xref: /linux/fs/xfs/libxfs/xfs_ialloc.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 #include "xfs_health.h"
31 
32 /*
33  * Lookup a record by ino in the btree given by cur.
34  */
35 int					/* error */
36 xfs_inobt_lookup(
37 	struct xfs_btree_cur	*cur,	/* btree cursor */
38 	xfs_agino_t		ino,	/* starting inode of chunk */
39 	xfs_lookup_t		dir,	/* <=, >=, == */
40 	int			*stat)	/* success/failure */
41 {
42 	cur->bc_rec.i.ir_startino = ino;
43 	cur->bc_rec.i.ir_holemask = 0;
44 	cur->bc_rec.i.ir_count = 0;
45 	cur->bc_rec.i.ir_freecount = 0;
46 	cur->bc_rec.i.ir_free = 0;
47 	return xfs_btree_lookup(cur, dir, stat);
48 }
49 
50 /*
51  * Update the record referred to by cur to the value given.
52  * This either works (return 0) or gets an EFSCORRUPTED error.
53  */
54 STATIC int				/* error */
55 xfs_inobt_update(
56 	struct xfs_btree_cur	*cur,	/* btree cursor */
57 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
58 {
59 	union xfs_btree_rec	rec;
60 
61 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 	if (xfs_has_sparseinodes(cur->bc_mp)) {
63 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 	} else {
67 		/* ir_holemask/ir_count not supported on-disk */
68 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 	}
70 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 	return xfs_btree_update(cur, &rec);
72 }
73 
74 /* Convert on-disk btree record to incore inobt record. */
75 void
76 xfs_inobt_btrec_to_irec(
77 	struct xfs_mount		*mp,
78 	const union xfs_btree_rec	*rec,
79 	struct xfs_inobt_rec_incore	*irec)
80 {
81 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 	if (xfs_has_sparseinodes(mp)) {
83 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 	} else {
87 		/*
88 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 		 * values for full inode chunks.
90 		 */
91 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 		irec->ir_count = XFS_INODES_PER_CHUNK;
93 		irec->ir_freecount =
94 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 	}
96 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97 }
98 
99 /* Compute the freecount of an incore inode record. */
100 uint8_t
101 xfs_inobt_rec_freecount(
102 	const struct xfs_inobt_rec_incore	*irec)
103 {
104 	uint64_t				realfree = irec->ir_free;
105 
106 	if (xfs_inobt_issparse(irec->ir_holemask))
107 		realfree &= xfs_inobt_irec_to_allocmask(irec);
108 	return hweight64(realfree);
109 }
110 
111 /* Simple checks for inode records. */
112 xfs_failaddr_t
113 xfs_inobt_check_irec(
114 	struct xfs_perag			*pag,
115 	const struct xfs_inobt_rec_incore	*irec)
116 {
117 	/* Record has to be properly aligned within the AG. */
118 	if (!xfs_verify_agino(pag, irec->ir_startino))
119 		return __this_address;
120 	if (!xfs_verify_agino(pag,
121 				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 		return __this_address;
123 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 	    irec->ir_count > XFS_INODES_PER_CHUNK)
125 		return __this_address;
126 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 		return __this_address;
128 
129 	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 		return __this_address;
131 
132 	return NULL;
133 }
134 
135 static inline int
136 xfs_inobt_complain_bad_rec(
137 	struct xfs_btree_cur		*cur,
138 	xfs_failaddr_t			fa,
139 	const struct xfs_inobt_rec_incore *irec)
140 {
141 	struct xfs_mount		*mp = cur->bc_mp;
142 
143 	xfs_warn(mp,
144 		"%sbt record corruption in AG %d detected at %pS!",
145 		cur->bc_ops->name, cur->bc_group->xg_gno, fa);
146 	xfs_warn(mp,
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 		irec->ir_free, irec->ir_holemask);
150 	xfs_btree_mark_sick(cur);
151 	return -EFSCORRUPTED;
152 }
153 
154 /*
155  * Get the data from the pointed-to record.
156  */
157 int
158 xfs_inobt_get_rec(
159 	struct xfs_btree_cur		*cur,
160 	struct xfs_inobt_rec_incore	*irec,
161 	int				*stat)
162 {
163 	struct xfs_mount		*mp = cur->bc_mp;
164 	union xfs_btree_rec		*rec;
165 	xfs_failaddr_t			fa;
166 	int				error;
167 
168 	error = xfs_btree_get_rec(cur, &rec, stat);
169 	if (error || *stat == 0)
170 		return error;
171 
172 	xfs_inobt_btrec_to_irec(mp, rec, irec);
173 	fa = xfs_inobt_check_irec(to_perag(cur->bc_group), irec);
174 	if (fa)
175 		return xfs_inobt_complain_bad_rec(cur, fa, irec);
176 
177 	return 0;
178 }
179 
180 /*
181  * Insert a single inobt record. Cursor must already point to desired location.
182  */
183 int
184 xfs_inobt_insert_rec(
185 	struct xfs_btree_cur	*cur,
186 	uint16_t		holemask,
187 	uint8_t			count,
188 	int32_t			freecount,
189 	xfs_inofree_t		free,
190 	int			*stat)
191 {
192 	cur->bc_rec.i.ir_holemask = holemask;
193 	cur->bc_rec.i.ir_count = count;
194 	cur->bc_rec.i.ir_freecount = freecount;
195 	cur->bc_rec.i.ir_free = free;
196 	return xfs_btree_insert(cur, stat);
197 }
198 
199 /*
200  * Insert records describing a newly allocated inode chunk into the inobt.
201  */
202 STATIC int
203 xfs_inobt_insert(
204 	struct xfs_perag	*pag,
205 	struct xfs_trans	*tp,
206 	struct xfs_buf		*agbp,
207 	xfs_agino_t		newino,
208 	xfs_agino_t		newlen,
209 	bool			is_finobt)
210 {
211 	struct xfs_btree_cur	*cur;
212 	xfs_agino_t		thisino;
213 	int			i;
214 	int			error;
215 
216 	if (is_finobt)
217 		cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 	else
219 		cur = xfs_inobt_init_cursor(pag, tp, agbp);
220 
221 	for (thisino = newino;
222 	     thisino < newino + newlen;
223 	     thisino += XFS_INODES_PER_CHUNK) {
224 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 		if (error) {
226 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 			return error;
228 		}
229 		ASSERT(i == 0);
230 
231 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 					     XFS_INODES_PER_CHUNK,
233 					     XFS_INODES_PER_CHUNK,
234 					     XFS_INOBT_ALL_FREE, &i);
235 		if (error) {
236 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 			return error;
238 		}
239 		ASSERT(i == 1);
240 	}
241 
242 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243 
244 	return 0;
245 }
246 
247 /*
248  * Verify that the number of free inodes in the AGI is correct.
249  */
250 #ifdef DEBUG
251 static int
252 xfs_check_agi_freecount(
253 	struct xfs_btree_cur	*cur)
254 {
255 	if (cur->bc_nlevels == 1) {
256 		xfs_inobt_rec_incore_t rec;
257 		int		freecount = 0;
258 		int		error;
259 		int		i;
260 
261 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 		if (error)
263 			return error;
264 
265 		do {
266 			error = xfs_inobt_get_rec(cur, &rec, &i);
267 			if (error)
268 				return error;
269 
270 			if (i) {
271 				freecount += rec.ir_freecount;
272 				error = xfs_btree_increment(cur, 0, &i);
273 				if (error)
274 					return error;
275 			}
276 		} while (i == 1);
277 
278 		if (!xfs_is_shutdown(cur->bc_mp)) {
279 			ASSERT(freecount ==
280 				to_perag(cur->bc_group)->pagi_freecount);
281 		}
282 	}
283 	return 0;
284 }
285 #else
286 #define xfs_check_agi_freecount(cur)	0
287 #endif
288 
289 /*
290  * Initialise a new set of inodes. When called without a transaction context
291  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
292  * than logging them (which in a transaction context puts them into the AIL
293  * for writeback rather than the xfsbufd queue).
294  */
295 int
296 xfs_ialloc_inode_init(
297 	struct xfs_mount	*mp,
298 	struct xfs_trans	*tp,
299 	struct list_head	*buffer_list,
300 	int			icount,
301 	xfs_agnumber_t		agno,
302 	xfs_agblock_t		agbno,
303 	xfs_agblock_t		length,
304 	unsigned int		gen)
305 {
306 	struct xfs_buf		*fbuf;
307 	struct xfs_dinode	*free;
308 	int			nbufs;
309 	int			version;
310 	int			i, j;
311 	xfs_daddr_t		d;
312 	xfs_ino_t		ino = 0;
313 	int			error;
314 
315 	/*
316 	 * Loop over the new block(s), filling in the inodes.  For small block
317 	 * sizes, manipulate the inodes in buffers  which are multiples of the
318 	 * blocks size.
319 	 */
320 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
321 
322 	/*
323 	 * Figure out what version number to use in the inodes we create.  If
324 	 * the superblock version has caught up to the one that supports the new
325 	 * inode format, then use the new inode version.  Otherwise use the old
326 	 * version so that old kernels will continue to be able to use the file
327 	 * system.
328 	 *
329 	 * For v3 inodes, we also need to write the inode number into the inode,
330 	 * so calculate the first inode number of the chunk here as
331 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
332 	 * across multiple filesystem blocks (such as a cluster) and so cannot
333 	 * be used in the cluster buffer loop below.
334 	 *
335 	 * Further, because we are writing the inode directly into the buffer
336 	 * and calculating a CRC on the entire inode, we have ot log the entire
337 	 * inode so that the entire range the CRC covers is present in the log.
338 	 * That means for v3 inode we log the entire buffer rather than just the
339 	 * inode cores.
340 	 */
341 	if (xfs_has_v3inodes(mp)) {
342 		version = 3;
343 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
344 
345 		/*
346 		 * log the initialisation that is about to take place as an
347 		 * logical operation. This means the transaction does not
348 		 * need to log the physical changes to the inode buffers as log
349 		 * recovery will know what initialisation is actually needed.
350 		 * Hence we only need to log the buffers as "ordered" buffers so
351 		 * they track in the AIL as if they were physically logged.
352 		 */
353 		if (tp)
354 			xfs_icreate_log(tp, agno, agbno, icount,
355 					mp->m_sb.sb_inodesize, length, gen);
356 	} else
357 		version = 2;
358 
359 	for (j = 0; j < nbufs; j++) {
360 		/*
361 		 * Get the block.
362 		 */
363 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
364 				(j * M_IGEO(mp)->blocks_per_cluster));
365 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
366 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
367 				XBF_UNMAPPED, &fbuf);
368 		if (error)
369 			return error;
370 
371 		/* Initialize the inode buffers and log them appropriately. */
372 		fbuf->b_ops = &xfs_inode_buf_ops;
373 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
374 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
375 			int	ioffset = i << mp->m_sb.sb_inodelog;
376 
377 			free = xfs_make_iptr(mp, fbuf, i);
378 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
379 			free->di_version = version;
380 			free->di_gen = cpu_to_be32(gen);
381 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
382 
383 			if (version == 3) {
384 				free->di_ino = cpu_to_be64(ino);
385 				ino++;
386 				uuid_copy(&free->di_uuid,
387 					  &mp->m_sb.sb_meta_uuid);
388 				xfs_dinode_calc_crc(mp, free);
389 			} else if (tp) {
390 				/* just log the inode core */
391 				xfs_trans_log_buf(tp, fbuf, ioffset,
392 					  ioffset + XFS_DINODE_SIZE(mp) - 1);
393 			}
394 		}
395 
396 		if (tp) {
397 			/*
398 			 * Mark the buffer as an inode allocation buffer so it
399 			 * sticks in AIL at the point of this allocation
400 			 * transaction. This ensures the they are on disk before
401 			 * the tail of the log can be moved past this
402 			 * transaction (i.e. by preventing relogging from moving
403 			 * it forward in the log).
404 			 */
405 			xfs_trans_inode_alloc_buf(tp, fbuf);
406 			if (version == 3) {
407 				/*
408 				 * Mark the buffer as ordered so that they are
409 				 * not physically logged in the transaction but
410 				 * still tracked in the AIL as part of the
411 				 * transaction and pin the log appropriately.
