1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_btree.h" 18 #include "xfs_ialloc.h" 19 #include "xfs_ialloc_btree.h" 20 #include "xfs_alloc.h" 21 #include "xfs_rtalloc.h" 22 #include "xfs_errortag.h" 23 #include "xfs_error.h" 24 #include "xfs_bmap.h" 25 #include "xfs_cksum.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_icreate_item.h" 29 #include "xfs_icache.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 #include "xfs_rmap.h" 33 34 35 /* 36 * Allocation group level functions. 37 */ 38 int 39 xfs_ialloc_cluster_alignment( 40 struct xfs_mount *mp) 41 { 42 if (xfs_sb_version_hasalign(&mp->m_sb) && 43 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 44 return mp->m_sb.sb_inoalignmt; 45 return 1; 46 } 47 48 /* 49 * Lookup a record by ino in the btree given by cur. 50 */ 51 int /* error */ 52 xfs_inobt_lookup( 53 struct xfs_btree_cur *cur, /* btree cursor */ 54 xfs_agino_t ino, /* starting inode of chunk */ 55 xfs_lookup_t dir, /* <=, >=, == */ 56 int *stat) /* success/failure */ 57 { 58 cur->bc_rec.i.ir_startino = ino; 59 cur->bc_rec.i.ir_holemask = 0; 60 cur->bc_rec.i.ir_count = 0; 61 cur->bc_rec.i.ir_freecount = 0; 62 cur->bc_rec.i.ir_free = 0; 63 return xfs_btree_lookup(cur, dir, stat); 64 } 65 66 /* 67 * Update the record referred to by cur to the value given. 68 * This either works (return 0) or gets an EFSCORRUPTED error. 69 */ 70 STATIC int /* error */ 71 xfs_inobt_update( 72 struct xfs_btree_cur *cur, /* btree cursor */ 73 xfs_inobt_rec_incore_t *irec) /* btree record */ 74 { 75 union xfs_btree_rec rec; 76 77 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 78 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 79 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 80 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 81 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 82 } else { 83 /* ir_holemask/ir_count not supported on-disk */ 84 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 85 } 86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 87 return xfs_btree_update(cur, &rec); 88 } 89 90 /* Convert on-disk btree record to incore inobt record. */ 91 void 92 xfs_inobt_btrec_to_irec( 93 struct xfs_mount *mp, 94 union xfs_btree_rec *rec, 95 struct xfs_inobt_rec_incore *irec) 96 { 97 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 98 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 99 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 100 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 101 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 102 } else { 103 /* 104 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 105 * values for full inode chunks. 106 */ 107 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 108 irec->ir_count = XFS_INODES_PER_CHUNK; 109 irec->ir_freecount = 110 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 111 } 112 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 113 } 114 115 /* 116 * Get the data from the pointed-to record. 117 */ 118 int 119 xfs_inobt_get_rec( 120 struct xfs_btree_cur *cur, 121 struct xfs_inobt_rec_incore *irec, 122 int *stat) 123 { 124 struct xfs_mount *mp = cur->bc_mp; 125 xfs_agnumber_t agno = cur->bc_private.a.agno; 126 union xfs_btree_rec *rec; 127 int error; 128 uint64_t realfree; 129 130 error = xfs_btree_get_rec(cur, &rec, stat); 131 if (error || *stat == 0) 132 return error; 133 134 xfs_inobt_btrec_to_irec(mp, rec, irec); 135 136 if (!xfs_verify_agino(mp, agno, irec->ir_startino)) 137 goto out_bad_rec; 138 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 139 irec->ir_count > XFS_INODES_PER_CHUNK) 140 goto out_bad_rec; 141 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 142 goto out_bad_rec; 143 144 /* if there are no holes, return the first available offset */ 145 if (!xfs_inobt_issparse(irec->ir_holemask)) 146 realfree = irec->ir_free; 147 else 148 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); 149 if (hweight64(realfree) != irec->ir_freecount) 150 goto out_bad_rec; 151 152 return 0; 153 154 out_bad_rec: 155 xfs_warn(mp, 156 "%s Inode BTree record corruption in AG %d detected!", 157 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); 158 xfs_warn(mp, 159 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 160 irec->ir_startino, irec->ir_count, irec->ir_freecount, 161 irec->ir_free, irec->ir_holemask); 162 return -EFSCORRUPTED; 163 } 164 165 /* 166 * Insert a single inobt record. Cursor must already point to desired location. 167 */ 168 int 169 xfs_inobt_insert_rec( 170 struct xfs_btree_cur *cur, 171 uint16_t holemask, 172 uint8_t count, 173 int32_t freecount, 174 xfs_inofree_t free, 175 int *stat) 176 { 177 cur->bc_rec.i.ir_holemask = holemask; 178 cur->bc_rec.i.ir_count = count; 179 cur->bc_rec.i.ir_freecount = freecount; 180 cur->bc_rec.i.ir_free = free; 181 return xfs_btree_insert(cur, stat); 182 } 183 184 /* 185 * Insert records describing a newly allocated inode chunk into the inobt. 186 */ 187 STATIC int 188 xfs_inobt_insert( 189 struct xfs_mount *mp, 190 struct xfs_trans *tp, 191 struct xfs_buf *agbp, 192 xfs_agino_t newino, 193 xfs_agino_t newlen, 194 xfs_btnum_t btnum) 195 { 196 struct xfs_btree_cur *cur; 197 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 198 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 199 xfs_agino_t thisino; 200 int i; 201 int error; 202 203 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 204 205 for (thisino = newino; 206 thisino < newino + newlen; 207 thisino += XFS_INODES_PER_CHUNK) { 208 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 209 if (error) { 210 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 211 return error; 212 } 213 ASSERT(i == 0); 214 215 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 216 XFS_INODES_PER_CHUNK, 217 XFS_INODES_PER_CHUNK, 218 XFS_INOBT_ALL_FREE, &i); 219 if (error) { 220 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 221 return error; 222 } 223 ASSERT(i == 1); 224 } 225 226 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 227 228 return 0; 229 } 230 231 /* 232 * Verify that the number of free inodes in the AGI is correct. 233 */ 234 #ifdef DEBUG 235 STATIC int 236 xfs_check_agi_freecount( 237 struct xfs_btree_cur *cur, 238 struct xfs_agi *agi) 239 { 240 if (cur->bc_nlevels == 1) { 241 xfs_inobt_rec_incore_t rec; 242 int freecount = 0; 243 int error; 244 int i; 245 246 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 247 if (error) 248 return error; 249 250 do { 251 error = xfs_inobt_get_rec(cur, &rec, &i); 252 if (error) 253 return error; 254 255 if (i) { 256 freecount += rec.ir_freecount; 257 error = xfs_btree_increment(cur, 0, &i); 258 if (error) 259 return error; 260 } 261 } while (i == 1); 262 263 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 264 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 265 } 266 return 0; 267 } 268 #else 269 #define xfs_check_agi_freecount(cur, agi) 0 270 #endif 271 272 /* 273 * Initialise a new set of inodes. When called without a transaction context 274 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 275 * than logging them (which in a transaction context puts them into the AIL 276 * for writeback rather than the xfsbufd queue). 277 */ 278 int 279 xfs_ialloc_inode_init( 280 struct xfs_mount *mp, 281 struct xfs_trans *tp, 282 struct list_head *buffer_list, 283 int icount, 284 xfs_agnumber_t agno, 285 xfs_agblock_t agbno, 286 xfs_agblock_t length, 287 unsigned int gen) 288 { 289 struct xfs_buf *fbuf; 290 struct xfs_dinode *free; 291 int nbufs; 292 int version; 293 int i, j; 294 xfs_daddr_t d; 295 xfs_ino_t ino = 0; 296 297 /* 298 * Loop over the new block(s), filling in the inodes. For small block 299 * sizes, manipulate the inodes in buffers which are multiples of the 300 * blocks size. 301 */ 302 nbufs = length / mp->m_blocks_per_cluster; 303 304 /* 305 * Figure out what version number to use in the inodes we create. If 306 * the superblock version has caught up to the one that supports the new 307 * inode format, then use the new inode version. Otherwise use the old 308 * version so that old kernels will continue to be able to use the file 309 * system. 310 * 311 * For v3 inodes, we also need to write the inode number into the inode, 312 * so calculate the first inode number of the chunk here as 313 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 314 * across multiple filesystem blocks (such as a cluster) and so cannot 315 * be used in the cluster buffer loop below. 316 * 317 * Further, because we are writing the inode directly into the buffer 318 * and calculating a CRC on the entire inode, we have ot log the entire 319 * inode so that the entire range the CRC covers is present in the log. 320 * That means for v3 inode we log the entire buffer rather than just the 321 * inode cores. 322 */ 323 if (xfs_sb_version_hascrc(&mp->m_sb)) { 324 version = 3; 325 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 326 327 /* 328 * log the initialisation that is about to take place as an 329 * logical operation. This means the transaction does not 330 * need to log the physical changes to the inode buffers as log 331 * recovery will know what initialisation is actually needed. 332 * Hence we only need to log the buffers as "ordered" buffers so 333 * they track in the AIL as if they were physically logged. 334 */ 335 if (tp) 336 xfs_icreate_log(tp, agno, agbno, icount, 337 mp->m_sb.sb_inodesize, length, gen); 338 } else 339 version = 2; 340 341 for (j = 0; j < nbufs; j++) { 342 /* 343 * Get the block. 344 */ 345 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 346 (j * mp->m_blocks_per_cluster)); 347 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 348 mp->m_bsize * mp->m_blocks_per_cluster, 349 XBF_UNMAPPED); 350 if (!fbuf) 351 return -ENOMEM; 352 353 /* Initialize the inode buffers and log them appropriately. */ 354 fbuf->b_ops = &xfs_inode_buf_ops; 355 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 356 for (i = 0; i < mp->m_inodes_per_cluster; i++) { 357 int ioffset = i << mp->m_sb.sb_inodelog; 358 uint isize = xfs_dinode_size(version); 359 360 free = xfs_make_iptr(mp, fbuf, i); 361 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 362 free->di_version = version; 363 free->di_gen = cpu_to_be32(gen); 364 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 365 366 if (version == 3) { 367 free->di_ino = cpu_to_be64(ino); 368 ino++; 369 uuid_copy(&free->di_uuid, 370 &mp->m_sb.sb_meta_uuid); 371 xfs_dinode_calc_crc(mp, free); 372 } else if (tp) { 373 /* just log the inode core */ 374 xfs_trans_log_buf(tp, fbuf, ioffset, 375 ioffset + isize - 1); 376 } 377 } 378 379 if (tp) { 380 /* 381 * Mark the buffer as an inode allocation buffer so it 382 * sticks in AIL at the point of this allocation 383 * transaction. This ensures the they are on disk before 384 * the tail of the log can be moved past this 385 * transaction (i.e. by preventing relogging from moving 386 * it forward in the log). 