode record into the target. The caller must call
472  * __xfs_inobt_can_merge() to ensure the merge is valid.
473  */
474 STATIC void
475 __xfs_inobt_rec_merge(
476 	struct xfs_inobt_rec_incore	*trec,	/* target */
477 	struct xfs_inobt_rec_incore	*srec)	/* src */
478 {
479 	ASSERT(trec->ir_startino == srec->ir_startino);
480 
481 	/* combine the counts */
482 	trec->ir_count += srec->ir_count;
483 	trec->ir_freecount += srec->ir_freecount;
484 
485 	/*
486 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
487 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
488 	 */
489 	trec->ir_holemask &= srec->ir_holemask;
490 	trec->ir_free &= srec->ir_free;
491 }
492 
493 /*
494  * Insert a new sparse inode chunk into the associated inode btree. The inode
495  * record for the sparse chunk is pre-aligned to a startino that should match
496  * any pre-existing sparse inode record in the tree. This allows sparse chunks
497  * to fill over time.
498  *
499  * This function supports two modes of handling preexisting records depending on
500  * the merge flag. If merge is true, the provided record is merged with the
501  * existing record and updated in place. The merged record is returned in nrec.
502  * If merge is false, an existing record is replaced with the provided record.
503  * If no preexisting record exists, the provided record is always inserted.
504  *
505  * It is considered corruption if a merge is requested and not possible. Given
506  * the sparse inode alignment constraints, this should never happen.
507  */
508 STATIC int
509 xfs_inobt_insert_sprec(
510 	struct xfs_mount		*mp,
511 	struct xfs_trans		*tp,
512 	struct xfs_buf			*agbp,
513 	int				btnum,
514 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
515 	bool				merge)	/* merge or replace */
516 {
517 	struct xfs_btree_cur		*cur;
518 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
519 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
520 	int				error;
521 	int				i;
522 	struct xfs_inobt_rec_incore	rec;
523 
524 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
525 
526 	/* the new record is pre-aligned so we know where to look */
527 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
528 	if (error)
529 		goto error;
530 	/* if nothing there, insert a new record and return */
531 	if (i == 0) {
532 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
533 					     nrec->ir_count, nrec->ir_freecount,
534 					     nrec->ir_free, &i);
535 		if (error)
536 			goto error;
537 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
538 
539 		goto out;
540 	}
541 
542 	/*
543 	 * A record exists at this startino. Merge or replace the record
544 	 * depending on what we've been asked to do.
545 	 */
546 	if (merge) {
547 		error = xfs_inobt_get_rec(cur, &rec, &i);
548 		if (error)
549 			goto error;
550 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
551 		XFS_WANT_CORRUPTED_GOTO(mp,
552 					rec.ir_startino == nrec->ir_startino,
553 					error);
554 
555 		/*
556 		 * This should never fail. If we have coexisting records that
557 		 * cannot merge, something is seriously wrong.
558 		 */
559 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
560 					error);
561 
562 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
563 					 rec.ir_holemask, nrec->ir_startino,
564 					 nrec->ir_holemask);
565 
566 		/* merge to nrec to output the updated record */
567 		__xfs_inobt_rec_merge(nrec, &rec);
568 
569 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
570 					  nrec->ir_holemask);
571 
572 		error = xfs_inobt_rec_check_count(mp, nrec);
573 		if (error)
574 			goto error;
575 	}
576 
577 	error = xfs_inobt_update(cur, nrec);
578 	if (error)
579 		goto error;
580 
581 out:
582 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
583 	return 0;
584 error:
585 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
586 	return error;
587 }
588 
589 /*
590  * Allocate new inodes in the allocation group specified by agbp.
591  * Return 0 for success, else error code.
592  */
593 STATIC int				/* error code or 0 */
594 xfs_ialloc_ag_alloc(
595 	xfs_trans_t	*tp,		/* transaction pointer */
596 	xfs_buf_t	*agbp,		/* alloc group buffer */
597 	int		*alloc)
598 {
599 	xfs_agi_t	*agi;		/* allocation group header */
600 	xfs_alloc_arg_t	args;		/* allocation argument structure */
601 	xfs_agnumber_t	agno;
602 	int		error;
603 	xfs_agino_t	newino;		/* new first inode's number */
604 	xfs_agino_t	newlen;		/* new number of inodes */
605 	int		isaligned = 0;	/* inode allocation at stripe unit */
606 					/* boundary */
607 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
608 	struct xfs_inobt_rec_incore rec;
609 	struct xfs_perag *pag;
610 	int		do_sparse = 0;
611 
612 	memset(&args, 0, sizeof(args));
613 	args.tp = tp;
614 	args.mp = tp->t_mountp;
615 	args.fsbno = NULLFSBLOCK;
616 
617 #ifdef DEBUG
618 	/* randomly do sparse inode allocations */
619 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
620 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
621 		do_sparse = prandom_u32() & 1;
622 #endif
623 
624 	/*
625 	 * Locking will ensure that we don't have two callers in here
626 	 * at one time.
627 	 */
628 	newlen = args.mp->m_ialloc_inos;
629 	if (args.mp->m_maxicount &&
630 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
631 							args.mp->m_maxicount)
632 		return -ENOSPC;
633 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
634 	/*
635 	 * First try to allocate inodes contiguous with the last-allocated
636 	 * chunk of inodes.  If the filesystem is striped, this will fill
637 	 * an entire stripe unit with inodes.
638 	 */
639 	agi = XFS_BUF_TO_AGI(agbp);
640 	newino = be32_to_cpu(agi->agi_newino);
641 	agno = be32_to_cpu(agi->agi_seqno);
642 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
643 		     args.mp->m_ialloc_blks;
644 	if (do_sparse)
645 		goto sparse_alloc;
646 	if (likely(newino != NULLAGINO &&
647 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
648 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
649 		args.type = XFS_ALLOCTYPE_THIS_BNO;
650 		args.prod = 1;
651 
652 		/*
653 		 * We need to take into account alignment here to ensure that
654 		 * we don't modify the free list if we fail to have an exact
655 		 * block. If we don't have an exact match, and every oher
656 		 * attempt allocation attempt fails, we'll end up cancelling
657 		 * a dirty transaction and shutting down.
658 		 *
659 		 * For an exact allocation, alignment must be 1,
660 		 * however we need to take cluster alignment into account when
661 		 * fixing up the freelist. Use the minalignslop field to
662 		 * indicate that extra blocks might be required for alignment,
663 		 * but not to use them in the actual exact allocation.
664 		 */
665 		args.alignment = 1;
666 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
667 
668 		/* Allow space for the inode btree to split. */
669 		args.minleft = args.mp->m_in_maxlevels - 1;
670 		if ((error = xfs_alloc_vextent(&args)))
671 			return error;
672 
673 		/*
674 		 * This request might have dirtied the transaction if the AG can
675 		 * satisfy the request, but the exact block was not available.
676 		 * If the allocation did fail, subsequent requests will relax
677 		 * the exact agbno requirement and increase the alignment
678 		 * instead. It is critical that the total size of the request
679 		 * (len + alignment + slop) does not increase from this point
680 		 * on, so reset minalignslop to ensure it is not included in
681 		 * subsequent requests.
682 		 */
683 		args.minalignslop = 0;
684 	}
685 
686 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
687 		/*
688 		 * Set the alignment for the allocation.
689 		 * If stripe alignment is turned on then align at stripe unit
690 		 * boundary.
691 		 * If the cluster size is smaller than a filesystem block
692 		 * then we're doing I/O for inodes in filesystem block size
693 		 * pieces, so don't need alignment anyway.
694 		 */
695 		isaligned = 0;
696 		if (args.mp->m_sinoalign) {
697 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
698 			args.alignment = args.mp->m_dalign;
699 			isaligned = 1;
700 		} else
701 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
702 		/*
703 		 * Need to figure out where to allocate the inode blocks.
704 		 * Ideally they should be spaced out through the a.g.
705 		 * For now, just allocate blocks up front.
706 		 */
707 		args.agbno = be32_to_cpu(agi->agi_root);
708 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
709 		/*
710 		 * Allocate a fixed-size extent of inodes.
711 		 */
712 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
713 		args.prod = 1;
714 		/*
715 		 * Allow space for the inode btree to split.
716 		 */
717 		args.minleft = args.mp->m_in_maxlevels - 1;
718 		if ((error = xfs_alloc_vextent(&args)))
719 			return error;
720 	}
721 
722 	/*
723 	 * If stripe alignment is turned on, then try again with cluster
724 	 * alignment.