412 				 */
413 				xfs_trans_ordered_buf(tp, fbuf);
414 			}
415 		} else {
416 			fbuf->b_flags |= XBF_DONE;
417 			xfs_buf_delwri_queue(fbuf, buffer_list);
418 			xfs_buf_relse(fbuf);
419 		}
420 	}
421 	return 0;
422 }
423 
424 /*
425  * Align startino and allocmask for a recently allocated sparse chunk such that
426  * they are fit for insertion (or merge) into the on-disk inode btrees.
427  *
428  * Background:
429  *
430  * When enabled, sparse inode support increases the inode alignment from cluster
431  * size to inode chunk size. This means that the minimum range between two
432  * non-adjacent inode records in the inobt is large enough for a full inode
433  * record. This allows for cluster sized, cluster aligned block allocation
434  * without need to worry about whether the resulting inode record overlaps with
435  * another record in the tree. Without this basic rule, we would have to deal
436  * with the consequences of overlap by potentially undoing recent allocations in
437  * the inode allocation codepath.
438  *
439  * Because of this alignment rule (which is enforced on mount), there are two
440  * inobt possibilities for newly allocated sparse chunks. One is that the
441  * aligned inode record for the chunk covers a range of inodes not already
442  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
443  * other is that a record already exists at the aligned startino that considers
444  * the newly allocated range as sparse. In the latter case, record content is
445  * merged in hope that sparse inode chunks fill to full chunks over time.
446  */
447 STATIC void
448 xfs_align_sparse_ino(
449 	struct xfs_mount		*mp,
450 	xfs_agino_t			*startino,
451 	uint16_t			*allocmask)
452 {
453 	xfs_agblock_t			agbno;
454 	xfs_agblock_t			mod;
455 	int				offset;
456 
457 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
458 	mod = agbno % mp->m_sb.sb_inoalignmt;
459 	if (!mod)
460 		return;
461 
462 	/* calculate the inode offset and align startino */
463 	offset = XFS_AGB_TO_AGINO(mp, mod);
464 	*startino -= offset;
465 
466 	/*
467 	 * Since startino has been aligned down, left shift allocmask such that
468 	 * it continues to represent the same physical inodes relative to the
469 	 * new startino.
470 	 */
471 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
472 }
473 
474 /*
475  * Determine whether the source inode record can merge into the target. Both
476  * records must be sparse, the inode ranges must match and there must be no
477  * allocation overlap between the records.
478  */
479 STATIC bool
480 __xfs_inobt_can_merge(
481 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
482 	struct xfs_inobt_rec_incore	*srec)	/* src record */
483 {
484 	uint64_t			talloc;
485 	uint64_t			salloc;
486 
487 	/* records must cover the same inode range */
488 	if (trec->ir_startino != srec->ir_startino)
489 		return false;
490 
491 	/* both records must be sparse */
492 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
493 	    !xfs_inobt_issparse(srec->ir_holemask))
494 		return false;
495 
496 	/* both records must track some inodes */
497 	if (!trec->ir_count || !srec->ir_count)
498 		return false;
499 
500 	/* can't exceed capacity of a full record */
501 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
502 		return false;
503 
504 	/* verify there is no allocation overlap */
505 	talloc = xfs_inobt_irec_to_allocmask(trec);
506 	salloc = xfs_inobt_irec_to_allocmask(srec);
507 	if (talloc & salloc)
508 		return false;
509 
510 	return true;
511 }
512 
513 /*
514  * Merge the source inode record into the target. The caller must call
515  * __xfs_inobt_can_merge() to ensure the merge is valid.
516  */
517 STATIC void
518 __xfs_inobt_rec_merge(
519 	struct xfs_inobt_rec_incore	*trec,	/* target */
520 	struct xfs_inobt_rec_incore	*srec)	/* src */
521 {
522 	ASSERT(trec->ir_startino == srec->ir_startino);
523 
524 	/* combine the counts */
525 	trec->ir_count += srec->ir_count;
526 	trec->ir_freecount += srec->ir_freecount;
527 
528 	/*
529 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
530 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
531 	 */
532 	trec->ir_holemask &= srec->ir_holemask;
533 	trec->ir_free &= srec->ir_free;
534 }
535 
536 /*
537  * Insert a new sparse inode chunk into the associated inode allocation btree.
538  * The inode record for the sparse chunk is pre-aligned to a startino that
539  * should match any pre-existing sparse inode record in the tree. This allows
540  * sparse chunks to fill over time.
541  *
542  * If no preexisting record exists, the provided record is inserted.
543  * If there is a preexisting record, the provided record is merged with the
544  * existing record and updated in place. The merged record is returned in nrec.
545  *
546  * It is considered corruption if a merge is requested and not possible. Given
547  * the sparse inode alignment constraints, this should never happen.
548  */
549 STATIC int
550 xfs_inobt_insert_sprec(
551 	struct xfs_perag		*pag,
552 	struct xfs_trans		*tp,
553 	struct xfs_buf			*agbp,
554 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
555 {
556 	struct xfs_mount		*mp = pag_mount(pag);
557 	struct xfs_btree_cur		*cur;
558 	int				error;
559 	int				i;
560 	struct xfs_inobt_rec_incore	rec;
561 
562 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
563 
564 	/* the new record is pre-aligned so we know where to look */
565 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
566 	if (error)
567 		goto error;
568 	/* if nothing there, insert a new record and return */
569 	if (i == 0) {
570 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
571 					     nrec->ir_count, nrec->ir_freecount,
572 					     nrec->ir_free, &i);
573 		if (error)
574 			goto error;
575 		if (XFS_IS_CORRUPT(mp, i != 1)) {
576 			xfs_btree_mark_sick(cur);
577 			error = -EFSCORRUPTED;
578 			goto error;
579 		}
580 
581 		goto out;
582 	}
583 
584 	/*
585 	 * A record exists at this startino.  Merge the records.
586 	 */
587 	error = xfs_inobt_get_rec(cur, &rec, &i);
588 	if (error)
589 		goto error;
590 	if (XFS_IS_CORRUPT(mp, i != 1)) {
591 		xfs_btree_mark_sick(cur);
592 		error = -EFSCORRUPTED;
593 		goto error;
594 	}
595 	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
596 		xfs_btree_mark_sick(cur);
597 		error = -EFSCORRUPTED;
598 		goto error;
599 	}
600 
601 	/*
602 	 * This should never fail. If we have coexisting records that
603 	 * cannot merge, something is seriously wrong.
604 	 */
605 	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
606 		xfs_btree_mark_sick(cur);
607 		error = -EFSCORRUPTED;
608 		goto error;
609 	}
610 
611 	trace_xfs_irec_merge_pre(pag, &rec, nrec);
612 
613 	/* merge to nrec to output the updated record */
614 	__xfs_inobt_rec_merge(nrec, &rec);
615 
616 	trace_xfs_irec_merge_post(pag, nrec);
617 
618 	error = xfs_inobt_rec_check_count(mp, nrec);
619 	if (error)
620 		goto error;
621 
622 	error = xfs_inobt_update(cur, nrec);
623 	if (error)
624 		goto error;
625 
626 out:
627 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 	return 0;
629 error:
630 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 	return error;
632 }
633 
634 /*
635  * Insert a new sparse inode chunk into the free inode btree. The inode
636  * record for the sparse chunk is pre-aligned to a startino that should match
637  * any pre-existing sparse inode record in the tree. This allows sparse chunks
638  * to fill over time.
639  *
640  * The new record is always inserted, overwriting a pre-existing record if
641  * there is one.
642  */
643 STATIC int
644 xfs_finobt_insert_sprec(
645 	struct xfs_perag		*pag,
646 	struct xfs_trans		*tp,
647 	struct xfs_buf			*agbp,
648 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
649 {
650 	struct xfs_mount		*mp = pag_mount(pag);
651 	struct xfs_btree_cur		*cur;
652 	int				error;
653 	int				i;
654 
655 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
656 
657 	/* the new record is pre-aligned so we know where to look */
658 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
659 	if (error)
660 		goto error;
661 	/* if nothing there, insert a new record and return */
662 	if (i == 0) {
663 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
664 					     nrec->ir_count, nrec->ir_freecount,
665 					     nrec->ir_free, &i);
666 		if (error)
667 			goto error;
668 		if (XFS_IS_CORRUPT(mp, i != 1)) {
669 			xfs_btree_mark_sick(cur);
670 			error = -EFSCORRUPTED;
671 			goto error;
672 		}
673 	} else {
674 		error = xfs_inobt_update(cur, nrec);
675 		if (error)
676 			goto error;
677 	}
678 
679 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
680 	return 0;
681 error:
682 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
683 	return error;
684 }
685 
686 
687 /*
688  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
689  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
690  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
691  * inode count threshold, or the usual negative error code for other errors.
692  */
693 STATIC int
694 xfs_ialloc_ag_alloc(
695 	struct xfs_perag	*pag,
696 	struct xfs_trans	*tp,
697 	struct xfs_buf		*agbp)
698 {
699 	struct xfs_agi		*agi;
700 	struct xfs_alloc_arg	args;
701 	int			error;
702 	xfs_agino_t		newino;		/* new first inode's number */
703 	xfs_agino_t		newlen;		/* new number of inodes */
704 	int			isaligned = 0;	/* inode allocation at stripe */
705 						/* unit boundary */
706 	/* init. to full chunk */
707 	struct xfs_inobt_rec_incore rec;
708 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
709 	uint16_t		allocmask = (uint16_t) -1;
710 	int			do_sparse = 0;
711 
712 	memset(&args, 0, sizeof(args));
713 	args.tp = tp;
714 	args.mp = tp->t_mountp;
715 	args.fsbno = NULLFSBLOCK;
716 	args.oinfo = XFS_RMAP_OINFO_INODES;
717 	args.pag = pag;
718 
719 #ifdef DEBUG
720 	/* randomly do sparse inode allocations */
721 	if (xfs_has_sparseinodes(tp->t_mountp) &&
722 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
723 		do_sparse = get_random_u32_below(2);
724 #endif
725 
726 	/*
727 	 * Locking will ensure that we don't have two callers in here
728 	 * at one time.
729 	 */
730 	newlen = igeo->ialloc_inos;
731 	if (igeo->maxicount &&
732 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
733 							igeo->maxicount)
734 		return -ENOSPC;
735 	args.minlen = args.maxlen = igeo->ialloc_blks;
736 	/*
737 	 * First try to allocate inodes contiguous with the last-allocated
738 	 * chunk of inodes.  If the filesystem is striped, this will fill
739 	 * an entire stripe unit with inodes.
740 	 */
741 	agi = agbp->b_addr;
742 	newino = be32_to_cpu(agi->agi_newino);
743 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
744 		     igeo->ialloc_blks;
745 	if (do_sparse)
746 		goto sparse_alloc;
747 	if (likely(newino != NULLAGINO &&
748 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
749 		args.prod = 1;
750 
751 		/*
752 		 * We need to take into account alignment here to ensure that
753 		 * we don't modify the free list if we fail to have an exact
754 		 * block. If we don't have an exact match, and every oher
755 		 * attempt allocation attempt fails, we'll end up cancelling
756 		 * a dirty transaction and shutting down.
757 		 *
758 		 * For an exact allocation, alignment must be 1,
759 		 * however we need to take cluster alignment into account when
760 		 * fixing up the freelist. Use the minalignslop field to
761 		 * indicate that extra blocks might be required for alignment,
762 		 * but not to use them in the actual exact allocation.
763 		 */
764 		args.alignment = 1;
765 		args.minalignslop = igeo->cluster_align - 1;
766 
767 		/* Allow space for the inode btree to split. */
768 		args.minleft = igeo->inobt_maxlevels;
769 		error = xfs_alloc_vextent_exact_bno(&args,
770 				xfs_agbno_to_fsb(pag, args.agbno));
771 		if (error)
772 			return error;
773 
774 		/*
775 		 * This request might have dirtied the transaction if the AG can
776 		 * satisfy the request, but the exact block was not available.
777 		 * If the allocation did fail, subsequent requests will relax
778 		 * the exact agbno requirement and increase the alignment
779 		 * instead. It is critical that the total size of the request
780 		 * (len + alignment + slop) does not increase from this point
781 		 * on, so reset minalignslop to ensure it is not included in
782 		 * subsequent requests.
783 		 */
784 		args.minalignslop = 0;
785 	}
786 
787 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
788 		/*
789 		 * Set the alignment for the allocation.
790 		 * If stripe alignment is turned on then align at stripe unit
791 		 * boundary.
