1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_btree.h" 29 #include "xfs_ialloc.h" 30 #include "xfs_ialloc_btree.h" 31 #include "xfs_alloc.h" 32 #include "xfs_rtalloc.h" 33 #include "xfs_error.h" 34 #include "xfs_bmap.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_icreate_item.h" 39 #include "xfs_icache.h" 40 #include "xfs_trace.h" 41 42 43 /* 44 * Allocation group level functions. 45 */ 46 static inline int 47 xfs_ialloc_cluster_alignment( 48 struct xfs_mount *mp) 49 { 50 if (xfs_sb_version_hasalign(&mp->m_sb) && 51 mp->m_sb.sb_inoalignmt >= 52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 53 return mp->m_sb.sb_inoalignmt; 54 return 1; 55 } 56 57 /* 58 * Lookup a record by ino in the btree given by cur. 59 */ 60 int /* error */ 61 xfs_inobt_lookup( 62 struct xfs_btree_cur *cur, /* btree cursor */ 63 xfs_agino_t ino, /* starting inode of chunk */ 64 xfs_lookup_t dir, /* <=, >=, == */ 65 int *stat) /* success/failure */ 66 { 67 cur->bc_rec.i.ir_startino = ino; 68 cur->bc_rec.i.ir_freecount = 0; 69 cur->bc_rec.i.ir_free = 0; 70 return xfs_btree_lookup(cur, dir, stat); 71 } 72 73 /* 74 * Update the record referred to by cur to the value given. 75 * This either works (return 0) or gets an EFSCORRUPTED error. 76 */ 77 STATIC int /* error */ 78 xfs_inobt_update( 79 struct xfs_btree_cur *cur, /* btree cursor */ 80 xfs_inobt_rec_incore_t *irec) /* btree record */ 81 { 82 union xfs_btree_rec rec; 83 84 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 85 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount); 86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 87 return xfs_btree_update(cur, &rec); 88 } 89 90 /* 91 * Get the data from the pointed-to record. 92 */ 93 int /* error */ 94 xfs_inobt_get_rec( 95 struct xfs_btree_cur *cur, /* btree cursor */ 96 xfs_inobt_rec_incore_t *irec, /* btree record */ 97 int *stat) /* output: success/failure */ 98 { 99 union xfs_btree_rec *rec; 100 int error; 101 102 error = xfs_btree_get_rec(cur, &rec, stat); 103 if (!error && *stat == 1) { 104 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 105 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount); 106 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 107 } 108 return error; 109 } 110 111 /* 112 * Insert a single inobt record. Cursor must already point to desired location. 113 */ 114 STATIC int 115 xfs_inobt_insert_rec( 116 struct xfs_btree_cur *cur, 117 __int32_t freecount, 118 xfs_inofree_t free, 119 int *stat) 120 { 121 cur->bc_rec.i.ir_freecount = freecount; 122 cur->bc_rec.i.ir_free = free; 123 return xfs_btree_insert(cur, stat); 124 } 125 126 /* 127 * Insert records describing a newly allocated inode chunk into the inobt. 128 */ 129 STATIC int 130 xfs_inobt_insert( 131 struct xfs_mount *mp, 132 struct xfs_trans *tp, 133 struct xfs_buf *agbp, 134 xfs_agino_t newino, 135 xfs_agino_t newlen, 136 xfs_btnum_t btnum) 137 { 138 struct xfs_btree_cur *cur; 139 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 140 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 141 xfs_agino_t thisino; 142 int i; 143 int error; 144 145 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 146 147 for (thisino = newino; 148 thisino < newino + newlen; 149 thisino += XFS_INODES_PER_CHUNK) { 150 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 151 if (error) { 152 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 153 return error; 154 } 155 ASSERT(i == 0); 156 157 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK, 158 XFS_INOBT_ALL_FREE, &i); 159 if (error) { 160 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 161 return error; 162 } 163 ASSERT(i == 1); 164 } 165 166 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 167 168 return 0; 169 } 170 171 /* 172 * Verify that the number of free inodes in the AGI is correct. 173 */ 174 #ifdef DEBUG 175 STATIC int 176 xfs_check_agi_freecount( 177 struct xfs_btree_cur *cur, 178 struct xfs_agi *agi) 179 { 180 if (cur->bc_nlevels == 1) { 181 xfs_inobt_rec_incore_t rec; 182 int freecount = 0; 183 int error; 184 int i; 185 186 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 187 if (error) 188 return error; 189 190 do { 191 error = xfs_inobt_get_rec(cur, &rec, &i); 192 if (error) 193 return error; 194 195 if (i) { 196 freecount += rec.ir_freecount; 197 error = xfs_btree_increment(cur, 0, &i); 198 if (error) 199 return error; 200 } 201 } while (i == 1); 202 203 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 204 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 205 } 206 return 0; 207 } 208 #else 209 #define xfs_check_agi_freecount(cur, agi) 0 210 #endif 211 212 /* 213 * Initialise a new set of inodes. When called without a transaction context 214 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 215 * than logging them (which in a transaction context puts them into the AIL 216 * for writeback rather than the xfsbufd queue). 217 */ 218 int 219 xfs_ialloc_inode_init( 220 struct xfs_mount *mp, 221 struct xfs_trans *tp, 222 struct list_head *buffer_list, 223 xfs_agnumber_t agno, 224 xfs_agblock_t agbno, 225 xfs_agblock_t length, 226 unsigned int gen) 227 { 228 struct xfs_buf *fbuf; 229 struct xfs_dinode *free; 230 int nbufs, blks_per_cluster, inodes_per_cluster; 231 int version; 232 int i, j; 233 xfs_daddr_t d; 234 xfs_ino_t ino = 0; 235 236 /* 237 * Loop over the new block(s), filling in the inodes. For small block 238 * sizes, manipulate the inodes in buffers which are multiples of the 239 * blocks size. 240 */ 241 blks_per_cluster = xfs_icluster_size_fsb(mp); 242 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 243 nbufs = length / blks_per_cluster; 244 245 /* 246 * Figure out what version number to use in the inodes we create. If 247 * the superblock version has caught up to the one that supports the new 248 * inode format, then use the new inode version. Otherwise use the old 249 * version so that old kernels will continue to be able to use the file 250 * system. 251 * 252 * For v3 inodes, we also need to write the inode number into the inode, 253 * so calculate the first inode number of the chunk here as 254 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 255 * across multiple filesystem blocks (such as a cluster) and so cannot 256 * be used in the cluster buffer loop below. 257 * 258 * Further, because we are writing the inode directly into the buffer 259 * and calculating a CRC on the entire inode, we have ot log the entire 260 * inode so that the entire range the CRC covers is present in the log. 261 * That means for v3 inode we log the entire buffer rather than just the 262 * inode cores. 263 */ 264 if (xfs_sb_version_hascrc(&mp->m_sb)) { 265 version = 3; 266 ino = XFS_AGINO_TO_INO(mp, agno, 267 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 268 269 /* 270 * log the initialisation that is about to take place as an 271 * logical operation. This means the transaction does not 272 * need to log the physical changes to the inode buffers as log 273 * recovery will know what initialisation is actually needed. 274 * Hence we only need to log the buffers as "ordered" buffers so 275 * they track in the AIL as if they were physically logged. 276 */ 277 if (tp) 278 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos, 279 mp->m_sb.sb_inodesize, length, gen); 280 } else 281 version = 2; 282 283 for (j = 0; j < nbufs; j++) { 284 /* 285 * Get the block. 