725 	 */
726 	if (isaligned && args.fsbno == NULLFSBLOCK) {
727 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
728 		args.agbno = be32_to_cpu(agi->agi_root);
729 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
730 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
731 		if ((error = xfs_alloc_vextent(&args)))
732 			return error;
733 	}
734 
735 	/*
736 	 * Finally, try a sparse allocation if the filesystem supports it and
737 	 * the sparse allocation length is smaller than a full chunk.
738 	 */
739 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
740 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
741 	    args.fsbno == NULLFSBLOCK) {
742 sparse_alloc:
743 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
744 		args.agbno = be32_to_cpu(agi->agi_root);
745 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
746 		args.alignment = args.mp->m_sb.sb_spino_align;
747 		args.prod = 1;
748 
749 		args.minlen = args.mp->m_ialloc_min_blks;
750 		args.maxlen = args.minlen;
751 
752 		/*
753 		 * The inode record will be aligned to full chunk size. We must
754 		 * prevent sparse allocation from AG boundaries that result in
755 		 * invalid inode records, such as records that start at agbno 0
756 		 * or extend beyond the AG.
757 		 *
758 		 * Set min agbno to the first aligned, non-zero agbno and max to
759 		 * the last aligned agbno that is at least one full chunk from
760 		 * the end of the AG.
761 		 */
762 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
763 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
764 					    args.mp->m_sb.sb_inoalignmt) -
765 				 args.mp->m_ialloc_blks;
766 
767 		error = xfs_alloc_vextent(&args);
768 		if (error)
769 			return error;
770 
771 		newlen = args.len << args.mp->m_sb.sb_inopblog;
772 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
773 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
774 	}
775 
776 	if (args.fsbno == NULLFSBLOCK) {
777 		*alloc = 0;
778 		return 0;
779 	}
780 	ASSERT(args.len == args.minlen);
781 
782 	/*
783 	 * Stamp and write the inode buffers.
784 	 *
785 	 * Seed the new inode cluster with a random generation number. This
786 	 * prevents short-term reuse of generation numbers if a chunk is
787 	 * freed and then immediately reallocated. We use random numbers
788 	 * rather than a linear progression to prevent the next generation
789 	 * number from being easily guessable.
790 	 */
791 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
792 			args.agbno, args.len, prandom_u32());
793 
794 	if (error)
795 		return error;
796 	/*
797 	 * Convert the results.
798 	 */
799 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
800 
801 	if (xfs_inobt_issparse(~allocmask)) {
802 		/*
803 		 * We've allocated a sparse chunk. Align the startino and mask.
804 		 */
805 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
806 
807 		rec.ir_startino = newino;
808 		rec.ir_holemask = ~allocmask;
809 		rec.ir_count = newlen;
810 		rec.ir_freecount = newlen;
811 		rec.ir_free = XFS_INOBT_ALL_FREE;
812 
813 		/*
814 		 * Insert the sparse record into the inobt and allow for a merge
815 		 * if necessary. If a merge does occur, rec is updated to the
816 		 * merged record.
817 		 */
818 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
819 					       &rec, true);
820 		if (error == -EFSCORRUPTED) {
821 			xfs_alert(args.mp,
822 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
823 				  XFS_AGINO_TO_INO(args.mp, agno,
824 						   rec.ir_startino),
825 				  rec.ir_holemask, rec.ir_count);
826 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
827 		}
828 		if (error)
829 			return error;
830 
831 		/*
832 		 * We can't merge the part we've just allocated as for the inobt
833 		 * due to finobt semantics. The original record may or may not
834 		 * exist independent of whether physical inodes exist in this
835 		 * sparse chunk.
836 		 *
837 		 * We must update the finobt record based on the inobt record.
838 		 * rec contains the fully merged and up to date inobt record
839 		 * from the previous call. Set merge false to replace any
840 		 * existing record with this one.
841 		 */
842 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
843 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
844 						       XFS_BTNUM_FINO, &rec,
845 						       false);
846 			if (error)
847 				return error;
848 		}
849 	} else {
850 		/* full chunk - insert new records to both btrees */
851 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
852 					 XFS_BTNUM_INO);
853 		if (error)
854 			return error;
855 
856 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
857 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
858 						 newlen, XFS_BTNUM_FINO);
859 			if (error)
860 				return error;
861 		}
862 	}
863 
864 	/*
865 	 * Update AGI counts and newino.
866 	 */
867 	be32_add_cpu(&agi->agi_count, newlen);
868 	be32_add_cpu(&agi->agi_freecount, newlen);
869 	pag = xfs_perag_get(args.mp, agno);
870 	pag->pagi_freecount += newlen;
871 	xfs_perag_put(pag);
872 	agi->agi_newino = cpu_to_be32(newino);
873 
874 	/*
875 	 * Log allocation group header fields
876 	 */
877 	xfs_ialloc_log_agi(tp, agbp,
878 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
879 	/*
880 	 * Modify/log superblock values for inode count and inode free count.
881 	 */
882 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
883 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
884 	*alloc = 1;
885 	return 0;
886 }
887 
888 STATIC xfs_agnumber_t
889 xfs_ialloc_next_ag(
890 	xfs_mount_t	*mp)
891 {
892 	xfs_agnumber_t	agno;
893 
894 	spin_lock(&mp->m_agirotor_lock);
895 	agno = mp->m_agirotor;
896 	if (++mp->m_agirotor >= mp->m_maxagi)
897 		mp->m_agirotor = 0;
898 	spin_unlock(&mp->m_agirotor_lock);
899 
900 	return agno;
901 }
902 
903 /*
904  * Select an allocation group to look for a free inode in, based on the parent
905  * inode and the mode.  Return the allocation group buffer.
906  */
907 STATIC xfs_agnumber_t
908 xfs_ialloc_ag_select(
909 	xfs_trans_t	*tp,		/* transaction pointer */
910 	xfs_ino_t	parent,		/* parent directory inode number */
911 	umode_t		mode,		/* bits set to indicate file type */
912 	int		okalloc)	/* ok to allocate more space */
913 {
914 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
915 	xfs_agnumber_t	agno;		/* current ag number */
916 	int		flags;		/* alloc buffer locking flags */
917 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
918 	xfs_extlen_t	longest = 0;	/* longest extent available */
919 	xfs_mount_t	*mp;		/* mount point structure */
920 	int		needspace;	/* file mode implies space allocated */
921 	xfs_perag_t	*pag;		/* per allocation group data */
922 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
923 	int		error;
924 
925 	/*
926 	 * Files of these types need at least one block if length > 0
927 	 * (and they won't fit in the inode, but that's hard to figure out).
928 	 */
929 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
930 	mp = tp->t_mountp;
931 	agcount = mp->m_maxagi;
932 	if (S_ISDIR(mode))
933 		pagno = xfs_ialloc_next_ag(mp);
934 	else {
935 		pagno = XFS_INO_TO_AGNO(mp, parent);
936 		if (pagno >= agcount)
937 			pagno = 0;
938 	}
939 
940 	ASSERT(pagno < agcount);
941 
942 	/*
943 	 * Loop through allocation groups, looking for one with a little
944 	 * free space in it.  Note we don't look for free inodes, exactly.
945 	 * Instead, we include whether there is a need to allocate inodes
946 	 * to mean that blocks must be allocated for them,
947 	 * if none are currently free.
948 	 */
949 	agno = pagno;
950 	flags = XFS_ALLOC_FLAG_TRYLOCK;
951 	for (;;) {
952 		pag = xfs_perag_get(mp, agno);
953 		if (!pag->pagi_inodeok) {
954 			xfs_ialloc_next_ag(mp);
955 			goto nextag;
956 		}
957 
958 		if (!pag->pagi_init) {
959 			error = xfs_ialloc_pagi_init(mp, tp, agno);
960 			if (error)
961 				goto nextag;
962 		}
963 
964 		if (pag->pagi_freecount) {
965 			xfs_perag_put(pag);
966 			return agno;
967 		}
968 
969 		if (!okalloc)
970 			goto nextag;
971 
972 		if (!pag->pagf_init) {
973 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
974 			if (error)
975 				goto nextag;
976 		}
977 
978 		/*
979 		 * Check that there is enough free space for the file plus a
980 		 * chunk of inodes if we need to allocate some. If this is the
981 		 * first pass across the AGs, take into account the potential
982 		 * space needed for alignment of inode chunks when checking the
983 		 * longest contiguous free space in the AG - this prevents us
984 		 * from getting ENOSPC because we have free space larger than
985 		 * m_ialloc_blks but alignment constraints prevent us from using
986 		 * it.
