xref: /linux/fs/xfs/libxfs/xfs_ialloc.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 #include "xfs_health.h"
31 
32 /*
33  * Lookup a record by ino in the btree given by cur.
34  */
35 int					/* error */
36 xfs_inobt_lookup(
37 	struct xfs_btree_cur	*cur,	/* btree cursor */
38 	xfs_agino_t		ino,	/* starting inode of chunk */
39 	xfs_lookup_t		dir,	/* <=, >=, == */
40 	int			*stat)	/* success/failure */
41 {
42 	cur->bc_rec.i.ir_startino = ino;
43 	cur->bc_rec.i.ir_holemask = 0;
44 	cur->bc_rec.i.ir_count = 0;
45 	cur->bc_rec.i.ir_freecount = 0;
46 	cur->bc_rec.i.ir_free = 0;
47 	return xfs_btree_lookup(cur, dir, stat);
48 }
49 
50 /*
51  * Update the record referred to by cur to the value given.
52  * This either works (return 0) or gets an EFSCORRUPTED error.
53  */
54 STATIC int				/* error */
55 xfs_inobt_update(
56 	struct xfs_btree_cur	*cur,	/* btree cursor */
57 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
58 {
59 	union xfs_btree_rec	rec;
60 
61 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 	if (xfs_has_sparseinodes(cur->bc_mp)) {
63 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 	} else {
67 		/* ir_holemask/ir_count not supported on-disk */
68 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 	}
70 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 	return xfs_btree_update(cur, &rec);
72 }
73 
74 /* Convert on-disk btree record to incore inobt record. */
75 void
76 xfs_inobt_btrec_to_irec(
77 	struct xfs_mount		*mp,
78 	const union xfs_btree_rec	*rec,
79 	struct xfs_inobt_rec_incore	*irec)
80 {
81 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 	if (xfs_has_sparseinodes(mp)) {
83 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 	} else {
87 		/*
88 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 		 * values for full inode chunks.
90 		 */
91 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 		irec->ir_count = XFS_INODES_PER_CHUNK;
93 		irec->ir_freecount =
94 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 	}
96 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97 }
98 
99 /* Compute the freecount of an incore inode record. */
100 uint8_t
101 xfs_inobt_rec_freecount(
102 	const struct xfs_inobt_rec_incore	*irec)
103 {
104 	uint64_t				realfree = irec->ir_free;
105 
106 	if (xfs_inobt_issparse(irec->ir_holemask))
107 		realfree &= xfs_inobt_irec_to_allocmask(irec);
108 	return hweight64(realfree);
109 }
110 
111 /* Simple checks for inode records. */
112 xfs_failaddr_t
113 xfs_inobt_check_irec(
114 	struct xfs_perag			*pag,
115 	const struct xfs_inobt_rec_incore	*irec)
116 {
117 	/* Record has to be properly aligned within the AG. */
118 	if (!xfs_verify_agino(pag, irec->ir_startino))
119 		return __this_address;
120 	if (!xfs_verify_agino(pag,
121 				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 		return __this_address;
123 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 	    irec->ir_count > XFS_INODES_PER_CHUNK)
125 		return __this_address;
126 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 		return __this_address;
128 
129 	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 		return __this_address;
131 
132 	return NULL;
133 }
134 
135 static inline int
136 xfs_inobt_complain_bad_rec(
137 	struct xfs_btree_cur		*cur,
138 	xfs_failaddr_t			fa,
139 	const struct xfs_inobt_rec_incore *irec)
140 {
141 	struct xfs_mount		*mp = cur->bc_mp;
142 
143 	xfs_warn(mp,
144 		"%sbt record corruption in AG %d detected at %pS!",
145 		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146 	xfs_warn(mp,
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 		irec->ir_free, irec->ir_holemask);
150 	xfs_btree_mark_sick(cur);
151 	return -EFSCORRUPTED;
152 }
153 
154 /*
155  * Get the data from the pointed-to record.
156  */
157 int
158 xfs_inobt_get_rec(
159 	struct xfs_btree_cur		*cur,
160 	struct xfs_inobt_rec_incore	*irec,
161 	int				*stat)
162 {
163 	struct xfs_mount		*mp = cur->bc_mp;
164 	union xfs_btree_rec		*rec;
165 	xfs_failaddr_t			fa;
166 	int				error;
167 
168 	error = xfs_btree_get_rec(cur, &rec, stat);
169 	if (error || *stat == 0)
170 		return error;
171 
172 	xfs_inobt_btrec_to_irec(mp, rec, irec);
173 	fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174 	if (fa)
175 		return xfs_inobt_complain_bad_rec(cur, fa, irec);
176 
177 	return 0;
178 }
179 
180 /*
181  * Insert a single inobt record. Cursor must already point to desired location.
182  */
183 int
184 xfs_inobt_insert_rec(
185 	struct xfs_btree_cur	*cur,
186 	uint16_t		holemask,
187 	uint8_t			count,
188 	int32_t			freecount,
189 	xfs_inofree_t		free,
190 	int			*stat)
191 {
192 	cur->bc_rec.i.ir_holemask = holemask;
193 	cur->bc_rec.i.ir_count = count;
194 	cur->bc_rec.i.ir_freecount = freecount;
195 	cur->bc_rec.i.ir_free = free;
196 	return xfs_btree_insert(cur, stat);
197 }
198 
199 /*
200  * Insert records describing a newly allocated inode chunk into the inobt.
201  */
202 STATIC int
203 xfs_inobt_insert(
204 	struct xfs_perag	*pag,
205 	struct xfs_trans	*tp,
206 	struct xfs_buf		*agbp,
207 	xfs_agino_t		newino,
208 	xfs_agino_t		newlen,
209 	bool			is_finobt)
210 {
211 	struct xfs_btree_cur	*cur;
212 	xfs_agino_t		thisino;
213 	int			i;
214 	int			error;
215 
216 	if (is_finobt)
217 		cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 	else
219 		cur = xfs_inobt_init_cursor(pag, tp, agbp);
220 
221 	for (thisino = newino;
222 	     thisino < newino + newlen;
223 	     thisino += XFS_INODES_PER_CHUNK) {
224 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 		if (error) {
226 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 			return error;
228 		}
229 		ASSERT(i == 0);
230 
231 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 					     XFS_INODES_PER_CHUNK,
233 					     XFS_INODES_PER_CHUNK,
234 					     XFS_INOBT_ALL_FREE, &i);
235 		if (error) {
236 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 			return error;
238 		}
239 		ASSERT(i == 1);
240 	}
241 
242 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243 
244 	return 0;
245 }
246 
247 /*
248  * Verify that the number of free inodes in the AGI is correct.
249  */
250 #ifdef DEBUG
251 static int
252 xfs_check_agi_freecount(
253 	struct xfs_btree_cur	*cur)
254 {
255 	if (cur->bc_nlevels == 1) {
256 		xfs_inobt_rec_incore_t rec;
257 		int		freecount = 0;
258 		int		error;
259 		int		i;
260 
261 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 		if (error)
263 			return error;
264 
265 		do {
266 			error = xfs_inobt_get_rec(cur, &rec, &i);
267 			if (error)
268 				return error;
269 
270 			if (i) {
271 				freecount += rec.ir_freecount;
272 				error = xfs_btree_increment(cur, 0, &i);
273 				if (error)
274 					return error;
275 			}
276 		} while (i == 1);
277 
278 		if (!xfs_is_shutdown(cur->bc_mp))
279 			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280 	}
281 	return 0;
282 }
283 #else
284 #define xfs_check_agi_freecount(cur)	0
285 #endif
286 
287 /*
288  * Initialise a new set of inodes. When called without a transaction context
289  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290  * than logging them (which in a transaction context puts them into the AIL
291  * for writeback rather than the xfsbufd queue).
292  */
293 int
294 xfs_ialloc_inode_init(
295 	struct xfs_mount	*mp,
296 	struct xfs_trans	*tp,
297 	struct list_head	*buffer_list,
298 	int			icount,
299 	xfs_agnumber_t		agno,
300 	xfs_agblock_t		agbno,
301 	xfs_agblock_t		length,
302 	unsigned int		gen)
303 {
304 	struct xfs_buf		*fbuf;
305 	struct xfs_dinode	*free;
306 	int			nbufs;
307 	int			version;
308 	int			i, j;
309 	xfs_daddr_t		d;
310 	xfs_ino_t		ino = 0;
311 	int			error;
312 
313 	/*
314 	 * Loop over the new block(s), filling in the inodes.  For small block
315 	 * sizes, manipulate the inodes in buffers  which are multiples of the
316 	 * blocks size.
317 	 */
318 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319 
320 	/*
321 	 * Figure out what version number to use in the inodes we create.  If
322 	 * the superblock version has caught up to the one that supports the new
323 	 * inode format, then use the new inode version.  Otherwise use the old
324 	 * version so that old kernels will continue to be able to use the file
325 	 * system.
326 	 *
327 	 * For v3 inodes, we also need to write the inode number into the inode,
328 	 * so calculate the first inode number of the chunk here as
329 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330 	 * across multiple filesystem blocks (such as a cluster) and so cannot
331 	 * be used in the cluster buffer loop below.
332 	 *
333 	 * Further, because we are writing the inode directly into the buffer
334 	 * and calculating a CRC on the entire inode, we have ot log the entire
335 	 * inode so that the entire range the CRC covers is present in the log.
336 	 * That means for v3 inode we log the entire buffer rather than just the
337 	 * inode cores.