286 */ 287 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 288 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 289 mp->m_bsize * blks_per_cluster, 290 XBF_UNMAPPED); 291 if (!fbuf) 292 return -ENOMEM; 293 294 /* Initialize the inode buffers and log them appropriately. */ 295 fbuf->b_ops = &xfs_inode_buf_ops; 296 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 297 for (i = 0; i < inodes_per_cluster; i++) { 298 int ioffset = i << mp->m_sb.sb_inodelog; 299 uint isize = xfs_dinode_size(version); 300 301 free = xfs_make_iptr(mp, fbuf, i); 302 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 303 free->di_version = version; 304 free->di_gen = cpu_to_be32(gen); 305 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 306 307 if (version == 3) { 308 free->di_ino = cpu_to_be64(ino); 309 ino++; 310 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid); 311 xfs_dinode_calc_crc(mp, free); 312 } else if (tp) { 313 /* just log the inode core */ 314 xfs_trans_log_buf(tp, fbuf, ioffset, 315 ioffset + isize - 1); 316 } 317 } 318 319 if (tp) { 320 /* 321 * Mark the buffer as an inode allocation buffer so it 322 * sticks in AIL at the point of this allocation 323 * transaction. This ensures the they are on disk before 324 * the tail of the log can be moved past this 325 * transaction (i.e. by preventing relogging from moving 326 * it forward in the log). 327 */ 328 xfs_trans_inode_alloc_buf(tp, fbuf); 329 if (version == 3) { 330 /* 331 * Mark the buffer as ordered so that they are 332 * not physically logged in the transaction but 333 * still tracked in the AIL as part of the 334 * transaction and pin the log appropriately. 335 */ 336 xfs_trans_ordered_buf(tp, fbuf); 337 xfs_trans_log_buf(tp, fbuf, 0, 338 BBTOB(fbuf->b_length) - 1); 339 } 340 } else { 341 fbuf->b_flags |= XBF_DONE; 342 xfs_buf_delwri_queue(fbuf, buffer_list); 343 xfs_buf_relse(fbuf); 344 } 345 } 346 return 0; 347 } 348 349 /* 350 * Allocate new inodes in the allocation group specified by agbp. 351 * Return 0 for success, else error code. 352 */ 353 STATIC int /* error code or 0 */ 354 xfs_ialloc_ag_alloc( 355 xfs_trans_t *tp, /* transaction pointer */ 356 xfs_buf_t *agbp, /* alloc group buffer */ 357 int *alloc) 358 { 359 xfs_agi_t *agi; /* allocation group header */ 360 xfs_alloc_arg_t args; /* allocation argument structure */ 361 xfs_agnumber_t agno; 362 int error; 363 xfs_agino_t newino; /* new first inode's number */ 364 xfs_agino_t newlen; /* new number of inodes */ 365 int isaligned = 0; /* inode allocation at stripe unit */ 366 /* boundary */ 367 struct xfs_perag *pag; 368 369 memset(&args, 0, sizeof(args)); 370 args.tp = tp; 371 args.mp = tp->t_mountp; 372 373 /* 374 * Locking will ensure that we don't have two callers in here 375 * at one time. 376 */ 377 newlen = args.mp->m_ialloc_inos; 378 if (args.mp->m_maxicount && 379 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount) 380 return -ENOSPC; 381 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 382 /* 383 * First try to allocate inodes contiguous with the last-allocated 384 * chunk of inodes. If the filesystem is striped, this will fill 385 * an entire stripe unit with inodes. 386 */ 387 agi = XFS_BUF_TO_AGI(agbp); 388 newino = be32_to_cpu(agi->agi_newino); 389 agno = be32_to_cpu(agi->agi_seqno); 390 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 391 args.mp->m_ialloc_blks; 392 if (likely(newino != NULLAGINO && 393 (args.agbno < be32_to_cpu(agi->agi_length)))) { 394 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 395 args.type = XFS_ALLOCTYPE_THIS_BNO; 396 args.prod = 1; 397 398 /* 399 * We need to take into account alignment here to ensure that 400 * we don't modify the free list if we fail to have an exact 401 * block. If we don't have an exact match, and every oher 402 * attempt allocation attempt fails, we'll end up cancelling 403 * a dirty transaction and shutting down. 404 * 405 * For an exact allocation, alignment must be 1, 406 * however we need to take cluster alignment into account when 407 * fixing up the freelist. Use the minalignslop field to 408 * indicate that extra blocks might be required for alignment, 409 * but not to use them in the actual exact allocation. 410 */ 411 args.alignment = 1; 412 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 413 414 /* Allow space for the inode btree to split. */ 415 args.minleft = args.mp->m_in_maxlevels - 1; 416 if ((error = xfs_alloc_vextent(&args))) 417 return error; 418 419 /* 420 * This request might have dirtied the transaction if the AG can 421 * satisfy the request, but the exact block was not available. 422 * If the allocation did fail, subsequent requests will relax 423 * the exact agbno requirement and increase the alignment 424 * instead. It is critical that the total size of the request 425 * (len + alignment + slop) does not increase from this point 426 * on, so reset minalignslop to ensure it is not included in 427 * subsequent requests. 428 */ 429 args.minalignslop = 0; 430 } else 431 args.fsbno = NULLFSBLOCK; 432 433 if (unlikely(args.fsbno == NULLFSBLOCK)) { 434 /* 435 * Set the alignment for the allocation. 436 * If stripe alignment is turned on then align at stripe unit 437 * boundary. 438 * If the cluster size is smaller than a filesystem block 439 * then we're doing I/O for inodes in filesystem block size 440 * pieces, so don't need alignment anyway. 441 */ 442 isaligned = 0; 443 if (args.mp->m_sinoalign) { 444 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 445 args.alignment = args.mp->m_dalign; 446 isaligned = 1; 447 } else 448 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 449 /* 450 * Need to figure out where to allocate the inode blocks. 451 * Ideally they should be spaced out through the a.g. 452 * For now, just allocate blocks up front. 453 */ 454 args.agbno = be32_to_cpu(agi->agi_root); 455 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 456 /* 457 * Allocate a fixed-size extent of inodes. 458 */ 459 args.type = XFS_ALLOCTYPE_NEAR_BNO; 460 args.prod = 1; 461 /* 462 * Allow space for the inode btree to split. 463 */ 464 args.minleft = args.mp->m_in_maxlevels - 1; 465 if ((error = xfs_alloc_vextent(&args))) 466 return error; 467 } 468 469 /* 470 * If stripe alignment is turned on, then try again with cluster 471 * alignment. 472 */ 473 if (isaligned && args.fsbno == NULLFSBLOCK) { 474 args.type = XFS_ALLOCTYPE_NEAR_BNO; 475 args.agbno = be32_to_cpu(agi->agi_root); 476 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 477 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 478 if ((error = xfs_alloc_vextent(&args))) 479 return error; 480 } 481 482 if (args.fsbno == NULLFSBLOCK) { 483 *alloc = 0; 484 return 0; 485 } 486 ASSERT(args.len == args.minlen); 487 488 /* 489 * Stamp and write the inode buffers. 490 * 491 * Seed the new inode cluster with a random generation number. This 492 * prevents short-term reuse of generation numbers if a chunk is 493 * freed and then immediately reallocated. We use random numbers 494 * rather than a linear progression to prevent the next generation 495 * number from being easily guessable. 496 */ 497 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno, 498 args.len, prandom_u32()); 499 500 if (error) 501 return error; 502 /* 503 * Convert the results. 504 */ 505 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 506 be32_add_cpu(&agi->agi_count, newlen); 507 be32_add_cpu(&agi->agi_freecount, newlen); 508 pag = xfs_perag_get(args.mp, agno); 509 pag->pagi_freecount += newlen; 510 xfs_perag_put(pag); 511 agi->agi_newino = cpu_to_be32(newino); 512 513 /* 514 * Insert records describing the new inode chunk into the btrees. 515 */ 516 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 517 XFS_BTNUM_INO); 518 if (error) 519 return error; 520 521 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 522 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 523 XFS_BTNUM_FINO); 524 if (error) 525 return error; 526 } 527 /* 528 * Log allocation group header fields 529 */ 530 xfs_ialloc_log_agi(tp, agbp, 531 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 532 /* 533 * Modify/log superblock values for inode count and inode free count. 534 */ 535 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 536 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 537 *alloc = 1; 538 return 0; 539 } 540 541 STATIC xfs_agnumber_t 542 xfs_ialloc_next_ag( 543 xfs_mount_t *mp) 544 { 545 xfs_agnumber_t agno; 546 547 spin_lock(&mp->m_agirotor_lock); 548 agno = mp->m_agirotor; 549 if (++mp->m_agirotor >= mp->m_maxagi) 550 mp->m_agirotor = 0; 551 spin_unlock(&mp->m_agirotor_lock); 552 553 return agno; 554 } 555 556 /* 557 * Select an allocation group to look for a free inode in, based on the parent 558 * inode and the mode. Return the allocation group buffer. 