987 		 *
988 		 * If we can't find an AG with space for full alignment slack to
989 		 * be taken into account, we must be near ENOSPC in all AGs.
990 		 * Hence we don't include alignment for the second pass and so
991 		 * if we fail allocation due to alignment issues then it is most
992 		 * likely a real ENOSPC condition.
993 		 */
994 		ineed = mp->m_ialloc_min_blks;
995 		if (flags && ineed > 1)
996 			ineed += xfs_ialloc_cluster_alignment(mp);
997 		longest = pag->pagf_longest;
998 		if (!longest)
999 			longest = pag->pagf_flcount > 0;
1000 
1001 		if (pag->pagf_freeblks >= needspace + ineed &&
1002 		    longest >= ineed) {
1003 			xfs_perag_put(pag);
1004 			return agno;
1005 		}
1006 nextag:
1007 		xfs_perag_put(pag);
1008 		/*
1009 		 * No point in iterating over the rest, if we're shutting
1010 		 * down.
1011 		 */
1012 		if (XFS_FORCED_SHUTDOWN(mp))
1013 			return NULLAGNUMBER;
1014 		agno++;
1015 		if (agno >= agcount)
1016 			agno = 0;
1017 		if (agno == pagno) {
1018 			if (flags == 0)
1019 				return NULLAGNUMBER;
1020 			flags = 0;
1021 		}
1022 	}
1023 }
1024 
1025 /*
1026  * Try to retrieve the next record to the left/right from the current one.
1027  */
1028 STATIC int
1029 xfs_ialloc_next_rec(
1030 	struct xfs_btree_cur	*cur,
1031 	xfs_inobt_rec_incore_t	*rec,
1032 	int			*done,
1033 	int			left)
1034 {
1035 	int                     error;
1036 	int			i;
1037 
1038 	if (left)
1039 		error = xfs_btree_decrement(cur, 0, &i);
1040 	else
1041 		error = xfs_btree_increment(cur, 0, &i);
1042 
1043 	if (error)
1044 		return error;
1045 	*done = !i;
1046 	if (i) {
1047 		error = xfs_inobt_get_rec(cur, rec, &i);
1048 		if (error)
1049 			return error;
1050 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 STATIC int
1057 xfs_ialloc_get_rec(
1058 	struct xfs_btree_cur	*cur,
1059 	xfs_agino_t		agino,
1060 	xfs_inobt_rec_incore_t	*rec,
1061 	int			*done)
1062 {
1063 	int                     error;
1064 	int			i;
1065 
1066 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1067 	if (error)
1068 		return error;
1069 	*done = !i;
1070 	if (i) {
1071 		error = xfs_inobt_get_rec(cur, rec, &i);
1072 		if (error)
1073 			return error;
1074 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Return the offset of the first free inode in the record. If the inode chunk
1082  * is sparsely allocated, we convert the record holemask to inode granularity
1083  * and mask off the unallocated regions from the inode free mask.
1084  */
1085 STATIC int
1086 xfs_inobt_first_free_inode(
1087 	struct xfs_inobt_rec_incore	*rec)
1088 {
1089 	xfs_inofree_t			realfree;
1090 
1091 	/* if there are no holes, return the first available offset */
1092 	if (!xfs_inobt_issparse(rec->ir_holemask))
1093 		return xfs_lowbit64(rec->ir_free);
1094 
1095 	realfree = xfs_inobt_irec_to_allocmask(rec);
1096 	realfree &= rec->ir_free;
1097 
1098 	return xfs_lowbit64(realfree);
1099 }
1100 
1101 /*
1102  * Allocate an inode using the inobt-only algorithm.
1103  */
1104 STATIC int
1105 xfs_dialloc_ag_inobt(
1106 	struct xfs_trans	*tp,
1107 	struct xfs_buf		*agbp,
1108 	xfs_ino_t		parent,
1109 	xfs_ino_t		*inop)
1110 {
1111 	struct xfs_mount	*mp = tp->t_mountp;
1112 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1113 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1114 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1115 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1116 	struct xfs_perag	*pag;
1117 	struct xfs_btree_cur	*cur, *tcur;
1118 	struct xfs_inobt_rec_incore rec, trec;
1119 	xfs_ino_t		ino;
1120 	int			error;
1121 	int			offset;
1122 	int			i, j;
1123 
1124 	pag = xfs_perag_get(mp, agno);
1125 
1126 	ASSERT(pag->pagi_init);
1127 	ASSERT(pag->pagi_inodeok);
1128 	ASSERT(pag->pagi_freecount > 0);
1129 
1130  restart_pagno:
1131 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1132 	/*
1133 	 * If pagino is 0 (this is the root inode allocation) use newino.
1134 	 * This must work because we've just allocated some.
1135 	 */
1136 	if (!pagino)
1137 		pagino = be32_to_cpu(agi->agi_newino);
1138 
1139 	error = xfs_check_agi_freecount(cur, agi);
1140 	if (error)
1141 		goto error0;
1142 
1143 	/*
1144 	 * If in the same AG as the parent, try to get near the parent.
1145 	 */
1146 	if (pagno == agno) {
1147 		int		doneleft;	/* done, to the left */
1148 		int		doneright;	/* done, to the right */
1149 		int		searchdistance = 10;
1150 
1151 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1152 		if (error)
1153 			goto error0;
1154 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1155 
1156 		error = xfs_inobt_get_rec(cur, &rec, &j);
1157 		if (error)
1158 			goto error0;
1159 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1160 
1161 		if (rec.ir_freecount > 0) {
1162 			/*
1163 			 * Found a free inode in the same chunk
1164 			 * as the parent, done.
1165 			 */
1166 			goto alloc_inode;
1167 		}
1168 
1169 
1170 		/*
1171 		 * In the same AG as parent, but parent's chunk is full.
1172 		 */
1173 
1174 		/* duplicate the cursor, search left & right simultaneously */
1175 		error = xfs_btree_dup_cursor(cur, &tcur);
1176 		if (error)
1177 			goto error0;
1178 
1179 		/*
1180 		 * Skip to last blocks looked up if same parent inode.
1181 		 */
1182 		if (pagino != NULLAGINO &&
1183 		    pag->pagl_pagino == pagino &&
1184 		    pag->pagl_leftrec != NULLAGINO &&
1185 		    pag->pagl_rightrec != NULLAGINO) {
1186 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1187 						   &trec, &doneleft);
1188 			if (error)
1189 				goto error1;
1190 
1191 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1192 						   &rec, &doneright);
1193 			if (error)
1194 				goto error1;
1195 		} else {
1196 			/* search left with tcur, back up 1 record */
1197 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1198 			if (error)
1199 				goto error1;
1200 
1201 			/* search right with cur, go forward 1 record. */
1202 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1203 			if (error)
1204 				goto error1;
1205 		}
1206 
1207 		/*
1208 		 * Loop until we find an inode chunk with a free inode.
1209 		 */
1210 		while (!doneleft || !doneright) {
1211 			int	useleft;  /* using left inode chunk this time */
1212 
1213 			if (!--searchdistance) {
1214 				/*
1215 				 * Not in range - save last search
1216 				 * location and allocate a new inode
1217 				 */
1218 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1219 				pag->pagl_leftrec = trec.ir_startino;
1220 				pag->pagl_rightrec = rec.ir_startino;
1221 				pag->pagl_pagino = pagino;
1222 				goto newino;
1223 			}
1224 
1225 			/* figure out the closer block if both are valid. */
1226 			if (!doneleft && !doneright) {
1227 				useleft = pagino -
1228 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1229 				  rec.ir_startino - pagino;
1230 			} else {
1231 				useleft = !doneleft;
1232 			}
1233 
1234 			/* free inodes to the left? */
1235 			if (useleft && trec.ir_freecount) {
1236 				rec = trec;
1237 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1238 				cur = tcur;
1239 
1240 				pag->pagl_leftrec = trec.ir_startino;
1241 				pag->pagl_rightrec = rec.ir_startino;
1242 				pag->pagl_pagino = pagino;
1243 				goto alloc_inode;
1244 			}
1245 
1246 			/* free inodes to the right? */
1247 			if (!useleft && rec.ir_freecount) {
1248 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1249 
1250 				pag->pagl_leftrec = trec.ir_startino;
1251 				pag->pagl_rightrec = rec.ir_startino;
1252 				pag->pagl_pagino = pagino;
1253 				goto alloc_inode;
1254 			}
1255 
1256 			/* get next record to check */
1257 			if (useleft) {
1258 				error = xfs_ialloc_next_rec(tcur, &trec,
1259 								 &doneleft, 1);
1260 			} else {
1261 				error = xfs_ialloc_next_rec(cur, &rec,
1262 								 &doneright, 0);
1263 			}
1264 			if (error)
1265 				goto error1;
1266 		}
1267 
1268 		/*
1269 		 * We've reached the end of the btree. because
1270 		 * we are only searching a small chunk of the
1271 		 * btree each search, there is obviously free
1272 		 * inodes closer to the parent inode than we
1273 		 * are now. restart the search again.