338 	 */
339 	if (xfs_has_v3inodes(mp)) {
340 		version = 3;
341 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342 
343 		/*
344 		 * log the initialisation that is about to take place as an
345 		 * logical operation. This means the transaction does not
346 		 * need to log the physical changes to the inode buffers as log
347 		 * recovery will know what initialisation is actually needed.
348 		 * Hence we only need to log the buffers as "ordered" buffers so
349 		 * they track in the AIL as if they were physically logged.
350 		 */
351 		if (tp)
352 			xfs_icreate_log(tp, agno, agbno, icount,
353 					mp->m_sb.sb_inodesize, length, gen);
354 	} else
355 		version = 2;
356 
357 	for (j = 0; j < nbufs; j++) {
358 		/*
359 		 * Get the block.
360 		 */
361 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362 				(j * M_IGEO(mp)->blocks_per_cluster));
363 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365 				XBF_UNMAPPED, &fbuf);
366 		if (error)
367 			return error;
368 
369 		/* Initialize the inode buffers and log them appropriately. */
370 		fbuf->b_ops = &xfs_inode_buf_ops;
371 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373 			int	ioffset = i << mp->m_sb.sb_inodelog;
374 
375 			free = xfs_make_iptr(mp, fbuf, i);
376 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377 			free->di_version = version;
378 			free->di_gen = cpu_to_be32(gen);
379 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380 
381 			if (version == 3) {
382 				free->di_ino = cpu_to_be64(ino);
383 				ino++;
384 				uuid_copy(&free->di_uuid,
385 					  &mp->m_sb.sb_meta_uuid);
386 				xfs_dinode_calc_crc(mp, free);
387 			} else if (tp) {
388 				/* just log the inode core */
389 				xfs_trans_log_buf(tp, fbuf, ioffset,
390 					  ioffset + XFS_DINODE_SIZE(mp) - 1);
391 			}
392 		}
393 
394 		if (tp) {
395 			/*
396 			 * Mark the buffer as an inode allocation buffer so it
397 			 * sticks in AIL at the point of this allocation
398 			 * transaction. This ensures the they are on disk before
399 			 * the tail of the log can be moved past this
400 			 * transaction (i.e. by preventing relogging from moving
401 			 * it forward in the log).
402 			 */
403 			xfs_trans_inode_alloc_buf(tp, fbuf);
404 			if (version == 3) {
405 				/*
406 				 * Mark the buffer as ordered so that they are
407 				 * not physically logged in the transaction but
408 				 * still tracked in the AIL as part of the
409 				 * transaction and pin the log appropriately.
410 				 */
411 				xfs_trans_ordered_buf(tp, fbuf);
412 			}
413 		} else {
414 			fbuf->b_flags |= XBF_DONE;
415 			xfs_buf_delwri_queue(fbuf, buffer_list);
416 			xfs_buf_relse(fbuf);
417 		}
418 	}
419 	return 0;
420 }
421 
422 /*
423  * Align startino and allocmask for a recently allocated sparse chunk such that
424  * they are fit for insertion (or merge) into the on-disk inode btrees.
425  *
426  * Background:
427  *
428  * When enabled, sparse inode support increases the inode alignment from cluster
429  * size to inode chunk size. This means that the minimum range between two
430  * non-adjacent inode records in the inobt is large enough for a full inode
431  * record. This allows for cluster sized, cluster aligned block allocation
432  * without need to worry about whether the resulting inode record overlaps with
433  * another record in the tree. Without this basic rule, we would have to deal
434  * with the consequences of overlap by potentially undoing recent allocations in
435  * the inode allocation codepath.
436  *
437  * Because of this alignment rule (which is enforced on mount), there are two
438  * inobt possibilities for newly allocated sparse chunks. One is that the
439  * aligned inode record for the chunk covers a range of inodes not already
440  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441  * other is that a record already exists at the aligned startino that considers
442  * the newly allocated range as sparse. In the latter case, record content is
443  * merged in hope that sparse inode chunks fill to full chunks over time.
444  */
445 STATIC void
446 xfs_align_sparse_ino(
447 	struct xfs_mount		*mp,
448 	xfs_agino_t			*startino,
449 	uint16_t			*allocmask)
450 {
451 	xfs_agblock_t			agbno;
452 	xfs_agblock_t			mod;
453 	int				offset;
454 
455 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456 	mod = agbno % mp->m_sb.sb_inoalignmt;
457 	if (!mod)
458 		return;
459 
460 	/* calculate the inode offset and align startino */
461 	offset = XFS_AGB_TO_AGINO(mp, mod);
462 	*startino -= offset;
463 
464 	/*
465 	 * Since startino has been aligned down, left shift allocmask such that
466 	 * it continues to represent the same physical inodes relative to the
467 	 * new startino.
468 	 */
469 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470 }
471 
472 /*
473  * Determine whether the source inode record can merge into the target. Both
474  * records must be sparse, the inode ranges must match and there must be no
475  * allocation overlap between the records.
476  */
477 STATIC bool
478 __xfs_inobt_can_merge(
479 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
480 	struct xfs_inobt_rec_incore	*srec)	/* src record */
481 {
482 	uint64_t			talloc;
483 	uint64_t			salloc;
484 
485 	/* records must cover the same inode range */
486 	if (trec->ir_startino != srec->ir_startino)
487 		return false;
488 
489 	/* both records must be sparse */
490 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
491 	    !xfs_inobt_issparse(srec->ir_holemask))
492 		return false;
493 
494 	/* both records must track some inodes */
495 	if (!trec->ir_count || !srec->ir_count)
496 		return false;
497 
498 	/* can't exceed capacity of a full record */
499 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500 		return false;
501 
502 	/* verify there is no allocation overlap */
503 	talloc = xfs_inobt_irec_to_allocmask(trec);
504 	salloc = xfs_inobt_irec_to_allocmask(srec);
505 	if (talloc & salloc)
506 		return false;
507 
508 	return true;
509 }
510 
511 /*
512  * Merge the source inode record into the target. The caller must call
513  * __xfs_inobt_can_merge() to ensure the merge is valid.
514  */
515 STATIC void
516 __xfs_inobt_rec_merge(
517 	struct xfs_inobt_rec_incore	*trec,	/* target */
518 	struct xfs_inobt_rec_incore	*srec)	/* src */
519 {
520 	ASSERT(trec->ir_startino == srec->ir_startino);
521 
522 	/* combine the counts */
523 	trec->ir_count += srec->ir_count;
524 	trec->ir_freecount += srec->ir_freecount;
525 
526 	/*
527 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
528 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
529 	 */
530 	trec->ir_holemask &= srec->ir_holemask;
531 	trec->ir_free &= srec->ir_free;
532 }
533 
534 /*
535  * Insert a new sparse inode chunk into the associated inode allocation btree.
536  * The inode record for the sparse chunk is pre-aligned to a startino that
537  * should match any pre-existing sparse inode record in the tree. This allows
538  * sparse chunks to fill over time.
539  *
540  * If no preexisting record exists, the provided record is inserted.
541  * If there is a preexisting record, the provided record is merged with the
542  * existing record and updated in place. The merged record is returned in nrec.
543  *
544  * It is considered corruption if a merge is requested and not possible. Given
545  * the sparse inode alignment constraints, this should never happen.
546  */
547 STATIC int
548 xfs_inobt_insert_sprec(
549 	struct xfs_perag		*pag,
550 	struct xfs_trans		*tp,
551 	struct xfs_buf			*agbp,
552 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
553 {
554 	struct xfs_mount		*mp = pag->pag_mount;
555 	struct xfs_btree_cur		*cur;
556 	int				error;
557 	int				i;
558 	struct xfs_inobt_rec_incore	rec;
559 
560 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
561 
562 	/* the new record is pre-aligned so we know where to look */
563 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 	if (error)
565 		goto error;
566 	/* if nothing there, insert a new record and return */
567 	if (i == 0) {
568 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 					     nrec->ir_count, nrec->ir_freecount,
570 					     nrec->ir_free, &i);
571 		if (error)
572 			goto error;
573 		if (XFS_IS_CORRUPT(mp, i != 1)) {
574 			xfs_btree_mark_sick(cur);
575 			error = -EFSCORRUPTED;
576 			goto error;
577 		}
578 
579 		goto out;
580 	}
581 
582 	/*
583 	 * A record exists at this startino.  Merge the records.
584 	 */
585 	error = xfs_inobt_get_rec(cur, &rec, &i);
586 	if (error)
587 		goto error;
588 	if (XFS_IS_CORRUPT(mp, i != 1)) {
589 		xfs_btree_mark_sick(cur);
590 		error = -EFSCORRUPTED;
591 		goto error;
592 	}
593 	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 		xfs_btree_mark_sick(cur);
595 		error = -EFSCORRUPTED;
596 		goto error;
597 	}
598 
599 	/*
600 	 * This should never fail. If we have coexisting records that
601 	 * cannot merge, something is seriously wrong.
602 	 */
603 	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604 		xfs_btree_mark_sick(cur);
605 		error = -EFSCORRUPTED;
606 		goto error;
607 	}
608 
609 	trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610 				 rec.ir_holemask, nrec->ir_startino,
611 				 nrec->ir_holemask);
612 
613 	/* merge to nrec to output the updated record */
614 	__xfs_inobt_rec_merge(nrec, &rec);
615 
616 	trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617 				  nrec->ir_holemask);
618 
619 	error = xfs_inobt_rec_check_count(mp, nrec);
620 	if (error)
621 		goto error;
622 
623 	error = xfs_inobt_update(cur, nrec);
624 	if (error)
625 		goto error;
626 
627 out:
628 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629 	return 0;
630 error:
631 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632 	return error;
633 }
634 
635 /*
636  * Insert a new sparse inode chunk into the free inode btree. The inode
637  * record for the sparse chunk is pre-aligned to a startino that should match
638  * any pre-existing sparse inode record in the tree. This allows sparse chunks
639  * to fill over time.