387 */ 388 xfs_trans_inode_alloc_buf(tp, fbuf); 389 if (version == 3) { 390 /* 391 * Mark the buffer as ordered so that they are 392 * not physically logged in the transaction but 393 * still tracked in the AIL as part of the 394 * transaction and pin the log appropriately. 395 */ 396 xfs_trans_ordered_buf(tp, fbuf); 397 } 398 } else { 399 fbuf->b_flags |= XBF_DONE; 400 xfs_buf_delwri_queue(fbuf, buffer_list); 401 xfs_buf_relse(fbuf); 402 } 403 } 404 return 0; 405 } 406 407 /* 408 * Align startino and allocmask for a recently allocated sparse chunk such that 409 * they are fit for insertion (or merge) into the on-disk inode btrees. 410 * 411 * Background: 412 * 413 * When enabled, sparse inode support increases the inode alignment from cluster 414 * size to inode chunk size. This means that the minimum range between two 415 * non-adjacent inode records in the inobt is large enough for a full inode 416 * record. This allows for cluster sized, cluster aligned block allocation 417 * without need to worry about whether the resulting inode record overlaps with 418 * another record in the tree. Without this basic rule, we would have to deal 419 * with the consequences of overlap by potentially undoing recent allocations in 420 * the inode allocation codepath. 421 * 422 * Because of this alignment rule (which is enforced on mount), there are two 423 * inobt possibilities for newly allocated sparse chunks. One is that the 424 * aligned inode record for the chunk covers a range of inodes not already 425 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 426 * other is that a record already exists at the aligned startino that considers 427 * the newly allocated range as sparse. In the latter case, record content is 428 * merged in hope that sparse inode chunks fill to full chunks over time. 429 */ 430 STATIC void 431 xfs_align_sparse_ino( 432 struct xfs_mount *mp, 433 xfs_agino_t *startino, 434 uint16_t *allocmask) 435 { 436 xfs_agblock_t agbno; 437 xfs_agblock_t mod; 438 int offset; 439 440 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 441 mod = agbno % mp->m_sb.sb_inoalignmt; 442 if (!mod) 443 return; 444 445 /* calculate the inode offset and align startino */ 446 offset = XFS_AGB_TO_AGINO(mp, mod); 447 *startino -= offset; 448 449 /* 450 * Since startino has been aligned down, left shift allocmask such that 451 * it continues to represent the same physical inodes relative to the 452 * new startino. 453 */ 454 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 455 } 456 457 /* 458 * Determine whether the source inode record can merge into the target. Both 459 * records must be sparse, the inode ranges must match and there must be no 460 * allocation overlap between the records. 461 */ 462 STATIC bool 463 __xfs_inobt_can_merge( 464 struct xfs_inobt_rec_incore *trec, /* tgt record */ 465 struct xfs_inobt_rec_incore *srec) /* src record */ 466 { 467 uint64_t talloc; 468 uint64_t salloc; 469 470 /* records must cover the same inode range */ 471 if (trec->ir_startino != srec->ir_startino) 472 return false; 473 474 /* both records must be sparse */ 475 if (!xfs_inobt_issparse(trec->ir_holemask) || 476 !xfs_inobt_issparse(srec->ir_holemask)) 477 return false; 478 479 /* both records must track some inodes */ 480 if (!trec->ir_count || !srec->ir_count) 481 return false; 482 483 /* can't exceed capacity of a full record */ 484 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 485 return false; 486 487 /* verify there is no allocation overlap */ 488 talloc = xfs_inobt_irec_to_allocmask(trec); 489 salloc = xfs_inobt_irec_to_allocmask(srec); 490 if (talloc & salloc) 491 return false; 492 493 return true; 494 } 495 496 /* 497 * Merge the source inode record into the target. The caller must call 498 * __xfs_inobt_can_merge() to ensure the merge is valid. 499 */ 500 STATIC void 501 __xfs_inobt_rec_merge( 502 struct xfs_inobt_rec_incore *trec, /* target */ 503 struct xfs_inobt_rec_incore *srec) /* src */ 504 { 505 ASSERT(trec->ir_startino == srec->ir_startino); 506 507 /* combine the counts */ 508 trec->ir_count += srec->ir_count; 509 trec->ir_freecount += srec->ir_freecount; 510 511 /* 512 * Merge the holemask and free mask. For both fields, 0 bits refer to 513 * allocated inodes. We combine the allocated ranges with bitwise AND. 514 */ 515 trec->ir_holemask &= srec->ir_holemask; 516 trec->ir_free &= srec->ir_free; 517 } 518 519 /* 520 * Insert a new sparse inode chunk into the associated inode btree. The inode 521 * record for the sparse chunk is pre-aligned to a startino that should match 522 * any pre-existing sparse inode record in the tree. This allows sparse chunks 523 * to fill over time. 524 * 525 * This function supports two modes of handling preexisting records depending on 526 * the merge flag. If merge is true, the provided record is merged with the 527 * existing record and updated in place. The merged record is returned in nrec. 528 * If merge is false, an existing record is replaced with the provided record. 529 * If no preexisting record exists, the provided record is always inserted. 530 * 531 * It is considered corruption if a merge is requested and not possible. Given 532 * the sparse inode alignment constraints, this should never happen. 533 */ 534 STATIC int 535 xfs_inobt_insert_sprec( 536 struct xfs_mount *mp, 537 struct xfs_trans *tp, 538 struct xfs_buf *agbp, 539 int btnum, 540 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 541 bool merge) /* merge or replace */ 542 { 543 struct xfs_btree_cur *cur; 544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 546 int error; 547 int i; 548 struct xfs_inobt_rec_incore rec; 549 550 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 551 552 /* the new record is pre-aligned so we know where to look */ 553 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 554 if (error) 555 goto error; 556 /* if nothing there, insert a new record and return */ 557 if (i == 0) { 558 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 559 nrec->ir_count, nrec->ir_freecount, 560 nrec->ir_free, &i); 561 if (error) 562 goto error; 563 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 564 565 goto out; 566 } 567 568 /* 569 * A record exists at this startino. Merge or replace the record 570 * depending on what we've been asked to do. 571 */ 572 if (merge) { 573 error = xfs_inobt_get_rec(cur, &rec, &i); 574 if (error) 575 goto error; 576 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 577 XFS_WANT_CORRUPTED_GOTO(mp, 578 rec.ir_startino == nrec->ir_startino, 579 error); 580 581 /* 582 * This should never fail. If we have coexisting records that 583 * cannot merge, something is seriously wrong. 584 */ 585 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 586 error); 587 588 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 589 rec.ir_holemask, nrec->ir_startino, 590 nrec->ir_holemask); 591 592 /* merge to nrec to output the updated record */ 593 __xfs_inobt_rec_merge(nrec, &rec); 594 595 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 596 nrec->ir_holemask); 597 598 error = xfs_inobt_rec_check_count(mp, nrec); 599 if (error) 600 goto error; 601 } 602 603 error = xfs_inobt_update(cur, nrec); 604 if (error) 605 goto error; 606 607 out: 608 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 609 return 0; 610 error: 611 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 612 return error; 613 } 614 615 /* 616 * Allocate new inodes in the allocation group specified by agbp. 617 * Return 0 for success, else error code. 618 */ 619 STATIC int /* error code or 0 */ 620 xfs_ialloc_ag_alloc( 621 xfs_trans_t *tp, /* transaction pointer */ 622 xfs_buf_t *agbp, /* alloc group buffer */ 623 int *alloc) 624 { 625 xfs_agi_t *agi; /* allocation group header */ 626 xfs_alloc_arg_t args; /* allocation argument structure */ 627 xfs_agnumber_t agno; 628 int error; 629 xfs_agino_t newino; /* new first inode's number */ 630 xfs_agino_t newlen; /* new number of inodes */ 631 int isaligned = 0; /* inode allocation at stripe unit */ 632 /* boundary */ 633 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 634 struct xfs_inobt_rec_incore rec; 635 struct xfs_perag *pag; 636 int do_sparse = 0; 637 638 memset(&args, 0, sizeof(args)); 639 args.tp = tp; 640 args.mp = tp->t_mountp; 641 args.fsbno = NULLFSBLOCK; 642 args.oinfo = XFS_RMAP_OINFO_INODES; 643 644 #ifdef DEBUG 645 /* randomly do sparse inode allocations */ 646 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 647 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 648 do_sparse = prandom_u32() & 1; 649 #endif 650 651 /* 652 * Locking will ensure that we don't have two callers in here 653 * at one time. 654 */ 655 newlen = args.mp->m_ialloc_inos; 656 if (args.mp->m_maxicount && 657 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 658 args.mp->m_maxicount) 659 return -ENOSPC; 660 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 661 /* 662 * First try to allocate inodes contiguous with the last-allocated 663 * chunk of inodes. If the filesystem is striped, this will fill 664 * an entire stripe unit with inodes. 665 */ 666 agi = XFS_BUF_TO_AGI(agbp); 667 newino = be32_to_cpu(agi->agi_newino); 668 agno = be32_to_cpu(agi->agi_seqno); 669 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 670 args.mp->m_ialloc_blks; 671 if (do_sparse) 672 goto sparse_alloc; 673 if (likely(newino != NULLAGINO && 674 (args.agbno < be32_to_cpu(agi->agi_length)))) { 675 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 676 args.type = XFS_ALLOCTYPE_THIS_BNO; 677 args.prod = 1; 678 679 /* 680 * We need to take into account alignment here to ensure that 681 * we don't modify the free list if we fail to have an exact 682 * block. If we don't have an exact match, and every oher 683 * attempt allocation attempt fails, we'll end up cancelling 684 * a dirty transaction and shutting down. 685 * 686 * For an exact allocation, alignment must be 1, 687 * however we need to take cluster alignment into account when 688 * fixing up the freelist. Use the minalignslop field to 689 * indicate that extra blocks might be required for alignment, 690 * but not to use them in the actual exact allocation. 