1274 		 */
1275 		pag->pagl_pagino = NULLAGINO;
1276 		pag->pagl_leftrec = NULLAGINO;
1277 		pag->pagl_rightrec = NULLAGINO;
1278 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1279 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1280 		goto restart_pagno;
1281 	}
1282 
1283 	/*
1284 	 * In a different AG from the parent.
1285 	 * See if the most recently allocated block has any free.
1286 	 */
1287 newino:
1288 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1289 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1290 					 XFS_LOOKUP_EQ, &i);
1291 		if (error)
1292 			goto error0;
1293 
1294 		if (i == 1) {
1295 			error = xfs_inobt_get_rec(cur, &rec, &j);
1296 			if (error)
1297 				goto error0;
1298 
1299 			if (j == 1 && rec.ir_freecount > 0) {
1300 				/*
1301 				 * The last chunk allocated in the group
1302 				 * still has a free inode.
1303 				 */
1304 				goto alloc_inode;
1305 			}
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * None left in the last group, search the whole AG
1311 	 */
1312 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1313 	if (error)
1314 		goto error0;
1315 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1316 
1317 	for (;;) {
1318 		error = xfs_inobt_get_rec(cur, &rec, &i);
1319 		if (error)
1320 			goto error0;
1321 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1322 		if (rec.ir_freecount > 0)
1323 			break;
1324 		error = xfs_btree_increment(cur, 0, &i);
1325 		if (error)
1326 			goto error0;
1327 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1328 	}
1329 
1330 alloc_inode:
1331 	offset = xfs_inobt_first_free_inode(&rec);
1332 	ASSERT(offset >= 0);
1333 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1334 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1335 				   XFS_INODES_PER_CHUNK) == 0);
1336 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1337 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1338 	rec.ir_freecount--;
1339 	error = xfs_inobt_update(cur, &rec);
1340 	if (error)
1341 		goto error0;
1342 	be32_add_cpu(&agi->agi_freecount, -1);
1343 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1344 	pag->pagi_freecount--;
1345 
1346 	error = xfs_check_agi_freecount(cur, agi);
1347 	if (error)
1348 		goto error0;
1349 
1350 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1351 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1352 	xfs_perag_put(pag);
1353 	*inop = ino;
1354 	return 0;
1355 error1:
1356 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1357 error0:
1358 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1359 	xfs_perag_put(pag);
1360 	return error;
1361 }
1362 
1363 /*
1364  * Use the free inode btree to allocate an inode based on distance from the
1365  * parent. Note that the provided cursor may be deleted and replaced.
1366  */
1367 STATIC int
1368 xfs_dialloc_ag_finobt_near(
1369 	xfs_agino_t			pagino,
1370 	struct xfs_btree_cur		**ocur,
1371 	struct xfs_inobt_rec_incore	*rec)
1372 {
1373 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1374 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1375 	struct xfs_inobt_rec_incore	rrec;
1376 	int				error;
1377 	int				i, j;
1378 
1379 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1380 	if (error)
1381 		return error;
1382 
1383 	if (i == 1) {
1384 		error = xfs_inobt_get_rec(lcur, rec, &i);
1385 		if (error)
1386 			return error;
1387 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1388 
1389 		/*
1390 		 * See if we've landed in the parent inode record. The finobt
1391 		 * only tracks chunks with at least one free inode, so record
1392 		 * existence is enough.
1393 		 */
1394 		if (pagino >= rec->ir_startino &&
1395 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1396 			return 0;
1397 	}
1398 
1399 	error = xfs_btree_dup_cursor(lcur, &rcur);
1400 	if (error)
1401 		return error;
1402 
1403 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1404 	if (error)
1405 		goto error_rcur;
1406 	if (j == 1) {
1407 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1408 		if (error)
1409 			goto error_rcur;
1410 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1411 	}
1412 
1413 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1414 	if (i == 1 && j == 1) {
1415 		/*
1416 		 * Both the left and right records are valid. Choose the closer
1417 		 * inode chunk to the target.
1418 		 */
1419 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1420 		    (rrec.ir_startino - pagino)) {
1421 			*rec = rrec;
1422 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1423 			*ocur = rcur;
1424 		} else {
1425 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1426 		}
1427 	} else if (j == 1) {
1428 		/* only the right record is valid */
1429 		*rec = rrec;
1430 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1431 		*ocur = rcur;
1432 	} else if (i == 1) {
1433 		/* only the left record is valid */
1434 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1435 	}
1436 
1437 	return 0;
1438 
1439 error_rcur:
1440 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1441 	return error;
1442 }
1443 
1444 /*
1445  * Use the free inode btree to find a free inode based on a newino hint. If
1446  * the hint is NULL, find the first free inode in the AG.
1447  */
1448 STATIC int
1449 xfs_dialloc_ag_finobt_newino(
1450 	struct xfs_agi			*agi,
1451 	struct xfs_btree_cur		*cur,
1452 	struct xfs_inobt_rec_incore	*rec)
1453 {
1454 	int error;
1455 	int i;
1456 
1457 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1458 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1459 					 XFS_LOOKUP_EQ, &i);
1460 		if (error)
1461 			return error;
1462 		if (i == 1) {
1463 			error = xfs_inobt_get_rec(cur, rec, &i);
1464 			if (error)
1465 				return error;
1466 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1467 			return 0;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Find the first inode available in the AG.
1473 	 */
1474 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1475 	if (error)
1476 		return error;
1477 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1478 
1479 	error = xfs_inobt_get_rec(cur, rec, &i);
1480 	if (error)
1481 		return error;
1482 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Update the inobt based on a modification made to the finobt. Also ensure that
1489  * the records from both trees are equivalent post-modification.
1490  */
1491 STATIC int
1492 xfs_dialloc_ag_update_inobt(
1493 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1494 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1495 	int				offset) /* inode offset */
1496 {
1497 	struct xfs_inobt_rec_incore	rec;
1498 	int				error;
1499 	int				i;
1500 
1501 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1502 	if (error)
1503 		return error;
1504 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1505 
1506 	error = xfs_inobt_get_rec(cur, &rec, &i);
1507 	if (error)
1508 		return error;
1509 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1510 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1511 				   XFS_INODES_PER_CHUNK) == 0);
1512 
1513 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1514 	rec.ir_freecount--;
1515 
1516 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1517 				  (rec.ir_freecount == frec->ir_freecount));
1518 
1519 	return xfs_inobt_update(cur, &rec);
1520 }
1521 
1522 /*
1523  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1524  * back to the inobt search algorithm.
1525  *
1526  * The caller selected an AG for us, and made sure that free inodes are
1527  * available.
1528  */
1529 STATIC int
1530 xfs_dialloc_ag(
1531 	struct xfs_trans	*tp,
1532 	struct xfs_buf		*agbp,
1533 	xfs_ino_t		parent,
1534 	xfs_ino_t		*inop)
1535 {
1536 	struct xfs_mount		*mp = tp->t_mountp;
1537 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1538 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1539 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1540 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1541 	struct xfs_perag		*pag;
1542 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1543 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1544 	struct xfs_inobt_rec_incore	rec;
1545 	xfs_ino_t			ino;
1546 	int				error;
1547 	int				offset;
1548 	int				i;
1549 
1550 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1551 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1552 
1553 	pag = xfs_perag_get(mp, agno);
1554 
1555 	/*
1556 	 * If pagino is 0 (this is the root inode allocation) use newino.
1557 	 * This must work because we've just allocated some.
1558 	 */
1559 	if (!pagino)
1560 		pagino = be32_to_cpu(agi->agi_newino);
1561 
1562 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1563 
1564 	error = xfs_check_agi_freecount(cur, agi);
1565 	if (error)
1566 		goto error_cur;
1567 
1568 	/*
1569 	 * The search algorithm depends on whether we're in the same AG as the
1570 	 * parent. If so, find the closest available inode to the parent. If
1571 	 * not, consider the agi hint or find the first free inode in the AG.