792 		 * If the cluster size is smaller than a filesystem block
793 		 * then we're doing I/O for inodes in filesystem block size
794 		 * pieces, so don't need alignment anyway.
795 		 */
796 		isaligned = 0;
797 		if (igeo->ialloc_align) {
798 			ASSERT(!xfs_has_noalign(args.mp));
799 			args.alignment = args.mp->m_dalign;
800 			isaligned = 1;
801 		} else
802 			args.alignment = igeo->cluster_align;
803 		/*
804 		 * Allocate a fixed-size extent of inodes.
805 		 */
806 		args.prod = 1;
807 		/*
808 		 * Allow space for the inode btree to split.
809 		 */
810 		args.minleft = igeo->inobt_maxlevels;
811 		error = xfs_alloc_vextent_near_bno(&args,
812 				xfs_agbno_to_fsb(pag,
813 					be32_to_cpu(agi->agi_root)));
814 		if (error)
815 			return error;
816 	}
817 
818 	/*
819 	 * If stripe alignment is turned on, then try again with cluster
820 	 * alignment.
821 	 */
822 	if (isaligned && args.fsbno == NULLFSBLOCK) {
823 		args.alignment = igeo->cluster_align;
824 		error = xfs_alloc_vextent_near_bno(&args,
825 				xfs_agbno_to_fsb(pag,
826 					be32_to_cpu(agi->agi_root)));
827 		if (error)
828 			return error;
829 	}
830 
831 	/*
832 	 * Finally, try a sparse allocation if the filesystem supports it and
833 	 * the sparse allocation length is smaller than a full chunk.
834 	 */
835 	if (xfs_has_sparseinodes(args.mp) &&
836 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
837 	    args.fsbno == NULLFSBLOCK) {
838 sparse_alloc:
839 		args.alignment = args.mp->m_sb.sb_spino_align;
840 		args.prod = 1;
841 
842 		args.minlen = igeo->ialloc_min_blks;
843 		args.maxlen = args.minlen;
844 
845 		/*
846 		 * The inode record will be aligned to full chunk size. We must
847 		 * prevent sparse allocation from AG boundaries that result in
848 		 * invalid inode records, such as records that start at agbno 0
849 		 * or extend beyond the AG.
850 		 *
851 		 * Set min agbno to the first aligned, non-zero agbno and max to
852 		 * the last aligned agbno that is at least one full chunk from
853 		 * the end of the AG.
854 		 */
855 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
856 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
857 					    args.mp->m_sb.sb_inoalignmt) -
858 				 igeo->ialloc_blks;
859 
860 		error = xfs_alloc_vextent_near_bno(&args,
861 				xfs_agbno_to_fsb(pag,
862 					be32_to_cpu(agi->agi_root)));
863 		if (error)
864 			return error;
865 
866 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
867 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
868 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
869 	}
870 
871 	if (args.fsbno == NULLFSBLOCK)
872 		return -EAGAIN;
873 
874 	ASSERT(args.len == args.minlen);
875 
876 	/*
877 	 * Stamp and write the inode buffers.
878 	 *
879 	 * Seed the new inode cluster with a random generation number. This
880 	 * prevents short-term reuse of generation numbers if a chunk is
881 	 * freed and then immediately reallocated. We use random numbers
882 	 * rather than a linear progression to prevent the next generation
883 	 * number from being easily guessable.
884 	 */
885 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag_agno(pag),
886 			args.agbno, args.len, get_random_u32());
887 
888 	if (error)
889 		return error;
890 	/*
891 	 * Convert the results.
892 	 */
893 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
894 
895 	if (xfs_inobt_issparse(~allocmask)) {
896 		/*
897 		 * We've allocated a sparse chunk. Align the startino and mask.
898 		 */
899 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
900 
901 		rec.ir_startino = newino;
902 		rec.ir_holemask = ~allocmask;
903 		rec.ir_count = newlen;
904 		rec.ir_freecount = newlen;
905 		rec.ir_free = XFS_INOBT_ALL_FREE;
906 
907 		/*
908 		 * Insert the sparse record into the inobt and allow for a merge
909 		 * if necessary. If a merge does occur, rec is updated to the
910 		 * merged record.
911 		 */
912 		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
913 		if (error == -EFSCORRUPTED) {
914 			xfs_alert(args.mp,
915 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
916 				  xfs_agino_to_ino(pag, rec.ir_startino),
917 				  rec.ir_holemask, rec.ir_count);
918 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
919 		}
920 		if (error)
921 			return error;
922 
923 		/*
924 		 * We can't merge the part we've just allocated as for the inobt
925 		 * due to finobt semantics. The original record may or may not
926 		 * exist independent of whether physical inodes exist in this
927 		 * sparse chunk.
928 		 *
929 		 * We must update the finobt record based on the inobt record.
930 		 * rec contains the fully merged and up to date inobt record
931 		 * from the previous call. Set merge false to replace any
932 		 * existing record with this one.
933 		 */
934 		if (xfs_has_finobt(args.mp)) {
935 			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
936 			if (error)
937 				return error;
938 		}
939 	} else {
940 		/* full chunk - insert new records to both btrees */
941 		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
942 		if (error)
943 			return error;
944 
945 		if (xfs_has_finobt(args.mp)) {
946 			error = xfs_inobt_insert(pag, tp, agbp, newino,
947 						 newlen, true);
948 			if (error)
949 				return error;
950 		}
951 	}
952 
953 	/*
954 	 * Update AGI counts and newino.
955 	 */
956 	be32_add_cpu(&agi->agi_count, newlen);
957 	be32_add_cpu(&agi->agi_freecount, newlen);
958 	pag->pagi_freecount += newlen;
959 	pag->pagi_count += newlen;
960 	agi->agi_newino = cpu_to_be32(newino);
961 
962 	/*
963 	 * Log allocation group header fields
964 	 */
965 	xfs_ialloc_log_agi(tp, agbp,
966 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
967 	/*
968 	 * Modify/log superblock values for inode count and inode free count.
969 	 */
970 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
971 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
972 	return 0;
973 }
974 
975 /*
976  * Try to retrieve the next record to the left/right from the current one.
977  */
978 STATIC int
979 xfs_ialloc_next_rec(
980 	struct xfs_btree_cur	*cur,
981 	xfs_inobt_rec_incore_t	*rec,
982 	int			*done,
983 	int			left)
984 {
985 	int                     error;
986 	int			i;
987 
988 	if (left)
989 		error = xfs_btree_decrement(cur, 0, &i);
990 	else
991 		error = xfs_btree_increment(cur, 0, &i);
992 
993 	if (error)
994 		return error;
995 	*done = !i;
996 	if (i) {
997 		error = xfs_inobt_get_rec(cur, rec, &i);
998 		if (error)
999 			return error;
1000 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1001 			xfs_btree_mark_sick(cur);
1002 			return -EFSCORRUPTED;
1003 		}
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 STATIC int
1010 xfs_ialloc_get_rec(
1011 	struct xfs_btree_cur	*cur,
1012 	xfs_agino_t		agino,
1013 	xfs_inobt_rec_incore_t	*rec,
1014 	int			*done)
1015 {
1016 	int                     error;
1017 	int			i;
1018 
1019 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1020 	if (error)
1021 		return error;
1022 	*done = !i;
1023 	if (i) {
1024 		error = xfs_inobt_get_rec(cur, rec, &i);
1025 		if (error)
1026 			return error;
1027 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1028 			xfs_btree_mark_sick(cur);
1029 			return -EFSCORRUPTED;
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Return the offset of the first free inode in the record. If the inode chunk
1038  * is sparsely allocated, we convert the record holemask to inode granularity
1039  * and mask off the unallocated regions from the inode free mask.
1040  */
1041 STATIC int
1042 xfs_inobt_first_free_inode(
1043 	struct xfs_inobt_rec_incore	*rec)
1044 {
1045 	xfs_inofree_t			realfree;
1046 
1047 	/* if there are no holes, return the first available offset */
1048 	if (!xfs_inobt_issparse(rec->ir_holemask))
1049 		return xfs_lowbit64(rec->ir_free);
1050 
1051 	realfree = xfs_inobt_irec_to_allocmask(rec);
1052 	realfree &= rec->ir_free;
1053 
1054 	return xfs_lowbit64(realfree);
1055 }
1056 
1057 /*
1058  * If this AG has corrupt inodes, check if allocating this inode would fail
1059  * with corruption errors.  Returns 0 if we're clear, or EAGAIN to try again
1060  * somewhere else.
1061  */
1062 static int
1063 xfs_dialloc_check_ino(
1064 	struct xfs_perag	*pag,
1065 	struct xfs_trans	*tp,
1066 	xfs_ino_t		ino)
1067 {
1068 	struct xfs_imap		imap;
1069 	struct xfs_buf		*bp;
1070 	int			error;
1071 
1072 	error = xfs_imap(pag, tp, ino, &imap, 0);
1073 	if (error)
1074 		return -EAGAIN;
1075 
1076 	error = xfs_imap_to_bp(pag_mount(pag), tp, &imap, &bp);
1077 	if (error)
1078 		return -EAGAIN;
1079 
1080 	xfs_trans_brelse(tp, bp);
1081 	return 0;
1082 }
1083 
1084 /*
1085  * Allocate an inode using the inobt-only algorithm.
1086  */
1087 STATIC int
1088 xfs_dialloc_ag_inobt(
1089 	struct xfs_perag	*pag,
1090 	struct xfs_trans	*tp,
1091 	struct xfs_buf		*agbp,
1092 	xfs_ino_t		parent,
1093 	xfs_ino_t		*inop)
1094 {
1095 	struct xfs_mount	*mp = tp->t_mountp;
1096 	struct xfs_agi		*agi = agbp->b_addr;
1097 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1098 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1099 	struct xfs_btree_cur	*cur, *tcur;
1100 	struct xfs_inobt_rec_incore rec, trec;
1101 	xfs_ino_t		ino;
1102 	int			error;
1103 	int			offset;
1104 	int			i, j;
1105 	int			searchdistance = 10;
1106 
1107 	ASSERT(xfs_perag_initialised_agi(pag));
1108 	ASSERT(xfs_perag_allows_inodes(pag));
1109 	ASSERT(pag->pagi_freecount > 0);
1110 
1111  restart_pagno:
1112 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1113 	/*
1114 	 * If pagino is 0 (this is the root inode allocation) use newino.
1115 	 * This must work because we've just allocated some.
1116 	 */
1117 	if (!pagino)
1118 		pagino = be32_to_cpu(agi->agi_newino);
1119 
1120 	error = xfs_check_agi_freecount(cur);
1121 	if (error)
1122 		goto error0;
1123 
1124 	/*
1125 	 * If in the same AG as the parent, try to get near the parent.
1126 	 */
1127 	if (pagno == pag_agno(pag)) {
1128 		int		doneleft;	/* done, to the left */
1129 		int		doneright;	/* done, to the right */
1130 
1131 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1132 		if (error)
1133 			goto error0;
1134 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1135 			xfs_btree_mark_sick(cur);
1136 			error = -EFSCORRUPTED;
1137 			goto error0;
1138 		}
1139 
1140 		error = xfs_inobt_get_rec(cur, &rec, &j);
1141 		if (error)
1142 			goto error0;
1143 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1144 			xfs_btree_mark_sick(cur);
1145 			error = -EFSCORRUPTED;
1146 			goto error0;
1147 		}
1148 
1149 		if (rec.ir_freecount > 0) {
1150 			/*
1151 			 * Found a free inode in the same chunk
1152 			 * as the parent, done.
1153 			 */
1154 			goto alloc_inode;
1155 		}
1156 
1157 
1158 		/*
1159 		 * In the same AG as parent, but parent's chunk is full.
1160 		 */
1161 
1162 		/* duplicate the cursor, search left & right simultaneously */
1163 		error = xfs_btree_dup_cursor(cur, &tcur);
1164 		if (error)
1165 			goto error0;
1166 
1167 		/*
1168 		 * Skip to last blocks looked up if same parent inode.