691 */ 692 args.alignment = 1; 693 args.minalignslop = args.mp->m_cluster_align - 1; 694 695 /* Allow space for the inode btree to split. */ 696 args.minleft = args.mp->m_in_maxlevels - 1; 697 if ((error = xfs_alloc_vextent(&args))) 698 return error; 699 700 /* 701 * This request might have dirtied the transaction if the AG can 702 * satisfy the request, but the exact block was not available. 703 * If the allocation did fail, subsequent requests will relax 704 * the exact agbno requirement and increase the alignment 705 * instead. It is critical that the total size of the request 706 * (len + alignment + slop) does not increase from this point 707 * on, so reset minalignslop to ensure it is not included in 708 * subsequent requests. 709 */ 710 args.minalignslop = 0; 711 } 712 713 if (unlikely(args.fsbno == NULLFSBLOCK)) { 714 /* 715 * Set the alignment for the allocation. 716 * If stripe alignment is turned on then align at stripe unit 717 * boundary. 718 * If the cluster size is smaller than a filesystem block 719 * then we're doing I/O for inodes in filesystem block size 720 * pieces, so don't need alignment anyway. 721 */ 722 isaligned = 0; 723 if (args.mp->m_sinoalign) { 724 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 725 args.alignment = args.mp->m_dalign; 726 isaligned = 1; 727 } else 728 args.alignment = args.mp->m_cluster_align; 729 /* 730 * Need to figure out where to allocate the inode blocks. 731 * Ideally they should be spaced out through the a.g. 732 * For now, just allocate blocks up front. 733 */ 734 args.agbno = be32_to_cpu(agi->agi_root); 735 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 736 /* 737 * Allocate a fixed-size extent of inodes. 738 */ 739 args.type = XFS_ALLOCTYPE_NEAR_BNO; 740 args.prod = 1; 741 /* 742 * Allow space for the inode btree to split. 743 */ 744 args.minleft = args.mp->m_in_maxlevels - 1; 745 if ((error = xfs_alloc_vextent(&args))) 746 return error; 747 } 748 749 /* 750 * If stripe alignment is turned on, then try again with cluster 751 * alignment. 752 */ 753 if (isaligned && args.fsbno == NULLFSBLOCK) { 754 args.type = XFS_ALLOCTYPE_NEAR_BNO; 755 args.agbno = be32_to_cpu(agi->agi_root); 756 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 757 args.alignment = args.mp->m_cluster_align; 758 if ((error = xfs_alloc_vextent(&args))) 759 return error; 760 } 761 762 /* 763 * Finally, try a sparse allocation if the filesystem supports it and 764 * the sparse allocation length is smaller than a full chunk. 765 */ 766 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 767 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 768 args.fsbno == NULLFSBLOCK) { 769 sparse_alloc: 770 args.type = XFS_ALLOCTYPE_NEAR_BNO; 771 args.agbno = be32_to_cpu(agi->agi_root); 772 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 773 args.alignment = args.mp->m_sb.sb_spino_align; 774 args.prod = 1; 775 776 args.minlen = args.mp->m_ialloc_min_blks; 777 args.maxlen = args.minlen; 778 779 /* 780 * The inode record will be aligned to full chunk size. We must 781 * prevent sparse allocation from AG boundaries that result in 782 * invalid inode records, such as records that start at agbno 0 783 * or extend beyond the AG. 784 * 785 * Set min agbno to the first aligned, non-zero agbno and max to 786 * the last aligned agbno that is at least one full chunk from 787 * the end of the AG. 788 */ 789 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 790 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 791 args.mp->m_sb.sb_inoalignmt) - 792 args.mp->m_ialloc_blks; 793 794 error = xfs_alloc_vextent(&args); 795 if (error) 796 return error; 797 798 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 799 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 800 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 801 } 802 803 if (args.fsbno == NULLFSBLOCK) { 804 *alloc = 0; 805 return 0; 806 } 807 ASSERT(args.len == args.minlen); 808 809 /* 810 * Stamp and write the inode buffers. 811 * 812 * Seed the new inode cluster with a random generation number. This 813 * prevents short-term reuse of generation numbers if a chunk is 814 * freed and then immediately reallocated. We use random numbers 815 * rather than a linear progression to prevent the next generation 816 * number from being easily guessable. 817 */ 818 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 819 args.agbno, args.len, prandom_u32()); 820 821 if (error) 822 return error; 823 /* 824 * Convert the results. 825 */ 826 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 827 828 if (xfs_inobt_issparse(~allocmask)) { 829 /* 830 * We've allocated a sparse chunk. Align the startino and mask. 831 */ 832 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 833 834 rec.ir_startino = newino; 835 rec.ir_holemask = ~allocmask; 836 rec.ir_count = newlen; 837 rec.ir_freecount = newlen; 838 rec.ir_free = XFS_INOBT_ALL_FREE; 839 840 /* 841 * Insert the sparse record into the inobt and allow for a merge 842 * if necessary. If a merge does occur, rec is updated to the 843 * merged record. 844 */ 845 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 846 &rec, true); 847 if (error == -EFSCORRUPTED) { 848 xfs_alert(args.mp, 849 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 850 XFS_AGINO_TO_INO(args.mp, agno, 851 rec.ir_startino), 852 rec.ir_holemask, rec.ir_count); 853 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 854 } 855 if (error) 856 return error; 857 858 /* 859 * We can't merge the part we've just allocated as for the inobt 860 * due to finobt semantics. The original record may or may not 861 * exist independent of whether physical inodes exist in this 862 * sparse chunk. 863 * 864 * We must update the finobt record based on the inobt record. 865 * rec contains the fully merged and up to date inobt record 866 * from the previous call. Set merge false to replace any 867 * existing record with this one. 868 */ 869 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 870 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 871 XFS_BTNUM_FINO, &rec, 872 false); 873 if (error) 874 return error; 875 } 876 } else { 877 /* full chunk - insert new records to both btrees */ 878 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 879 XFS_BTNUM_INO); 880 if (error) 881 return error; 882 883 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 884 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 885 newlen, XFS_BTNUM_FINO); 886 if (error) 887 return error; 888 } 889 } 890 891 /* 892 * Update AGI counts and newino. 893 */ 894 be32_add_cpu(&agi->agi_count, newlen); 895 be32_add_cpu(&agi->agi_freecount, newlen); 896 pag = xfs_perag_get(args.mp, agno); 897 pag->pagi_freecount += newlen; 898 pag->pagi_count += newlen; 899 xfs_perag_put(pag); 900 agi->agi_newino = cpu_to_be32(newino); 901 902 /* 903 * Log allocation group header fields 904 */ 905 xfs_ialloc_log_agi(tp, agbp, 906 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 907 /* 908 * Modify/log superblock values for inode count and inode free count. 909 */ 910 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 911 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 912 *alloc = 1; 913 return 0; 914 } 915 916 STATIC xfs_agnumber_t 917 xfs_ialloc_next_ag( 918 xfs_mount_t *mp) 919 { 920 xfs_agnumber_t agno; 921 922 spin_lock(&mp->m_agirotor_lock); 923 agno = mp->m_agirotor; 924 if (++mp->m_agirotor >= mp->m_maxagi) 925 mp->m_agirotor = 0; 926 spin_unlock(&mp->m_agirotor_lock); 927 928 return agno; 929 } 930 931 /* 932 * Select an allocation group to look for a free inode in, based on the parent 933 * inode and the mode. Return the allocation group buffer. 934 */ 935 STATIC xfs_agnumber_t 936 xfs_ialloc_ag_select( 937 xfs_trans_t *tp, /* transaction pointer */ 938 xfs_ino_t parent, /* parent directory inode number */ 939 umode_t mode) /* bits set to indicate file type */ 940 { 941 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 942 xfs_agnumber_t agno; /* current ag number */ 943 int flags; /* alloc buffer locking flags */ 944 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 945 xfs_extlen_t longest = 0; /* longest extent available */ 946 xfs_mount_t *mp; /* mount point structure */ 947 int needspace; /* file mode implies space allocated */ 948 xfs_perag_t *pag; /* per allocation group data */ 949 xfs_agnumber_t pagno; /* parent (starting) ag number */ 950 int error; 951 952 /* 953 * Files of these types need at least one block if length > 0 954 * (and they won't fit in the inode, but that's hard to figure out). 955 */ 956 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 957 mp = tp->t_mountp; 958 agcount = mp->m_maxagi; 959 if (S_ISDIR(mode)) 960 pagno = xfs_ialloc_next_ag(mp); 961 else { 962 pagno = XFS_INO_TO_AGNO(mp, parent); 963 if (pagno >= agcount) 964 pagno = 0; 965 } 966 967 ASSERT(pagno < agcount); 968 969 /* 970 * Loop through allocation groups, looking for one with a little 971 * free space in it. Note we don't look for free inodes, exactly. 972 * Instead, we include whether there is a need to allocate inodes 973 * to mean that blocks must be allocated for them, 974 * if none are currently free. 975 */ 976 agno = pagno; 977 flags = XFS_ALLOC_FLAG_TRYLOCK; 978 for (;;) { 979 pag = xfs_perag_get(mp, agno); 980 if (!pag->pagi_inodeok) { 981 xfs_ialloc_next_ag(mp); 982 goto nextag; 983 } 984 985 if (!pag->pagi_init) { 986 error = xfs_ialloc_pagi_init(mp, tp, agno); 987 if (error) 988 goto nextag; 989 } 990 991 if (pag->pagi_freecount) { 992 xfs_perag_put(pag); 993 return agno; 994 } 995 996 if (!pag->pagf_init) { 997 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 998 if (error) 999 goto nextag; 1000 } 1001 1002 /* 1003 * Check that there is enough free space for the file plus a 1004 * chunk of inodes if we need to allocate some. If this is the 1005 * first pass across the AGs, take into account the potential 1006 * space needed for alignment of inode chunks when checking the 1007 * longest contiguous free space in the AG - this prevents us 1008 * from getting ENOSPC because we have free space larger than 1009 * m_ialloc_blks but alignment constraints prevent us from using 1010 * it. 1011 * 1012 * If we can't find an AG with space for full alignment slack to 1013 * be taken into account, we must be near ENOSPC in all AGs. 1014 * Hence we don't include alignment for the second pass and so 1015 * if we fail allocation due to alignment issues then it is most 1016 * likely a real ENOSPC condition. 