1572 	 */
1573 	if (agno == pagno)
1574 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1575 	else
1576 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1577 	if (error)
1578 		goto error_cur;
1579 
1580 	offset = xfs_inobt_first_free_inode(&rec);
1581 	ASSERT(offset >= 0);
1582 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1583 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1584 				   XFS_INODES_PER_CHUNK) == 0);
1585 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1586 
1587 	/*
1588 	 * Modify or remove the finobt record.
1589 	 */
1590 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1591 	rec.ir_freecount--;
1592 	if (rec.ir_freecount)
1593 		error = xfs_inobt_update(cur, &rec);
1594 	else
1595 		error = xfs_btree_delete(cur, &i);
1596 	if (error)
1597 		goto error_cur;
1598 
1599 	/*
1600 	 * The finobt has now been updated appropriately. We haven't updated the
1601 	 * agi and superblock yet, so we can create an inobt cursor and validate
1602 	 * the original freecount. If all is well, make the equivalent update to
1603 	 * the inobt using the finobt record and offset information.
1604 	 */
1605 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1606 
1607 	error = xfs_check_agi_freecount(icur, agi);
1608 	if (error)
1609 		goto error_icur;
1610 
1611 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1612 	if (error)
1613 		goto error_icur;
1614 
1615 	/*
1616 	 * Both trees have now been updated. We must update the perag and
1617 	 * superblock before we can check the freecount for each btree.
1618 	 */
1619 	be32_add_cpu(&agi->agi_freecount, -1);
1620 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1621 	pag->pagi_freecount--;
1622 
1623 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1624 
1625 	error = xfs_check_agi_freecount(icur, agi);
1626 	if (error)
1627 		goto error_icur;
1628 	error = xfs_check_agi_freecount(cur, agi);
1629 	if (error)
1630 		goto error_icur;
1631 
1632 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1633 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1634 	xfs_perag_put(pag);
1635 	*inop = ino;
1636 	return 0;
1637 
1638 error_icur:
1639 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1640 error_cur:
1641 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1642 	xfs_perag_put(pag);
1643 	return error;
1644 }
1645 
1646 /*
1647  * Allocate an inode on disk.
1648  *
1649  * Mode is used to tell whether the new inode will need space, and whether it
1650  * is a directory.
1651  *
1652  * This function is designed to be called twice if it has to do an allocation
1653  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1654  * If an inode is available without having to performn an allocation, an inode
1655  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1656  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1657  * The caller should then commit the current transaction, allocate a
1658  * new transaction, and call xfs_dialloc() again, passing in the previous value
1659  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1660  * buffer is locked across the two calls, the second call is guaranteed to have
1661  * a free inode available.
1662  *
1663  * Once we successfully pick an inode its number is returned and the on-disk
1664  * data structures are updated.  The inode itself is not read in, since doing so
1665  * would break ordering constraints with xfs_reclaim.
1666  */
1667 int
1668 xfs_dialloc(
1669 	struct xfs_trans	*tp,
1670 	xfs_ino_t		parent,
1671 	umode_t			mode,
1672 	int			okalloc,
1673 	struct xfs_buf		**IO_agbp,
1674 	xfs_ino_t		*inop)
1675 {
1676 	struct xfs_mount	*mp = tp->t_mountp;
1677 	struct xfs_buf		*agbp;
1678 	xfs_agnumber_t		agno;
1679 	int			error;
1680 	int			ialloced;
1681 	int			noroom = 0;
1682 	xfs_agnumber_t		start_agno;
1683 	struct xfs_perag	*pag;
1684 
1685 	if (*IO_agbp) {
1686 		/*
1687 		 * If the caller passes in a pointer to the AGI buffer,
1688 		 * continue where we left off before.  In this case, we
1689 		 * know that the allocation group has free inodes.
1690 		 */
1691 		agbp = *IO_agbp;
1692 		goto out_alloc;
1693 	}
1694 
1695 	/*
1696 	 * We do not have an agbp, so select an initial allocation
1697 	 * group for inode allocation.
1698 	 */
1699 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1700 	if (start_agno == NULLAGNUMBER) {
1701 		*inop = NULLFSINO;
1702 		return 0;
1703 	}
1704 
1705 	/*
1706 	 * If we have already hit the ceiling of inode blocks then clear
1707 	 * okalloc so we scan all available agi structures for a free
1708 	 * inode.
1709 	 *
1710 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1711 	 * which will sacrifice the preciseness but improve the performance.
1712 	 */
1713 	if (mp->m_maxicount &&
1714 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1715 							> mp->m_maxicount) {
1716 		noroom = 1;
1717 		okalloc = 0;
1718 	}
1719 
1720 	/*
1721 	 * Loop until we find an allocation group that either has free inodes
1722 	 * or in which we can allocate some inodes.  Iterate through the
1723 	 * allocation groups upward, wrapping at the end.
1724 	 */
1725 	agno = start_agno;
1726 	for (;;) {
1727 		pag = xfs_perag_get(mp, agno);
1728 		if (!pag->pagi_inodeok) {
1729 			xfs_ialloc_next_ag(mp);
1730 			goto nextag;
1731 		}
1732 
1733 		if (!pag->pagi_init) {
1734 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1735 			if (error)
1736 				goto out_error;
1737 		}
1738 
1739 		/*
1740 		 * Do a first racy fast path check if this AG is usable.
1741 		 */
1742 		if (!pag->pagi_freecount && !okalloc)
1743 			goto nextag;
1744 
1745 		/*
1746 		 * Then read in the AGI buffer and recheck with the AGI buffer
1747 		 * lock held.
1748 		 */
1749 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1750 		if (error)
1751 			goto out_error;
1752 
1753 		if (pag->pagi_freecount) {
1754 			xfs_perag_put(pag);
1755 			goto out_alloc;
1756 		}
1757 
1758 		if (!okalloc)
1759 			goto nextag_relse_buffer;
1760 
1761 
1762 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1763 		if (error) {
1764 			xfs_trans_brelse(tp, agbp);
1765 
1766 			if (error != -ENOSPC)
1767 				goto out_error;
1768 
1769 			xfs_perag_put(pag);
1770 			*inop = NULLFSINO;
1771 			return 0;
1772 		}
1773 
1774 		if (ialloced) {
1775 			/*
1776 			 * We successfully allocated some inodes, return
1777 			 * the current context to the caller so that it
1778 			 * can commit the current transaction and call
1779 			 * us again where we left off.
1780 			 */
1781 			ASSERT(pag->pagi_freecount > 0);
1782 			xfs_perag_put(pag);
1783 
1784 			*IO_agbp = agbp;
1785 			*inop = NULLFSINO;
1786 			return 0;
1787 		}
1788 
1789 nextag_relse_buffer:
1790 		xfs_trans_brelse(tp, agbp);
1791 nextag:
1792 		xfs_perag_put(pag);
1793 		if (++agno == mp->m_sb.sb_agcount)
1794 			agno = 0;
1795 		if (agno == start_agno) {
1796 			*inop = NULLFSINO;
1797 			return noroom ? -ENOSPC : 0;
1798 		}
1799 	}
1800 
1801 out_alloc:
1802 	*IO_agbp = NULL;
1803 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1804 out_error:
1805 	xfs_perag_put(pag);
1806 	return error;
1807 }
1808 
1809 /*
1810  * Free the blocks of an inode chunk. We must consider that the inode chunk
1811  * might be sparse and only free the regions that are allocated as part of the
1812  * chunk.
1813  */
1814 STATIC void
1815 xfs_difree_inode_chunk(
1816 	struct xfs_mount		*mp,
1817 	xfs_agnumber_t			agno,
1818 	struct xfs_inobt_rec_incore	*rec,
1819 	struct xfs_bmap_free		*flist)
1820 {
1821 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1822 	int		startidx, endidx;
1823 	int		nextbit;
1824 	xfs_agblock_t	agbno;
1825 	int		contigblk;
1826 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1827 
1828 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829 		/* not sparse, calculate extent info directly */
1830 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1831 				  XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1832 				  mp->m_ialloc_blks, flist, mp);
1833 		return;
1834 	}
1835 
1836 	/* holemask is only 16-bits (fits in an unsigned long) */
1837 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838 	holemask[0] = rec->ir_holemask;
1839 
1840 	/*
1841 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842 	 * holemask and convert the start/end index of each range to an extent.