1169 		 */
1170 		if (pagino != NULLAGINO &&
1171 		    pag->pagl_pagino == pagino &&
1172 		    pag->pagl_leftrec != NULLAGINO &&
1173 		    pag->pagl_rightrec != NULLAGINO) {
1174 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1175 						   &trec, &doneleft);
1176 			if (error)
1177 				goto error1;
1178 
1179 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1180 						   &rec, &doneright);
1181 			if (error)
1182 				goto error1;
1183 		} else {
1184 			/* search left with tcur, back up 1 record */
1185 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1186 			if (error)
1187 				goto error1;
1188 
1189 			/* search right with cur, go forward 1 record. */
1190 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1191 			if (error)
1192 				goto error1;
1193 		}
1194 
1195 		/*
1196 		 * Loop until we find an inode chunk with a free inode.
1197 		 */
1198 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1199 			int	useleft;  /* using left inode chunk this time */
1200 
1201 			/* figure out the closer block if both are valid. */
1202 			if (!doneleft && !doneright) {
1203 				useleft = pagino -
1204 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1205 				  rec.ir_startino - pagino;
1206 			} else {
1207 				useleft = !doneleft;
1208 			}
1209 
1210 			/* free inodes to the left? */
1211 			if (useleft && trec.ir_freecount) {
1212 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1213 				cur = tcur;
1214 
1215 				pag->pagl_leftrec = trec.ir_startino;
1216 				pag->pagl_rightrec = rec.ir_startino;
1217 				pag->pagl_pagino = pagino;
1218 				rec = trec;
1219 				goto alloc_inode;
1220 			}
1221 
1222 			/* free inodes to the right? */
1223 			if (!useleft && rec.ir_freecount) {
1224 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1225 
1226 				pag->pagl_leftrec = trec.ir_startino;
1227 				pag->pagl_rightrec = rec.ir_startino;
1228 				pag->pagl_pagino = pagino;
1229 				goto alloc_inode;
1230 			}
1231 
1232 			/* get next record to check */
1233 			if (useleft) {
1234 				error = xfs_ialloc_next_rec(tcur, &trec,
1235 								 &doneleft, 1);
1236 			} else {
1237 				error = xfs_ialloc_next_rec(cur, &rec,
1238 								 &doneright, 0);
1239 			}
1240 			if (error)
1241 				goto error1;
1242 		}
1243 
1244 		if (searchdistance <= 0) {
1245 			/*
1246 			 * Not in range - save last search
1247 			 * location and allocate a new inode
1248 			 */
1249 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1250 			pag->pagl_leftrec = trec.ir_startino;
1251 			pag->pagl_rightrec = rec.ir_startino;
1252 			pag->pagl_pagino = pagino;
1253 
1254 		} else {
1255 			/*
1256 			 * We've reached the end of the btree. because
1257 			 * we are only searching a small chunk of the
1258 			 * btree each search, there is obviously free
1259 			 * inodes closer to the parent inode than we
1260 			 * are now. restart the search again.
1261 			 */
1262 			pag->pagl_pagino = NULLAGINO;
1263 			pag->pagl_leftrec = NULLAGINO;
1264 			pag->pagl_rightrec = NULLAGINO;
1265 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1266 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1267 			goto restart_pagno;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * In a different AG from the parent.
1273 	 * See if the most recently allocated block has any free.
1274 	 */
1275 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1276 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1277 					 XFS_LOOKUP_EQ, &i);
1278 		if (error)
1279 			goto error0;
1280 
1281 		if (i == 1) {
1282 			error = xfs_inobt_get_rec(cur, &rec, &j);
1283 			if (error)
1284 				goto error0;
1285 
1286 			if (j == 1 && rec.ir_freecount > 0) {
1287 				/*
1288 				 * The last chunk allocated in the group
1289 				 * still has a free inode.
1290 				 */
1291 				goto alloc_inode;
1292 			}
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * None left in the last group, search the whole AG
1298 	 */
1299 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1300 	if (error)
1301 		goto error0;
1302 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1303 		xfs_btree_mark_sick(cur);
1304 		error = -EFSCORRUPTED;
1305 		goto error0;
1306 	}
1307 
1308 	for (;;) {
1309 		error = xfs_inobt_get_rec(cur, &rec, &i);
1310 		if (error)
1311 			goto error0;
1312 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1313 			xfs_btree_mark_sick(cur);
1314 			error = -EFSCORRUPTED;
1315 			goto error0;
1316 		}
1317 		if (rec.ir_freecount > 0)
1318 			break;
1319 		error = xfs_btree_increment(cur, 0, &i);
1320 		if (error)
1321 			goto error0;
1322 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1323 			xfs_btree_mark_sick(cur);
1324 			error = -EFSCORRUPTED;
1325 			goto error0;
1326 		}
1327 	}
1328 
1329 alloc_inode:
1330 	offset = xfs_inobt_first_free_inode(&rec);
1331 	ASSERT(offset >= 0);
1332 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1333 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1334 				   XFS_INODES_PER_CHUNK) == 0);
1335 	ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1336 
1337 	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1338 		error = xfs_dialloc_check_ino(pag, tp, ino);
1339 		if (error)
1340 			goto error0;
1341 	}
1342 
1343 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1344 	rec.ir_freecount--;
1345 	error = xfs_inobt_update(cur, &rec);
1346 	if (error)
1347 		goto error0;
1348 	be32_add_cpu(&agi->agi_freecount, -1);
1349 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1350 	pag->pagi_freecount--;
1351 
1352 	error = xfs_check_agi_freecount(cur);
1353 	if (error)
1354 		goto error0;
1355 
1356 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1357 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1358 	*inop = ino;
1359 	return 0;
1360 error1:
1361 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1362 error0:
1363 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1364 	return error;
1365 }
1366 
1367 /*
1368  * Use the free inode btree to allocate an inode based on distance from the
1369  * parent. Note that the provided cursor may be deleted and replaced.
1370  */
1371 STATIC int
1372 xfs_dialloc_ag_finobt_near(
1373 	xfs_agino_t			pagino,
1374 	struct xfs_btree_cur		**ocur,
1375 	struct xfs_inobt_rec_incore	*rec)
1376 {
1377 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1378 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1379 	struct xfs_inobt_rec_incore	rrec;
1380 	int				error;
1381 	int				i, j;
1382 
1383 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1384 	if (error)
1385 		return error;
1386 
1387 	if (i == 1) {
1388 		error = xfs_inobt_get_rec(lcur, rec, &i);
1389 		if (error)
1390 			return error;
1391 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1392 			xfs_btree_mark_sick(lcur);
1393 			return -EFSCORRUPTED;
1394 		}
1395 
1396 		/*
1397 		 * See if we've landed in the parent inode record. The finobt
1398 		 * only tracks chunks with at least one free inode, so record
1399 		 * existence is enough.
1400 		 */
1401 		if (pagino >= rec->ir_startino &&
1402 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 			return 0;
1404 	}
1405 
1406 	error = xfs_btree_dup_cursor(lcur, &rcur);
1407 	if (error)
1408 		return error;
1409 
1410 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 	if (error)
1412 		goto error_rcur;
1413 	if (j == 1) {
1414 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 		if (error)
1416 			goto error_rcur;
1417 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1418 			xfs_btree_mark_sick(lcur);
1419 			error = -EFSCORRUPTED;
1420 			goto error_rcur;
1421 		}
1422 	}
1423 
1424 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1425 		xfs_btree_mark_sick(lcur);
1426 		error = -EFSCORRUPTED;
1427 		goto error_rcur;
1428 	}
1429 	if (i == 1 && j == 1) {
1430 		/*
1431 		 * Both the left and right records are valid. Choose the closer
1432 		 * inode chunk to the target.
1433 		 */
1434 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1435 		    (rrec.ir_startino - pagino)) {
1436 			*rec = rrec;
1437 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 			*ocur = rcur;
1439 		} else {
1440 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1441 		}
1442 	} else if (j == 1) {
1443 		/* only the right record is valid */
1444 		*rec = rrec;
1445 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1446 		*ocur = rcur;
1447 	} else if (i == 1) {
1448 		/* only the left record is valid */
1449 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1450 	}
1451 
1452 	return 0;
1453 
1454 error_rcur:
1455 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1456 	return error;
1457 }
1458 
1459 /*
1460  * Use the free inode btree to find a free inode based on a newino hint. If
1461  * the hint is NULL, find the first free inode in the AG.
1462  */
1463 STATIC int
1464 xfs_dialloc_ag_finobt_newino(
1465 	struct xfs_agi			*agi,
1466 	struct xfs_btree_cur		*cur,
1467 	struct xfs_inobt_rec_incore	*rec)
1468 {
1469 	int error;
1470 	int i;
1471 
1472 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1473 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1474 					 XFS_LOOKUP_EQ, &i);
1475 		if (error)
1476 			return error;
1477 		if (i == 1) {
1478 			error = xfs_inobt_get_rec(cur, rec, &i);
1479 			if (error)
1480 				return error;
1481 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1482 				xfs_btree_mark_sick(cur);
1483 				return -EFSCORRUPTED;
1484 			}
1485 			return 0;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * Find the first inode available in the AG.
1491 	 */
1492 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1493 	if (error)
1494 		return error;
1495 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1496 		xfs_btree_mark_sick(cur);
1497 		return -EFSCORRUPTED;
1498 	}
1499 
1500 	error = xfs_inobt_get_rec(cur, rec, &i);
1501 	if (error)
1502 		return error;
1503 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1504 		xfs_btree_mark_sick(cur);
1505 		return -EFSCORRUPTED;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Update the inobt based on a modification made to the finobt. Also ensure that
1513  * the records from both trees are equivalent post-modification.
1514  */
1515 STATIC int
1516 xfs_dialloc_ag_update_inobt(
1517 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1518 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1519 	int				offset) /* inode offset */
1520 {
1521 	struct xfs_inobt_rec_incore	rec;
1522 	int				error;
1523 	int				i;
1524 
1525 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1526 	if (error)
1527 		return error;
1528 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1529 		xfs_btree_mark_sick(cur);
1530 		return -EFSCORRUPTED;
1531 	}
1532 
1533 	error = xfs_inobt_get_rec(cur, &rec, &i);
1534 	if (error)
1535 		return error;
1536 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1537 		xfs_btree_mark_sick(cur);
1538 		return -EFSCORRUPTED;
1539 	}
1540 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1541 				   XFS_INODES_PER_CHUNK) == 0);
1542 
1543 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1544 	rec.ir_freecount--;
1545 
1546 	if (XFS_IS_CORRUPT(cur->bc_mp,
1547 			   rec.ir_free != frec->ir_free ||
1548 			   rec.ir_freecount != frec->ir_freecount)) {
1549 		xfs_btree_mark_sick(cur);
1550 		return -EFSCORRUPTED;
1551 	}
1552 
1553 	return xfs_inobt_update(cur, &rec);
1554 }
1555 
1556 /*
1557  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1558  * back to the inobt search algorithm.
1559  *
1560  * The caller selected an AG for us, and made sure that free inodes are
1561  * available.
1562  */
1563 static int
1564 xfs_dialloc_ag(
1565 	struct xfs_perag	*pag,
1566 	struct xfs_trans	*tp,
1567 	struct xfs_buf		*agbp,
1568 	xfs_ino_t		parent,
1569 	xfs_ino_t		*inop)
1570 {
1571 	struct xfs_mount		*mp = tp->t_mountp;
1572 	struct xfs_agi			*agi = agbp->b_addr;
1573 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1574 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1575 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1576 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1577 	struct xfs_inobt_rec_incore	rec;
1578 	xfs_ino_t			ino;
1579 	int				error;
1580 	int				offset;
1581 	int				i;
1582 
1583 	if (!xfs_has_finobt(mp))
1584 		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1585 
1586 	/*
1587 	 * If pagino is 0 (this is the root inode allocation) use newino.
1588 	 * This must work because we've just allocated some.
1589 	 */
1590 	if (!pagino)
1591 		pagino = be32_to_cpu(agi->agi_newino);
1592 
1593 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1594 
1595 	error = xfs_check_agi_freecount(cur);
1596 	if (error)
1597 		goto error_cur;
1598 
1599 	/*
1600 	 * The search algorithm depends on whether we're in the same AG as the
1601 	 * parent. If so, find the closest available inode to the parent. If
1602 	 * not, consider the agi hint or find the first free inode in the AG.
1603 	 */
1604 	if (pag_agno(pag) == pagno)
1605 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1606 	else
1607 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1608 	if (error)
1609 		goto error_cur;
1610 
1611 	offset = xfs_inobt_first_free_inode(&rec);
1612 	ASSERT(offset >= 0);
1613 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1614 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1615 				   XFS_INODES_PER_CHUNK) == 0);
1616 	ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1617 
1618 	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1619 		error = xfs_dialloc_check_ino(pag, tp, ino);
1620 		if (error)
1621 			goto error_cur;
1622 	}
1623 
1624 	/*
1625 	 * Modify or remove the finobt record.