1017 */ 1018 ineed = mp->m_ialloc_min_blks; 1019 if (flags && ineed > 1) 1020 ineed += mp->m_cluster_align; 1021 longest = pag->pagf_longest; 1022 if (!longest) 1023 longest = pag->pagf_flcount > 0; 1024 1025 if (pag->pagf_freeblks >= needspace + ineed && 1026 longest >= ineed) { 1027 xfs_perag_put(pag); 1028 return agno; 1029 } 1030 nextag: 1031 xfs_perag_put(pag); 1032 /* 1033 * No point in iterating over the rest, if we're shutting 1034 * down. 1035 */ 1036 if (XFS_FORCED_SHUTDOWN(mp)) 1037 return NULLAGNUMBER; 1038 agno++; 1039 if (agno >= agcount) 1040 agno = 0; 1041 if (agno == pagno) { 1042 if (flags == 0) 1043 return NULLAGNUMBER; 1044 flags = 0; 1045 } 1046 } 1047 } 1048 1049 /* 1050 * Try to retrieve the next record to the left/right from the current one. 1051 */ 1052 STATIC int 1053 xfs_ialloc_next_rec( 1054 struct xfs_btree_cur *cur, 1055 xfs_inobt_rec_incore_t *rec, 1056 int *done, 1057 int left) 1058 { 1059 int error; 1060 int i; 1061 1062 if (left) 1063 error = xfs_btree_decrement(cur, 0, &i); 1064 else 1065 error = xfs_btree_increment(cur, 0, &i); 1066 1067 if (error) 1068 return error; 1069 *done = !i; 1070 if (i) { 1071 error = xfs_inobt_get_rec(cur, rec, &i); 1072 if (error) 1073 return error; 1074 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1075 } 1076 1077 return 0; 1078 } 1079 1080 STATIC int 1081 xfs_ialloc_get_rec( 1082 struct xfs_btree_cur *cur, 1083 xfs_agino_t agino, 1084 xfs_inobt_rec_incore_t *rec, 1085 int *done) 1086 { 1087 int error; 1088 int i; 1089 1090 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1091 if (error) 1092 return error; 1093 *done = !i; 1094 if (i) { 1095 error = xfs_inobt_get_rec(cur, rec, &i); 1096 if (error) 1097 return error; 1098 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1099 } 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * Return the offset of the first free inode in the record. If the inode chunk 1106 * is sparsely allocated, we convert the record holemask to inode granularity 1107 * and mask off the unallocated regions from the inode free mask. 1108 */ 1109 STATIC int 1110 xfs_inobt_first_free_inode( 1111 struct xfs_inobt_rec_incore *rec) 1112 { 1113 xfs_inofree_t realfree; 1114 1115 /* if there are no holes, return the first available offset */ 1116 if (!xfs_inobt_issparse(rec->ir_holemask)) 1117 return xfs_lowbit64(rec->ir_free); 1118 1119 realfree = xfs_inobt_irec_to_allocmask(rec); 1120 realfree &= rec->ir_free; 1121 1122 return xfs_lowbit64(realfree); 1123 } 1124 1125 /* 1126 * Allocate an inode using the inobt-only algorithm. 1127 */ 1128 STATIC int 1129 xfs_dialloc_ag_inobt( 1130 struct xfs_trans *tp, 1131 struct xfs_buf *agbp, 1132 xfs_ino_t parent, 1133 xfs_ino_t *inop) 1134 { 1135 struct xfs_mount *mp = tp->t_mountp; 1136 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1137 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1138 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1139 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1140 struct xfs_perag *pag; 1141 struct xfs_btree_cur *cur, *tcur; 1142 struct xfs_inobt_rec_incore rec, trec; 1143 xfs_ino_t ino; 1144 int error; 1145 int offset; 1146 int i, j; 1147 int searchdistance = 10; 1148 1149 pag = xfs_perag_get(mp, agno); 1150 1151 ASSERT(pag->pagi_init); 1152 ASSERT(pag->pagi_inodeok); 1153 ASSERT(pag->pagi_freecount > 0); 1154 1155 restart_pagno: 1156 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1157 /* 1158 * If pagino is 0 (this is the root inode allocation) use newino. 1159 * This must work because we've just allocated some. 1160 */ 1161 if (!pagino) 1162 pagino = be32_to_cpu(agi->agi_newino); 1163 1164 error = xfs_check_agi_freecount(cur, agi); 1165 if (error) 1166 goto error0; 1167 1168 /* 1169 * If in the same AG as the parent, try to get near the parent. 1170 */ 1171 if (pagno == agno) { 1172 int doneleft; /* done, to the left */ 1173 int doneright; /* done, to the right */ 1174 1175 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1176 if (error) 1177 goto error0; 1178 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1179 1180 error = xfs_inobt_get_rec(cur, &rec, &j); 1181 if (error) 1182 goto error0; 1183 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1184 1185 if (rec.ir_freecount > 0) { 1186 /* 1187 * Found a free inode in the same chunk 1188 * as the parent, done. 1189 */ 1190 goto alloc_inode; 1191 } 1192 1193 1194 /* 1195 * In the same AG as parent, but parent's chunk is full. 1196 */ 1197 1198 /* duplicate the cursor, search left & right simultaneously */ 1199 error = xfs_btree_dup_cursor(cur, &tcur); 1200 if (error) 1201 goto error0; 1202 1203 /* 1204 * Skip to last blocks looked up if same parent inode. 1205 */ 1206 if (pagino != NULLAGINO && 1207 pag->pagl_pagino == pagino && 1208 pag->pagl_leftrec != NULLAGINO && 1209 pag->pagl_rightrec != NULLAGINO) { 1210 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1211 &trec, &doneleft); 1212 if (error) 1213 goto error1; 1214 1215 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1216 &rec, &doneright); 1217 if (error) 1218 goto error1; 1219 } else { 1220 /* search left with tcur, back up 1 record */ 1221 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1222 if (error) 1223 goto error1; 1224 1225 /* search right with cur, go forward 1 record. */ 1226 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1227 if (error) 1228 goto error1; 1229 } 1230 1231 /* 1232 * Loop until we find an inode chunk with a free inode. 1233 */ 1234 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1235 int useleft; /* using left inode chunk this time */ 1236 1237 /* figure out the closer block if both are valid. */ 1238 if (!doneleft && !doneright) { 1239 useleft = pagino - 1240 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1241 rec.ir_startino - pagino; 1242 } else { 1243 useleft = !doneleft; 1244 } 1245 1246 /* free inodes to the left? */ 1247 if (useleft && trec.ir_freecount) { 1248 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1249 cur = tcur; 1250 1251 pag->pagl_leftrec = trec.ir_startino; 1252 pag->pagl_rightrec = rec.ir_startino; 1253 pag->pagl_pagino = pagino; 1254 rec = trec; 1255 goto alloc_inode; 1256 } 1257 1258 /* free inodes to the right? */ 1259 if (!useleft && rec.ir_freecount) { 1260 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1261 1262 pag->pagl_leftrec = trec.ir_startino; 1263 pag->pagl_rightrec = rec.ir_startino; 1264 pag->pagl_pagino = pagino; 1265 goto alloc_inode; 1266 } 1267 1268 /* get next record to check */ 1269 if (useleft) { 1270 error = xfs_ialloc_next_rec(tcur, &trec, 1271 &doneleft, 1); 1272 } else { 1273 error = xfs_ialloc_next_rec(cur, &rec, 1274 &doneright, 0); 1275 } 1276 if (error) 1277 goto error1; 1278 } 1279 1280 if (searchdistance <= 0) { 1281 /* 1282 * Not in range - save last search 1283 * location and allocate a new inode 1284 */ 1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1286 pag->pagl_leftrec = trec.ir_startino; 1287 pag->pagl_rightrec = rec.ir_startino; 1288 pag->pagl_pagino = pagino; 1289 1290 } else { 1291 /* 1292 * We've reached the end of the btree. because 1293 * we are only searching a small chunk of the 1294 * btree each search, there is obviously free 1295 * inodes closer to the parent inode than we 1296 * are now. restart the search again. 1297 */ 1298 pag->pagl_pagino = NULLAGINO; 1299 pag->pagl_leftrec = NULLAGINO; 1300 pag->pagl_rightrec = NULLAGINO; 1301 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1302 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1303 goto restart_pagno; 1304 } 1305 } 1306 1307 /* 1308 * In a different AG from the parent. 1309 * See if the most recently allocated block has any free. 1310 */ 1311 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1312 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1313 XFS_LOOKUP_EQ, &i); 1314 if (error) 1315 goto error0; 1316 1317 if (i == 1) { 1318 error = xfs_inobt_get_rec(cur, &rec, &j); 1319 if (error) 1320 goto error0; 1321 1322 if (j == 1 && rec.ir_freecount > 0) { 1323 /* 1324 * The last chunk allocated in the group 1325 * still has a free inode. 1326 */ 1327 goto alloc_inode; 1328 } 1329 } 1330 } 1331 1332 /* 1333 * None left in the last group, search the whole AG 1334 */ 1335 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1336 if (error) 1337 goto error0; 1338 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1339 1340 for (;;) { 1341 error = xfs_inobt_get_rec(cur, &rec, &i); 1342 if (error) 1343 goto error0; 1344 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1345 if (rec.ir_freecount > 0) 1346 break; 1347 error = xfs_btree_increment(cur, 0, &i); 1348 if (error) 1349 goto error0; 1350 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1351 } 1352 1353 alloc_inode: 1354 offset = xfs_inobt_first_free_inode(&rec); 1355 ASSERT(offset >= 0); 1356 ASSERT(offset < XFS_INODES_PER_CHUNK); 1357 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1358 XFS_INODES_PER_CHUNK) == 0); 1359 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1360 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1361 rec.ir_freecount--; 1362 error = xfs_inobt_update(cur, &rec); 1363 if (error) 1364 goto error0; 1365 be32_add_cpu(&agi->agi_freecount, -1); 1366 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1367 pag->pagi_freecount--; 1368 1369 error = xfs_check_agi_freecount(cur, agi); 1370 if (error) 1371 goto error0; 1372 1373 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1374 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1375 xfs_perag_put(pag); 1376 *inop = ino; 1377 return 0; 1378 error1: 1379 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1380 error0: 1381 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1382 xfs_perag_put(pag); 1383 return error; 1384 } 1385 1386 /* 1387 * Use the free inode btree to allocate an inode based on distance from the 1388 * parent. Note that the provided cursor may be deleted and replaced. 