640  *
641  * The new record is always inserted, overwriting a pre-existing record if
642  * there is one.
643  */
644 STATIC int
645 xfs_finobt_insert_sprec(
646 	struct xfs_perag		*pag,
647 	struct xfs_trans		*tp,
648 	struct xfs_buf			*agbp,
649 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
650 {
651 	struct xfs_mount		*mp = pag->pag_mount;
652 	struct xfs_btree_cur		*cur;
653 	int				error;
654 	int				i;
655 
656 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
657 
658 	/* the new record is pre-aligned so we know where to look */
659 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660 	if (error)
661 		goto error;
662 	/* if nothing there, insert a new record and return */
663 	if (i == 0) {
664 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665 					     nrec->ir_count, nrec->ir_freecount,
666 					     nrec->ir_free, &i);
667 		if (error)
668 			goto error;
669 		if (XFS_IS_CORRUPT(mp, i != 1)) {
670 			xfs_btree_mark_sick(cur);
671 			error = -EFSCORRUPTED;
672 			goto error;
673 		}
674 	} else {
675 		error = xfs_inobt_update(cur, nrec);
676 		if (error)
677 			goto error;
678 	}
679 
680 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681 	return 0;
682 error:
683 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684 	return error;
685 }
686 
687 
688 /*
689  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
690  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692  * inode count threshold, or the usual negative error code for other errors.
693  */
694 STATIC int
695 xfs_ialloc_ag_alloc(
696 	struct xfs_perag	*pag,
697 	struct xfs_trans	*tp,
698 	struct xfs_buf		*agbp)
699 {
700 	struct xfs_agi		*agi;
701 	struct xfs_alloc_arg	args;
702 	int			error;
703 	xfs_agino_t		newino;		/* new first inode's number */
704 	xfs_agino_t		newlen;		/* new number of inodes */
705 	int			isaligned = 0;	/* inode allocation at stripe */
706 						/* unit boundary */
707 	/* init. to full chunk */
708 	struct xfs_inobt_rec_incore rec;
709 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
710 	uint16_t		allocmask = (uint16_t) -1;
711 	int			do_sparse = 0;
712 
713 	memset(&args, 0, sizeof(args));
714 	args.tp = tp;
715 	args.mp = tp->t_mountp;
716 	args.fsbno = NULLFSBLOCK;
717 	args.oinfo = XFS_RMAP_OINFO_INODES;
718 	args.pag = pag;
719 
720 #ifdef DEBUG
721 	/* randomly do sparse inode allocations */
722 	if (xfs_has_sparseinodes(tp->t_mountp) &&
723 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
724 		do_sparse = get_random_u32_below(2);
725 #endif
726 
727 	/*
728 	 * Locking will ensure that we don't have two callers in here
729 	 * at one time.
730 	 */
731 	newlen = igeo->ialloc_inos;
732 	if (igeo->maxicount &&
733 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734 							igeo->maxicount)
735 		return -ENOSPC;
736 	args.minlen = args.maxlen = igeo->ialloc_blks;
737 	/*
738 	 * First try to allocate inodes contiguous with the last-allocated
739 	 * chunk of inodes.  If the filesystem is striped, this will fill
740 	 * an entire stripe unit with inodes.
741 	 */
742 	agi = agbp->b_addr;
743 	newino = be32_to_cpu(agi->agi_newino);
744 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745 		     igeo->ialloc_blks;
746 	if (do_sparse)
747 		goto sparse_alloc;
748 	if (likely(newino != NULLAGINO &&
749 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
750 		args.prod = 1;
751 
752 		/*
753 		 * We need to take into account alignment here to ensure that
754 		 * we don't modify the free list if we fail to have an exact
755 		 * block. If we don't have an exact match, and every oher
756 		 * attempt allocation attempt fails, we'll end up cancelling
757 		 * a dirty transaction and shutting down.
758 		 *
759 		 * For an exact allocation, alignment must be 1,
760 		 * however we need to take cluster alignment into account when
761 		 * fixing up the freelist. Use the minalignslop field to
762 		 * indicate that extra blocks might be required for alignment,
763 		 * but not to use them in the actual exact allocation.
764 		 */
765 		args.alignment = 1;
766 		args.minalignslop = igeo->cluster_align - 1;
767 
768 		/* Allow space for the inode btree to split. */
769 		args.minleft = igeo->inobt_maxlevels;
770 		error = xfs_alloc_vextent_exact_bno(&args,
771 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772 						args.agbno));
773 		if (error)
774 			return error;
775 
776 		/*
777 		 * This request might have dirtied the transaction if the AG can
778 		 * satisfy the request, but the exact block was not available.
779 		 * If the allocation did fail, subsequent requests will relax
780 		 * the exact agbno requirement and increase the alignment
781 		 * instead. It is critical that the total size of the request
782 		 * (len + alignment + slop) does not increase from this point
783 		 * on, so reset minalignslop to ensure it is not included in
784 		 * subsequent requests.
785 		 */
786 		args.minalignslop = 0;
787 	}
788 
789 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
790 		/*
791 		 * Set the alignment for the allocation.
792 		 * If stripe alignment is turned on then align at stripe unit
793 		 * boundary.
794 		 * If the cluster size is smaller than a filesystem block
795 		 * then we're doing I/O for inodes in filesystem block size
796 		 * pieces, so don't need alignment anyway.
797 		 */
798 		isaligned = 0;
799 		if (igeo->ialloc_align) {
800 			ASSERT(!xfs_has_noalign(args.mp));
801 			args.alignment = args.mp->m_dalign;
802 			isaligned = 1;
803 		} else
804 			args.alignment = igeo->cluster_align;
805 		/*
806 		 * Allocate a fixed-size extent of inodes.
807 		 */
808 		args.prod = 1;
809 		/*
810 		 * Allow space for the inode btree to split.
811 		 */
812 		args.minleft = igeo->inobt_maxlevels;
813 		error = xfs_alloc_vextent_near_bno(&args,
814 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815 						be32_to_cpu(agi->agi_root)));
816 		if (error)
817 			return error;
818 	}
819 
820 	/*
821 	 * If stripe alignment is turned on, then try again with cluster
822 	 * alignment.
823 	 */
824 	if (isaligned && args.fsbno == NULLFSBLOCK) {
825 		args.alignment = igeo->cluster_align;
826 		error = xfs_alloc_vextent_near_bno(&args,
827 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828 						be32_to_cpu(agi->agi_root)));
829 		if (error)
830 			return error;
831 	}
832 
833 	/*
834 	 * Finally, try a sparse allocation if the filesystem supports it and
835 	 * the sparse allocation length is smaller than a full chunk.
836 	 */
837 	if (xfs_has_sparseinodes(args.mp) &&
838 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
839 	    args.fsbno == NULLFSBLOCK) {
840 sparse_alloc:
841 		args.alignment = args.mp->m_sb.sb_spino_align;
842 		args.prod = 1;
843 
844 		args.minlen = igeo->ialloc_min_blks;
845 		args.maxlen = args.minlen;
846 
847 		/*
848 		 * The inode record will be aligned to full chunk size. We must
849 		 * prevent sparse allocation from AG boundaries that result in
850 		 * invalid inode records, such as records that start at agbno 0
851 		 * or extend beyond the AG.
852 		 *
853 		 * Set min agbno to the first aligned, non-zero agbno and max to
854 		 * the last aligned agbno that is at least one full chunk from
855 		 * the end of the AG.
856 		 */
857 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
859 					    args.mp->m_sb.sb_inoalignmt) -
860 				 igeo->ialloc_blks;
861 
862 		error = xfs_alloc_vextent_near_bno(&args,
863 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
864 						be32_to_cpu(agi->agi_root)));
865 		if (error)
866 			return error;
867 
868 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
869 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
870 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
871 	}
872 
873 	if (args.fsbno == NULLFSBLOCK)
874 		return -EAGAIN;
875 
876 	ASSERT(args.len == args.minlen);
877 
878 	/*
879 	 * Stamp and write the inode buffers.
880 	 *
881 	 * Seed the new inode cluster with a random generation number. This
882 	 * prevents short-term reuse of generation numbers if a chunk is
883 	 * freed and then immediately reallocated. We use random numbers
884 	 * rather than a linear progression to prevent the next generation
885 	 * number from being easily guessable.
886 	 */
887 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
888 			args.agbno, args.len, get_random_u32());
889 
890 	if (error)
891 		return error;
892 	/*
893 	 * Convert the results.
894 	 */
895 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
896 
897 	if (xfs_inobt_issparse(~allocmask)) {
898 		/*
899 		 * We've allocated a sparse chunk. Align the startino and mask.
900 		 */
901 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
902 
903 		rec.ir_startino = newino;
904 		rec.ir_holemask = ~allocmask;
905 		rec.ir_count = newlen;
906 		rec.ir_freecount = newlen;
907 		rec.ir_free = XFS_INOBT_ALL_FREE;
908 
909 		/*
910 		 * Insert the sparse record into the inobt and allow for a merge
911 		 * if necessary. If a merge does occur, rec is updated to the
912 		 * merged record.
913 		 */
914 		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
915 		if (error == -EFSCORRUPTED) {
916 			xfs_alert(args.mp,
917 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
918 				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
919 						   rec.ir_startino),
920 				  rec.ir_holemask, rec.ir_count);
921 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
922 		}
923 		if (error)
924 			return error;
925 
926 		/*
927 		 * We can't merge the part we've just allocated as for the inobt
928 		 * due to finobt semantics. The original record may or may not
929 		 * exist independent of whether physical inodes exist in this
930 		 * sparse chunk.