1626 	 */
1627 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1628 	rec.ir_freecount--;
1629 	if (rec.ir_freecount)
1630 		error = xfs_inobt_update(cur, &rec);
1631 	else
1632 		error = xfs_btree_delete(cur, &i);
1633 	if (error)
1634 		goto error_cur;
1635 
1636 	/*
1637 	 * The finobt has now been updated appropriately. We haven't updated the
1638 	 * agi and superblock yet, so we can create an inobt cursor and validate
1639 	 * the original freecount. If all is well, make the equivalent update to
1640 	 * the inobt using the finobt record and offset information.
1641 	 */
1642 	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1643 
1644 	error = xfs_check_agi_freecount(icur);
1645 	if (error)
1646 		goto error_icur;
1647 
1648 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1649 	if (error)
1650 		goto error_icur;
1651 
1652 	/*
1653 	 * Both trees have now been updated. We must update the perag and
1654 	 * superblock before we can check the freecount for each btree.
1655 	 */
1656 	be32_add_cpu(&agi->agi_freecount, -1);
1657 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1658 	pag->pagi_freecount--;
1659 
1660 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1661 
1662 	error = xfs_check_agi_freecount(icur);
1663 	if (error)
1664 		goto error_icur;
1665 	error = xfs_check_agi_freecount(cur);
1666 	if (error)
1667 		goto error_icur;
1668 
1669 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1670 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1671 	*inop = ino;
1672 	return 0;
1673 
1674 error_icur:
1675 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1676 error_cur:
1677 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1678 	return error;
1679 }
1680 
1681 static int
1682 xfs_dialloc_roll(
1683 	struct xfs_trans	**tpp,
1684 	struct xfs_buf		*agibp)
1685 {
1686 	struct xfs_trans	*tp = *tpp;
1687 	struct xfs_dquot_acct	*dqinfo;
1688 	int			error;
1689 
1690 	/*
1691 	 * Hold to on to the agibp across the commit so no other allocation can
1692 	 * come in and take the free inodes we just allocated for our caller.
1693 	 */
1694 	xfs_trans_bhold(tp, agibp);
1695 
1696 	/*
1697 	 * We want the quota changes to be associated with the next transaction,
1698 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1699 	 * next transaction.
1700 	 */
1701 	dqinfo = tp->t_dqinfo;
1702 	tp->t_dqinfo = NULL;
1703 
1704 	error = xfs_trans_roll(&tp);
1705 
1706 	/* Re-attach the quota info that we detached from prev trx. */
1707 	tp->t_dqinfo = dqinfo;
1708 
1709 	/*
1710 	 * Join the buffer even on commit error so that the buffer is released
1711 	 * when the caller cancels the transaction and doesn't have to handle
1712 	 * this error case specially.
1713 	 */
1714 	xfs_trans_bjoin(tp, agibp);
1715 	*tpp = tp;
1716 	return error;
1717 }
1718 
1719 static bool
1720 xfs_dialloc_good_ag(
1721 	struct xfs_perag	*pag,
1722 	struct xfs_trans	*tp,
1723 	umode_t			mode,
1724 	int			flags,
1725 	bool			ok_alloc)
1726 {
1727 	struct xfs_mount	*mp = tp->t_mountp;
1728 	xfs_extlen_t		ineed;
1729 	xfs_extlen_t		longest = 0;
1730 	int			needspace;
1731 	int			error;
1732 
1733 	if (!pag)
1734 		return false;
1735 	if (!xfs_perag_allows_inodes(pag))
1736 		return false;
1737 
1738 	if (!xfs_perag_initialised_agi(pag)) {
1739 		error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1740 		if (error)
1741 			return false;
1742 	}
1743 
1744 	if (pag->pagi_freecount)
1745 		return true;
1746 	if (!ok_alloc)
1747 		return false;
1748 
1749 	if (!xfs_perag_initialised_agf(pag)) {
1750 		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1751 		if (error)
1752 			return false;
1753 	}
1754 
1755 	/*
1756 	 * Check that there is enough free space for the file plus a chunk of
1757 	 * inodes if we need to allocate some. If this is the first pass across
1758 	 * the AGs, take into account the potential space needed for alignment
1759 	 * of inode chunks when checking the longest contiguous free space in
1760 	 * the AG - this prevents us from getting ENOSPC because we have free
1761 	 * space larger than ialloc_blks but alignment constraints prevent us
1762 	 * from using it.
1763 	 *
1764 	 * If we can't find an AG with space for full alignment slack to be
1765 	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1766 	 * don't include alignment for the second pass and so if we fail
1767 	 * allocation due to alignment issues then it is most likely a real
1768 	 * ENOSPC condition.
1769 	 *
1770 	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1771 	 * reservations that xfs_alloc_fix_freelist() now does via
1772 	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1773 	 * be more than large enough for the check below to succeed, but
1774 	 * xfs_alloc_space_available() will fail because of the non-zero
1775 	 * metadata reservation and hence we won't actually be able to allocate
1776 	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1777 	 * because of this.
1778 	 */
1779 	ineed = M_IGEO(mp)->ialloc_min_blks;
1780 	if (flags && ineed > 1)
1781 		ineed += M_IGEO(mp)->cluster_align;
1782 	longest = pag->pagf_longest;
1783 	if (!longest)
1784 		longest = pag->pagf_flcount > 0;
1785 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1786 
1787 	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1788 		return false;
1789 	return true;
1790 }
1791 
1792 static int
1793 xfs_dialloc_try_ag(
1794 	struct xfs_perag	*pag,
1795 	struct xfs_trans	**tpp,
1796 	xfs_ino_t		parent,
1797 	xfs_ino_t		*new_ino,
1798 	bool			ok_alloc)
1799 {
1800 	struct xfs_buf		*agbp;
1801 	xfs_ino_t		ino;
1802 	int			error;
1803 
1804 	/*
1805 	 * Then read in the AGI buffer and recheck with the AGI buffer
1806 	 * lock held.
1807 	 */
1808 	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1809 	if (error)
1810 		return error;
1811 
1812 	if (!pag->pagi_freecount) {
1813 		if (!ok_alloc) {
1814 			error = -EAGAIN;
1815 			goto out_release;
1816 		}
1817 
1818 		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1819 		if (error < 0)
1820 			goto out_release;
1821 
1822 		/*
1823 		 * We successfully allocated space for an inode cluster in this
1824 		 * AG.  Roll the transaction so that we can allocate one of the
1825 		 * new inodes.
1826 		 */
1827 		ASSERT(pag->pagi_freecount > 0);
1828 		error = xfs_dialloc_roll(tpp, agbp);
1829 		if (error)
1830 			goto out_release;
1831 	}
1832 
1833 	/* Allocate an inode in the found AG */
1834 	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1835 	if (!error)
1836 		*new_ino = ino;
1837 	return error;
1838 
1839 out_release:
1840 	xfs_trans_brelse(*tpp, agbp);
1841 	return error;
1842 }
1843 
1844 /*
1845  * Pick an AG for the new inode.
1846  *
1847  * Directories, symlinks, and regular files frequently allocate at least one
1848  * block, so factor that potential expansion when we examine whether an AG has
1849  * enough space for file creation.  Try to keep metadata files all in the same
1850  * AG.
1851  */
1852 static inline xfs_agnumber_t
1853 xfs_dialloc_pick_ag(
1854 	struct xfs_mount	*mp,
1855 	struct xfs_inode	*dp,
1856 	umode_t			mode)
1857 {
1858 	xfs_agnumber_t		start_agno;
1859 
1860 	if (!dp)
1861 		return 0;
1862 	if (xfs_is_metadir_inode(dp)) {
1863 		if (mp->m_sb.sb_logstart)
1864 			return XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
1865 		return 0;
1866 	}
1867 
1868 	if (S_ISDIR(mode))
1869 		return (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi;
1870 
1871 	start_agno = XFS_INO_TO_AGNO(mp, dp->i_ino);
1872 	if (start_agno >= mp->m_maxagi)
1873 		start_agno = 0;
1874 
1875 	return start_agno;
1876 }
1877 
1878 /*
1879  * Allocate an on-disk inode.
1880  *
1881  * Mode is used to tell whether the new inode is a directory and hence where to
1882  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1883  * on success, otherwise an error will be set to indicate the failure (e.g.
1884  * -ENOSPC).
1885  */
1886 int
1887 xfs_dialloc(
1888 	struct xfs_trans	**tpp,
1889 	const struct xfs_icreate_args *args,
1890 	xfs_ino_t		*new_ino)
1891 {
1892 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1893 	struct xfs_perag	*pag;
1894 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1895 	xfs_ino_t		ino = NULLFSINO;
1896 	xfs_ino_t		parent = args->pip ? args->pip->i_ino : 0;
1897 	xfs_agnumber_t		agno;
1898 	xfs_agnumber_t		start_agno;
1899 	umode_t			mode = args->mode & S_IFMT;
1900 	bool			ok_alloc = true;
1901 	bool			low_space = false;
1902 	int			flags;
1903 	int			error = 0;
1904 
1905 	start_agno = xfs_dialloc_pick_ag(mp, args->pip, mode);
1906 
1907 	/*
1908 	 * If we have already hit the ceiling of inode blocks then clear
1909 	 * ok_alloc so we scan all available agi structures for a free
1910 	 * inode.
1911 	 *
1912 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1913 	 * which will sacrifice the preciseness but improve the performance.
1914 	 */
1915 	if (igeo->maxicount &&
1916 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1917 							> igeo->maxicount) {
1918 		ok_alloc = false;
1919 	}
1920 
1921 	/*
1922 	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1923 	 * have free inodes in them rather than use up free space allocating new
1924 	 * inode chunks. Hence we turn off allocation for the first non-blocking
1925 	 * pass through the AGs if we are near ENOSPC to consume free inodes
1926 	 * that we can immediately allocate, but then we allow allocation on the
1927 	 * second pass if we fail to find an AG with free inodes in it.
1928 	 */
1929 	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1930 			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1931 		ok_alloc = false;
1932 		low_space = true;
1933 	}
1934 
1935 	/*
1936 	 * Loop until we find an allocation group that either has free inodes
1937 	 * or in which we can allocate some inodes.  Iterate through the
1938 	 * allocation groups upward, wrapping at the end.
1939 	 */
1940 	flags = XFS_ALLOC_FLAG_TRYLOCK;
1941 retry:
1942 	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1943 		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1944 			error = xfs_dialloc_try_ag(pag, tpp, parent,
1945 					&ino, ok_alloc);
1946 			if (error != -EAGAIN)
1947 				break;
1948 			error = 0;
1949 		}
1950 
1951 		if (xfs_is_shutdown(mp)) {
1952 			error = -EFSCORRUPTED;
1953 			break;
1954 		}
1955 	}
1956 	if (pag)
1957 		xfs_perag_rele(pag);
1958 	if (error)
1959 		return error;
1960 	if (ino == NULLFSINO) {
1961 		if (flags) {
1962 			flags = 0;
1963 			if (low_space)
1964 				ok_alloc = true;
1965 			goto retry;
1966 		}
1967 		return -ENOSPC;
1968 	}
1969 
1970 	/*
1971 	 * Protect against obviously corrupt allocation btree records. Later
1972 	 * xfs_iget checks will catch re-allocation of other active in-memory
1973 	 * and on-disk inodes. If we don't catch reallocating the parent inode
1974 	 * here we will deadlock in xfs_iget() so we have to do these checks
1975 	 * first.
1976 	 */
1977 	if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1978 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1979 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1980 				XFS_SICK_AG_INOBT);
1981 		return -EFSCORRUPTED;
1982 	}
1983 
1984 	*new_ino = ino;
1985 	return 0;
1986 }
1987 
1988 /*
1989  * Free the blocks of an inode chunk. We must consider that the inode chunk
1990  * might be sparse and only free the regions that are allocated as part of the
1991  * chunk.