1389 */ 1390 STATIC int 1391 xfs_dialloc_ag_finobt_near( 1392 xfs_agino_t pagino, 1393 struct xfs_btree_cur **ocur, 1394 struct xfs_inobt_rec_incore *rec) 1395 { 1396 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1397 struct xfs_btree_cur *rcur; /* right search cursor */ 1398 struct xfs_inobt_rec_incore rrec; 1399 int error; 1400 int i, j; 1401 1402 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1403 if (error) 1404 return error; 1405 1406 if (i == 1) { 1407 error = xfs_inobt_get_rec(lcur, rec, &i); 1408 if (error) 1409 return error; 1410 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1411 1412 /* 1413 * See if we've landed in the parent inode record. The finobt 1414 * only tracks chunks with at least one free inode, so record 1415 * existence is enough. 1416 */ 1417 if (pagino >= rec->ir_startino && 1418 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1419 return 0; 1420 } 1421 1422 error = xfs_btree_dup_cursor(lcur, &rcur); 1423 if (error) 1424 return error; 1425 1426 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1427 if (error) 1428 goto error_rcur; 1429 if (j == 1) { 1430 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1431 if (error) 1432 goto error_rcur; 1433 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1434 } 1435 1436 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1437 if (i == 1 && j == 1) { 1438 /* 1439 * Both the left and right records are valid. Choose the closer 1440 * inode chunk to the target. 1441 */ 1442 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1443 (rrec.ir_startino - pagino)) { 1444 *rec = rrec; 1445 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1446 *ocur = rcur; 1447 } else { 1448 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1449 } 1450 } else if (j == 1) { 1451 /* only the right record is valid */ 1452 *rec = rrec; 1453 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1454 *ocur = rcur; 1455 } else if (i == 1) { 1456 /* only the left record is valid */ 1457 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1458 } 1459 1460 return 0; 1461 1462 error_rcur: 1463 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1464 return error; 1465 } 1466 1467 /* 1468 * Use the free inode btree to find a free inode based on a newino hint. If 1469 * the hint is NULL, find the first free inode in the AG. 1470 */ 1471 STATIC int 1472 xfs_dialloc_ag_finobt_newino( 1473 struct xfs_agi *agi, 1474 struct xfs_btree_cur *cur, 1475 struct xfs_inobt_rec_incore *rec) 1476 { 1477 int error; 1478 int i; 1479 1480 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1481 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1482 XFS_LOOKUP_EQ, &i); 1483 if (error) 1484 return error; 1485 if (i == 1) { 1486 error = xfs_inobt_get_rec(cur, rec, &i); 1487 if (error) 1488 return error; 1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1490 return 0; 1491 } 1492 } 1493 1494 /* 1495 * Find the first inode available in the AG. 1496 */ 1497 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1498 if (error) 1499 return error; 1500 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1501 1502 error = xfs_inobt_get_rec(cur, rec, &i); 1503 if (error) 1504 return error; 1505 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1506 1507 return 0; 1508 } 1509 1510 /* 1511 * Update the inobt based on a modification made to the finobt. Also ensure that 1512 * the records from both trees are equivalent post-modification. 1513 */ 1514 STATIC int 1515 xfs_dialloc_ag_update_inobt( 1516 struct xfs_btree_cur *cur, /* inobt cursor */ 1517 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1518 int offset) /* inode offset */ 1519 { 1520 struct xfs_inobt_rec_incore rec; 1521 int error; 1522 int i; 1523 1524 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1525 if (error) 1526 return error; 1527 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1528 1529 error = xfs_inobt_get_rec(cur, &rec, &i); 1530 if (error) 1531 return error; 1532 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1533 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1534 XFS_INODES_PER_CHUNK) == 0); 1535 1536 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1537 rec.ir_freecount--; 1538 1539 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1540 (rec.ir_freecount == frec->ir_freecount)); 1541 1542 return xfs_inobt_update(cur, &rec); 1543 } 1544 1545 /* 1546 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1547 * back to the inobt search algorithm. 1548 * 1549 * The caller selected an AG for us, and made sure that free inodes are 1550 * available. 1551 */ 1552 STATIC int 1553 xfs_dialloc_ag( 1554 struct xfs_trans *tp, 1555 struct xfs_buf *agbp, 1556 xfs_ino_t parent, 1557 xfs_ino_t *inop) 1558 { 1559 struct xfs_mount *mp = tp->t_mountp; 1560 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1561 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1562 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1563 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1564 struct xfs_perag *pag; 1565 struct xfs_btree_cur *cur; /* finobt cursor */ 1566 struct xfs_btree_cur *icur; /* inobt cursor */ 1567 struct xfs_inobt_rec_incore rec; 1568 xfs_ino_t ino; 1569 int error; 1570 int offset; 1571 int i; 1572 1573 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1574 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1575 1576 pag = xfs_perag_get(mp, agno); 1577 1578 /* 1579 * If pagino is 0 (this is the root inode allocation) use newino. 1580 * This must work because we've just allocated some. 1581 */ 1582 if (!pagino) 1583 pagino = be32_to_cpu(agi->agi_newino); 1584 1585 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1586 1587 error = xfs_check_agi_freecount(cur, agi); 1588 if (error) 1589 goto error_cur; 1590 1591 /* 1592 * The search algorithm depends on whether we're in the same AG as the 1593 * parent. If so, find the closest available inode to the parent. If 1594 * not, consider the agi hint or find the first free inode in the AG. 1595 */ 1596 if (agno == pagno) 1597 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1598 else 1599 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1600 if (error) 1601 goto error_cur; 1602 1603 offset = xfs_inobt_first_free_inode(&rec); 1604 ASSERT(offset >= 0); 1605 ASSERT(offset < XFS_INODES_PER_CHUNK); 1606 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1607 XFS_INODES_PER_CHUNK) == 0); 1608 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1609 1610 /* 1611 * Modify or remove the finobt record. 1612 */ 1613 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1614 rec.ir_freecount--; 1615 if (rec.ir_freecount) 1616 error = xfs_inobt_update(cur, &rec); 1617 else 1618 error = xfs_btree_delete(cur, &i); 1619 if (error) 1620 goto error_cur; 1621 1622 /* 1623 * The finobt has now been updated appropriately. We haven't updated the 1624 * agi and superblock yet, so we can create an inobt cursor and validate 1625 * the original freecount. If all is well, make the equivalent update to 1626 * the inobt using the finobt record and offset information. 1627 */ 1628 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1629 1630 error = xfs_check_agi_freecount(icur, agi); 1631 if (error) 1632 goto error_icur; 1633 1634 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1635 if (error) 1636 goto error_icur; 1637 1638 /* 1639 * Both trees have now been updated. We must update the perag and 1640 * superblock before we can check the freecount for each btree. 1641 */ 1642 be32_add_cpu(&agi->agi_freecount, -1); 1643 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1644 pag->pagi_freecount--; 1645 1646 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1647 1648 error = xfs_check_agi_freecount(icur, agi); 1649 if (error) 1650 goto error_icur; 1651 error = xfs_check_agi_freecount(cur, agi); 1652 if (error) 1653 goto error_icur; 1654 1655 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1656 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1657 xfs_perag_put(pag); 1658 *inop = ino; 1659 return 0; 1660 1661 error_icur: 1662 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1663 error_cur: 1664 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1665 xfs_perag_put(pag); 1666 return error; 1667 } 1668 1669 /* 1670 * Allocate an inode on disk. 1671 * 1672 * Mode is used to tell whether the new inode will need space, and whether it 1673 * is a directory. 1674 * 1675 * This function is designed to be called twice if it has to do an allocation 1676 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1677 * If an inode is available without having to performn an allocation, an inode 1678 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1679 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1680 * The caller should then commit the current transaction, allocate a 1681 * new transaction, and call xfs_dialloc() again, passing in the previous value 1682 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1683 * buffer is locked across the two calls, the second call is guaranteed to have 1684 * a free inode available. 1685 * 1686 * Once we successfully pick an inode its number is returned and the on-disk 1687 * data structures are updated. The inode itself is not read in, since doing so 1688 * would break ordering constraints with xfs_reclaim. 1689 */ 1690 int 1691 xfs_dialloc( 1692 struct xfs_trans *tp, 1693 xfs_ino_t parent, 1694 umode_t mode, 1695 struct xfs_buf **IO_agbp, 1696 xfs_ino_t *inop) 1697 { 1698 struct xfs_mount *mp = tp->t_mountp; 1699 struct xfs_buf *agbp; 1700 xfs_agnumber_t agno; 1701 int error; 1702 int ialloced; 1703 int noroom = 0; 1704 xfs_agnumber_t start_agno; 1705 struct xfs_perag *pag; 1706 int okalloc = 1; 1707 1708 if (*IO_agbp) { 1709 /* 1710 * If the caller passes in a pointer to the AGI buffer, 1711 * continue where we left off before. In this case, we 1712 * know that the allocation group has free inodes. 1713 */ 1714 agbp = *IO_agbp; 1715 goto out_alloc; 1716 } 1717 1718 /* 1719 * We do not have an agbp, so select an initial allocation 1720 * group for inode allocation. 1721 */ 1722 start_agno = xfs_ialloc_ag_select(tp, parent, mode); 1723 if (start_agno == NULLAGNUMBER) { 1724 *inop = NULLFSINO; 1725 return 0; 1726 } 1727 1728 /* 1729 * If we have already hit the ceiling of inode blocks then clear 1730 * okalloc so we scan all available agi structures for a free 1731 * inode. 1732 * 1733 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1734 * which will sacrifice the preciseness but improve the performance. 