931 		 *
932 		 * We must update the finobt record based on the inobt record.
933 		 * rec contains the fully merged and up to date inobt record
934 		 * from the previous call. Set merge false to replace any
935 		 * existing record with this one.
936 		 */
937 		if (xfs_has_finobt(args.mp)) {
938 			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
939 			if (error)
940 				return error;
941 		}
942 	} else {
943 		/* full chunk - insert new records to both btrees */
944 		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
945 		if (error)
946 			return error;
947 
948 		if (xfs_has_finobt(args.mp)) {
949 			error = xfs_inobt_insert(pag, tp, agbp, newino,
950 						 newlen, true);
951 			if (error)
952 				return error;
953 		}
954 	}
955 
956 	/*
957 	 * Update AGI counts and newino.
958 	 */
959 	be32_add_cpu(&agi->agi_count, newlen);
960 	be32_add_cpu(&agi->agi_freecount, newlen);
961 	pag->pagi_freecount += newlen;
962 	pag->pagi_count += newlen;
963 	agi->agi_newino = cpu_to_be32(newino);
964 
965 	/*
966 	 * Log allocation group header fields
967 	 */
968 	xfs_ialloc_log_agi(tp, agbp,
969 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
970 	/*
971 	 * Modify/log superblock values for inode count and inode free count.
972 	 */
973 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
974 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
975 	return 0;
976 }
977 
978 /*
979  * Try to retrieve the next record to the left/right from the current one.
980  */
981 STATIC int
982 xfs_ialloc_next_rec(
983 	struct xfs_btree_cur	*cur,
984 	xfs_inobt_rec_incore_t	*rec,
985 	int			*done,
986 	int			left)
987 {
988 	int                     error;
989 	int			i;
990 
991 	if (left)
992 		error = xfs_btree_decrement(cur, 0, &i);
993 	else
994 		error = xfs_btree_increment(cur, 0, &i);
995 
996 	if (error)
997 		return error;
998 	*done = !i;
999 	if (i) {
1000 		error = xfs_inobt_get_rec(cur, rec, &i);
1001 		if (error)
1002 			return error;
1003 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004 			xfs_btree_mark_sick(cur);
1005 			return -EFSCORRUPTED;
1006 		}
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 STATIC int
1013 xfs_ialloc_get_rec(
1014 	struct xfs_btree_cur	*cur,
1015 	xfs_agino_t		agino,
1016 	xfs_inobt_rec_incore_t	*rec,
1017 	int			*done)
1018 {
1019 	int                     error;
1020 	int			i;
1021 
1022 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1023 	if (error)
1024 		return error;
1025 	*done = !i;
1026 	if (i) {
1027 		error = xfs_inobt_get_rec(cur, rec, &i);
1028 		if (error)
1029 			return error;
1030 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031 			xfs_btree_mark_sick(cur);
1032 			return -EFSCORRUPTED;
1033 		}
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Return the offset of the first free inode in the record. If the inode chunk
1041  * is sparsely allocated, we convert the record holemask to inode granularity
1042  * and mask off the unallocated regions from the inode free mask.
1043  */
1044 STATIC int
1045 xfs_inobt_first_free_inode(
1046 	struct xfs_inobt_rec_incore	*rec)
1047 {
1048 	xfs_inofree_t			realfree;
1049 
1050 	/* if there are no holes, return the first available offset */
1051 	if (!xfs_inobt_issparse(rec->ir_holemask))
1052 		return xfs_lowbit64(rec->ir_free);
1053 
1054 	realfree = xfs_inobt_irec_to_allocmask(rec);
1055 	realfree &= rec->ir_free;
1056 
1057 	return xfs_lowbit64(realfree);
1058 }
1059 
1060 /*
1061  * Allocate an inode using the inobt-only algorithm.
1062  */
1063 STATIC int
1064 xfs_dialloc_ag_inobt(
1065 	struct xfs_perag	*pag,
1066 	struct xfs_trans	*tp,
1067 	struct xfs_buf		*agbp,
1068 	xfs_ino_t		parent,
1069 	xfs_ino_t		*inop)
1070 {
1071 	struct xfs_mount	*mp = tp->t_mountp;
1072 	struct xfs_agi		*agi = agbp->b_addr;
1073 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1074 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1075 	struct xfs_btree_cur	*cur, *tcur;
1076 	struct xfs_inobt_rec_incore rec, trec;
1077 	xfs_ino_t		ino;
1078 	int			error;
1079 	int			offset;
1080 	int			i, j;
1081 	int			searchdistance = 10;
1082 
1083 	ASSERT(xfs_perag_initialised_agi(pag));
1084 	ASSERT(xfs_perag_allows_inodes(pag));
1085 	ASSERT(pag->pagi_freecount > 0);
1086 
1087  restart_pagno:
1088 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1089 	/*
1090 	 * If pagino is 0 (this is the root inode allocation) use newino.
1091 	 * This must work because we've just allocated some.
1092 	 */
1093 	if (!pagino)
1094 		pagino = be32_to_cpu(agi->agi_newino);
1095 
1096 	error = xfs_check_agi_freecount(cur);
1097 	if (error)
1098 		goto error0;
1099 
1100 	/*
1101 	 * If in the same AG as the parent, try to get near the parent.
1102 	 */
1103 	if (pagno == pag->pag_agno) {
1104 		int		doneleft;	/* done, to the left */
1105 		int		doneright;	/* done, to the right */
1106 
1107 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1108 		if (error)
1109 			goto error0;
1110 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1111 			xfs_btree_mark_sick(cur);
1112 			error = -EFSCORRUPTED;
1113 			goto error0;
1114 		}
1115 
1116 		error = xfs_inobt_get_rec(cur, &rec, &j);
1117 		if (error)
1118 			goto error0;
1119 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1120 			xfs_btree_mark_sick(cur);
1121 			error = -EFSCORRUPTED;
1122 			goto error0;
1123 		}
1124 
1125 		if (rec.ir_freecount > 0) {
1126 			/*
1127 			 * Found a free inode in the same chunk
1128 			 * as the parent, done.
1129 			 */
1130 			goto alloc_inode;
1131 		}
1132 
1133 
1134 		/*
1135 		 * In the same AG as parent, but parent's chunk is full.
1136 		 */
1137 
1138 		/* duplicate the cursor, search left & right simultaneously */
1139 		error = xfs_btree_dup_cursor(cur, &tcur);
1140 		if (error)
1141 			goto error0;
1142 
1143 		/*
1144 		 * Skip to last blocks looked up if same parent inode.
1145 		 */
1146 		if (pagino != NULLAGINO &&
1147 		    pag->pagl_pagino == pagino &&
1148 		    pag->pagl_leftrec != NULLAGINO &&
1149 		    pag->pagl_rightrec != NULLAGINO) {
1150 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1151 						   &trec, &doneleft);
1152 			if (error)
1153 				goto error1;
1154 
1155 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1156 						   &rec, &doneright);
1157 			if (error)
1158 				goto error1;
1159 		} else {
1160 			/* search left with tcur, back up 1 record */
1161 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1162 			if (error)
1163 				goto error1;
1164 
1165 			/* search right with cur, go forward 1 record. */
1166 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1167 			if (error)
1168 				goto error1;
1169 		}
1170 
1171 		/*
1172 		 * Loop until we find an inode chunk with a free inode.
1173 		 */
1174 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1175 			int	useleft;  /* using left inode chunk this time */
1176 
1177 			/* figure out the closer block if both are valid. */
1178 			if (!doneleft && !doneright) {
1179 				useleft = pagino -
1180 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1181 				  rec.ir_startino - pagino;
1182 			} else {
1183 				useleft = !doneleft;
1184 			}
1185 
1186 			/* free inodes to the left? */
1187 			if (useleft && trec.ir_freecount) {
1188 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1189 				cur = tcur;
1190 
1191 				pag->pagl_leftrec = trec.ir_startino;
1192 				pag->pagl_rightrec = rec.ir_startino;
1193 				pag->pagl_pagino = pagino;
1194 				rec = trec;
1195 				goto alloc_inode;
1196 			}
1197 
1198 			/* free inodes to the right? */
1199 			if (!useleft && rec.ir_freecount) {
1200 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1201 
1202 				pag->pagl_leftrec = trec.ir_startino;
1203 				pag->pagl_rightrec = rec.ir_startino;
1204 				pag->pagl_pagino = pagino;
1205 				goto alloc_inode;
1206 			}
1207 
1208 			/* get next record to check */
1209 			if (useleft) {
1210 				error = xfs_ialloc_next_rec(tcur, &trec,
1211 								 &doneleft, 1);
1212 			} else {
1213 				error = xfs_ialloc_next_rec(cur, &rec,
1214 								 &doneright, 0);
1215 			}
1216 			if (error)
1217 				goto error1;
1218 		}
1219 
1220 		if (searchdistance <= 0) {
1221 			/*
1222 			 * Not in range - save last search
1223 			 * location and allocate a new inode
1224 			 */
1225 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226 			pag->pagl_leftrec = trec.ir_startino;
1227 			pag->pagl_rightrec = rec.ir_startino;
1228 			pag->pagl_pagino = pagino;
1229 
1230 		} else {
1231 			/*
1232 			 * We've reached the end of the btree. because
1233 			 * we are only searching a small chunk of the
1234 			 * btree each search, there is obviously free
1235 			 * inodes closer to the parent inode than we
1236 			 * are now. restart the search again.