1992  */
1993 static int
1994 xfs_difree_inode_chunk(
1995 	struct xfs_trans		*tp,
1996 	struct xfs_perag		*pag,
1997 	struct xfs_inobt_rec_incore	*rec)
1998 {
1999 	struct xfs_mount		*mp = tp->t_mountp;
2000 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
2001 							rec->ir_startino);
2002 	int				startidx, endidx;
2003 	int				nextbit;
2004 	xfs_agblock_t			agbno;
2005 	int				contigblk;
2006 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
2007 
2008 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
2009 		/* not sparse, calculate extent info directly */
2010 		return xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, sagbno),
2011 				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
2012 				XFS_AG_RESV_NONE, 0);
2013 	}
2014 
2015 	/* holemask is only 16-bits (fits in an unsigned long) */
2016 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2017 	holemask[0] = rec->ir_holemask;
2018 
2019 	/*
2020 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2021 	 * holemask and convert the start/end index of each range to an extent.
2022 	 * We start with the start and end index both pointing at the first 0 in
2023 	 * the mask.
2024 	 */
2025 	startidx = endidx = find_first_zero_bit(holemask,
2026 						XFS_INOBT_HOLEMASK_BITS);
2027 	nextbit = startidx + 1;
2028 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2029 		int error;
2030 
2031 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2032 					     nextbit);
2033 		/*
2034 		 * If the next zero bit is contiguous, update the end index of
2035 		 * the current range and continue.
2036 		 */
2037 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2038 		    nextbit == endidx + 1) {
2039 			endidx = nextbit;
2040 			goto next;
2041 		}
2042 
2043 		/*
2044 		 * nextbit is not contiguous with the current end index. Convert
2045 		 * the current start/end to an extent and add it to the free
2046 		 * list.
2047 		 */
2048 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2049 				  mp->m_sb.sb_inopblock;
2050 		contigblk = ((endidx - startidx + 1) *
2051 			     XFS_INODES_PER_HOLEMASK_BIT) /
2052 			    mp->m_sb.sb_inopblock;
2053 
2054 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2055 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2056 		error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, agbno),
2057 				contigblk, &XFS_RMAP_OINFO_INODES,
2058 				XFS_AG_RESV_NONE, 0);
2059 		if (error)
2060 			return error;
2061 
2062 		/* reset range to current bit and carry on... */
2063 		startidx = endidx = nextbit;
2064 
2065 next:
2066 		nextbit++;
2067 	}
2068 	return 0;
2069 }
2070 
2071 STATIC int
2072 xfs_difree_inobt(
2073 	struct xfs_perag		*pag,
2074 	struct xfs_trans		*tp,
2075 	struct xfs_buf			*agbp,
2076 	xfs_agino_t			agino,
2077 	struct xfs_icluster		*xic,
2078 	struct xfs_inobt_rec_incore	*orec)
2079 {
2080 	struct xfs_mount		*mp = pag_mount(pag);
2081 	struct xfs_agi			*agi = agbp->b_addr;
2082 	struct xfs_btree_cur		*cur;
2083 	struct xfs_inobt_rec_incore	rec;
2084 	int				ilen;
2085 	int				error;
2086 	int				i;
2087 	int				off;
2088 
2089 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2090 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2091 
2092 	/*
2093 	 * Initialize the cursor.
2094 	 */
2095 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2096 
2097 	error = xfs_check_agi_freecount(cur);
2098 	if (error)
2099 		goto error0;
2100 
2101 	/*
2102 	 * Look for the entry describing this inode.
2103 	 */
2104 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2105 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2106 			__func__, error);
2107 		goto error0;
2108 	}
2109 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2110 		xfs_btree_mark_sick(cur);
2111 		error = -EFSCORRUPTED;
2112 		goto error0;
2113 	}
2114 	error = xfs_inobt_get_rec(cur, &rec, &i);
2115 	if (error) {
2116 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2117 			__func__, error);
2118 		goto error0;
2119 	}
2120 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2121 		xfs_btree_mark_sick(cur);
2122 		error = -EFSCORRUPTED;
2123 		goto error0;
2124 	}
2125 	/*
2126 	 * Get the offset in the inode chunk.
2127 	 */
2128 	off = agino - rec.ir_startino;
2129 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2130 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2131 	/*
2132 	 * Mark the inode free & increment the count.
2133 	 */
2134 	rec.ir_free |= XFS_INOBT_MASK(off);
2135 	rec.ir_freecount++;
2136 
2137 	/*
2138 	 * When an inode chunk is free, it becomes eligible for removal. Don't
2139 	 * remove the chunk if the block size is large enough for multiple inode
2140 	 * chunks (that might not be free).
2141 	 */
2142 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2143 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2144 		xic->deleted = true;
2145 		xic->first_ino = xfs_agino_to_ino(pag, rec.ir_startino);
2146 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2147 
2148 		/*
2149 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2150 		 * AGI and Superblock inode counts, and mark the disk space
2151 		 * to be freed when the transaction is committed.
2152 		 */
2153 		ilen = rec.ir_freecount;
2154 		be32_add_cpu(&agi->agi_count, -ilen);
2155 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2156 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2157 		pag->pagi_freecount -= ilen - 1;
2158 		pag->pagi_count -= ilen;
2159 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2160 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2161 
2162 		if ((error = xfs_btree_delete(cur, &i))) {
2163 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2164 				__func__, error);
2165 			goto error0;
2166 		}
2167 
2168 		error = xfs_difree_inode_chunk(tp, pag, &rec);
2169 		if (error)
2170 			goto error0;
2171 	} else {
2172 		xic->deleted = false;
2173 
2174 		error = xfs_inobt_update(cur, &rec);
2175 		if (error) {
2176 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2177 				__func__, error);
2178 			goto error0;
2179 		}
2180 
2181 		/*
2182 		 * Change the inode free counts and log the ag/sb changes.
2183 		 */
2184 		be32_add_cpu(&agi->agi_freecount, 1);
2185 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2186 		pag->pagi_freecount++;
2187 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2188 	}
2189 
2190 	error = xfs_check_agi_freecount(cur);
2191 	if (error)
2192 		goto error0;
2193 
2194 	*orec = rec;
2195 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2196 	return 0;
2197 
2198 error0:
2199 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2200 	return error;
2201 }
2202 
2203 /*
2204  * Free an inode in the free inode btree.
2205  */
2206 STATIC int
2207 xfs_difree_finobt(
2208 	struct xfs_perag		*pag,
2209 	struct xfs_trans		*tp,
2210 	struct xfs_buf			*agbp,
2211 	xfs_agino_t			agino,
2212 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2213 {
2214 	struct xfs_mount		*mp = pag_mount(pag);
2215 	struct xfs_btree_cur		*cur;
2216 	struct xfs_inobt_rec_incore	rec;
2217 	int				offset = agino - ibtrec->ir_startino;
2218 	int				error;
2219 	int				i;
2220 
2221 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2222 
2223 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2224 	if (error)
2225 		goto error;
2226 	if (i == 0) {
2227 		/*
2228 		 * If the record does not exist in the finobt, we must have just
2229 		 * freed an inode in a previously fully allocated chunk. If not,
2230 		 * something is out of sync.
2231 		 */
2232 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2233 			xfs_btree_mark_sick(cur);
2234 			error = -EFSCORRUPTED;
2235 			goto error;
2236 		}
2237 
2238 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2239 					     ibtrec->ir_count,
2240 					     ibtrec->ir_freecount,
2241 					     ibtrec->ir_free, &i);
2242 		if (error)
2243 			goto error;
2244 		ASSERT(i == 1);
2245 
2246 		goto out;
2247 	}
2248 
2249 	/*
2250 	 * Read and update the existing record. We could just copy the ibtrec
2251 	 * across here, but that would defeat the purpose of having redundant
2252 	 * metadata. By making the modifications independently, we can catch
2253 	 * corruptions that we wouldn't see if we just copied from one record
2254 	 * to another.
2255 	 */
2256 	error = xfs_inobt_get_rec(cur, &rec, &i);
2257 	if (error)
2258 		goto error;
2259 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2260 		xfs_btree_mark_sick(cur);
2261 		error = -EFSCORRUPTED;
2262 		goto error;
2263 	}
2264 
2265 	rec.ir_free |= XFS_INOBT_MASK(offset);
2266 	rec.ir_freecount++;
2267 
2268 	if (XFS_IS_CORRUPT(mp,
2269 			   rec.ir_free != ibtrec->ir_free ||
2270 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2271 		xfs_btree_mark_sick(cur);
2272 		error = -EFSCORRUPTED;
2273 		goto error;
2274 	}
2275 
2276 	/*
2277 	 * The content of inobt records should always match between the inobt
2278 	 * and finobt. The lifecycle of records in the finobt is different from
2279 	 * the inobt in that the finobt only tracks records with at least one
2280 	 * free inode. Hence, if all of the inodes are free and we aren't
2281 	 * keeping inode chunks permanently on disk, remove the record.
2282 	 * Otherwise, update the record with the new information.
2283 	 *
2284 	 * Note that we currently can't free chunks when the block size is large
2285 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2286 	 * with the inobt.
2287 	 */
2288 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2289 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2290 		error = xfs_btree_delete(cur, &i);
2291 		if (error)
2292 			goto error;
2293 		ASSERT(i == 1);
2294 	} else {
2295 		error = xfs_inobt_update(cur, &rec);
2296 		if (error)
2297 			goto error;
2298 	}
2299 
2300 out:
2301 	error = xfs_check_agi_freecount(cur);
2302 	if (error)
2303 		goto error;
2304 
2305 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2306 	return 0;
2307 
2308 error:
2309 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2310 	return error;
2311 }
2312 
2313 /*
2314  * Free disk inode.  Carefully avoids touching the incore inode, all
2315  * manipulations incore are the caller's responsibility.
2316  * The on-disk inode is not changed by this operation, only the
2317  * btree (free inode mask) is changed.
2318  */
2319 int
2320 xfs_difree(
2321 	struct xfs_trans	*tp,
2322 	struct xfs_perag	*pag,
2323 	xfs_ino_t		inode,
2324 	struct xfs_icluster	*xic)
2325 {
2326 	/* REFERENCED */
2327 	xfs_agblock_t		agbno;	/* block number containing inode */
2328 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2329 	xfs_agino_t		agino;	/* allocation group inode number */
2330 	int			error;	/* error return value */
2331 	struct xfs_mount	*mp = tp->t_mountp;
2332 	struct xfs_inobt_rec_incore rec;/* btree record */
2333 
2334 	/*
2335 	 * Break up inode number into its components.
2336 	 */
2337 	if (pag_agno(pag) != XFS_INO_TO_AGNO(mp, inode)) {
2338 		xfs_warn(mp, "%s: agno != pag_agno(pag) (%d != %d).",
2339 			__func__, XFS_INO_TO_AGNO(mp, inode), pag_agno(pag));
2340 		ASSERT(0);
2341 		return -EINVAL;
2342 	}
2343 	agino = XFS_INO_TO_AGINO(mp, inode);
2344 	if (inode != xfs_agino_to_ino(pag, agino))  {
2345 		xfs_warn(mp, "%s: inode != xfs_agino_to_ino() (%llu != %llu).",
2346 			__func__, (unsigned long long)inode,
2347 			(unsigned long long)xfs_agino_to_ino(pag, agino));
2348 		ASSERT(0);
2349 		return -EINVAL;
2350 	}
2351 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2352 	if (agbno >= mp->m_sb.sb_agblocks)  {
2353 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2354 			__func__, agbno, mp->m_sb.sb_agblocks);
2355 		ASSERT(0);
2356 		return -EINVAL;
2357 	}
2358 	/*
2359 	 * Get the allocation group header.
2360 	 */
2361 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2362 	if (error) {
2363 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2364 			__func__, error);
2365 		return error;
2366 	}
2367 
2368 	/*
2369 	 * Fix up the inode allocation btree.
2370 	 */
2371 	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2372 	if (error)
2373 		goto error0;
2374 
2375 	/*
2376 	 * Fix up the free inode btree.