559 */ 560 STATIC xfs_agnumber_t 561 xfs_ialloc_ag_select( 562 xfs_trans_t *tp, /* transaction pointer */ 563 xfs_ino_t parent, /* parent directory inode number */ 564 umode_t mode, /* bits set to indicate file type */ 565 int okalloc) /* ok to allocate more space */ 566 { 567 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 568 xfs_agnumber_t agno; /* current ag number */ 569 int flags; /* alloc buffer locking flags */ 570 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 571 xfs_extlen_t longest = 0; /* longest extent available */ 572 xfs_mount_t *mp; /* mount point structure */ 573 int needspace; /* file mode implies space allocated */ 574 xfs_perag_t *pag; /* per allocation group data */ 575 xfs_agnumber_t pagno; /* parent (starting) ag number */ 576 int error; 577 578 /* 579 * Files of these types need at least one block if length > 0 580 * (and they won't fit in the inode, but that's hard to figure out). 581 */ 582 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 583 mp = tp->t_mountp; 584 agcount = mp->m_maxagi; 585 if (S_ISDIR(mode)) 586 pagno = xfs_ialloc_next_ag(mp); 587 else { 588 pagno = XFS_INO_TO_AGNO(mp, parent); 589 if (pagno >= agcount) 590 pagno = 0; 591 } 592 593 ASSERT(pagno < agcount); 594 595 /* 596 * Loop through allocation groups, looking for one with a little 597 * free space in it. Note we don't look for free inodes, exactly. 598 * Instead, we include whether there is a need to allocate inodes 599 * to mean that blocks must be allocated for them, 600 * if none are currently free. 601 */ 602 agno = pagno; 603 flags = XFS_ALLOC_FLAG_TRYLOCK; 604 for (;;) { 605 pag = xfs_perag_get(mp, agno); 606 if (!pag->pagi_inodeok) { 607 xfs_ialloc_next_ag(mp); 608 goto nextag; 609 } 610 611 if (!pag->pagi_init) { 612 error = xfs_ialloc_pagi_init(mp, tp, agno); 613 if (error) 614 goto nextag; 615 } 616 617 if (pag->pagi_freecount) { 618 xfs_perag_put(pag); 619 return agno; 620 } 621 622 if (!okalloc) 623 goto nextag; 624 625 if (!pag->pagf_init) { 626 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 627 if (error) 628 goto nextag; 629 } 630 631 /* 632 * Check that there is enough free space for the file plus a 633 * chunk of inodes if we need to allocate some. If this is the 634 * first pass across the AGs, take into account the potential 635 * space needed for alignment of inode chunks when checking the 636 * longest contiguous free space in the AG - this prevents us 637 * from getting ENOSPC because we have free space larger than 638 * m_ialloc_blks but alignment constraints prevent us from using 639 * it. 640 * 641 * If we can't find an AG with space for full alignment slack to 642 * be taken into account, we must be near ENOSPC in all AGs. 643 * Hence we don't include alignment for the second pass and so 644 * if we fail allocation due to alignment issues then it is most 645 * likely a real ENOSPC condition. 646 */ 647 ineed = mp->m_ialloc_blks; 648 if (flags && ineed > 1) 649 ineed += xfs_ialloc_cluster_alignment(mp); 650 longest = pag->pagf_longest; 651 if (!longest) 652 longest = pag->pagf_flcount > 0; 653 654 if (pag->pagf_freeblks >= needspace + ineed && 655 longest >= ineed) { 656 xfs_perag_put(pag); 657 return agno; 658 } 659 nextag: 660 xfs_perag_put(pag); 661 /* 662 * No point in iterating over the rest, if we're shutting 663 * down. 664 */ 665 if (XFS_FORCED_SHUTDOWN(mp)) 666 return NULLAGNUMBER; 667 agno++; 668 if (agno >= agcount) 669 agno = 0; 670 if (agno == pagno) { 671 if (flags == 0) 672 return NULLAGNUMBER; 673 flags = 0; 674 } 675 } 676 } 677 678 /* 679 * Try to retrieve the next record to the left/right from the current one. 680 */ 681 STATIC int 682 xfs_ialloc_next_rec( 683 struct xfs_btree_cur *cur, 684 xfs_inobt_rec_incore_t *rec, 685 int *done, 686 int left) 687 { 688 int error; 689 int i; 690 691 if (left) 692 error = xfs_btree_decrement(cur, 0, &i); 693 else 694 error = xfs_btree_increment(cur, 0, &i); 695 696 if (error) 697 return error; 698 *done = !i; 699 if (i) { 700 error = xfs_inobt_get_rec(cur, rec, &i); 701 if (error) 702 return error; 703 XFS_WANT_CORRUPTED_RETURN(i == 1); 704 } 705 706 return 0; 707 } 708 709 STATIC int 710 xfs_ialloc_get_rec( 711 struct xfs_btree_cur *cur, 712 xfs_agino_t agino, 713 xfs_inobt_rec_incore_t *rec, 714 int *done) 715 { 716 int error; 717 int i; 718 719 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 720 if (error) 721 return error; 722 *done = !i; 723 if (i) { 724 error = xfs_inobt_get_rec(cur, rec, &i); 725 if (error) 726 return error; 727 XFS_WANT_CORRUPTED_RETURN(i == 1); 728 } 729 730 return 0; 731 } 732 733 /* 734 * Allocate an inode using the inobt-only algorithm. 735 */ 736 STATIC int 737 xfs_dialloc_ag_inobt( 738 struct xfs_trans *tp, 739 struct xfs_buf *agbp, 740 xfs_ino_t parent, 741 xfs_ino_t *inop) 742 { 743 struct xfs_mount *mp = tp->t_mountp; 744 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 745 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 746 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 747 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 748 struct xfs_perag *pag; 749 struct xfs_btree_cur *cur, *tcur; 750 struct xfs_inobt_rec_incore rec, trec; 751 xfs_ino_t ino; 752 int error; 753 int offset; 754 int i, j; 755 756 pag = xfs_perag_get(mp, agno); 757 758 ASSERT(pag->pagi_init); 759 ASSERT(pag->pagi_inodeok); 760 ASSERT(pag->pagi_freecount > 0); 761 762 restart_pagno: 763 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 764 /* 765 * If pagino is 0 (this is the root inode allocation) use newino. 766 * This must work because we've just allocated some. 767 */ 768 if (!pagino) 769 pagino = be32_to_cpu(agi->agi_newino); 770 771 error = xfs_check_agi_freecount(cur, agi); 772 if (error) 773 goto error0; 774 775 /* 776 * If in the same AG as the parent, try to get near the parent. 777 */ 778 if (pagno == agno) { 779 int doneleft; /* done, to the left */ 780 int doneright; /* done, to the right */ 781 int searchdistance = 10; 782 783 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 784 if (error) 785 goto error0; 786 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 787 788 error = xfs_inobt_get_rec(cur, &rec, &j); 789 if (error) 790 goto error0; 791 XFS_WANT_CORRUPTED_GOTO(j == 1, error0); 792 793 if (rec.ir_freecount > 0) { 794 /* 795 * Found a free inode in the same chunk 796 * as the parent, done. 797 */ 798 goto alloc_inode; 799 } 800 801 802 /* 803 * In the same AG as parent, but parent's chunk is full. 804 */ 805 806 /* duplicate the cursor, search left & right simultaneously */ 807 error = xfs_btree_dup_cursor(cur, &tcur); 808 if (error) 809 goto error0; 810 811 /* 812 * Skip to last blocks looked up if same parent inode. 813 */ 814 if (pagino != NULLAGINO && 815 pag->pagl_pagino == pagino && 816 pag->pagl_leftrec != NULLAGINO && 817 pag->pagl_rightrec != NULLAGINO) { 818 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 819 &trec, &doneleft); 820 if (error) 821 goto error1; 822 823 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 824 &rec, &doneright); 825 if (error) 826 goto error1; 827 } else { 828 /* search left with tcur, back up 1 record */ 829 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 830 if (error) 831 goto error1; 832 833 /* search right with cur, go forward 1 record. */ 834 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 835 if (error) 836 goto error1; 837 } 838 839 /* 840 * Loop until we find an inode chunk with a free inode. 841 */ 842 while (!doneleft || !doneright) { 843 int useleft; /* using left inode chunk this time */ 844 845 if (!