1735 */ 1736 if (mp->m_maxicount && 1737 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1738 > mp->m_maxicount) { 1739 noroom = 1; 1740 okalloc = 0; 1741 } 1742 1743 /* 1744 * Loop until we find an allocation group that either has free inodes 1745 * or in which we can allocate some inodes. Iterate through the 1746 * allocation groups upward, wrapping at the end. 1747 */ 1748 agno = start_agno; 1749 for (;;) { 1750 pag = xfs_perag_get(mp, agno); 1751 if (!pag->pagi_inodeok) { 1752 xfs_ialloc_next_ag(mp); 1753 goto nextag; 1754 } 1755 1756 if (!pag->pagi_init) { 1757 error = xfs_ialloc_pagi_init(mp, tp, agno); 1758 if (error) 1759 goto out_error; 1760 } 1761 1762 /* 1763 * Do a first racy fast path check if this AG is usable. 1764 */ 1765 if (!pag->pagi_freecount && !okalloc) 1766 goto nextag; 1767 1768 /* 1769 * Then read in the AGI buffer and recheck with the AGI buffer 1770 * lock held. 1771 */ 1772 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1773 if (error) 1774 goto out_error; 1775 1776 if (pag->pagi_freecount) { 1777 xfs_perag_put(pag); 1778 goto out_alloc; 1779 } 1780 1781 if (!okalloc) 1782 goto nextag_relse_buffer; 1783 1784 1785 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1786 if (error) { 1787 xfs_trans_brelse(tp, agbp); 1788 1789 if (error != -ENOSPC) 1790 goto out_error; 1791 1792 xfs_perag_put(pag); 1793 *inop = NULLFSINO; 1794 return 0; 1795 } 1796 1797 if (ialloced) { 1798 /* 1799 * We successfully allocated some inodes, return 1800 * the current context to the caller so that it 1801 * can commit the current transaction and call 1802 * us again where we left off. 1803 */ 1804 ASSERT(pag->pagi_freecount > 0); 1805 xfs_perag_put(pag); 1806 1807 *IO_agbp = agbp; 1808 *inop = NULLFSINO; 1809 return 0; 1810 } 1811 1812 nextag_relse_buffer: 1813 xfs_trans_brelse(tp, agbp); 1814 nextag: 1815 xfs_perag_put(pag); 1816 if (++agno == mp->m_sb.sb_agcount) 1817 agno = 0; 1818 if (agno == start_agno) { 1819 *inop = NULLFSINO; 1820 return noroom ? -ENOSPC : 0; 1821 } 1822 } 1823 1824 out_alloc: 1825 *IO_agbp = NULL; 1826 return xfs_dialloc_ag(tp, agbp, parent, inop); 1827 out_error: 1828 xfs_perag_put(pag); 1829 return error; 1830 } 1831 1832 /* 1833 * Free the blocks of an inode chunk. We must consider that the inode chunk 1834 * might be sparse and only free the regions that are allocated as part of the 1835 * chunk. 1836 */ 1837 STATIC void 1838 xfs_difree_inode_chunk( 1839 struct xfs_trans *tp, 1840 xfs_agnumber_t agno, 1841 struct xfs_inobt_rec_incore *rec) 1842 { 1843 struct xfs_mount *mp = tp->t_mountp; 1844 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1845 rec->ir_startino); 1846 int startidx, endidx; 1847 int nextbit; 1848 xfs_agblock_t agbno; 1849 int contigblk; 1850 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1851 1852 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1853 /* not sparse, calculate extent info directly */ 1854 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), 1855 mp->m_ialloc_blks, &XFS_RMAP_OINFO_INODES); 1856 return; 1857 } 1858 1859 /* holemask is only 16-bits (fits in an unsigned long) */ 1860 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1861 holemask[0] = rec->ir_holemask; 1862 1863 /* 1864 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1865 * holemask and convert the start/end index of each range to an extent. 1866 * We start with the start and end index both pointing at the first 0 in 1867 * the mask. 1868 */ 1869 startidx = endidx = find_first_zero_bit(holemask, 1870 XFS_INOBT_HOLEMASK_BITS); 1871 nextbit = startidx + 1; 1872 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1873 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1874 nextbit); 1875 /* 1876 * If the next zero bit is contiguous, update the end index of 1877 * the current range and continue. 1878 */ 1879 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1880 nextbit == endidx + 1) { 1881 endidx = nextbit; 1882 goto next; 1883 } 1884 1885 /* 1886 * nextbit is not contiguous with the current end index. Convert 1887 * the current start/end to an extent and add it to the free 1888 * list. 1889 */ 1890 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1891 mp->m_sb.sb_inopblock; 1892 contigblk = ((endidx - startidx + 1) * 1893 XFS_INODES_PER_HOLEMASK_BIT) / 1894 mp->m_sb.sb_inopblock; 1895 1896 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1897 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1898 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), 1899 contigblk, &XFS_RMAP_OINFO_INODES); 1900 1901 /* reset range to current bit and carry on... */ 1902 startidx = endidx = nextbit; 1903 1904 next: 1905 nextbit++; 1906 } 1907 } 1908 1909 STATIC int 1910 xfs_difree_inobt( 1911 struct xfs_mount *mp, 1912 struct xfs_trans *tp, 1913 struct xfs_buf *agbp, 1914 xfs_agino_t agino, 1915 struct xfs_icluster *xic, 1916 struct xfs_inobt_rec_incore *orec) 1917 { 1918 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1919 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1920 struct xfs_perag *pag; 1921 struct xfs_btree_cur *cur; 1922 struct xfs_inobt_rec_incore rec; 1923 int ilen; 1924 int error; 1925 int i; 1926 int off; 1927 1928 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1929 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1930 1931 /* 1932 * Initialize the cursor. 1933 */ 1934 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1935 1936 error = xfs_check_agi_freecount(cur, agi); 1937 if (error) 1938 goto error0; 1939 1940 /* 1941 * Look for the entry describing this inode. 1942 */ 1943 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1944 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1945 __func__, error); 1946 goto error0; 1947 } 1948 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1949 error = xfs_inobt_get_rec(cur, &rec, &i); 1950 if (error) { 1951 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1952 __func__, error); 1953 goto error0; 1954 } 1955 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1956 /* 1957 * Get the offset in the inode chunk. 1958 */ 1959 off = agino - rec.ir_startino; 1960 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1961 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1962 /* 1963 * Mark the inode free & increment the count. 1964 */ 1965 rec.ir_free |= XFS_INOBT_MASK(off); 1966 rec.ir_freecount++; 1967 1968 /* 1969 * When an inode chunk is free, it becomes eligible for removal. Don't 1970 * remove the chunk if the block size is large enough for multiple inode 1971 * chunks (that might not be free). 1972 */ 1973 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1974 rec.ir_free == XFS_INOBT_ALL_FREE && 1975 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1976 xic->deleted = true; 1977 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1978 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1979 1980 /* 1981 * Remove the inode cluster from the AGI B+Tree, adjust the 1982 * AGI and Superblock inode counts, and mark the disk space 1983 * to be freed when the transaction is committed. 1984 */ 1985 ilen = rec.ir_freecount; 1986 be32_add_cpu(&agi->agi_count, -ilen); 1987 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1988 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1989 pag = xfs_perag_get(mp, agno); 1990 pag->pagi_freecount -= ilen - 1; 1991 pag->pagi_count -= ilen; 1992 xfs_perag_put(pag); 1993 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1994 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1995 1996 if ((error = xfs_btree_delete(cur, &i))) { 1997 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1998 __func__, error); 1999 goto error0; 2000 } 2001 2002 xfs_difree_inode_chunk(tp, agno, &rec); 2003 } else { 2004 xic->deleted = false; 2005 2006 error = xfs_inobt_update(cur, &rec); 2007 if (error) { 2008 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2009 __func__, error); 2010 goto error0; 2011 } 2012 2013 /* 2014 * Change the inode free counts and log the ag/sb changes. 2015 */ 2016 be32_add_cpu(&agi->agi_freecount, 1); 2017 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2018 pag = xfs_perag_get(mp, agno); 2019 pag->pagi_freecount++; 2020 xfs_perag_put(pag); 2021 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2022 } 2023 2024 error = xfs_check_agi_freecount(cur, agi); 2025 if (error) 2026 goto error0; 2027 2028 *orec = rec; 2029 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2030 return 0; 2031 2032 error0: 2033 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2034 return error; 2035 } 2036 2037 /* 2038 * Free an inode in the free inode btree. 2039 */ 2040 STATIC int 2041 xfs_difree_finobt( 2042 struct xfs_mount *mp, 2043 struct xfs_trans *tp, 2044 struct xfs_buf *agbp, 2045 xfs_agino_t agino, 2046 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2047 { 2048 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2049 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2050 struct xfs_btree_cur *cur; 2051 struct xfs_inobt_rec_incore rec; 2052 int offset = agino - ibtrec->ir_startino; 2053 int error; 2054 int i; 2055 2056 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2057 2058 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2059 if (error) 2060 goto error; 2061 if (i == 0) { 2062 /* 2063 * If the record does not exist in the finobt, we must have just 2064 * freed an inode in a previously fully allocated chunk. If not, 2065 * something is out of sync. 2066 */ 2067 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2068 2069 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2070 ibtrec->ir_count, 2071 ibtrec->ir_freecount, 2072 ibtrec->ir_free, &i); 2073 if (error) 2074 goto error; 2075 ASSERT(i == 1); 2076 2077 goto out; 2078 } 2079 2080 /* 2081 * Read and update the existing record. We could just copy the ibtrec 2082 * across here, but that would defeat the purpose of having redundant 2083 * metadata. By making the modifications independently, we can catch 2084 * corruptions that we wouldn't see if we just copied from one record 2085 * to another. 