2377 	 */
2378 	if (xfs_has_finobt(mp)) {
2379 		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2380 		if (error)
2381 			goto error0;
2382 	}
2383 
2384 	return 0;
2385 
2386 error0:
2387 	return error;
2388 }
2389 
2390 STATIC int
2391 xfs_imap_lookup(
2392 	struct xfs_perag	*pag,
2393 	struct xfs_trans	*tp,
2394 	xfs_agino_t		agino,
2395 	xfs_agblock_t		agbno,
2396 	xfs_agblock_t		*chunk_agbno,
2397 	xfs_agblock_t		*offset_agbno,
2398 	int			flags)
2399 {
2400 	struct xfs_mount	*mp = pag_mount(pag);
2401 	struct xfs_inobt_rec_incore rec;
2402 	struct xfs_btree_cur	*cur;
2403 	struct xfs_buf		*agbp;
2404 	int			error;
2405 	int			i;
2406 
2407 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2408 	if (error) {
2409 		xfs_alert(mp,
2410 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2411 			__func__, error, pag_agno(pag));
2412 		return error;
2413 	}
2414 
2415 	/*
2416 	 * Lookup the inode record for the given agino. If the record cannot be
2417 	 * found, then it's an invalid inode number and we should abort. Once
2418 	 * we have a record, we need to ensure it contains the inode number
2419 	 * we are looking up.
2420 	 */
2421 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2422 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2423 	if (!error) {
2424 		if (i)
2425 			error = xfs_inobt_get_rec(cur, &rec, &i);
2426 		if (!error && i == 0)
2427 			error = -EINVAL;
2428 	}
2429 
2430 	xfs_trans_brelse(tp, agbp);
2431 	xfs_btree_del_cursor(cur, error);
2432 	if (error)
2433 		return error;
2434 
2435 	/* check that the returned record contains the required inode */
2436 	if (rec.ir_startino > agino ||
2437 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2438 		return -EINVAL;
2439 
2440 	/* for untrusted inodes check it is allocated first */
2441 	if ((flags & XFS_IGET_UNTRUSTED) &&
2442 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2443 		return -EINVAL;
2444 
2445 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2446 	*offset_agbno = agbno - *chunk_agbno;
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Return the location of the inode in imap, for mapping it into a buffer.
2452  */
2453 int
2454 xfs_imap(
2455 	struct xfs_perag	*pag,
2456 	struct xfs_trans	*tp,
2457 	xfs_ino_t		ino,	/* inode to locate */
2458 	struct xfs_imap		*imap,	/* location map structure */
2459 	uint			flags)	/* flags for inode btree lookup */
2460 {
2461 	struct xfs_mount	*mp = pag_mount(pag);
2462 	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2463 	xfs_agino_t		agino;	/* inode number within alloc group */
2464 	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2465 	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2466 	int			error;	/* error code */
2467 	int			offset;	/* index of inode in its buffer */
2468 	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2469 
2470 	ASSERT(ino != NULLFSINO);
2471 
2472 	/*
2473 	 * Split up the inode number into its parts.
2474 	 */
2475 	agino = XFS_INO_TO_AGINO(mp, ino);
2476 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2477 	if (agbno >= mp->m_sb.sb_agblocks ||
2478 	    ino != xfs_agino_to_ino(pag, agino)) {
2479 		error = -EINVAL;
2480 #ifdef DEBUG
2481 		/*
2482 		 * Don't output diagnostic information for untrusted inodes
2483 		 * as they can be invalid without implying corruption.
2484 		 */
2485 		if (flags & XFS_IGET_UNTRUSTED)
2486 			return error;
2487 		if (agbno >= mp->m_sb.sb_agblocks) {
2488 			xfs_alert(mp,
2489 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2490 				__func__, (unsigned long long)agbno,
2491 				(unsigned long)mp->m_sb.sb_agblocks);
2492 		}
2493 		if (ino != xfs_agino_to_ino(pag, agino)) {
2494 			xfs_alert(mp,
2495 		"%s: ino (0x%llx) != xfs_agino_to_ino() (0x%llx)",
2496 				__func__, ino,
2497 				xfs_agino_to_ino(pag, agino));
2498 		}
2499 		xfs_stack_trace();
2500 #endif /* DEBUG */
2501 		return error;
2502 	}
2503 
2504 	/*
2505 	 * For bulkstat and handle lookups, we have an untrusted inode number
2506 	 * that we have to verify is valid. We cannot do this just by reading
2507 	 * the inode buffer as it may have been unlinked and removed leaving
2508 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2509 	 * in all cases where an untrusted inode number is passed.
2510 	 */
2511 	if (flags & XFS_IGET_UNTRUSTED) {
2512 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2513 					&chunk_agbno, &offset_agbno, flags);
2514 		if (error)
2515 			return error;
2516 		goto out_map;
2517 	}
2518 
2519 	/*
2520 	 * If the inode cluster size is the same as the blocksize or
2521 	 * smaller we get to the buffer by simple arithmetics.
2522 	 */
2523 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2524 		offset = XFS_INO_TO_OFFSET(mp, ino);
2525 		ASSERT(offset < mp->m_sb.sb_inopblock);
2526 
2527 		imap->im_blkno = xfs_agbno_to_daddr(pag, agbno);
2528 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2529 		imap->im_boffset = (unsigned short)(offset <<
2530 							mp->m_sb.sb_inodelog);
2531 		return 0;
2532 	}
2533 
2534 	/*
2535 	 * If the inode chunks are aligned then use simple maths to
2536 	 * find the location. Otherwise we have to do a btree
2537 	 * lookup to find the location.
2538 	 */
2539 	if (M_IGEO(mp)->inoalign_mask) {
2540 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2541 		chunk_agbno = agbno - offset_agbno;
2542 	} else {
2543 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2544 					&chunk_agbno, &offset_agbno, flags);
2545 		if (error)
2546 			return error;
2547 	}
2548 
2549 out_map:
2550 	ASSERT(agbno >= chunk_agbno);
2551 	cluster_agbno = chunk_agbno +
2552 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2553 		 M_IGEO(mp)->blocks_per_cluster);
2554 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2555 		XFS_INO_TO_OFFSET(mp, ino);
2556 
2557 	imap->im_blkno = xfs_agbno_to_daddr(pag, cluster_agbno);
2558 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2559 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2560 
2561 	/*
2562 	 * If the inode number maps to a block outside the bounds
2563 	 * of the file system then return NULL rather than calling
2564 	 * read_buf and panicing when we get an error from the
2565 	 * driver.
2566 	 */
2567 	if ((imap->im_blkno + imap->im_len) >
2568 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2569 		xfs_alert(mp,
2570 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2571 			__func__, (unsigned long long) imap->im_blkno,
2572 			(unsigned long long) imap->im_len,
2573 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2574 		return -EINVAL;
2575 	}
2576 	return 0;
2577 }
2578 
2579 /*
2580  * Log specified fields for the ag hdr (inode section). The growth of the agi
2581  * structure over time requires that we interpret the buffer as two logical
2582  * regions delineated by the end of the unlinked list. This is due to the size
2583  * of the hash table and its location in the middle of the agi.
2584  *
2585  * For example, a request to log a field before agi_unlinked and a field after
2586  * agi_unlinked could cause us to log the entire hash table and use an excessive
2587  * amount of log space. To avoid this behavior, log the region up through
2588  * agi_unlinked in one call and the region after agi_unlinked through the end of
2589  * the structure in another.
2590  */
2591 void
2592 xfs_ialloc_log_agi(
2593 	struct xfs_trans	*tp,
2594 	struct xfs_buf		*bp,
2595 	uint32_t		fields)
2596 {
2597 	int			first;		/* first byte number */
2598 	int			last;		/* last byte number */
2599 	static const short	offsets[] = {	/* field starting offsets */
2600 					/* keep in sync with bit definitions */
2601 		offsetof(xfs_agi_t, agi_magicnum),
2602 		offsetof(xfs_agi_t, agi_versionnum),
2603 		offsetof(xfs_agi_t, agi_seqno),
2604 		offsetof(xfs_agi_t, agi_length),
2605 		offsetof(xfs_agi_t, agi_count),
2606 		offsetof(xfs_agi_t, agi_root),
2607 		offsetof(xfs_agi_t, agi_level),
2608 		offsetof(xfs_agi_t, agi_freecount),
2609 		offsetof(xfs_agi_t, agi_newino),
2610 		offsetof(xfs_agi_t, agi_dirino),
2611 		offsetof(xfs_agi_t, agi_unlinked),
2612 		offsetof(xfs_agi_t, agi_free_root),
2613 		offsetof(xfs_agi_t, agi_free_level),
2614 		offsetof(xfs_agi_t, agi_iblocks),
2615 		sizeof(xfs_agi_t)
2616 	};
2617 #ifdef DEBUG
2618 	struct xfs_agi		*agi = bp->b_addr;
2619 
2620 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2621 #endif
2622 
2623 	/*
2624 	 * Compute byte offsets for the first and last fields in the first
2625 	 * region and log the agi buffer. This only logs up through
2626 	 * agi_unlinked.
2627 	 */
2628 	if (fields & XFS_AGI_ALL_BITS_R1) {
2629 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2630 				  &first, &last);
2631 		xfs_trans_log_buf(tp, bp, first, last);
2632 	}
2633 
2634 	/*
2635 	 * Mask off the bits in the first region and calculate the first and
2636 	 * last field offsets for any bits in the second region.
2637 	 */
2638 	fields &= ~XFS_AGI_ALL_BITS_R1;
2639 	if (fields) {
2640 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2641 				  &first, &last);
2642 		xfs_trans_log_buf(tp, bp, first, last);
2643 	}
2644 }
2645 
2646 static xfs_failaddr_t
2647 xfs_agi_verify(
2648 	struct xfs_buf		*bp)
2649 {
2650 	struct xfs_mount	*mp = bp->b_mount;
2651 	struct xfs_agi		*agi = bp->b_addr;
2652 	xfs_failaddr_t		fa;
2653 	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2654 	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2655 	int			i;
2656 
2657 	if (xfs_has_crc(mp)) {
2658 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2659 			return __this_address;
2660 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2661 			return __this_address;
2662 	}
2663 
2664 	/*
2665 	 * Validate the magic number of the agi block.
2666 	 */
2667 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2668 		return __this_address;
2669 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2670 		return __this_address;
2671 
2672 	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2673 	if (fa)
2674 		return fa;
2675 
2676 	if (be32_to_cpu(agi->agi_level) < 1 ||
2677 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2678 		return __this_address;
2679 
2680 	if (xfs_has_finobt(mp) &&
2681 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2682 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2683 		return __this_address;
2684 
2685 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2686 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2687 			continue;
2688 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2689 			return __this_address;
2690 	}
2691 
2692 	return NULL;
2693 }
2694 
2695 static void
2696 xfs_agi_read_verify(
2697 	struct xfs_buf	*bp)
2698 {
2699 	struct xfs_mount *mp = bp->b_mount;
2700 	xfs_failaddr_t	fa;
2701 
2702 	if (xfs_has_crc(mp) &&
2703 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2704 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2705 	else {
2706 		fa = xfs_agi_verify(bp);
2707 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2708 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2709 	}
2710 }
2711 
2712 static void
2713 xfs_agi_write_verify(
2714 	struct xfs_buf	*bp)
2715 {
2716 	struct xfs_mount	*mp = bp->b_mount;
2717 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2718 	struct xfs_agi		*agi = bp->b_addr;
2719 	xfs_failaddr_t		fa;
2720 
2721 	fa = xfs_agi_verify(bp);
2722 	if (fa) {
2723 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2724 		return;
2725 	}
2726 
2727 	if (!xfs_has_crc(mp))
2728 		return;
2729 
2730 	if (bip)
2731 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2732 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2733 }
2734 
2735 const struct xfs_buf_ops xfs_agi_buf_ops = {
2736 	.name = "xfs_agi",
2737 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2738 	.verify_read = xfs_agi_read_verify,
2739 	.verify_write = xfs_agi_write_verify,
2740 	.verify_struct = xfs_agi_verify,
2741 };
2742 
2743 /*
2744  * Read in the allocation group header (inode allocation section)
2745  */
2746 int
2747 xfs_read_agi(
2748 	struct xfs_perag	*pag,
2749 	struct xfs_trans	*tp,
2750 	xfs_buf_flags_t		flags,
2751 	struct xfs_buf		**agibpp)
2752 {
2753 	struct xfs_mount	*mp = pag_mount(pag);
2754 	int			error;
2755 
2756 	trace_xfs_read_agi(pag);
2757 
2758 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2759 			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGI_DADDR(mp)),
2760 			XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2761 	if (xfs_metadata_is_sick(error))
2762 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2763 	if (error)
2764 		return error;
2765 	if (tp)
2766 		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2767 
2768 	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2769 	return 0;
2770 }
2771 
2772 /*
2773  * Read in the agi and initialise the per-ag data. If the caller supplies a
2774  * @agibpp, return the locked AGI buffer to them, otherwise release it.