--searchdistance) { 846 /* 847 * Not in range - save last search 848 * location and allocate a new inode 849 */ 850 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 851 pag->pagl_leftrec = trec.ir_startino; 852 pag->pagl_rightrec = rec.ir_startino; 853 pag->pagl_pagino = pagino; 854 goto newino; 855 } 856 857 /* figure out the closer block if both are valid. */ 858 if (!doneleft && !doneright) { 859 useleft = pagino - 860 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 861 rec.ir_startino - pagino; 862 } else { 863 useleft = !doneleft; 864 } 865 866 /* free inodes to the left? */ 867 if (useleft && trec.ir_freecount) { 868 rec = trec; 869 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 870 cur = tcur; 871 872 pag->pagl_leftrec = trec.ir_startino; 873 pag->pagl_rightrec = rec.ir_startino; 874 pag->pagl_pagino = pagino; 875 goto alloc_inode; 876 } 877 878 /* free inodes to the right? */ 879 if (!useleft && rec.ir_freecount) { 880 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 881 882 pag->pagl_leftrec = trec.ir_startino; 883 pag->pagl_rightrec = rec.ir_startino; 884 pag->pagl_pagino = pagino; 885 goto alloc_inode; 886 } 887 888 /* get next record to check */ 889 if (useleft) { 890 error = xfs_ialloc_next_rec(tcur, &trec, 891 &doneleft, 1); 892 } else { 893 error = xfs_ialloc_next_rec(cur, &rec, 894 &doneright, 0); 895 } 896 if (error) 897 goto error1; 898 } 899 900 /* 901 * We've reached the end of the btree. because 902 * we are only searching a small chunk of the 903 * btree each search, there is obviously free 904 * inodes closer to the parent inode than we 905 * are now. restart the search again. 906 */ 907 pag->pagl_pagino = NULLAGINO; 908 pag->pagl_leftrec = NULLAGINO; 909 pag->pagl_rightrec = NULLAGINO; 910 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 911 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 912 goto restart_pagno; 913 } 914 915 /* 916 * In a different AG from the parent. 917 * See if the most recently allocated block has any free. 918 */ 919 newino: 920 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 921 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 922 XFS_LOOKUP_EQ, &i); 923 if (error) 924 goto error0; 925 926 if (i == 1) { 927 error = xfs_inobt_get_rec(cur, &rec, &j); 928 if (error) 929 goto error0; 930 931 if (j == 1 && rec.ir_freecount > 0) { 932 /* 933 * The last chunk allocated in the group 934 * still has a free inode. 935 */ 936 goto alloc_inode; 937 } 938 } 939 } 940 941 /* 942 * None left in the last group, search the whole AG 943 */ 944 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 945 if (error) 946 goto error0; 947 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 948 949 for (;;) { 950 error = xfs_inobt_get_rec(cur, &rec, &i); 951 if (error) 952 goto error0; 953 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 954 if (rec.ir_freecount > 0) 955 break; 956 error = xfs_btree_increment(cur, 0, &i); 957 if (error) 958 goto error0; 959 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 960 } 961 962 alloc_inode: 963 offset = xfs_lowbit64(rec.ir_free); 964 ASSERT(offset >= 0); 965 ASSERT(offset < XFS_INODES_PER_CHUNK); 966 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 967 XFS_INODES_PER_CHUNK) == 0); 968 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 969 rec.ir_free &= ~XFS_INOBT_MASK(offset); 970 rec.ir_freecount--; 971 error = xfs_inobt_update(cur, &rec); 972 if (error) 973 goto error0; 974 be32_add_cpu(&agi->agi_freecount, -1); 975 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 976 pag->pagi_freecount--; 977 978 error = xfs_check_agi_freecount(cur, agi); 979 if (error) 980 goto error0; 981 982 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 983 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 984 xfs_perag_put(pag); 985 *inop = ino; 986 return 0; 987 error1: 988 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 989 error0: 990 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 991 xfs_perag_put(pag); 992 return error; 993 } 994 995 /* 996 * Use the free inode btree to allocate an inode based on distance from the 997 * parent. Note that the provided cursor may be deleted and replaced. 998 */ 999 STATIC int 1000 xfs_dialloc_ag_finobt_near( 1001 xfs_agino_t pagino, 1002 struct xfs_btree_cur **ocur, 1003 struct xfs_inobt_rec_incore *rec) 1004 { 1005 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1006 struct xfs_btree_cur *rcur; /* right search cursor */ 1007 struct xfs_inobt_rec_incore rrec; 1008 int error; 1009 int i, j; 1010 1011 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1012 if (error) 1013 return error; 1014 1015 if (i == 1) { 1016 error = xfs_inobt_get_rec(lcur, rec, &i); 1017 if (error) 1018 return error; 1019 XFS_WANT_CORRUPTED_RETURN(i == 1); 1020 1021 /* 1022 * See if we've landed in the parent inode record. The finobt 1023 * only tracks chunks with at least one free inode, so record 1024 * existence is enough. 1025 */ 1026 if (pagino >= rec->ir_startino && 1027 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1028 return 0; 1029 } 1030 1031 error = xfs_btree_dup_cursor(lcur, &rcur); 1032 if (error) 1033 return error; 1034 1035 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1036 if (error) 1037 goto error_rcur; 1038 if (j == 1) { 1039 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1040 if (error) 1041 goto error_rcur; 1042 XFS_WANT_CORRUPTED_GOTO(j == 1, error_rcur); 1043 } 1044 1045 XFS_WANT_CORRUPTED_GOTO(i == 1 || j == 1, error_rcur); 1046 if (i == 1 && j == 1) { 1047 /* 1048 * Both the left and right records are valid. Choose the closer 1049 * inode chunk to the target. 1050 */ 1051 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1052 (rrec.ir_startino - pagino)) { 1053 *rec = rrec; 1054 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1055 *ocur = rcur; 1056 } else { 1057 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1058 } 1059 } else if (j == 1) { 1060 /* only the right record is valid */ 1061 *rec = rrec; 1062 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1063 *ocur = rcur; 1064 } else if (i == 1) { 1065 /* only the left record is valid */ 1066 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1067 } 1068 1069 return 0; 1070 1071 error_rcur: 1072 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1073 return error; 1074 } 1075 1076 /* 1077 * Use the free inode btree to find a free inode based on a newino hint. If 1078 * the hint is NULL, find the first free inode in the AG. 1079 */ 1080 STATIC int 1081 xfs_dialloc_ag_finobt_newino( 1082 struct xfs_agi *agi, 1083 struct xfs_btree_cur *cur, 1084 struct xfs_inobt_rec_incore *rec) 1085 { 1086 int error; 1087 int i; 1088 1089 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1090 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1091 XFS_LOOKUP_EQ, &i); 1092 if (error) 1093 return error; 1094 if (i == 1) { 1095 error = xfs_inobt_get_rec(cur, rec, &i); 1096 if (error) 1097 return error; 1098 XFS_WANT_CORRUPTED_RETURN(i == 1); 1099 return 0; 1100 } 1101 } 1102 1103 /* 1104 * Find the first inode available in the AG. 1105 */ 1106 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1107 if (error) 1108 return error; 1109 XFS_WANT_CORRUPTED_RETURN(i == 1); 1110 1111 error = xfs_inobt_get_rec(cur, rec, &i); 1112 if (error) 1113 return error; 1114 XFS_WANT_CORRUPTED_RETURN(i == 1); 1115 1116 return 0; 1117 } 1118 1119 /* 1120 * Update the inobt based on a modification made to the finobt. Also ensure that 1121 * the records from both trees are equivalent post-modification. 1122 */ 1123 STATIC int 1124 xfs_dialloc_ag_update_inobt( 1125 struct xfs_btree_cur *cur, /* inobt cursor */ 1126 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1127 int offset) /* inode offset */ 1128 { 1129 struct xfs_inobt_rec_incore rec; 1130 int error; 1131 int i; 1132 1133 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1134 if (error) 1135 return error; 1136 XFS_WANT_CORRUPTED_RETURN(i == 1); 1137 1138 error = xfs_inobt_get_rec(cur, &rec, &i); 1139 if (error) 1140 return error; 1141 XFS_WANT_CORRUPTED_RETURN(i == 1); 1142 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1143 XFS_INODES_PER_CHUNK) == 0); 1144 1145 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1146 rec.ir_freecount--; 1147 1148 XFS_WANT_CORRUPTED_RETURN((rec.ir_free == frec->ir_free) && 1149 (rec.ir_freecount == frec->ir_freecount)); 1150 1151 return xfs_inobt_update(cur, &rec); 1152 } 1153 1154 /* 1155 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1156 * back to the inobt search algorithm. 