2086 */ 2087 error = xfs_inobt_get_rec(cur, &rec, &i); 2088 if (error) 2089 goto error; 2090 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2091 2092 rec.ir_free |= XFS_INOBT_MASK(offset); 2093 rec.ir_freecount++; 2094 2095 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2096 (rec.ir_freecount == ibtrec->ir_freecount), 2097 error); 2098 2099 /* 2100 * The content of inobt records should always match between the inobt 2101 * and finobt. The lifecycle of records in the finobt is different from 2102 * the inobt in that the finobt only tracks records with at least one 2103 * free inode. Hence, if all of the inodes are free and we aren't 2104 * keeping inode chunks permanently on disk, remove the record. 2105 * Otherwise, update the record with the new information. 2106 * 2107 * Note that we currently can't free chunks when the block size is large 2108 * enough for multiple chunks. Leave the finobt record to remain in sync 2109 * with the inobt. 2110 */ 2111 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2112 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2113 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2114 error = xfs_btree_delete(cur, &i); 2115 if (error) 2116 goto error; 2117 ASSERT(i == 1); 2118 } else { 2119 error = xfs_inobt_update(cur, &rec); 2120 if (error) 2121 goto error; 2122 } 2123 2124 out: 2125 error = xfs_check_agi_freecount(cur, agi); 2126 if (error) 2127 goto error; 2128 2129 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2130 return 0; 2131 2132 error: 2133 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2134 return error; 2135 } 2136 2137 /* 2138 * Free disk inode. Carefully avoids touching the incore inode, all 2139 * manipulations incore are the caller's responsibility. 2140 * The on-disk inode is not changed by this operation, only the 2141 * btree (free inode mask) is changed. 2142 */ 2143 int 2144 xfs_difree( 2145 struct xfs_trans *tp, /* transaction pointer */ 2146 xfs_ino_t inode, /* inode to be freed */ 2147 struct xfs_icluster *xic) /* cluster info if deleted */ 2148 { 2149 /* REFERENCED */ 2150 xfs_agblock_t agbno; /* block number containing inode */ 2151 struct xfs_buf *agbp; /* buffer for allocation group header */ 2152 xfs_agino_t agino; /* allocation group inode number */ 2153 xfs_agnumber_t agno; /* allocation group number */ 2154 int error; /* error return value */ 2155 struct xfs_mount *mp; /* mount structure for filesystem */ 2156 struct xfs_inobt_rec_incore rec;/* btree record */ 2157 2158 mp = tp->t_mountp; 2159 2160 /* 2161 * Break up inode number into its components. 2162 */ 2163 agno = XFS_INO_TO_AGNO(mp, inode); 2164 if (agno >= mp->m_sb.sb_agcount) { 2165 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2166 __func__, agno, mp->m_sb.sb_agcount); 2167 ASSERT(0); 2168 return -EINVAL; 2169 } 2170 agino = XFS_INO_TO_AGINO(mp, inode); 2171 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2172 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2173 __func__, (unsigned long long)inode, 2174 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2175 ASSERT(0); 2176 return -EINVAL; 2177 } 2178 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2179 if (agbno >= mp->m_sb.sb_agblocks) { 2180 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2181 __func__, agbno, mp->m_sb.sb_agblocks); 2182 ASSERT(0); 2183 return -EINVAL; 2184 } 2185 /* 2186 * Get the allocation group header. 2187 */ 2188 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2189 if (error) { 2190 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2191 __func__, error); 2192 return error; 2193 } 2194 2195 /* 2196 * Fix up the inode allocation btree. 2197 */ 2198 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec); 2199 if (error) 2200 goto error0; 2201 2202 /* 2203 * Fix up the free inode btree. 2204 */ 2205 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2206 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2207 if (error) 2208 goto error0; 2209 } 2210 2211 return 0; 2212 2213 error0: 2214 return error; 2215 } 2216 2217 STATIC int 2218 xfs_imap_lookup( 2219 struct xfs_mount *mp, 2220 struct xfs_trans *tp, 2221 xfs_agnumber_t agno, 2222 xfs_agino_t agino, 2223 xfs_agblock_t agbno, 2224 xfs_agblock_t *chunk_agbno, 2225 xfs_agblock_t *offset_agbno, 2226 int flags) 2227 { 2228 struct xfs_inobt_rec_incore rec; 2229 struct xfs_btree_cur *cur; 2230 struct xfs_buf *agbp; 2231 int error; 2232 int i; 2233 2234 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2235 if (error) { 2236 xfs_alert(mp, 2237 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2238 __func__, error, agno); 2239 return error; 2240 } 2241 2242 /* 2243 * Lookup the inode record for the given agino. If the record cannot be 2244 * found, then it's an invalid inode number and we should abort. Once 2245 * we have a record, we need to ensure it contains the inode number 2246 * we are looking up. 2247 */ 2248 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2249 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2250 if (!error) { 2251 if (i) 2252 error = xfs_inobt_get_rec(cur, &rec, &i); 2253 if (!error && i == 0) 2254 error = -EINVAL; 2255 } 2256 2257 xfs_trans_brelse(tp, agbp); 2258 xfs_btree_del_cursor(cur, error); 2259 if (error) 2260 return error; 2261 2262 /* check that the returned record contains the required inode */ 2263 if (rec.ir_startino > agino || 2264 rec.ir_startino + mp->m_ialloc_inos <= agino) 2265 return -EINVAL; 2266 2267 /* for untrusted inodes check it is allocated first */ 2268 if ((flags & XFS_IGET_UNTRUSTED) && 2269 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2270 return -EINVAL; 2271 2272 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2273 *offset_agbno = agbno - *chunk_agbno; 2274 return 0; 2275 } 2276 2277 /* 2278 * Return the location of the inode in imap, for mapping it into a buffer. 2279 */ 2280 int 2281 xfs_imap( 2282 xfs_mount_t *mp, /* file system mount structure */ 2283 xfs_trans_t *tp, /* transaction pointer */ 2284 xfs_ino_t ino, /* inode to locate */ 2285 struct xfs_imap *imap, /* location map structure */ 2286 uint flags) /* flags for inode btree lookup */ 2287 { 2288 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2289 xfs_agino_t agino; /* inode number within alloc group */ 2290 xfs_agnumber_t agno; /* allocation group number */ 2291 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2292 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2293 int error; /* error code */ 2294 int offset; /* index of inode in its buffer */ 2295 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2296 2297 ASSERT(ino != NULLFSINO); 2298 2299 /* 2300 * Split up the inode number into its parts. 2301 */ 2302 agno = XFS_INO_TO_AGNO(mp, ino); 2303 agino = XFS_INO_TO_AGINO(mp, ino); 2304 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2305 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2306 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2307 #ifdef DEBUG 2308 /* 2309 * Don't output diagnostic information for untrusted inodes 2310 * as they can be invalid without implying corruption. 2311 */ 2312 if (flags & XFS_IGET_UNTRUSTED) 2313 return -EINVAL; 2314 if (agno >= mp->m_sb.sb_agcount) { 2315 xfs_alert(mp, 2316 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2317 __func__, agno, mp->m_sb.sb_agcount); 2318 } 2319 if (agbno >= mp->m_sb.sb_agblocks) { 2320 xfs_alert(mp, 2321 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2322 __func__, (unsigned long long)agbno, 2323 (unsigned long)mp->m_sb.sb_agblocks); 2324 } 2325 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2326 xfs_alert(mp, 2327 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2328 __func__, ino, 2329 XFS_AGINO_TO_INO(mp, agno, agino)); 2330 } 2331 xfs_stack_trace(); 2332 #endif /* DEBUG */ 2333 return -EINVAL; 2334 } 2335 2336 /* 2337 * For bulkstat and handle lookups, we have an untrusted inode number 2338 * that we have to verify is valid. We cannot do this just by reading 2339 * the inode buffer as it may have been unlinked and removed leaving 2340 * inodes in stale state on disk. Hence we have to do a btree lookup 2341 * in all cases where an untrusted inode number is passed. 2342 */ 2343 if (flags & XFS_IGET_UNTRUSTED) { 2344 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2345 &chunk_agbno, &offset_agbno, flags); 2346 if (error) 2347 return error; 2348 goto out_map; 2349 } 2350 2351 /* 2352 * If the inode cluster size is the same as the blocksize or 2353 * smaller we get to the buffer by simple arithmetics. 2354 */ 2355 if (mp->m_blocks_per_cluster == 1) { 2356 offset = XFS_INO_TO_OFFSET(mp, ino); 2357 ASSERT(offset < mp->m_sb.sb_inopblock); 2358 2359 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2360 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2361 imap->im_boffset = (unsigned short)(offset << 2362 mp->m_sb.sb_inodelog); 2363 return 0; 2364 } 2365 2366 /* 2367 * If the inode chunks are aligned then use simple maths to 2368 * find the location. Otherwise we have to do a btree 2369 * lookup to find the location. 2370 */ 2371 if (mp->m_inoalign_mask) { 2372 offset_agbno = agbno & mp->m_inoalign_mask; 2373 chunk_agbno = agbno - offset_agbno; 2374 } else { 2375 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2376 &chunk_agbno, &offset_agbno, flags); 2377 if (error) 2378 return error; 2379 } 2380 2381 out_map: 2382 ASSERT(agbno >= chunk_agbno); 2383 cluster_agbno = chunk_agbno + 2384 ((offset_agbno / mp->m_blocks_per_cluster) * 2385 mp->m_blocks_per_cluster); 2386 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2387 XFS_INO_TO_OFFSET(mp, ino); 2388 2389 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2390 imap->im_len = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster); 2391 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2392 2393 /* 2394 * If the inode number maps to a block outside the bounds 2395 * of the file system then return NULL rather than calling 2396 * read_buf and panicing when we get an error from the 2397 * driver. 2398 */ 2399 if ((imap->im_blkno + imap->im_len) > 2400 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2401 xfs_alert(mp, 2402 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2403 __func__, (unsigned long long) imap->im_blkno, 2404 (unsigned long long) imap->im_len, 2405 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2406 return -EINVAL; 2407 } 2408 return 0; 2409 } 2410 2411 /* 2412 * Compute and fill in value of m_in_maxlevels. 