1843 	 * We start with the start and end index both pointing at the first 0 in
1844 	 * the mask.
1845 	 */
1846 	startidx = endidx = find_first_zero_bit(holemask,
1847 						XFS_INOBT_HOLEMASK_BITS);
1848 	nextbit = startidx + 1;
1849 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1851 					     nextbit);
1852 		/*
1853 		 * If the next zero bit is contiguous, update the end index of
1854 		 * the current range and continue.
1855 		 */
1856 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857 		    nextbit == endidx + 1) {
1858 			endidx = nextbit;
1859 			goto next;
1860 		}
1861 
1862 		/*
1863 		 * nextbit is not contiguous with the current end index. Convert
1864 		 * the current start/end to an extent and add it to the free
1865 		 * list.
1866 		 */
1867 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868 				  mp->m_sb.sb_inopblock;
1869 		contigblk = ((endidx - startidx + 1) *
1870 			     XFS_INODES_PER_HOLEMASK_BIT) /
1871 			    mp->m_sb.sb_inopblock;
1872 
1873 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1876 				  flist, mp);
1877 
1878 		/* reset range to current bit and carry on... */
1879 		startidx = endidx = nextbit;
1880 
1881 next:
1882 		nextbit++;
1883 	}
1884 }
1885 
1886 STATIC int
1887 xfs_difree_inobt(
1888 	struct xfs_mount		*mp,
1889 	struct xfs_trans		*tp,
1890 	struct xfs_buf			*agbp,
1891 	xfs_agino_t			agino,
1892 	struct xfs_bmap_free		*flist,
1893 	struct xfs_icluster		*xic,
1894 	struct xfs_inobt_rec_incore	*orec)
1895 {
1896 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1897 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1898 	struct xfs_perag		*pag;
1899 	struct xfs_btree_cur		*cur;
1900 	struct xfs_inobt_rec_incore	rec;
1901 	int				ilen;
1902 	int				error;
1903 	int				i;
1904 	int				off;
1905 
1906 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1907 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1908 
1909 	/*
1910 	 * Initialize the cursor.
1911 	 */
1912 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1913 
1914 	error = xfs_check_agi_freecount(cur, agi);
1915 	if (error)
1916 		goto error0;
1917 
1918 	/*
1919 	 * Look for the entry describing this inode.
1920 	 */
1921 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1922 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1923 			__func__, error);
1924 		goto error0;
1925 	}
1926 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1927 	error = xfs_inobt_get_rec(cur, &rec, &i);
1928 	if (error) {
1929 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1930 			__func__, error);
1931 		goto error0;
1932 	}
1933 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1934 	/*
1935 	 * Get the offset in the inode chunk.
1936 	 */
1937 	off = agino - rec.ir_startino;
1938 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1939 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1940 	/*
1941 	 * Mark the inode free & increment the count.
1942 	 */
1943 	rec.ir_free |= XFS_INOBT_MASK(off);
1944 	rec.ir_freecount++;
1945 
1946 	/*
1947 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1948 	 * remove the chunk if the block size is large enough for multiple inode
1949 	 * chunks (that might not be free).
1950 	 */
1951 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1952 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1953 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1954 		xic->deleted = 1;
1955 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1956 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1957 
1958 		/*
1959 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1960 		 * AGI and Superblock inode counts, and mark the disk space
1961 		 * to be freed when the transaction is committed.
1962 		 */
1963 		ilen = rec.ir_freecount;
1964 		be32_add_cpu(&agi->agi_count, -ilen);
1965 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1966 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1967 		pag = xfs_perag_get(mp, agno);
1968 		pag->pagi_freecount -= ilen - 1;
1969 		xfs_perag_put(pag);
1970 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1971 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1972 
1973 		if ((error = xfs_btree_delete(cur, &i))) {
1974 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1975 				__func__, error);
1976 			goto error0;
1977 		}
1978 
1979 		xfs_difree_inode_chunk(mp, agno, &rec, flist);
1980 	} else {
1981 		xic->deleted = 0;
1982 
1983 		error = xfs_inobt_update(cur, &rec);
1984 		if (error) {
1985 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1986 				__func__, error);
1987 			goto error0;
1988 		}
1989 
1990 		/*
1991 		 * Change the inode free counts and log the ag/sb changes.
1992 		 */
1993 		be32_add_cpu(&agi->agi_freecount, 1);
1994 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1995 		pag = xfs_perag_get(mp, agno);
1996 		pag->pagi_freecount++;
1997 		xfs_perag_put(pag);
1998 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1999 	}
2000 
2001 	error = xfs_check_agi_freecount(cur, agi);
2002 	if (error)
2003 		goto error0;
2004 
2005 	*orec = rec;
2006 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2007 	return 0;
2008 
2009 error0:
2010 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2011 	return error;
2012 }
2013 
2014 /*
2015  * Free an inode in the free inode btree.
2016  */
2017 STATIC int
2018 xfs_difree_finobt(
2019 	struct xfs_mount		*mp,
2020 	struct xfs_trans		*tp,
2021 	struct xfs_buf			*agbp,
2022 	xfs_agino_t			agino,
2023 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2024 {
2025 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2026 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2027 	struct xfs_btree_cur		*cur;
2028 	struct xfs_inobt_rec_incore	rec;
2029 	int				offset = agino - ibtrec->ir_startino;
2030 	int				error;
2031 	int				i;
2032 
2033 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2034 
2035 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2036 	if (error)
2037 		goto error;
2038 	if (i == 0) {
2039 		/*
2040 		 * If the record does not exist in the finobt, we must have just
2041 		 * freed an inode in a previously fully allocated chunk. If not,
2042 		 * something is out of sync.
2043 		 */
2044 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2045 
2046 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2047 					     ibtrec->ir_count,
2048 					     ibtrec->ir_freecount,
2049 					     ibtrec->ir_free, &i);
2050 		if (error)
2051 			goto error;
2052 		ASSERT(i == 1);
2053 
2054 		goto out;
2055 	}
2056 
2057 	/*
2058 	 * Read and update the existing record. We could just copy the ibtrec
2059 	 * across here, but that would defeat the purpose of having redundant
2060 	 * metadata. By making the modifications independently, we can catch
2061 	 * corruptions that we wouldn't see if we just copied from one record
2062 	 * to another.
2063 	 */
2064 	error = xfs_inobt_get_rec(cur, &rec, &i);
2065 	if (error)
2066 		goto error;
2067 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2068 
2069 	rec.ir_free |= XFS_INOBT_MASK(offset);
2070 	rec.ir_freecount++;
2071 
2072 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2073 				(rec.ir_freecount == ibtrec->ir_freecount),
2074 				error);
2075 
2076 	/*
2077 	 * The content of inobt records should always match between the inobt
2078 	 * and finobt. The lifecycle of records in the finobt is different from
2079 	 * the inobt in that the finobt only tracks records with at least one
2080 	 * free inode. Hence, if all of the inodes are free and we aren't
2081 	 * keeping inode chunks permanently on disk, remove the record.
2082 	 * Otherwise, update the record with the new information.
2083 	 *
2084 	 * Note that we currently can't free chunks when the block size is large
2085 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2086 	 * with the inobt.
2087 	 */
2088 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2089 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2090 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2091 		error = xfs_btree_delete(cur, &i);
2092 		if (error)
2093 			goto error;
2094 		ASSERT(i == 1);
2095 	} else {
2096 		error = xfs_inobt_update(cur, &rec);
2097 		if (error)
2098 			goto error;
2099 	}
2100 
2101 out:
2102 	error = xfs_check_agi_freecount(cur, agi);
2103 	if (error)
2104 		goto error;
2105 
2106 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2107 	return 0;
2108 
2109 error:
2110 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2111 	return error;
2112 }
2113 
2114 /*
2115  * Free disk inode.  Carefully avoids touching the incore inode, all
2116  * manipulations incore are the caller's responsibility.
2117  * The on-disk inode is not changed by this operation, only the
2118  * btree (free inode mask) is changed.
2119  */
2120 int
2121 xfs_difree(
2122 	struct xfs_trans	*tp,		/* transaction pointer */
2123 	xfs_ino_t		inode,		/* inode to be freed */
2124 	struct xfs_bmap_free	*flist,		/* extents to free */
2125 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2126 {
2127 	/* REFERENCED */
2128 	xfs_agblock_t		agbno;	/* block number containing inode */
2129 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2130 	xfs_agino_t		agino;	/* allocation group inode number */
2131 	xfs_agnumber_t		agno;	/* allocation group number */
2132 	int			error;	/* error return value */
2133 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2134 	struct xfs_inobt_rec_incore rec;/* btree record */
2135 
2136 	mp = tp->t_mountp;
2137 
2138 	/*
2139 	 * Break up inode number into its components.