1157 * 1158 * The caller selected an AG for us, and made sure that free inodes are 1159 * available. 1160 */ 1161 STATIC int 1162 xfs_dialloc_ag( 1163 struct xfs_trans *tp, 1164 struct xfs_buf *agbp, 1165 xfs_ino_t parent, 1166 xfs_ino_t *inop) 1167 { 1168 struct xfs_mount *mp = tp->t_mountp; 1169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1170 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1171 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1172 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1173 struct xfs_perag *pag; 1174 struct xfs_btree_cur *cur; /* finobt cursor */ 1175 struct xfs_btree_cur *icur; /* inobt cursor */ 1176 struct xfs_inobt_rec_incore rec; 1177 xfs_ino_t ino; 1178 int error; 1179 int offset; 1180 int i; 1181 1182 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1183 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1184 1185 pag = xfs_perag_get(mp, agno); 1186 1187 /* 1188 * If pagino is 0 (this is the root inode allocation) use newino. 1189 * This must work because we've just allocated some. 1190 */ 1191 if (!pagino) 1192 pagino = be32_to_cpu(agi->agi_newino); 1193 1194 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1195 1196 error = xfs_check_agi_freecount(cur, agi); 1197 if (error) 1198 goto error_cur; 1199 1200 /* 1201 * The search algorithm depends on whether we're in the same AG as the 1202 * parent. If so, find the closest available inode to the parent. If 1203 * not, consider the agi hint or find the first free inode in the AG. 1204 */ 1205 if (agno == pagno) 1206 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1207 else 1208 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1209 if (error) 1210 goto error_cur; 1211 1212 offset = xfs_lowbit64(rec.ir_free); 1213 ASSERT(offset >= 0); 1214 ASSERT(offset < XFS_INODES_PER_CHUNK); 1215 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1216 XFS_INODES_PER_CHUNK) == 0); 1217 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1218 1219 /* 1220 * Modify or remove the finobt record. 1221 */ 1222 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1223 rec.ir_freecount--; 1224 if (rec.ir_freecount) 1225 error = xfs_inobt_update(cur, &rec); 1226 else 1227 error = xfs_btree_delete(cur, &i); 1228 if (error) 1229 goto error_cur; 1230 1231 /* 1232 * The finobt has now been updated appropriately. We haven't updated the 1233 * agi and superblock yet, so we can create an inobt cursor and validate 1234 * the original freecount. If all is well, make the equivalent update to 1235 * the inobt using the finobt record and offset information. 1236 */ 1237 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1238 1239 error = xfs_check_agi_freecount(icur, agi); 1240 if (error) 1241 goto error_icur; 1242 1243 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1244 if (error) 1245 goto error_icur; 1246 1247 /* 1248 * Both trees have now been updated. We must update the perag and 1249 * superblock before we can check the freecount for each btree. 1250 */ 1251 be32_add_cpu(&agi->agi_freecount, -1); 1252 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1253 pag->pagi_freecount--; 1254 1255 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1256 1257 error = xfs_check_agi_freecount(icur, agi); 1258 if (error) 1259 goto error_icur; 1260 error = xfs_check_agi_freecount(cur, agi); 1261 if (error) 1262 goto error_icur; 1263 1264 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1265 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1266 xfs_perag_put(pag); 1267 *inop = ino; 1268 return 0; 1269 1270 error_icur: 1271 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1272 error_cur: 1273 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1274 xfs_perag_put(pag); 1275 return error; 1276 } 1277 1278 /* 1279 * Allocate an inode on disk. 1280 * 1281 * Mode is used to tell whether the new inode will need space, and whether it 1282 * is a directory. 1283 * 1284 * This function is designed to be called twice if it has to do an allocation 1285 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1286 * If an inode is available without having to performn an allocation, an inode 1287 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1288 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1289 * The caller should then commit the current transaction, allocate a 1290 * new transaction, and call xfs_dialloc() again, passing in the previous value 1291 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1292 * buffer is locked across the two calls, the second call is guaranteed to have 1293 * a free inode available. 1294 * 1295 * Once we successfully pick an inode its number is returned and the on-disk 1296 * data structures are updated. The inode itself is not read in, since doing so 1297 * would break ordering constraints with xfs_reclaim. 1298 */ 1299 int 1300 xfs_dialloc( 1301 struct xfs_trans *tp, 1302 xfs_ino_t parent, 1303 umode_t mode, 1304 int okalloc, 1305 struct xfs_buf **IO_agbp, 1306 xfs_ino_t *inop) 1307 { 1308 struct xfs_mount *mp = tp->t_mountp; 1309 struct xfs_buf *agbp; 1310 xfs_agnumber_t agno; 1311 int error; 1312 int ialloced; 1313 int noroom = 0; 1314 xfs_agnumber_t start_agno; 1315 struct xfs_perag *pag; 1316 1317 if (*IO_agbp) { 1318 /* 1319 * If the caller passes in a pointer to the AGI buffer, 1320 * continue where we left off before. In this case, we 1321 * know that the allocation group has free inodes. 1322 */ 1323 agbp = *IO_agbp; 1324 goto out_alloc; 1325 } 1326 1327 /* 1328 * We do not have an agbp, so select an initial allocation 1329 * group for inode allocation. 1330 */ 1331 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1332 if (start_agno == NULLAGNUMBER) { 1333 *inop = NULLFSINO; 1334 return 0; 1335 } 1336 1337 /* 1338 * If we have already hit the ceiling of inode blocks then clear 1339 * okalloc so we scan all available agi structures for a free 1340 * inode. 1341 */ 1342 if (mp->m_maxicount && 1343 mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) { 1344 noroom = 1; 1345 okalloc = 0; 1346 } 1347 1348 /* 1349 * Loop until we find an allocation group that either has free inodes 1350 * or in which we can allocate some inodes. Iterate through the 1351 * allocation groups upward, wrapping at the end. 1352 */ 1353 agno = start_agno; 1354 for (;;) { 1355 pag = xfs_perag_get(mp, agno); 1356 if (!pag->pagi_inodeok) { 1357 xfs_ialloc_next_ag(mp); 1358 goto nextag; 1359 } 1360 1361 if (!pag->pagi_init) { 1362 error = xfs_ialloc_pagi_init(mp, tp, agno); 1363 if (error) 1364 goto out_error; 1365 } 1366 1367 /* 1368 * Do a first racy fast path check if this AG is usable. 