1237 			 */
1238 			pag->pagl_pagino = NULLAGINO;
1239 			pag->pagl_leftrec = NULLAGINO;
1240 			pag->pagl_rightrec = NULLAGINO;
1241 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1243 			goto restart_pagno;
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * In a different AG from the parent.
1249 	 * See if the most recently allocated block has any free.
1250 	 */
1251 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1252 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1253 					 XFS_LOOKUP_EQ, &i);
1254 		if (error)
1255 			goto error0;
1256 
1257 		if (i == 1) {
1258 			error = xfs_inobt_get_rec(cur, &rec, &j);
1259 			if (error)
1260 				goto error0;
1261 
1262 			if (j == 1 && rec.ir_freecount > 0) {
1263 				/*
1264 				 * The last chunk allocated in the group
1265 				 * still has a free inode.
1266 				 */
1267 				goto alloc_inode;
1268 			}
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * None left in the last group, search the whole AG
1274 	 */
1275 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1276 	if (error)
1277 		goto error0;
1278 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1279 		xfs_btree_mark_sick(cur);
1280 		error = -EFSCORRUPTED;
1281 		goto error0;
1282 	}
1283 
1284 	for (;;) {
1285 		error = xfs_inobt_get_rec(cur, &rec, &i);
1286 		if (error)
1287 			goto error0;
1288 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1289 			xfs_btree_mark_sick(cur);
1290 			error = -EFSCORRUPTED;
1291 			goto error0;
1292 		}
1293 		if (rec.ir_freecount > 0)
1294 			break;
1295 		error = xfs_btree_increment(cur, 0, &i);
1296 		if (error)
1297 			goto error0;
1298 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1299 			xfs_btree_mark_sick(cur);
1300 			error = -EFSCORRUPTED;
1301 			goto error0;
1302 		}
1303 	}
1304 
1305 alloc_inode:
1306 	offset = xfs_inobt_first_free_inode(&rec);
1307 	ASSERT(offset >= 0);
1308 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1309 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1310 				   XFS_INODES_PER_CHUNK) == 0);
1311 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1312 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1313 	rec.ir_freecount--;
1314 	error = xfs_inobt_update(cur, &rec);
1315 	if (error)
1316 		goto error0;
1317 	be32_add_cpu(&agi->agi_freecount, -1);
1318 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1319 	pag->pagi_freecount--;
1320 
1321 	error = xfs_check_agi_freecount(cur);
1322 	if (error)
1323 		goto error0;
1324 
1325 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1326 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1327 	*inop = ino;
1328 	return 0;
1329 error1:
1330 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1331 error0:
1332 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1333 	return error;
1334 }
1335 
1336 /*
1337  * Use the free inode btree to allocate an inode based on distance from the
1338  * parent. Note that the provided cursor may be deleted and replaced.
1339  */
1340 STATIC int
1341 xfs_dialloc_ag_finobt_near(
1342 	xfs_agino_t			pagino,
1343 	struct xfs_btree_cur		**ocur,
1344 	struct xfs_inobt_rec_incore	*rec)
1345 {
1346 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1347 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1348 	struct xfs_inobt_rec_incore	rrec;
1349 	int				error;
1350 	int				i, j;
1351 
1352 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1353 	if (error)
1354 		return error;
1355 
1356 	if (i == 1) {
1357 		error = xfs_inobt_get_rec(lcur, rec, &i);
1358 		if (error)
1359 			return error;
1360 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1361 			xfs_btree_mark_sick(lcur);
1362 			return -EFSCORRUPTED;
1363 		}
1364 
1365 		/*
1366 		 * See if we've landed in the parent inode record. The finobt
1367 		 * only tracks chunks with at least one free inode, so record
1368 		 * existence is enough.
1369 		 */
1370 		if (pagino >= rec->ir_startino &&
1371 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1372 			return 0;
1373 	}
1374 
1375 	error = xfs_btree_dup_cursor(lcur, &rcur);
1376 	if (error)
1377 		return error;
1378 
1379 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1380 	if (error)
1381 		goto error_rcur;
1382 	if (j == 1) {
1383 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1384 		if (error)
1385 			goto error_rcur;
1386 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1387 			xfs_btree_mark_sick(lcur);
1388 			error = -EFSCORRUPTED;
1389 			goto error_rcur;
1390 		}
1391 	}
1392 
1393 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1394 		xfs_btree_mark_sick(lcur);
1395 		error = -EFSCORRUPTED;
1396 		goto error_rcur;
1397 	}
1398 	if (i == 1 && j == 1) {
1399 		/*
1400 		 * Both the left and right records are valid. Choose the closer
1401 		 * inode chunk to the target.
1402 		 */
1403 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1404 		    (rrec.ir_startino - pagino)) {
1405 			*rec = rrec;
1406 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1407 			*ocur = rcur;
1408 		} else {
1409 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1410 		}
1411 	} else if (j == 1) {
1412 		/* only the right record is valid */
1413 		*rec = rrec;
1414 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1415 		*ocur = rcur;
1416 	} else if (i == 1) {
1417 		/* only the left record is valid */
1418 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1419 	}
1420 
1421 	return 0;
1422 
1423 error_rcur:
1424 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1425 	return error;
1426 }
1427 
1428 /*
1429  * Use the free inode btree to find a free inode based on a newino hint. If
1430  * the hint is NULL, find the first free inode in the AG.
1431  */
1432 STATIC int
1433 xfs_dialloc_ag_finobt_newino(
1434 	struct xfs_agi			*agi,
1435 	struct xfs_btree_cur		*cur,
1436 	struct xfs_inobt_rec_incore	*rec)
1437 {
1438 	int error;
1439 	int i;
1440 
1441 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1442 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1443 					 XFS_LOOKUP_EQ, &i);
1444 		if (error)
1445 			return error;
1446 		if (i == 1) {
1447 			error = xfs_inobt_get_rec(cur, rec, &i);
1448 			if (error)
1449 				return error;
1450 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1451 				xfs_btree_mark_sick(cur);
1452 				return -EFSCORRUPTED;
1453 			}
1454 			return 0;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * Find the first inode available in the AG.
1460 	 */
1461 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1462 	if (error)
1463 		return error;
1464 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1465 		xfs_btree_mark_sick(cur);
1466 		return -EFSCORRUPTED;
1467 	}
1468 
1469 	error = xfs_inobt_get_rec(cur, rec, &i);
1470 	if (error)
1471 		return error;
1472 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1473 		xfs_btree_mark_sick(cur);
1474 		return -EFSCORRUPTED;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Update the inobt based on a modification made to the finobt. Also ensure that
1482  * the records from both trees are equivalent post-modification.
1483  */
1484 STATIC int
1485 xfs_dialloc_ag_update_inobt(
1486 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1487 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1488 	int				offset) /* inode offset */
1489 {
1490 	struct xfs_inobt_rec_incore	rec;
1491 	int				error;
1492 	int				i;
1493 
1494 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1495 	if (error)
1496 		return error;
1497 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1498 		xfs_btree_mark_sick(cur);
1499 		return -EFSCORRUPTED;
1500 	}
1501 
1502 	error = xfs_inobt_get_rec(cur, &rec, &i);
1503 	if (error)
1504 		return error;
1505 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1506 		xfs_btree_mark_sick(cur);
1507 		return -EFSCORRUPTED;
1508 	}
1509 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510 				   XFS_INODES_PER_CHUNK) == 0);
1511 
1512 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513 	rec.ir_freecount--;
1514 
1515 	if (XFS_IS_CORRUPT(cur->bc_mp,
1516 			   rec.ir_free != frec->ir_free ||
1517 			   rec.ir_freecount != frec->ir_freecount)) {
1518 		xfs_btree_mark_sick(cur);
1519 		return -EFSCORRUPTED;
1520 	}
1521 
1522 	return xfs_inobt_update(cur, &rec);
1523 }
1524 
1525 /*
1526  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527  * back to the inobt search algorithm.
1528  *
1529  * The caller selected an AG for us, and made sure that free inodes are
1530  * available.
1531  */
1532 static int
1533 xfs_dialloc_ag(
1534 	struct xfs_perag	*pag,
1535 	struct xfs_trans	*tp,
1536 	struct xfs_buf		*agbp,
1537 	xfs_ino_t		parent,
1538 	xfs_ino_t		*inop)
1539 {
1540 	struct xfs_mount		*mp = tp->t_mountp;
1541 	struct xfs_agi			*agi = agbp->b_addr;
1542 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1543 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1544 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1545 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1546 	struct xfs_inobt_rec_incore	rec;
1547 	xfs_ino_t			ino;
1548 	int				error;
1549 	int				offset;
1550 	int				i;
1551 
1552 	if (!xfs_has_finobt(mp))
1553 		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1554 
1555 	/*
1556 	 * If pagino is 0 (this is the root inode allocation) use newino.
1557 	 * This must work because we've just allocated some.
1558 	 */
1559 	if (!pagino)
1560 		pagino = be32_to_cpu(agi->agi_newino);
1561 
1562 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1563 
1564 	error = xfs_check_agi_freecount(cur);
1565 	if (error)
1566 		goto error_cur;
1567 
1568 	/*
1569 	 * The search algorithm depends on whether we're in the same AG as the
1570 	 * parent. If so, find the closest available inode to the parent. If
1571 	 * not, consider the agi hint or find the first free inode in the AG.