2413 */ 2414 void 2415 xfs_ialloc_compute_maxlevels( 2416 xfs_mount_t *mp) /* file system mount structure */ 2417 { 2418 uint inodes; 2419 2420 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2421 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr, 2422 inodes); 2423 } 2424 2425 /* 2426 * Log specified fields for the ag hdr (inode section). The growth of the agi 2427 * structure over time requires that we interpret the buffer as two logical 2428 * regions delineated by the end of the unlinked list. This is due to the size 2429 * of the hash table and its location in the middle of the agi. 2430 * 2431 * For example, a request to log a field before agi_unlinked and a field after 2432 * agi_unlinked could cause us to log the entire hash table and use an excessive 2433 * amount of log space. To avoid this behavior, log the region up through 2434 * agi_unlinked in one call and the region after agi_unlinked through the end of 2435 * the structure in another. 2436 */ 2437 void 2438 xfs_ialloc_log_agi( 2439 xfs_trans_t *tp, /* transaction pointer */ 2440 xfs_buf_t *bp, /* allocation group header buffer */ 2441 int fields) /* bitmask of fields to log */ 2442 { 2443 int first; /* first byte number */ 2444 int last; /* last byte number */ 2445 static const short offsets[] = { /* field starting offsets */ 2446 /* keep in sync with bit definitions */ 2447 offsetof(xfs_agi_t, agi_magicnum), 2448 offsetof(xfs_agi_t, agi_versionnum), 2449 offsetof(xfs_agi_t, agi_seqno), 2450 offsetof(xfs_agi_t, agi_length), 2451 offsetof(xfs_agi_t, agi_count), 2452 offsetof(xfs_agi_t, agi_root), 2453 offsetof(xfs_agi_t, agi_level), 2454 offsetof(xfs_agi_t, agi_freecount), 2455 offsetof(xfs_agi_t, agi_newino), 2456 offsetof(xfs_agi_t, agi_dirino), 2457 offsetof(xfs_agi_t, agi_unlinked), 2458 offsetof(xfs_agi_t, agi_free_root), 2459 offsetof(xfs_agi_t, agi_free_level), 2460 sizeof(xfs_agi_t) 2461 }; 2462 #ifdef DEBUG 2463 xfs_agi_t *agi; /* allocation group header */ 2464 2465 agi = XFS_BUF_TO_AGI(bp); 2466 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2467 #endif 2468 2469 /* 2470 * Compute byte offsets for the first and last fields in the first 2471 * region and log the agi buffer. This only logs up through 2472 * agi_unlinked. 2473 */ 2474 if (fields & XFS_AGI_ALL_BITS_R1) { 2475 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2476 &first, &last); 2477 xfs_trans_log_buf(tp, bp, first, last); 2478 } 2479 2480 /* 2481 * Mask off the bits in the first region and calculate the first and 2482 * last field offsets for any bits in the second region. 2483 */ 2484 fields &= ~XFS_AGI_ALL_BITS_R1; 2485 if (fields) { 2486 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2487 &first, &last); 2488 xfs_trans_log_buf(tp, bp, first, last); 2489 } 2490 } 2491 2492 static xfs_failaddr_t 2493 xfs_agi_verify( 2494 struct xfs_buf *bp) 2495 { 2496 struct xfs_mount *mp = bp->b_target->bt_mount; 2497 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2498 int i; 2499 2500 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2501 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2502 return __this_address; 2503 if (!xfs_log_check_lsn(mp, 2504 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2505 return __this_address; 2506 } 2507 2508 /* 2509 * Validate the magic number of the agi block. 2510 */ 2511 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2512 return __this_address; 2513 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2514 return __this_address; 2515 2516 if (be32_to_cpu(agi->agi_level) < 1 || 2517 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2518 return __this_address; 2519 2520 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2521 (be32_to_cpu(agi->agi_free_level) < 1 || 2522 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2523 return __this_address; 2524 2525 /* 2526 * during growfs operations, the perag is not fully initialised, 2527 * so we can't use it for any useful checking. growfs ensures we can't 2528 * use it by using uncached buffers that don't have the perag attached 2529 * so we can detect and avoid this problem. 2530 */ 2531 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2532 return __this_address; 2533 2534 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2535 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2536 continue; 2537 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2538 return __this_address; 2539 } 2540 2541 return NULL; 2542 } 2543 2544 static void 2545 xfs_agi_read_verify( 2546 struct xfs_buf *bp) 2547 { 2548 struct xfs_mount *mp = bp->b_target->bt_mount; 2549 xfs_failaddr_t fa; 2550 2551 if (xfs_sb_version_hascrc(&mp->m_sb) && 2552 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2553 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2554 else { 2555 fa = xfs_agi_verify(bp); 2556 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2557 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2558 } 2559 } 2560 2561 static void 2562 xfs_agi_write_verify( 2563 struct xfs_buf *bp) 2564 { 2565 struct xfs_mount *mp = bp->b_target->bt_mount; 2566 struct xfs_buf_log_item *bip = bp->b_log_item; 2567 xfs_failaddr_t fa; 2568 2569 fa = xfs_agi_verify(bp); 2570 if (fa) { 2571 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2572 return; 2573 } 2574 2575 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2576 return; 2577 2578 if (bip) 2579 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2580 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2581 } 2582 2583 const struct xfs_buf_ops xfs_agi_buf_ops = { 2584 .name = "xfs_agi", 2585 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2586 .verify_read = xfs_agi_read_verify, 2587 .verify_write = xfs_agi_write_verify, 2588 .verify_struct = xfs_agi_verify, 2589 }; 2590 2591 /* 2592 * Read in the allocation group header (inode allocation section) 2593 */ 2594 int 2595 xfs_read_agi( 2596 struct xfs_mount *mp, /* file system mount structure */ 2597 struct xfs_trans *tp, /* transaction pointer */ 2598 xfs_agnumber_t agno, /* allocation group number */ 2599 struct xfs_buf **bpp) /* allocation group hdr buf */ 2600 { 2601 int error; 2602 2603 trace_xfs_read_agi(mp, agno); 2604 2605 ASSERT(agno != NULLAGNUMBER); 2606 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2607 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2608 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2609 if (error) 2610 return error; 2611 if (tp) 2612 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2613 2614 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2615 return 0; 2616 } 2617 2618 int 2619 xfs_ialloc_read_agi( 2620 struct xfs_mount *mp, /* file system mount structure */ 2621 struct xfs_trans *tp, /* transaction pointer */ 2622 xfs_agnumber_t agno, /* allocation group number */ 2623 struct xfs_buf **bpp) /* allocation group hdr buf */ 2624 { 2625 struct xfs_agi *agi; /* allocation group header */ 2626 struct xfs_perag *pag; /* per allocation group data */ 2627 int error; 2628 2629 trace_xfs_ialloc_read_agi(mp, agno); 2630 2631 error = xfs_read_agi(mp, tp, agno, bpp); 2632 if (error) 2633 return error; 2634 2635 agi = XFS_BUF_TO_AGI(*bpp); 2636 pag = xfs_perag_get(mp, agno); 2637 if (!pag->pagi_init) { 2638 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2639 pag->pagi_count = be32_to_cpu(agi->agi_count); 2640 pag->pagi_init = 1; 2641 } 2642 2643 /* 2644 * It's possible for these to be out of sync if 2645 * we are in the middle of a forced shutdown. 2646 */ 2647 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2648 XFS_FORCED_SHUTDOWN(mp)); 2649 xfs_perag_put(pag); 2650 return 0; 2651 } 2652 2653 /* 2654 * Read in the agi to initialise the per-ag data in the mount structure 2655 */ 2656 int 2657 xfs_ialloc_pagi_init( 2658 xfs_mount_t *mp, /* file system mount structure */ 2659 xfs_trans_t *tp, /* transaction pointer */ 2660 xfs_agnumber_t agno) /* allocation group number */ 2661 { 2662 xfs_buf_t *bp = NULL; 2663 int error; 2664 2665 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2666 if (error) 2667 return error; 2668 if (bp) 2669 xfs_trans_brelse(tp, bp); 2670 return 0; 2671 } 2672 2673 /* Is there an inode record covering a given range of inode numbers? */ 2674 int 2675 xfs_ialloc_has_inode_record( 2676 struct xfs_btree_cur *cur, 2677 xfs_agino_t low, 2678 xfs_agino_t high, 2679 bool *exists) 2680 { 2681 struct xfs_inobt_rec_incore irec; 2682 xfs_agino_t agino; 2683 uint16_t holemask; 2684 int has_record; 2685 int i; 2686 int error; 2687 2688 *exists = false; 2689 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2690 while (error == 0 && has_record) { 2691 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2692 if (error || irec.ir_startino > high) 2693 break; 2694 2695 agino = irec.ir_startino; 2696 holemask = irec.ir_holemask; 2697 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, 2698 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { 2699 if (holemask & 1) 2700 continue; 2701 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && 2702 agino <= high) { 2703 *exists = true; 2704 return 0; 2705 } 2706 } 2707 2708 error = xfs_btree_increment(cur, 0, &has_record); 2709 } 2710 return error; 2711 } 2712 2713 /* Is there an inode record covering a given extent? */ 2714 int 2715 xfs_ialloc_has_inodes_at_extent( 2716 struct xfs_btree_cur *cur, 2717 xfs_agblock_t bno, 2718 xfs_extlen_t len, 2719 bool *exists) 2720 { 2721 xfs_agino_t low; 2722 xfs_agino_t high; 2723 2724 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2725 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2726 2727 return xfs_ialloc_has_inode_record(cur, low, high, exists); 2728 } 2729 2730 struct xfs_ialloc_count_inodes { 2731 xfs_agino_t count; 2732 xfs_agino_t freecount; 2733 }; 2734 2735 /* Record inode counts across all inobt records. */ 2736 STATIC int 2737 xfs_ialloc_count_inodes_rec( 2738 struct xfs_btree_cur *cur, 2739 union xfs_btree_rec *rec, 2740 void *priv) 2741 { 2742 struct xfs_inobt_rec_incore irec; 2743 struct xfs_ialloc_count_inodes *ci = priv; 2744 2745 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2746 ci->count += irec.ir_count; 2747 ci->freecount += irec.ir_freecount; 2748 2749 return 0; 2750 } 2751 2752 /* Count allocated and free inodes under an inobt. */ 2753 int 2754 xfs_ialloc_count_inodes( 2755 struct xfs_btree_cur *cur, 2756 xfs_agino_t *count, 2757 xfs_agino_t *freecount) 2758 { 2759 struct xfs_ialloc_count_inodes ci = {0}; 2760 int error; 2761 2762 ASSERT(cur->bc_btnum == XFS_BTNUM_INO); 2763 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2764 if (error) 2765 return error; 2766 2767 *count = ci.count; 2768 *freecount = ci.freecount; 2769 return 0; 2770 } 2771