1369 */ 1370 if (!pag->pagi_freecount && !okalloc) 1371 goto nextag; 1372 1373 /* 1374 * Then read in the AGI buffer and recheck with the AGI buffer 1375 * lock held. 1376 */ 1377 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1378 if (error) 1379 goto out_error; 1380 1381 if (pag->pagi_freecount) { 1382 xfs_perag_put(pag); 1383 goto out_alloc; 1384 } 1385 1386 if (!okalloc) 1387 goto nextag_relse_buffer; 1388 1389 1390 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1391 if (error) { 1392 xfs_trans_brelse(tp, agbp); 1393 1394 if (error != -ENOSPC) 1395 goto out_error; 1396 1397 xfs_perag_put(pag); 1398 *inop = NULLFSINO; 1399 return 0; 1400 } 1401 1402 if (ialloced) { 1403 /* 1404 * We successfully allocated some inodes, return 1405 * the current context to the caller so that it 1406 * can commit the current transaction and call 1407 * us again where we left off. 1408 */ 1409 ASSERT(pag->pagi_freecount > 0); 1410 xfs_perag_put(pag); 1411 1412 *IO_agbp = agbp; 1413 *inop = NULLFSINO; 1414 return 0; 1415 } 1416 1417 nextag_relse_buffer: 1418 xfs_trans_brelse(tp, agbp); 1419 nextag: 1420 xfs_perag_put(pag); 1421 if (++agno == mp->m_sb.sb_agcount) 1422 agno = 0; 1423 if (agno == start_agno) { 1424 *inop = NULLFSINO; 1425 return noroom ? -ENOSPC : 0; 1426 } 1427 } 1428 1429 out_alloc: 1430 *IO_agbp = NULL; 1431 return xfs_dialloc_ag(tp, agbp, parent, inop); 1432 out_error: 1433 xfs_perag_put(pag); 1434 return error; 1435 } 1436 1437 STATIC int 1438 xfs_difree_inobt( 1439 struct xfs_mount *mp, 1440 struct xfs_trans *tp, 1441 struct xfs_buf *agbp, 1442 xfs_agino_t agino, 1443 struct xfs_bmap_free *flist, 1444 int *deleted, 1445 xfs_ino_t *first_ino, 1446 struct xfs_inobt_rec_incore *orec) 1447 { 1448 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1449 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1450 struct xfs_perag *pag; 1451 struct xfs_btree_cur *cur; 1452 struct xfs_inobt_rec_incore rec; 1453 int ilen; 1454 int error; 1455 int i; 1456 int off; 1457 1458 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1459 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1460 1461 /* 1462 * Initialize the cursor. 1463 */ 1464 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1465 1466 error = xfs_check_agi_freecount(cur, agi); 1467 if (error) 1468 goto error0; 1469 1470 /* 1471 * Look for the entry describing this inode. 1472 */ 1473 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1474 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1475 __func__, error); 1476 goto error0; 1477 } 1478 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1479 error = xfs_inobt_get_rec(cur, &rec, &i); 1480 if (error) { 1481 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1482 __func__, error); 1483 goto error0; 1484 } 1485 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1486 /* 1487 * Get the offset in the inode chunk. 1488 */ 1489 off = agino - rec.ir_startino; 1490 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1491 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1492 /* 1493 * Mark the inode free & increment the count. 1494 */ 1495 rec.ir_free |= XFS_INOBT_MASK(off); 1496 rec.ir_freecount++; 1497 1498 /* 1499 * When an inode cluster is free, it becomes eligible for removal 1500 */ 1501 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1502 (rec.ir_freecount == mp->m_ialloc_inos)) { 1503 1504 *deleted = 1; 1505 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1506 1507 /* 1508 * Remove the inode cluster from the AGI B+Tree, adjust the 1509 * AGI and Superblock inode counts, and mark the disk space 1510 * to be freed when the transaction is committed. 1511 */ 1512 ilen = mp->m_ialloc_inos; 1513 be32_add_cpu(&agi->agi_count, -ilen); 1514 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1515 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1516 pag = xfs_perag_get(mp, agno); 1517 pag->pagi_freecount -= ilen - 1; 1518 xfs_perag_put(pag); 1519 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1520 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1521 1522 if ((error = xfs_btree_delete(cur, &i))) { 1523 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1524 __func__, error); 1525 goto error0; 1526 } 1527 1528 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1529 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)), 1530 mp->m_ialloc_blks, flist, mp); 1531 } else { 1532 *deleted = 0; 1533 1534 error = xfs_inobt_update(cur, &rec); 1535 if (error) { 1536 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1537 __func__, error); 1538 goto error0; 1539 } 1540 1541 /* 1542 * Change the inode free counts and log the ag/sb changes. 1543 */ 1544 be32_add_cpu(&agi->agi_freecount, 1); 1545 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1546 pag = xfs_perag_get(mp, agno); 1547 pag->pagi_freecount++; 1548 xfs_perag_put(pag); 1549 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 1550 } 1551 1552 error = xfs_check_agi_freecount(cur, agi); 1553 if (error) 1554 goto error0; 1555 1556 *orec = rec; 1557 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1558 return 0; 1559 1560 error0: 1561 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1562 return error; 1563 } 1564 1565 /* 1566 * Free an inode in the free inode btree. 1567 */ 1568 STATIC int 1569 xfs_difree_finobt( 1570 struct xfs_mount *mp, 1571 struct xfs_trans *tp, 1572 struct xfs_buf *agbp, 1573 xfs_agino_t agino, 1574 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 1575 { 1576 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1577 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1578 struct xfs_btree_cur *cur; 1579 struct xfs_inobt_rec_incore rec; 1580 int offset = agino - ibtrec->ir_startino; 1581 int error; 1582 int i; 1583 1584 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1585 1586 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 1587 if (error) 1588 goto error; 1589 if (i == 0) { 1590 /* 1591 * If the record does not exist in the finobt, we must have just 1592 * freed an inode in a previously fully allocated chunk. If not, 1593 * something is out of sync. 1594 */ 1595 XFS_WANT_CORRUPTED_GOTO(ibtrec->ir_freecount == 1, error); 1596 1597 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount, 1598 ibtrec->ir_free, &i); 1599 if (error) 1600 goto error; 1601 ASSERT(i == 1); 1602 1603 goto out; 1604 } 1605 1606 /* 1607 * Read and update the existing record. We could just copy the ibtrec 1608 * across here, but that would defeat the purpose of having redundant 1609 * metadata. By making the modifications independently, we can catch 1610 * corruptions that we wouldn't see if we just copied from one record 1611 * to another. 1612 */ 1613 error = xfs_inobt_get_rec(cur, &rec, &i); 1614 if (error) 1615 goto error; 1616 XFS_WANT_CORRUPTED_GOTO(i == 1, error); 1617 1618 rec.ir_free |= XFS_INOBT_MASK(offset); 1619 rec.ir_freecount++; 1620 1621 XFS_WANT_CORRUPTED_GOTO((rec.ir_free == ibtrec->ir_free) && 1622 (rec.ir_freecount == ibtrec->ir_freecount), 1623 error); 1624 1625 /* 1626 * The content of inobt records should always match between the inobt 1627 * and finobt. The lifecycle of records in the finobt is different from 1628 * the inobt in that the finobt only tracks records with at least one 1629 * free inode. Hence, if all of the inodes are free and we aren't 1630 * keeping inode chunks permanently on disk, remove the record. 1631 * Otherwise, update the record with the new information. 1632 */ 1633 if (rec.ir_freecount == mp->m_ialloc_inos && 1634 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1635 error = xfs_btree_delete(cur, &i); 1636 if (error) 1637 goto error; 1638 ASSERT(i == 1); 1639 } else { 1640 error = xfs_inobt_update(cur, &rec); 1641 if (error) 1642 goto error; 1643 } 1644 1645 out: 1646 error = xfs_check_agi_freecount(cur, agi); 1647 if (error) 1648 goto error; 1649 1650 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1651 return 0; 1652 1653 error: 1654 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1655 return error; 1656 } 1657 1658 /* 1659 * Free disk inode. Carefully avoids touching the incore inode, all 1660 * manipulations incore are the caller's responsibility. 1661 * The on-disk inode is not changed by this operation, only the 1662 * btree (free inode mask) is changed. 1663 */ 1664 int 1665 xfs_difree( 1666 struct xfs_trans *tp, /* transaction pointer */ 1667 xfs_ino_t inode, /* inode to be freed */ 1668 struct xfs_bmap_free *flist, /* extents to free */ 1669 int *deleted,/* set if inode cluster was deleted */ 1670 xfs_ino_t *first_ino)/* first inode in deleted cluster */ 1671 { 1672 /* REFERENCED */ 1673 xfs_agblock_t agbno; /* block number containing inode */ 1674 struct xfs_buf *agbp; /* buffer for allocation group header */ 1675 xfs_agino_t agino; /* allocation group inode number */ 1676 xfs_agnumber_t agno; /* allocation group number */ 1677 int error; /* error return value */ 1678 struct xfs_mount *mp; /* mount structure for filesystem */ 1679 struct xfs_inobt_rec_incore rec;/* btree record */ 1680 1681 mp = tp->t_mountp; 1682 1683 /* 1684 * Break up inode number into its components. 