1572 	 */
1573 	if (pag->pag_agno == pagno)
1574 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1575 	else
1576 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1577 	if (error)
1578 		goto error_cur;
1579 
1580 	offset = xfs_inobt_first_free_inode(&rec);
1581 	ASSERT(offset >= 0);
1582 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1583 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1584 				   XFS_INODES_PER_CHUNK) == 0);
1585 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1586 
1587 	/*
1588 	 * Modify or remove the finobt record.
1589 	 */
1590 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1591 	rec.ir_freecount--;
1592 	if (rec.ir_freecount)
1593 		error = xfs_inobt_update(cur, &rec);
1594 	else
1595 		error = xfs_btree_delete(cur, &i);
1596 	if (error)
1597 		goto error_cur;
1598 
1599 	/*
1600 	 * The finobt has now been updated appropriately. We haven't updated the
1601 	 * agi and superblock yet, so we can create an inobt cursor and validate
1602 	 * the original freecount. If all is well, make the equivalent update to
1603 	 * the inobt using the finobt record and offset information.
1604 	 */
1605 	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1606 
1607 	error = xfs_check_agi_freecount(icur);
1608 	if (error)
1609 		goto error_icur;
1610 
1611 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1612 	if (error)
1613 		goto error_icur;
1614 
1615 	/*
1616 	 * Both trees have now been updated. We must update the perag and
1617 	 * superblock before we can check the freecount for each btree.
1618 	 */
1619 	be32_add_cpu(&agi->agi_freecount, -1);
1620 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1621 	pag->pagi_freecount--;
1622 
1623 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1624 
1625 	error = xfs_check_agi_freecount(icur);
1626 	if (error)
1627 		goto error_icur;
1628 	error = xfs_check_agi_freecount(cur);
1629 	if (error)
1630 		goto error_icur;
1631 
1632 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1633 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1634 	*inop = ino;
1635 	return 0;
1636 
1637 error_icur:
1638 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639 error_cur:
1640 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641 	return error;
1642 }
1643 
1644 static int
1645 xfs_dialloc_roll(
1646 	struct xfs_trans	**tpp,
1647 	struct xfs_buf		*agibp)
1648 {
1649 	struct xfs_trans	*tp = *tpp;
1650 	struct xfs_dquot_acct	*dqinfo;
1651 	int			error;
1652 
1653 	/*
1654 	 * Hold to on to the agibp across the commit so no other allocation can
1655 	 * come in and take the free inodes we just allocated for our caller.
1656 	 */
1657 	xfs_trans_bhold(tp, agibp);
1658 
1659 	/*
1660 	 * We want the quota changes to be associated with the next transaction,
1661 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1662 	 * next transaction.
1663 	 */
1664 	dqinfo = tp->t_dqinfo;
1665 	tp->t_dqinfo = NULL;
1666 
1667 	error = xfs_trans_roll(&tp);
1668 
1669 	/* Re-attach the quota info that we detached from prev trx. */
1670 	tp->t_dqinfo = dqinfo;
1671 
1672 	/*
1673 	 * Join the buffer even on commit error so that the buffer is released
1674 	 * when the caller cancels the transaction and doesn't have to handle
1675 	 * this error case specially.
1676 	 */
1677 	xfs_trans_bjoin(tp, agibp);
1678 	*tpp = tp;
1679 	return error;
1680 }
1681 
1682 static bool
1683 xfs_dialloc_good_ag(
1684 	struct xfs_perag	*pag,
1685 	struct xfs_trans	*tp,
1686 	umode_t			mode,
1687 	int			flags,
1688 	bool			ok_alloc)
1689 {
1690 	struct xfs_mount	*mp = tp->t_mountp;
1691 	xfs_extlen_t		ineed;
1692 	xfs_extlen_t		longest = 0;
1693 	int			needspace;
1694 	int			error;
1695 
1696 	if (!pag)
1697 		return false;
1698 	if (!xfs_perag_allows_inodes(pag))
1699 		return false;
1700 
1701 	if (!xfs_perag_initialised_agi(pag)) {
1702 		error = xfs_ialloc_read_agi(pag, tp, NULL);
1703 		if (error)
1704 			return false;
1705 	}
1706 
1707 	if (pag->pagi_freecount)
1708 		return true;
1709 	if (!ok_alloc)
1710 		return false;
1711 
1712 	if (!xfs_perag_initialised_agf(pag)) {
1713 		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1714 		if (error)
1715 			return false;
1716 	}
1717 
1718 	/*
1719 	 * Check that there is enough free space for the file plus a chunk of
1720 	 * inodes if we need to allocate some. If this is the first pass across
1721 	 * the AGs, take into account the potential space needed for alignment
1722 	 * of inode chunks when checking the longest contiguous free space in
1723 	 * the AG - this prevents us from getting ENOSPC because we have free
1724 	 * space larger than ialloc_blks but alignment constraints prevent us
1725 	 * from using it.
1726 	 *
1727 	 * If we can't find an AG with space for full alignment slack to be
1728 	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1729 	 * don't include alignment for the second pass and so if we fail
1730 	 * allocation due to alignment issues then it is most likely a real
1731 	 * ENOSPC condition.
1732 	 *
1733 	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1734 	 * reservations that xfs_alloc_fix_freelist() now does via
1735 	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1736 	 * be more than large enough for the check below to succeed, but
1737 	 * xfs_alloc_space_available() will fail because of the non-zero
1738 	 * metadata reservation and hence we won't actually be able to allocate
1739 	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1740 	 * because of this.
1741 	 */
1742 	ineed = M_IGEO(mp)->ialloc_min_blks;
1743 	if (flags && ineed > 1)
1744 		ineed += M_IGEO(mp)->cluster_align;
1745 	longest = pag->pagf_longest;
1746 	if (!longest)
1747 		longest = pag->pagf_flcount > 0;
1748 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1749 
1750 	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1751 		return false;
1752 	return true;
1753 }
1754 
1755 static int
1756 xfs_dialloc_try_ag(
1757 	struct xfs_perag	*pag,
1758 	struct xfs_trans	**tpp,
1759 	xfs_ino_t		parent,
1760 	xfs_ino_t		*new_ino,
1761 	bool			ok_alloc)
1762 {
1763 	struct xfs_buf		*agbp;
1764 	xfs_ino_t		ino;
1765 	int			error;
1766 
1767 	/*
1768 	 * Then read in the AGI buffer and recheck with the AGI buffer
1769 	 * lock held.
1770 	 */
1771 	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1772 	if (error)
1773 		return error;
1774 
1775 	if (!pag->pagi_freecount) {
1776 		if (!ok_alloc) {
1777 			error = -EAGAIN;
1778 			goto out_release;
1779 		}
1780 
1781 		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1782 		if (error < 0)
1783 			goto out_release;
1784 
1785 		/*
1786 		 * We successfully allocated space for an inode cluster in this
1787 		 * AG.  Roll the transaction so that we can allocate one of the
1788 		 * new inodes.
1789 		 */
1790 		ASSERT(pag->pagi_freecount > 0);
1791 		error = xfs_dialloc_roll(tpp, agbp);
1792 		if (error)
1793 			goto out_release;
1794 	}
1795 
1796 	/* Allocate an inode in the found AG */
1797 	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1798 	if (!error)
1799 		*new_ino = ino;
1800 	return error;
1801 
1802 out_release:
1803 	xfs_trans_brelse(*tpp, agbp);
1804 	return error;
1805 }
1806 
1807 /*
1808  * Allocate an on-disk inode.
1809  *
1810  * Mode is used to tell whether the new inode is a directory and hence where to
1811  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1812  * on success, otherwise an error will be set to indicate the failure (e.g.
1813  * -ENOSPC).
1814  */
1815 int
1816 xfs_dialloc(
1817 	struct xfs_trans	**tpp,
1818 	xfs_ino_t		parent,
1819 	umode_t			mode,
1820 	xfs_ino_t		*new_ino)
1821 {
1822 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1823 	xfs_agnumber_t		agno;
1824 	int			error = 0;
1825 	xfs_agnumber_t		start_agno;
1826 	struct xfs_perag	*pag;
1827 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1828 	bool			ok_alloc = true;
1829 	bool			low_space = false;
1830 	int			flags;
1831 	xfs_ino_t		ino = NULLFSINO;
1832 
1833 	/*
1834 	 * Directories, symlinks, and regular files frequently allocate at least
1835 	 * one block, so factor that potential expansion when we examine whether
1836 	 * an AG has enough space for file creation.
1837 	 */
1838 	if (S_ISDIR(mode))
1839 		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1840 				mp->m_maxagi;
1841 	else {
1842 		start_agno = XFS_INO_TO_AGNO(mp, parent);
1843 		if (start_agno >= mp->m_maxagi)
1844 			start_agno = 0;
1845 	}
1846 
1847 	/*
1848 	 * If we have already hit the ceiling of inode blocks then clear
1849 	 * ok_alloc so we scan all available agi structures for a free
1850 	 * inode.
1851 	 *
1852 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1853 	 * which will sacrifice the preciseness but improve the performance.
1854 	 */
1855 	if (igeo->maxicount &&
1856 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1857 							> igeo->maxicount) {
1858 		ok_alloc = false;
1859 	}
1860 
1861 	/*
1862 	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1863 	 * have free inodes in them rather than use up free space allocating new
1864 	 * inode chunks. Hence we turn off allocation for the first non-blocking
1865 	 * pass through the AGs if we are near ENOSPC to consume free inodes
1866 	 * that we can immediately allocate, but then we allow allocation on the
1867 	 * second pass if we fail to find an AG with free inodes in it.