2140 	 */
2141 	agno = XFS_INO_TO_AGNO(mp, inode);
2142 	if (agno >= mp->m_sb.sb_agcount)  {
2143 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2144 			__func__, agno, mp->m_sb.sb_agcount);
2145 		ASSERT(0);
2146 		return -EINVAL;
2147 	}
2148 	agino = XFS_INO_TO_AGINO(mp, inode);
2149 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2150 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2151 			__func__, (unsigned long long)inode,
2152 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2153 		ASSERT(0);
2154 		return -EINVAL;
2155 	}
2156 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2157 	if (agbno >= mp->m_sb.sb_agblocks)  {
2158 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2159 			__func__, agbno, mp->m_sb.sb_agblocks);
2160 		ASSERT(0);
2161 		return -EINVAL;
2162 	}
2163 	/*
2164 	 * Get the allocation group header.
2165 	 */
2166 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2167 	if (error) {
2168 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2169 			__func__, error);
2170 		return error;
2171 	}
2172 
2173 	/*
2174 	 * Fix up the inode allocation btree.
2175 	 */
2176 	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2177 	if (error)
2178 		goto error0;
2179 
2180 	/*
2181 	 * Fix up the free inode btree.
2182 	 */
2183 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2184 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2185 		if (error)
2186 			goto error0;
2187 	}
2188 
2189 	return 0;
2190 
2191 error0:
2192 	return error;
2193 }
2194 
2195 STATIC int
2196 xfs_imap_lookup(
2197 	struct xfs_mount	*mp,
2198 	struct xfs_trans	*tp,
2199 	xfs_agnumber_t		agno,
2200 	xfs_agino_t		agino,
2201 	xfs_agblock_t		agbno,
2202 	xfs_agblock_t		*chunk_agbno,
2203 	xfs_agblock_t		*offset_agbno,
2204 	int			flags)
2205 {
2206 	struct xfs_inobt_rec_incore rec;
2207 	struct xfs_btree_cur	*cur;
2208 	struct xfs_buf		*agbp;
2209 	int			error;
2210 	int			i;
2211 
2212 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2213 	if (error) {
2214 		xfs_alert(mp,
2215 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2216 			__func__, error, agno);
2217 		return error;
2218 	}
2219 
2220 	/*
2221 	 * Lookup the inode record for the given agino. If the record cannot be
2222 	 * found, then it's an invalid inode number and we should abort. Once
2223 	 * we have a record, we need to ensure it contains the inode number
2224 	 * we are looking up.
2225 	 */
2226 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2227 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2228 	if (!error) {
2229 		if (i)
2230 			error = xfs_inobt_get_rec(cur, &rec, &i);
2231 		if (!error && i == 0)
2232 			error = -EINVAL;
2233 	}
2234 
2235 	xfs_trans_brelse(tp, agbp);
2236 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2237 	if (error)
2238 		return error;
2239 
2240 	/* check that the returned record contains the required inode */
2241 	if (rec.ir_startino > agino ||
2242 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2243 		return -EINVAL;
2244 
2245 	/* for untrusted inodes check it is allocated first */
2246 	if ((flags & XFS_IGET_UNTRUSTED) &&
2247 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2248 		return -EINVAL;
2249 
2250 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2251 	*offset_agbno = agbno - *chunk_agbno;
2252 	return 0;
2253 }
2254 
2255 /*
2256  * Return the location of the inode in imap, for mapping it into a buffer.
2257  */
2258 int
2259 xfs_imap(
2260 	xfs_mount_t	 *mp,	/* file system mount structure */
2261 	xfs_trans_t	 *tp,	/* transaction pointer */
2262 	xfs_ino_t	ino,	/* inode to locate */
2263 	struct xfs_imap	*imap,	/* location map structure */
2264 	uint		flags)	/* flags for inode btree lookup */
2265 {
2266 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2267 	xfs_agino_t	agino;	/* inode number within alloc group */
2268 	xfs_agnumber_t	agno;	/* allocation group number */
2269 	int		blks_per_cluster; /* num blocks per inode cluster */
2270 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2271 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2272 	int		error;	/* error code */
2273 	int		offset;	/* index of inode in its buffer */
2274 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2275 
2276 	ASSERT(ino != NULLFSINO);
2277 
2278 	/*
2279 	 * Split up the inode number into its parts.
2280 	 */
2281 	agno = XFS_INO_TO_AGNO(mp, ino);
2282 	agino = XFS_INO_TO_AGINO(mp, ino);
2283 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2284 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2285 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2286 #ifdef DEBUG
2287 		/*
2288 		 * Don't output diagnostic information for untrusted inodes
2289 		 * as they can be invalid without implying corruption.
2290 		 */
2291 		if (flags & XFS_IGET_UNTRUSTED)
2292 			return -EINVAL;
2293 		if (agno >= mp->m_sb.sb_agcount) {
2294 			xfs_alert(mp,
2295 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2296 				__func__, agno, mp->m_sb.sb_agcount);
2297 		}
2298 		if (agbno >= mp->m_sb.sb_agblocks) {
2299 			xfs_alert(mp,
2300 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2301 				__func__, (unsigned long long)agbno,
2302 				(unsigned long)mp->m_sb.sb_agblocks);
2303 		}
2304 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2305 			xfs_alert(mp,
2306 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2307 				__func__, ino,
2308 				XFS_AGINO_TO_INO(mp, agno, agino));
2309 		}
2310 		xfs_stack_trace();
2311 #endif /* DEBUG */
2312 		return -EINVAL;
2313 	}
2314 
2315 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2316 
2317 	/*
2318 	 * For bulkstat and handle lookups, we have an untrusted inode number
2319 	 * that we have to verify is valid. We cannot do this just by reading
2320 	 * the inode buffer as it may have been unlinked and removed leaving
2321 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2322 	 * in all cases where an untrusted inode number is passed.
2323 	 */
2324 	if (flags & XFS_IGET_UNTRUSTED) {
2325 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2326 					&chunk_agbno, &offset_agbno, flags);
2327 		if (error)
2328 			return error;
2329 		goto out_map;
2330 	}
2331 
2332 	/*
2333 	 * If the inode cluster size is the same as the blocksize or
2334 	 * smaller we get to the buffer by simple arithmetics.
2335 	 */
2336 	if (blks_per_cluster == 1) {
2337 		offset = XFS_INO_TO_OFFSET(mp, ino);
2338 		ASSERT(offset < mp->m_sb.sb_inopblock);
2339 
2340 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2341 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2342 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2343 		return 0;
2344 	}
2345 
2346 	/*
2347 	 * If the inode chunks are aligned then use simple maths to
2348 	 * find the location. Otherwise we have to do a btree
2349 	 * lookup to find the location.
2350 	 */
2351 	if (mp->m_inoalign_mask) {
2352 		offset_agbno = agbno & mp->m_inoalign_mask;
2353 		chunk_agbno = agbno - offset_agbno;
2354 	} else {
2355 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2356 					&chunk_agbno, &offset_agbno, flags);
2357 		if (error)
2358 			return error;
2359 	}
2360 
2361 out_map:
2362 	ASSERT(agbno >= chunk_agbno);
2363 	cluster_agbno = chunk_agbno +
2364 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2365 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2366 		XFS_INO_TO_OFFSET(mp, ino);
2367 
2368 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2369 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2370 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2371 
2372 	/*
2373 	 * If the inode number maps to a block outside the bounds
2374 	 * of the file system then return NULL rather than calling
2375 	 * read_buf and panicing when we get an error from the
2376 	 * driver.
2377 	 */
2378 	if ((imap->im_blkno + imap->im_len) >
2379 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2380 		xfs_alert(mp,
2381 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2382 			__func__, (unsigned long long) imap->im_blkno,
2383 			(unsigned long long) imap->im_len,
2384 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2385 		return -EINVAL;
2386 	}
2387 	return 0;
2388 }
2389 
2390 /*
2391  * Compute and fill in value of m_in_maxlevels.