1685 */ 1686 agno = XFS_INO_TO_AGNO(mp, inode); 1687 if (agno >= mp->m_sb.sb_agcount) { 1688 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 1689 __func__, agno, mp->m_sb.sb_agcount); 1690 ASSERT(0); 1691 return -EINVAL; 1692 } 1693 agino = XFS_INO_TO_AGINO(mp, inode); 1694 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 1695 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 1696 __func__, (unsigned long long)inode, 1697 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 1698 ASSERT(0); 1699 return -EINVAL; 1700 } 1701 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1702 if (agbno >= mp->m_sb.sb_agblocks) { 1703 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 1704 __func__, agbno, mp->m_sb.sb_agblocks); 1705 ASSERT(0); 1706 return -EINVAL; 1707 } 1708 /* 1709 * Get the allocation group header. 1710 */ 1711 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1712 if (error) { 1713 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 1714 __func__, error); 1715 return error; 1716 } 1717 1718 /* 1719 * Fix up the inode allocation btree. 1720 */ 1721 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino, 1722 &rec); 1723 if (error) 1724 goto error0; 1725 1726 /* 1727 * Fix up the free inode btree. 1728 */ 1729 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 1730 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 1731 if (error) 1732 goto error0; 1733 } 1734 1735 return 0; 1736 1737 error0: 1738 return error; 1739 } 1740 1741 STATIC int 1742 xfs_imap_lookup( 1743 struct xfs_mount *mp, 1744 struct xfs_trans *tp, 1745 xfs_agnumber_t agno, 1746 xfs_agino_t agino, 1747 xfs_agblock_t agbno, 1748 xfs_agblock_t *chunk_agbno, 1749 xfs_agblock_t *offset_agbno, 1750 int flags) 1751 { 1752 struct xfs_inobt_rec_incore rec; 1753 struct xfs_btree_cur *cur; 1754 struct xfs_buf *agbp; 1755 int error; 1756 int i; 1757 1758 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1759 if (error) { 1760 xfs_alert(mp, 1761 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 1762 __func__, error, agno); 1763 return error; 1764 } 1765 1766 /* 1767 * Lookup the inode record for the given agino. If the record cannot be 1768 * found, then it's an invalid inode number and we should abort. Once 1769 * we have a record, we need to ensure it contains the inode number 1770 * we are looking up. 1771 */ 1772 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1773 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 1774 if (!error) { 1775 if (i) 1776 error = xfs_inobt_get_rec(cur, &rec, &i); 1777 if (!error && i == 0) 1778 error = -EINVAL; 1779 } 1780 1781 xfs_trans_brelse(tp, agbp); 1782 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1783 if (error) 1784 return error; 1785 1786 /* check that the returned record contains the required inode */ 1787 if (rec.ir_startino > agino || 1788 rec.ir_startino + mp->m_ialloc_inos <= agino) 1789 return -EINVAL; 1790 1791 /* for untrusted inodes check it is allocated first */ 1792 if ((flags & XFS_IGET_UNTRUSTED) && 1793 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 1794 return -EINVAL; 1795 1796 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 1797 *offset_agbno = agbno - *chunk_agbno; 1798 return 0; 1799 } 1800 1801 /* 1802 * Return the location of the inode in imap, for mapping it into a buffer. 1803 */ 1804 int 1805 xfs_imap( 1806 xfs_mount_t *mp, /* file system mount structure */ 1807 xfs_trans_t *tp, /* transaction pointer */ 1808 xfs_ino_t ino, /* inode to locate */ 1809 struct xfs_imap *imap, /* location map structure */ 1810 uint flags) /* flags for inode btree lookup */ 1811 { 1812 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 1813 xfs_agino_t agino; /* inode number within alloc group */ 1814 xfs_agnumber_t agno; /* allocation group number */ 1815 int blks_per_cluster; /* num blocks per inode cluster */ 1816 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 1817 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 1818 int error; /* error code */ 1819 int offset; /* index of inode in its buffer */ 1820 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 1821 1822 ASSERT(ino != NULLFSINO); 1823 1824 /* 1825 * Split up the inode number into its parts. 1826 */ 1827 agno = XFS_INO_TO_AGNO(mp, ino); 1828 agino = XFS_INO_TO_AGINO(mp, ino); 1829 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1830 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 1831 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1832 #ifdef DEBUG 1833 /* 1834 * Don't output diagnostic information for untrusted inodes 1835 * as they can be invalid without implying corruption. 1836 */ 1837 if (flags & XFS_IGET_UNTRUSTED) 1838 return -EINVAL; 1839 if (agno >= mp->m_sb.sb_agcount) { 1840 xfs_alert(mp, 1841 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 1842 __func__, agno, mp->m_sb.sb_agcount); 1843 } 1844 if (agbno >= mp->m_sb.sb_agblocks) { 1845 xfs_alert(mp, 1846 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 1847 __func__, (unsigned long long)agbno, 1848 (unsigned long)mp->m_sb.sb_agblocks); 1849 } 1850 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1851 xfs_alert(mp, 1852 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 1853 __func__, ino, 1854 XFS_AGINO_TO_INO(mp, agno, agino)); 1855 } 1856 xfs_stack_trace(); 1857 #endif /* DEBUG */ 1858 return -EINVAL; 1859 } 1860 1861 blks_per_cluster = xfs_icluster_size_fsb(mp); 1862 1863 /* 1864 * For bulkstat and handle lookups, we have an untrusted inode number 1865 * that we have to verify is valid. We cannot do this just by reading 1866 * the inode buffer as it may have been unlinked and removed leaving 1867 * inodes in stale state on disk. Hence we have to do a btree lookup 1868 * in all cases where an untrusted inode number is passed. 1869 */ 1870 if (flags & XFS_IGET_UNTRUSTED) { 1871 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1872 &chunk_agbno, &offset_agbno, flags); 1873 if (error) 1874 return error; 1875 goto out_map; 1876 } 1877 1878 /* 1879 * If the inode cluster size is the same as the blocksize or 1880 * smaller we get to the buffer by simple arithmetics. 1881 */ 1882 if (blks_per_cluster == 1) { 1883 offset = XFS_INO_TO_OFFSET(mp, ino); 1884 ASSERT(offset < mp->m_sb.sb_inopblock); 1885 1886 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 1887 imap->im_len = XFS_FSB_TO_BB(mp, 1); 1888 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1889 return 0; 1890 } 1891 1892 /* 1893 * If the inode chunks are aligned then use simple maths to 1894 * find the location. Otherwise we have to do a btree 1895 * lookup to find the location. 1896 */ 1897 if (mp->m_inoalign_mask) { 1898 offset_agbno = agbno & mp->m_inoalign_mask; 1899 chunk_agbno = agbno - offset_agbno; 1900 } else { 1901 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1902 &chunk_agbno, &offset_agbno, flags); 1903 if (error) 1904 return error; 1905 } 1906 1907 out_map: 1908 ASSERT(agbno >= chunk_agbno); 1909 cluster_agbno = chunk_agbno + 1910 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 1911 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 1912 XFS_INO_TO_OFFSET(mp, ino); 1913 1914 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 1915 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 1916 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1917 1918 /* 1919 * If the inode number maps to a block outside the bounds 1920 * of the file system then return NULL rather than calling 1921 * read_buf and panicing when we get an error from the 1922 * driver. 1923 */ 1924 if ((imap->im_blkno + imap->im_len) > 1925 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 1926 xfs_alert(mp, 1927 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 1928 __func__, (unsigned long long) imap->im_blkno, 1929 (unsigned long long) imap->im_len, 1930 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 1931 return -EINVAL; 1932 } 1933 return 0; 1934 } 1935 1936 /* 1937 * Compute and fill in value of m_in_maxlevels. 