1868 	 */
1869 	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1870 			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1871 		ok_alloc = false;
1872 		low_space = true;
1873 	}
1874 
1875 	/*
1876 	 * Loop until we find an allocation group that either has free inodes
1877 	 * or in which we can allocate some inodes.  Iterate through the
1878 	 * allocation groups upward, wrapping at the end.
1879 	 */
1880 	flags = XFS_ALLOC_FLAG_TRYLOCK;
1881 retry:
1882 	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1883 		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1884 			error = xfs_dialloc_try_ag(pag, tpp, parent,
1885 					&ino, ok_alloc);
1886 			if (error != -EAGAIN)
1887 				break;
1888 			error = 0;
1889 		}
1890 
1891 		if (xfs_is_shutdown(mp)) {
1892 			error = -EFSCORRUPTED;
1893 			break;
1894 		}
1895 	}
1896 	if (pag)
1897 		xfs_perag_rele(pag);
1898 	if (error)
1899 		return error;
1900 	if (ino == NULLFSINO) {
1901 		if (flags) {
1902 			flags = 0;
1903 			if (low_space)
1904 				ok_alloc = true;
1905 			goto retry;
1906 		}
1907 		return -ENOSPC;
1908 	}
1909 	*new_ino = ino;
1910 	return 0;
1911 }
1912 
1913 /*
1914  * Free the blocks of an inode chunk. We must consider that the inode chunk
1915  * might be sparse and only free the regions that are allocated as part of the
1916  * chunk.
1917  */
1918 static int
1919 xfs_difree_inode_chunk(
1920 	struct xfs_trans		*tp,
1921 	xfs_agnumber_t			agno,
1922 	struct xfs_inobt_rec_incore	*rec)
1923 {
1924 	struct xfs_mount		*mp = tp->t_mountp;
1925 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1926 							rec->ir_startino);
1927 	int				startidx, endidx;
1928 	int				nextbit;
1929 	xfs_agblock_t			agbno;
1930 	int				contigblk;
1931 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1932 
1933 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1934 		/* not sparse, calculate extent info directly */
1935 		return xfs_free_extent_later(tp,
1936 				XFS_AGB_TO_FSB(mp, agno, sagbno),
1937 				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1938 				XFS_AG_RESV_NONE, false);
1939 	}
1940 
1941 	/* holemask is only 16-bits (fits in an unsigned long) */
1942 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1943 	holemask[0] = rec->ir_holemask;
1944 
1945 	/*
1946 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1947 	 * holemask and convert the start/end index of each range to an extent.
1948 	 * We start with the start and end index both pointing at the first 0 in
1949 	 * the mask.
1950 	 */
1951 	startidx = endidx = find_first_zero_bit(holemask,
1952 						XFS_INOBT_HOLEMASK_BITS);
1953 	nextbit = startidx + 1;
1954 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1955 		int error;
1956 
1957 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1958 					     nextbit);
1959 		/*
1960 		 * If the next zero bit is contiguous, update the end index of
1961 		 * the current range and continue.
1962 		 */
1963 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1964 		    nextbit == endidx + 1) {
1965 			endidx = nextbit;
1966 			goto next;
1967 		}
1968 
1969 		/*
1970 		 * nextbit is not contiguous with the current end index. Convert
1971 		 * the current start/end to an extent and add it to the free
1972 		 * list.
1973 		 */
1974 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1975 				  mp->m_sb.sb_inopblock;
1976 		contigblk = ((endidx - startidx + 1) *
1977 			     XFS_INODES_PER_HOLEMASK_BIT) /
1978 			    mp->m_sb.sb_inopblock;
1979 
1980 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1981 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1982 		error = xfs_free_extent_later(tp,
1983 				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1984 				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1985 				false);
1986 		if (error)
1987 			return error;
1988 
1989 		/* reset range to current bit and carry on... */
1990 		startidx = endidx = nextbit;
1991 
1992 next:
1993 		nextbit++;
1994 	}
1995 	return 0;
1996 }
1997 
1998 STATIC int
1999 xfs_difree_inobt(
2000 	struct xfs_perag		*pag,
2001 	struct xfs_trans		*tp,
2002 	struct xfs_buf			*agbp,
2003 	xfs_agino_t			agino,
2004 	struct xfs_icluster		*xic,
2005 	struct xfs_inobt_rec_incore	*orec)
2006 {
2007 	struct xfs_mount		*mp = pag->pag_mount;
2008 	struct xfs_agi			*agi = agbp->b_addr;
2009 	struct xfs_btree_cur		*cur;
2010 	struct xfs_inobt_rec_incore	rec;
2011 	int				ilen;
2012 	int				error;
2013 	int				i;
2014 	int				off;
2015 
2016 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2017 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2018 
2019 	/*
2020 	 * Initialize the cursor.
2021 	 */
2022 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2023 
2024 	error = xfs_check_agi_freecount(cur);
2025 	if (error)
2026 		goto error0;
2027 
2028 	/*
2029 	 * Look for the entry describing this inode.
2030 	 */
2031 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2032 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2033 			__func__, error);
2034 		goto error0;
2035 	}
2036 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2037 		xfs_btree_mark_sick(cur);
2038 		error = -EFSCORRUPTED;
2039 		goto error0;
2040 	}
2041 	error = xfs_inobt_get_rec(cur, &rec, &i);
2042 	if (error) {
2043 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2044 			__func__, error);
2045 		goto error0;
2046 	}
2047 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2048 		xfs_btree_mark_sick(cur);
2049 		error = -EFSCORRUPTED;
2050 		goto error0;
2051 	}
2052 	/*
2053 	 * Get the offset in the inode chunk.
2054 	 */
2055 	off = agino - rec.ir_startino;
2056 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2057 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2058 	/*
2059 	 * Mark the inode free & increment the count.
2060 	 */
2061 	rec.ir_free |= XFS_INOBT_MASK(off);
2062 	rec.ir_freecount++;
2063 
2064 	/*
2065 	 * When an inode chunk is free, it becomes eligible for removal. Don't
2066 	 * remove the chunk if the block size is large enough for multiple inode
2067 	 * chunks (that might not be free).
2068 	 */
2069 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2070 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2071 		xic->deleted = true;
2072 		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2073 				rec.ir_startino);
2074 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2075 
2076 		/*
2077 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2078 		 * AGI and Superblock inode counts, and mark the disk space
2079 		 * to be freed when the transaction is committed.
2080 		 */
2081 		ilen = rec.ir_freecount;
2082 		be32_add_cpu(&agi->agi_count, -ilen);
2083 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2084 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2085 		pag->pagi_freecount -= ilen - 1;
2086 		pag->pagi_count -= ilen;
2087 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2088 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2089 
2090 		if ((error = xfs_btree_delete(cur, &i))) {
2091 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2092 				__func__, error);
2093 			goto error0;
2094 		}
2095 
2096 		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2097 		if (error)
2098 			goto error0;
2099 	} else {
2100 		xic->deleted = false;
2101 
2102 		error = xfs_inobt_update(cur, &rec);
2103 		if (error) {
2104 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2105 				__func__, error);
2106 			goto error0;
2107 		}
2108 
2109 		/*
2110 		 * Change the inode free counts and log the ag/sb changes.
2111 		 */
2112 		be32_add_cpu(&agi->agi_freecount, 1);
2113 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2114 		pag->pagi_freecount++;
2115 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2116 	}
2117 
2118 	error = xfs_check_agi_freecount(cur);
2119 	if (error)
2120 		goto error0;
2121 
2122 	*orec = rec;
2123 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2124 	return 0;
2125 
2126 error0:
2127 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2128 	return error;
2129 }
2130 
2131 /*
2132  * Free an inode in the free inode btree.
2133  */
2134 STATIC int
2135 xfs_difree_finobt(
2136 	struct xfs_perag		*pag,
2137 	struct xfs_trans		*tp,
2138 	struct xfs_buf			*agbp,
2139 	xfs_agino_t			agino,
2140 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2141 {
2142 	struct xfs_mount		*mp = pag->pag_mount;
2143 	struct xfs_btree_cur		*cur;
2144 	struct xfs_inobt_rec_incore	rec;
2145 	int				offset = agino - ibtrec->ir_startino;
2146 	int				error;
2147 	int				i;
2148 
2149 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2150 
2151 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2152 	if (error)
2153 		goto error;
2154 	if (i == 0) {
2155 		/*
2156 		 * If the record does not exist in the finobt, we must have just
2157 		 * freed an inode in a previously fully allocated chunk. If not,
2158 		 * something is out of sync.
2159 		 */
2160 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2161 			xfs_btree_mark_sick(cur);
2162 			error = -EFSCORRUPTED;
2163 			goto error;
2164 		}
2165 
2166 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2167 					     ibtrec->ir_count,
2168 					     ibtrec->ir_freecount,
2169 					     ibtrec->ir_free, &i);
2170 		if (error)
2171 			goto error;
2172 		ASSERT(i == 1);
2173 
2174 		goto out;
2175 	}
2176 
2177 	/*
2178 	 * Read and update the existing record. We could just copy the ibtrec
2179 	 * across here, but that would defeat the purpose of having redundant
2180 	 * metadata. By making the modifications independently, we can catch
2181 	 * corruptions that we wouldn't see if we just copied from one record
2182 	 * to another.