2775  */
2776 int
2777 xfs_ialloc_read_agi(
2778 	struct xfs_perag	*pag,
2779 	struct xfs_trans	*tp,
2780 	int			flags,
2781 	struct xfs_buf		**agibpp)
2782 {
2783 	struct xfs_buf		*agibp;
2784 	struct xfs_agi		*agi;
2785 	int			error;
2786 
2787 	trace_xfs_ialloc_read_agi(pag);
2788 
2789 	error = xfs_read_agi(pag, tp,
2790 			(flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2791 			&agibp);
2792 	if (error)
2793 		return error;
2794 
2795 	agi = agibp->b_addr;
2796 	if (!xfs_perag_initialised_agi(pag)) {
2797 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2798 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2799 		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2800 	}
2801 
2802 	/*
2803 	 * It's possible for these to be out of sync if
2804 	 * we are in the middle of a forced shutdown.
2805 	 */
2806 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2807 		xfs_is_shutdown(pag_mount(pag)));
2808 	if (agibpp)
2809 		*agibpp = agibp;
2810 	else
2811 		xfs_trans_brelse(tp, agibp);
2812 	return 0;
2813 }
2814 
2815 /* How many inodes are backed by inode clusters ondisk? */
2816 STATIC int
2817 xfs_ialloc_count_ondisk(
2818 	struct xfs_btree_cur		*cur,
2819 	xfs_agino_t			low,
2820 	xfs_agino_t			high,
2821 	unsigned int			*allocated)
2822 {
2823 	struct xfs_inobt_rec_incore	irec;
2824 	unsigned int			ret = 0;
2825 	int				has_record;
2826 	int				error;
2827 
2828 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2829 	if (error)
2830 		return error;
2831 
2832 	while (has_record) {
2833 		unsigned int		i, hole_idx;
2834 
2835 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2836 		if (error)
2837 			return error;
2838 		if (irec.ir_startino > high)
2839 			break;
2840 
2841 		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2842 			if (irec.ir_startino + i < low)
2843 				continue;
2844 			if (irec.ir_startino + i > high)
2845 				break;
2846 
2847 			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2848 			if (!(irec.ir_holemask & (1U << hole_idx)))
2849 				ret++;
2850 		}
2851 
2852 		error = xfs_btree_increment(cur, 0, &has_record);
2853 		if (error)
2854 			return error;
2855 	}
2856 
2857 	*allocated = ret;
2858 	return 0;
2859 }
2860 
2861 /* Is there an inode record covering a given extent? */
2862 int
2863 xfs_ialloc_has_inodes_at_extent(
2864 	struct xfs_btree_cur	*cur,
2865 	xfs_agblock_t		bno,
2866 	xfs_extlen_t		len,
2867 	enum xbtree_recpacking	*outcome)
2868 {
2869 	xfs_agino_t		agino;
2870 	xfs_agino_t		last_agino;
2871 	unsigned int		allocated;
2872 	int			error;
2873 
2874 	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2875 	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2876 
2877 	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2878 	if (error)
2879 		return error;
2880 
2881 	if (allocated == 0)
2882 		*outcome = XBTREE_RECPACKING_EMPTY;
2883 	else if (allocated == last_agino - agino + 1)
2884 		*outcome = XBTREE_RECPACKING_FULL;
2885 	else
2886 		*outcome = XBTREE_RECPACKING_SPARSE;
2887 	return 0;
2888 }
2889 
2890 struct xfs_ialloc_count_inodes {
2891 	xfs_agino_t			count;
2892 	xfs_agino_t			freecount;
2893 };
2894 
2895 /* Record inode counts across all inobt records. */
2896 STATIC int
2897 xfs_ialloc_count_inodes_rec(
2898 	struct xfs_btree_cur		*cur,
2899 	const union xfs_btree_rec	*rec,
2900 	void				*priv)
2901 {
2902 	struct xfs_inobt_rec_incore	irec;
2903 	struct xfs_ialloc_count_inodes	*ci = priv;
2904 	xfs_failaddr_t			fa;
2905 
2906 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2907 	fa = xfs_inobt_check_irec(to_perag(cur->bc_group), &irec);
2908 	if (fa)
2909 		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2910 
2911 	ci->count += irec.ir_count;
2912 	ci->freecount += irec.ir_freecount;
2913 
2914 	return 0;
2915 }
2916 
2917 /* Count allocated and free inodes under an inobt. */
2918 int
2919 xfs_ialloc_count_inodes(
2920 	struct xfs_btree_cur		*cur,
2921 	xfs_agino_t			*count,
2922 	xfs_agino_t			*freecount)
2923 {
2924 	struct xfs_ialloc_count_inodes	ci = {0};
2925 	int				error;
2926 
2927 	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2928 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2929 	if (error)
2930 		return error;
2931 
2932 	*count = ci.count;
2933 	*freecount = ci.freecount;
2934 	return 0;
2935 }
2936 
2937 /*
2938  * Initialize inode-related geometry information.
2939  *
2940  * Compute the inode btree min and max levels and set maxicount.
2941  *
2942  * Set the inode cluster size.  This may still be overridden by the file
2943  * system block size if it is larger than the chosen cluster size.
2944  *
2945  * For v5 filesystems, scale the cluster size with the inode size to keep a
2946  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2947  * inode alignment value appropriately for larger cluster sizes.
2948  *
2949  * Then compute the inode cluster alignment information.
2950  */
2951 void
2952 xfs_ialloc_setup_geometry(
2953 	struct xfs_mount	*mp)
2954 {
2955 	struct xfs_sb		*sbp = &mp->m_sb;
2956 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2957 	uint64_t		icount;
2958 	uint			inodes;
2959 
2960 	igeo->new_diflags2 = 0;
2961 	if (xfs_has_bigtime(mp))
2962 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2963 	if (xfs_has_large_extent_counts(mp))
2964 		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2965 
2966 	/* Compute inode btree geometry. */
2967 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2968 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2969 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2970 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2971 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2972 
2973 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2974 			sbp->sb_inopblock);
2975 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2976 
2977 	if (sbp->sb_spino_align)
2978 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2979 	else
2980 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2981 
2982 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2983 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2984 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2985 			inodes);
2986 	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2987 
2988 	/*
2989 	 * Set the maximum inode count for this filesystem, being careful not
2990 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2991 	 * users should never get here due to failing sb verification, but
2992 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2993 	 */
2994 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2995 		/*
2996 		 * Make sure the maximum inode count is a multiple
2997 		 * of the units we allocate inodes in.
2998 		 */
2999 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
3000 		do_div(icount, 100);
3001 		do_div(icount, igeo->ialloc_blks);
3002 		igeo->maxicount = XFS_FSB_TO_INO(mp,
3003 				icount * igeo->ialloc_blks);
3004 	} else {
3005 		igeo->maxicount = 0;
3006 	}
3007 
3008 	/*
3009 	 * Compute the desired size of an inode cluster buffer size, which
3010 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
3011 	 * sizes.
3012 	 *
3013 	 * Preserve the desired inode cluster size because the sparse inodes
3014 	 * feature uses that desired size (not the actual size) to compute the
3015 	 * sparse inode alignment.  The mount code validates this value, so we
3016 	 * cannot change the behavior.
3017 	 */
3018 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3019 	if (xfs_has_v3inodes(mp)) {
3020 		int	new_size = igeo->inode_cluster_size_raw;
3021 
3022 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3023 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3024 			igeo->inode_cluster_size_raw = new_size;
3025 	}
3026 
3027 	/* Calculate inode cluster ratios. */
3028 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3029 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3030 				igeo->inode_cluster_size_raw);
3031 	else
3032 		igeo->blocks_per_cluster = 1;
3033 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3034 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3035 
3036 	/* Calculate inode cluster alignment. */
3037 	if (xfs_has_align(mp) &&
3038 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3039 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3040 	else
3041 		igeo->cluster_align = 1;
3042 	igeo->inoalign_mask = igeo->cluster_align - 1;
3043 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3044 
3045 	/*
3046 	 * If we are using stripe alignment, check whether
3047 	 * the stripe unit is a multiple of the inode alignment
3048 	 */
3049 	if (mp->m_dalign && igeo->inoalign_mask &&
3050 	    !(mp->m_dalign & igeo->inoalign_mask))
3051 		igeo->ialloc_align = mp->m_dalign;
3052 	else
3053 		igeo->ialloc_align = 0;
3054 
3055 	if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3056 		igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3057 	else
3058 		igeo->min_folio_order = 0;
3059 }
3060 
3061 /* Compute the location of the root directory inode that is laid out by mkfs. */
3062 xfs_ino_t
3063 xfs_ialloc_calc_rootino(
3064 	struct xfs_mount	*mp,
3065 	int			sunit)
3066 {
3067 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3068 	xfs_agblock_t		first_bno;
3069 
3070 	/*
3071 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
3072 	 * because libxfs knows how to create allocation groups now.
3073 	 *
3074 	 * first_bno is the first block in which mkfs could possibly have
3075 	 * allocated the root directory inode, once we factor in the metadata
3076 	 * that mkfs formats before it.  Namely, the four AG headers...
3077 	 */
3078 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3079 
3080 	/* ...the two free space btree roots... */
3081 	first_bno += 2;
3082 
3083 	/* ...the inode btree root... */
3084 	first_bno += 1;
3085 
3086 	/* ...the initial AGFL... */
3087 	first_bno += xfs_alloc_min_freelist(mp, NULL);
3088 
3089 	/* ...the free inode btree root... */
3090 	if (xfs_has_finobt(mp))
3091 		first_bno++;
3092 
3093 	/* ...the reverse mapping btree root... */
3094 	if (xfs_has_rmapbt(mp))
3095 		first_bno++;
3096 
3097 	/* ...the reference count btree... */
3098 	if (xfs_has_reflink(mp))
3099 		first_bno++;
3100 
3101 	/*
3102 	 * ...and the log, if it is allocated in the first allocation group.
3103 	 *
3104 	 * This can happen with filesystems that only have a single
3105 	 * allocation group, or very odd geometries created by old mkfs
3106 	 * versions on very small filesystems.
3107 	 */
3108 	if (xfs_ag_contains_log(mp, 0))
3109 		 first_bno += mp->m_sb.sb_logblocks;
3110 
3111 	/*
3112 	 * Now round first_bno up to whatever allocation alignment is given
3113 	 * by the filesystem or was passed in.
3114 	 */
3115 	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3116 		first_bno = roundup(first_bno, sunit);
3117 	else if (xfs_has_align(mp) &&
3118 			mp->m_sb.sb_inoalignmt > 1)
3119 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3120 
3121 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3122 }
3123 
3124 /*
3125  * Ensure there are not sparse inode clusters that cross the new EOAG.
3126  *
3127  * This is a no-op for non-spinode filesystems since clusters are always fully
3128  * allocated and checking the bnobt suffices.  However, a spinode filesystem
3129  * could have a record where the upper inodes are free blocks.  If those blocks
3130  * were removed from the filesystem, the inode record would extend beyond EOAG,
3131  * which will be flagged as corruption.
3132  */
3133 int
3134 xfs_ialloc_check_shrink(
3135 	struct xfs_perag	*pag,
3136 	struct xfs_trans	*tp,
3137 	struct xfs_buf		*agibp,
3138 	xfs_agblock_t		new_length)
3139 {
3140 	struct xfs_inobt_rec_incore rec;
3141 	struct xfs_btree_cur	*cur;
3142 	xfs_agino_t		agino;
3143 	int			has;
3144 	int			error;
3145 
3146 	if (!xfs_has_sparseinodes(pag_mount(pag)))
3147 		return 0;
3148 
3149 	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3150 
3151 	/* Look up the inobt record that would correspond to the new EOFS. */
3152 	agino = XFS_AGB_TO_AGINO(pag_mount(pag), new_length);
3153 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3154 	if (error || !has)
3155 		goto out;
3156 
3157 	error = xfs_inobt_get_rec(cur, &rec, &has);
3158 	if (error)
3159 		goto out;
3160 
3161 	if (!has) {
3162 		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3163 		error = -EFSCORRUPTED;
3164 		goto out;
3165 	}
3166 
3167 	/* If the record covers inodes that would be beyond EOFS, bail out. */
3168 	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3169 		error = -ENOSPC;
3170 		goto out;
3171 	}
3172 out:
3173 	xfs_btree_del_cursor(cur, error);
3174 	return error;
3175 }
3176