1938 */ 1939 void 1940 xfs_ialloc_compute_maxlevels( 1941 xfs_mount_t *mp) /* file system mount structure */ 1942 { 1943 int level; 1944 uint maxblocks; 1945 uint maxleafents; 1946 int minleafrecs; 1947 int minnoderecs; 1948 1949 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 1950 XFS_INODES_PER_CHUNK_LOG; 1951 minleafrecs = mp->m_alloc_mnr[0]; 1952 minnoderecs = mp->m_alloc_mnr[1]; 1953 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 1954 for (level = 1; maxblocks > 1; level++) 1955 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 1956 mp->m_in_maxlevels = level; 1957 } 1958 1959 /* 1960 * Log specified fields for the ag hdr (inode section). The growth of the agi 1961 * structure over time requires that we interpret the buffer as two logical 1962 * regions delineated by the end of the unlinked list. This is due to the size 1963 * of the hash table and its location in the middle of the agi. 1964 * 1965 * For example, a request to log a field before agi_unlinked and a field after 1966 * agi_unlinked could cause us to log the entire hash table and use an excessive 1967 * amount of log space. To avoid this behavior, log the region up through 1968 * agi_unlinked in one call and the region after agi_unlinked through the end of 1969 * the structure in another. 1970 */ 1971 void 1972 xfs_ialloc_log_agi( 1973 xfs_trans_t *tp, /* transaction pointer */ 1974 xfs_buf_t *bp, /* allocation group header buffer */ 1975 int fields) /* bitmask of fields to log */ 1976 { 1977 int first; /* first byte number */ 1978 int last; /* last byte number */ 1979 static const short offsets[] = { /* field starting offsets */ 1980 /* keep in sync with bit definitions */ 1981 offsetof(xfs_agi_t, agi_magicnum), 1982 offsetof(xfs_agi_t, agi_versionnum), 1983 offsetof(xfs_agi_t, agi_seqno), 1984 offsetof(xfs_agi_t, agi_length), 1985 offsetof(xfs_agi_t, agi_count), 1986 offsetof(xfs_agi_t, agi_root), 1987 offsetof(xfs_agi_t, agi_level), 1988 offsetof(xfs_agi_t, agi_freecount), 1989 offsetof(xfs_agi_t, agi_newino), 1990 offsetof(xfs_agi_t, agi_dirino), 1991 offsetof(xfs_agi_t, agi_unlinked), 1992 offsetof(xfs_agi_t, agi_free_root), 1993 offsetof(xfs_agi_t, agi_free_level), 1994 sizeof(xfs_agi_t) 1995 }; 1996 #ifdef DEBUG 1997 xfs_agi_t *agi; /* allocation group header */ 1998 1999 agi = XFS_BUF_TO_AGI(bp); 2000 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2001 #endif 2002 2003 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 2004 2005 /* 2006 * Compute byte offsets for the first and last fields in the first 2007 * region and log the agi buffer. This only logs up through 2008 * agi_unlinked. 2009 */ 2010 if (fields & XFS_AGI_ALL_BITS_R1) { 2011 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2012 &first, &last); 2013 xfs_trans_log_buf(tp, bp, first, last); 2014 } 2015 2016 /* 2017 * Mask off the bits in the first region and calculate the first and 2018 * last field offsets for any bits in the second region. 2019 */ 2020 fields &= ~XFS_AGI_ALL_BITS_R1; 2021 if (fields) { 2022 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2023 &first, &last); 2024 xfs_trans_log_buf(tp, bp, first, last); 2025 } 2026 } 2027 2028 #ifdef DEBUG 2029 STATIC void 2030 xfs_check_agi_unlinked( 2031 struct xfs_agi *agi) 2032 { 2033 int i; 2034 2035 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2036 ASSERT(agi->agi_unlinked[i]); 2037 } 2038 #else 2039 #define xfs_check_agi_unlinked(agi) 2040 #endif 2041 2042 static bool 2043 xfs_agi_verify( 2044 struct xfs_buf *bp) 2045 { 2046 struct xfs_mount *mp = bp->b_target->bt_mount; 2047 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2048 2049 if (xfs_sb_version_hascrc(&mp->m_sb) && 2050 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid)) 2051 return false; 2052 /* 2053 * Validate the magic number of the agi block. 2054 */ 2055 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2056 return false; 2057 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2058 return false; 2059 2060 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2061 return false; 2062 /* 2063 * during growfs operations, the perag is not fully initialised, 2064 * so we can't use it for any useful checking. growfs ensures we can't 2065 * use it by using uncached buffers that don't have the perag attached 2066 * so we can detect and avoid this problem. 2067 */ 2068 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2069 return false; 2070 2071 xfs_check_agi_unlinked(agi); 2072 return true; 2073 } 2074 2075 static void 2076 xfs_agi_read_verify( 2077 struct xfs_buf *bp) 2078 { 2079 struct xfs_mount *mp = bp->b_target->bt_mount; 2080 2081 if (xfs_sb_version_hascrc(&mp->m_sb) && 2082 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2083 xfs_buf_ioerror(bp, -EFSBADCRC); 2084 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2085 XFS_ERRTAG_IALLOC_READ_AGI, 2086 XFS_RANDOM_IALLOC_READ_AGI)) 2087 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2088 2089 if (bp->b_error) 2090 xfs_verifier_error(bp); 2091 } 2092 2093 static void 2094 xfs_agi_write_verify( 2095 struct xfs_buf *bp) 2096 { 2097 struct xfs_mount *mp = bp->b_target->bt_mount; 2098 struct xfs_buf_log_item *bip = bp->b_fspriv; 2099 2100 if (!xfs_agi_verify(bp)) { 2101 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2102 xfs_verifier_error(bp); 2103 return; 2104 } 2105 2106 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2107 return; 2108 2109 if (bip) 2110 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2111 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2112 } 2113 2114 const struct xfs_buf_ops xfs_agi_buf_ops = { 2115 .verify_read = xfs_agi_read_verify, 2116 .verify_write = xfs_agi_write_verify, 2117 }; 2118 2119 /* 2120 * Read in the allocation group header (inode allocation section) 2121 */ 2122 int 2123 xfs_read_agi( 2124 struct xfs_mount *mp, /* file system mount structure */ 2125 struct xfs_trans *tp, /* transaction pointer */ 2126 xfs_agnumber_t agno, /* allocation group number */ 2127 struct xfs_buf **bpp) /* allocation group hdr buf */ 2128 { 2129 int error; 2130 2131 trace_xfs_read_agi(mp, agno); 2132 2133 ASSERT(agno != NULLAGNUMBER); 2134 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2135 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2136 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2137 if (error) 2138 return error; 2139 2140 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2141 return 0; 2142 } 2143 2144 int 2145 xfs_ialloc_read_agi( 2146 struct xfs_mount *mp, /* file system mount structure */ 2147 struct xfs_trans *tp, /* transaction pointer */ 2148 xfs_agnumber_t agno, /* allocation group number */ 2149 struct xfs_buf **bpp) /* allocation group hdr buf */ 2150 { 2151 struct xfs_agi *agi; /* allocation group header */ 2152 struct xfs_perag *pag; /* per allocation group data */ 2153 int error; 2154 2155 trace_xfs_ialloc_read_agi(mp, agno); 2156 2157 error = xfs_read_agi(mp, tp, agno, bpp); 2158 if (error) 2159 return error; 2160 2161 agi = XFS_BUF_TO_AGI(*bpp); 2162 pag = xfs_perag_get(mp, agno); 2163 if (!pag->pagi_init) { 2164 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2165 pag->pagi_count = be32_to_cpu(agi->agi_count); 2166 pag->pagi_init = 1; 2167 } 2168 2169 /* 2170 * It's possible for these to be out of sync if 2171 * we are in the middle of a forced shutdown. 2172 */ 2173 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2174 XFS_FORCED_SHUTDOWN(mp)); 2175 xfs_perag_put(pag); 2176 return 0; 2177 } 2178 2179 /* 2180 * Read in the agi to initialise the per-ag data in the mount structure 2181 */ 2182 int 2183 xfs_ialloc_pagi_init( 2184 xfs_mount_t *mp, /* file system mount structure */ 2185 xfs_trans_t *tp, /* transaction pointer */ 2186 xfs_agnumber_t agno) /* allocation group number */ 2187 { 2188 xfs_buf_t *bp = NULL; 2189 int error; 2190 2191 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2192 if (error) 2193 return error; 2194 if (bp) 2195 xfs_trans_brelse(tp, bp); 2196 return 0; 2197 } 2198