2392  */
2393 void
2394 xfs_ialloc_compute_maxlevels(
2395 	xfs_mount_t	*mp)		/* file system mount structure */
2396 {
2397 	int		level;
2398 	uint		maxblocks;
2399 	uint		maxleafents;
2400 	int		minleafrecs;
2401 	int		minnoderecs;
2402 
2403 	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2404 		XFS_INODES_PER_CHUNK_LOG;
2405 	minleafrecs = mp->m_alloc_mnr[0];
2406 	minnoderecs = mp->m_alloc_mnr[1];
2407 	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2408 	for (level = 1; maxblocks > 1; level++)
2409 		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2410 	mp->m_in_maxlevels = level;
2411 }
2412 
2413 /*
2414  * Log specified fields for the ag hdr (inode section). The growth of the agi
2415  * structure over time requires that we interpret the buffer as two logical
2416  * regions delineated by the end of the unlinked list. This is due to the size
2417  * of the hash table and its location in the middle of the agi.
2418  *
2419  * For example, a request to log a field before agi_unlinked and a field after
2420  * agi_unlinked could cause us to log the entire hash table and use an excessive
2421  * amount of log space. To avoid this behavior, log the region up through
2422  * agi_unlinked in one call and the region after agi_unlinked through the end of
2423  * the structure in another.
2424  */
2425 void
2426 xfs_ialloc_log_agi(
2427 	xfs_trans_t	*tp,		/* transaction pointer */
2428 	xfs_buf_t	*bp,		/* allocation group header buffer */
2429 	int		fields)		/* bitmask of fields to log */
2430 {
2431 	int			first;		/* first byte number */
2432 	int			last;		/* last byte number */
2433 	static const short	offsets[] = {	/* field starting offsets */
2434 					/* keep in sync with bit definitions */
2435 		offsetof(xfs_agi_t, agi_magicnum),
2436 		offsetof(xfs_agi_t, agi_versionnum),
2437 		offsetof(xfs_agi_t, agi_seqno),
2438 		offsetof(xfs_agi_t, agi_length),
2439 		offsetof(xfs_agi_t, agi_count),
2440 		offsetof(xfs_agi_t, agi_root),
2441 		offsetof(xfs_agi_t, agi_level),
2442 		offsetof(xfs_agi_t, agi_freecount),
2443 		offsetof(xfs_agi_t, agi_newino),
2444 		offsetof(xfs_agi_t, agi_dirino),
2445 		offsetof(xfs_agi_t, agi_unlinked),
2446 		offsetof(xfs_agi_t, agi_free_root),
2447 		offsetof(xfs_agi_t, agi_free_level),
2448 		sizeof(xfs_agi_t)
2449 	};
2450 #ifdef DEBUG
2451 	xfs_agi_t		*agi;	/* allocation group header */
2452 
2453 	agi = XFS_BUF_TO_AGI(bp);
2454 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455 #endif
2456 
2457 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2458 
2459 	/*
2460 	 * Compute byte offsets for the first and last fields in the first
2461 	 * region and log the agi buffer. This only logs up through
2462 	 * agi_unlinked.
2463 	 */
2464 	if (fields & XFS_AGI_ALL_BITS_R1) {
2465 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2466 				  &first, &last);
2467 		xfs_trans_log_buf(tp, bp, first, last);
2468 	}
2469 
2470 	/*
2471 	 * Mask off the bits in the first region and calculate the first and
2472 	 * last field offsets for any bits in the second region.
2473 	 */
2474 	fields &= ~XFS_AGI_ALL_BITS_R1;
2475 	if (fields) {
2476 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2477 				  &first, &last);
2478 		xfs_trans_log_buf(tp, bp, first, last);
2479 	}
2480 }
2481 
2482 #ifdef DEBUG
2483 STATIC void
2484 xfs_check_agi_unlinked(
2485 	struct xfs_agi		*agi)
2486 {
2487 	int			i;
2488 
2489 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2490 		ASSERT(agi->agi_unlinked[i]);
2491 }
2492 #else
2493 #define xfs_check_agi_unlinked(agi)
2494 #endif
2495 
2496 static bool
2497 xfs_agi_verify(
2498 	struct xfs_buf	*bp)
2499 {
2500 	struct xfs_mount *mp = bp->b_target->bt_mount;
2501 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2502 
2503 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2504 	    !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2505 			return false;
2506 	/*
2507 	 * Validate the magic number of the agi block.
2508 	 */
2509 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2510 		return false;
2511 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2512 		return false;
2513 
2514 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2515 		return false;
2516 	/*
2517 	 * during growfs operations, the perag is not fully initialised,
2518 	 * so we can't use it for any useful checking. growfs ensures we can't
2519 	 * use it by using uncached buffers that don't have the perag attached
2520 	 * so we can detect and avoid this problem.
2521 	 */
2522 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2523 		return false;
2524 
2525 	xfs_check_agi_unlinked(agi);
2526 	return true;
2527 }
2528 
2529 static void
2530 xfs_agi_read_verify(
2531 	struct xfs_buf	*bp)
2532 {
2533 	struct xfs_mount *mp = bp->b_target->bt_mount;
2534 
2535 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2536 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2537 		xfs_buf_ioerror(bp, -EFSBADCRC);
2538 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2539 				XFS_ERRTAG_IALLOC_READ_AGI,
2540 				XFS_RANDOM_IALLOC_READ_AGI))
2541 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2542 
2543 	if (bp->b_error)
2544 		xfs_verifier_error(bp);
2545 }
2546 
2547 static void
2548 xfs_agi_write_verify(
2549 	struct xfs_buf	*bp)
2550 {
2551 	struct xfs_mount *mp = bp->b_target->bt_mount;
2552 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2553 
2554 	if (!xfs_agi_verify(bp)) {
2555 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2556 		xfs_verifier_error(bp);
2557 		return;
2558 	}
2559 
2560 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2561 		return;
2562 
2563 	if (bip)
2564 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2565 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2566 }
2567 
2568 const struct xfs_buf_ops xfs_agi_buf_ops = {
2569 	.verify_read = xfs_agi_read_verify,
2570 	.verify_write = xfs_agi_write_verify,
2571 };
2572 
2573 /*
2574  * Read in the allocation group header (inode allocation section)
2575  */
2576 int
2577 xfs_read_agi(
2578 	struct xfs_mount	*mp,	/* file system mount structure */
2579 	struct xfs_trans	*tp,	/* transaction pointer */
2580 	xfs_agnumber_t		agno,	/* allocation group number */
2581 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2582 {
2583 	int			error;
2584 
2585 	trace_xfs_read_agi(mp, agno);
2586 
2587 	ASSERT(agno != NULLAGNUMBER);
2588 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2589 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2590 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2591 	if (error)
2592 		return error;
2593 
2594 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2595 	return 0;
2596 }
2597 
2598 int
2599 xfs_ialloc_read_agi(
2600 	struct xfs_mount	*mp,	/* file system mount structure */
2601 	struct xfs_trans	*tp,	/* transaction pointer */
2602 	xfs_agnumber_t		agno,	/* allocation group number */
2603 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2604 {
2605 	struct xfs_agi		*agi;	/* allocation group header */
2606 	struct xfs_perag	*pag;	/* per allocation group data */
2607 	int			error;
2608 
2609 	trace_xfs_ialloc_read_agi(mp, agno);
2610 
2611 	error = xfs_read_agi(mp, tp, agno, bpp);
2612 	if (error)
2613 		return error;
2614 
2615 	agi = XFS_BUF_TO_AGI(*bpp);
2616 	pag = xfs_perag_get(mp, agno);
2617 	if (!pag->pagi_init) {
2618 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2619 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2620 		pag->pagi_init = 1;
2621 	}
2622 
2623 	/*
2624 	 * It's possible for these to be out of sync if
2625 	 * we are in the middle of a forced shutdown.
2626 	 */
2627 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2628 		XFS_FORCED_SHUTDOWN(mp));
2629 	xfs_perag_put(pag);
2630 	return 0;
2631 }
2632 
2633 /*
2634  * Read in the agi to initialise the per-ag data in the mount structure
2635  */
2636 int
2637 xfs_ialloc_pagi_init(
2638 	xfs_mount_t	*mp,		/* file system mount structure */
2639 	xfs_trans_t	*tp,		/* transaction pointer */
2640 	xfs_agnumber_t	agno)		/* allocation group number */
2641 {
2642 	xfs_buf_t	*bp = NULL;
2643 	int		error;
2644 
2645 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2646 	if (error)
2647 		return error;
2648 	if (bp)
2649 		xfs_trans_brelse(tp, bp);
2650 	return 0;
2651 }
2652