2183 	 */
2184 	error = xfs_inobt_get_rec(cur, &rec, &i);
2185 	if (error)
2186 		goto error;
2187 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2188 		xfs_btree_mark_sick(cur);
2189 		error = -EFSCORRUPTED;
2190 		goto error;
2191 	}
2192 
2193 	rec.ir_free |= XFS_INOBT_MASK(offset);
2194 	rec.ir_freecount++;
2195 
2196 	if (XFS_IS_CORRUPT(mp,
2197 			   rec.ir_free != ibtrec->ir_free ||
2198 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2199 		xfs_btree_mark_sick(cur);
2200 		error = -EFSCORRUPTED;
2201 		goto error;
2202 	}
2203 
2204 	/*
2205 	 * The content of inobt records should always match between the inobt
2206 	 * and finobt. The lifecycle of records in the finobt is different from
2207 	 * the inobt in that the finobt only tracks records with at least one
2208 	 * free inode. Hence, if all of the inodes are free and we aren't
2209 	 * keeping inode chunks permanently on disk, remove the record.
2210 	 * Otherwise, update the record with the new information.
2211 	 *
2212 	 * Note that we currently can't free chunks when the block size is large
2213 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2214 	 * with the inobt.
2215 	 */
2216 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2217 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2218 		error = xfs_btree_delete(cur, &i);
2219 		if (error)
2220 			goto error;
2221 		ASSERT(i == 1);
2222 	} else {
2223 		error = xfs_inobt_update(cur, &rec);
2224 		if (error)
2225 			goto error;
2226 	}
2227 
2228 out:
2229 	error = xfs_check_agi_freecount(cur);
2230 	if (error)
2231 		goto error;
2232 
2233 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2234 	return 0;
2235 
2236 error:
2237 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2238 	return error;
2239 }
2240 
2241 /*
2242  * Free disk inode.  Carefully avoids touching the incore inode, all
2243  * manipulations incore are the caller's responsibility.
2244  * The on-disk inode is not changed by this operation, only the
2245  * btree (free inode mask) is changed.
2246  */
2247 int
2248 xfs_difree(
2249 	struct xfs_trans	*tp,
2250 	struct xfs_perag	*pag,
2251 	xfs_ino_t		inode,
2252 	struct xfs_icluster	*xic)
2253 {
2254 	/* REFERENCED */
2255 	xfs_agblock_t		agbno;	/* block number containing inode */
2256 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2257 	xfs_agino_t		agino;	/* allocation group inode number */
2258 	int			error;	/* error return value */
2259 	struct xfs_mount	*mp = tp->t_mountp;
2260 	struct xfs_inobt_rec_incore rec;/* btree record */
2261 
2262 	/*
2263 	 * Break up inode number into its components.
2264 	 */
2265 	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2266 		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2267 			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2268 		ASSERT(0);
2269 		return -EINVAL;
2270 	}
2271 	agino = XFS_INO_TO_AGINO(mp, inode);
2272 	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2273 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2274 			__func__, (unsigned long long)inode,
2275 			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2276 		ASSERT(0);
2277 		return -EINVAL;
2278 	}
2279 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280 	if (agbno >= mp->m_sb.sb_agblocks)  {
2281 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2282 			__func__, agbno, mp->m_sb.sb_agblocks);
2283 		ASSERT(0);
2284 		return -EINVAL;
2285 	}
2286 	/*
2287 	 * Get the allocation group header.
2288 	 */
2289 	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2290 	if (error) {
2291 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2292 			__func__, error);
2293 		return error;
2294 	}
2295 
2296 	/*
2297 	 * Fix up the inode allocation btree.
2298 	 */
2299 	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2300 	if (error)
2301 		goto error0;
2302 
2303 	/*
2304 	 * Fix up the free inode btree.
2305 	 */
2306 	if (xfs_has_finobt(mp)) {
2307 		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2308 		if (error)
2309 			goto error0;
2310 	}
2311 
2312 	return 0;
2313 
2314 error0:
2315 	return error;
2316 }
2317 
2318 STATIC int
2319 xfs_imap_lookup(
2320 	struct xfs_perag	*pag,
2321 	struct xfs_trans	*tp,
2322 	xfs_agino_t		agino,
2323 	xfs_agblock_t		agbno,
2324 	xfs_agblock_t		*chunk_agbno,
2325 	xfs_agblock_t		*offset_agbno,
2326 	int			flags)
2327 {
2328 	struct xfs_mount	*mp = pag->pag_mount;
2329 	struct xfs_inobt_rec_incore rec;
2330 	struct xfs_btree_cur	*cur;
2331 	struct xfs_buf		*agbp;
2332 	int			error;
2333 	int			i;
2334 
2335 	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2336 	if (error) {
2337 		xfs_alert(mp,
2338 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2339 			__func__, error, pag->pag_agno);
2340 		return error;
2341 	}
2342 
2343 	/*
2344 	 * Lookup the inode record for the given agino. If the record cannot be
2345 	 * found, then it's an invalid inode number and we should abort. Once
2346 	 * we have a record, we need to ensure it contains the inode number
2347 	 * we are looking up.
2348 	 */
2349 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2350 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2351 	if (!error) {
2352 		if (i)
2353 			error = xfs_inobt_get_rec(cur, &rec, &i);
2354 		if (!error && i == 0)
2355 			error = -EINVAL;
2356 	}
2357 
2358 	xfs_trans_brelse(tp, agbp);
2359 	xfs_btree_del_cursor(cur, error);
2360 	if (error)
2361 		return error;
2362 
2363 	/* check that the returned record contains the required inode */
2364 	if (rec.ir_startino > agino ||
2365 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2366 		return -EINVAL;
2367 
2368 	/* for untrusted inodes check it is allocated first */
2369 	if ((flags & XFS_IGET_UNTRUSTED) &&
2370 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2371 		return -EINVAL;
2372 
2373 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2374 	*offset_agbno = agbno - *chunk_agbno;
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Return the location of the inode in imap, for mapping it into a buffer.
2380  */
2381 int
2382 xfs_imap(
2383 	struct xfs_perag	*pag,
2384 	struct xfs_trans	*tp,
2385 	xfs_ino_t		ino,	/* inode to locate */
2386 	struct xfs_imap		*imap,	/* location map structure */
2387 	uint			flags)	/* flags for inode btree lookup */
2388 {
2389 	struct xfs_mount	*mp = pag->pag_mount;
2390 	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2391 	xfs_agino_t		agino;	/* inode number within alloc group */
2392 	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2393 	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2394 	int			error;	/* error code */
2395 	int			offset;	/* index of inode in its buffer */
2396 	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2397 
2398 	ASSERT(ino != NULLFSINO);
2399 
2400 	/*
2401 	 * Split up the inode number into its parts.
2402 	 */
2403 	agino = XFS_INO_TO_AGINO(mp, ino);
2404 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2405 	if (agbno >= mp->m_sb.sb_agblocks ||
2406 	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2407 		error = -EINVAL;
2408 #ifdef DEBUG
2409 		/*
2410 		 * Don't output diagnostic information for untrusted inodes
2411 		 * as they can be invalid without implying corruption.
2412 		 */
2413 		if (flags & XFS_IGET_UNTRUSTED)
2414 			return error;
2415 		if (agbno >= mp->m_sb.sb_agblocks) {
2416 			xfs_alert(mp,
2417 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2418 				__func__, (unsigned long long)agbno,
2419 				(unsigned long)mp->m_sb.sb_agblocks);
2420 		}
2421 		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2422 			xfs_alert(mp,
2423 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2424 				__func__, ino,
2425 				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2426 		}
2427 		xfs_stack_trace();
2428 #endif /* DEBUG */
2429 		return error;
2430 	}
2431 
2432 	/*
2433 	 * For bulkstat and handle lookups, we have an untrusted inode number
2434 	 * that we have to verify is valid. We cannot do this just by reading
2435 	 * the inode buffer as it may have been unlinked and removed leaving
2436 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2437 	 * in all cases where an untrusted inode number is passed.
2438 	 */
2439 	if (flags & XFS_IGET_UNTRUSTED) {
2440 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2441 					&chunk_agbno, &offset_agbno, flags);
2442 		if (error)
2443 			return error;
2444 		goto out_map;
2445 	}
2446 
2447 	/*
2448 	 * If the inode cluster size is the same as the blocksize or
2449 	 * smaller we get to the buffer by simple arithmetics.
2450 	 */
2451 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2452 		offset = XFS_INO_TO_OFFSET(mp, ino);
2453 		ASSERT(offset < mp->m_sb.sb_inopblock);
2454 
2455 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2456 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2457 		imap->im_boffset = (unsigned short)(offset <<
2458 							mp->m_sb.sb_inodelog);
2459 		return 0;
2460 	}
2461 
2462 	/*
2463 	 * If the inode chunks are aligned then use simple maths to
2464 	 * find the location. Otherwise we have to do a btree
2465 	 * lookup to find the location.
2466 	 */
2467 	if (M_IGEO(mp)->inoalign_mask) {
2468 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2469 		chunk_agbno = agbno - offset_agbno;
2470 	} else {
2471 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2472 					&chunk_agbno, &offset_agbno, flags);
2473 		if (error)
2474 			return error;
2475 	}
2476 
2477 out_map:
2478 	ASSERT(agbno >= chunk_agbno);
2479 	cluster_agbno = chunk_agbno +
2480 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2481 		 M_IGEO(mp)->blocks_per_cluster);
2482 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2483 		XFS_INO_TO_OFFSET(mp, ino);
2484 
2485 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2486 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2487 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2488 
2489 	/*
2490 	 * If the inode number maps to a block outside the bounds
2491 	 * of the file system then return NULL rather than calling
2492 	 * read_buf and panicing when we get an error from the
2493 	 * driver.
2494 	 */
2495 	if ((imap->im_blkno + imap->im_len) >
2496 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2497 		xfs_alert(mp,
2498 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2499 			__func__, (unsigned long long) imap->im_blkno,
2500 			(unsigned long long) imap->im_len,
2501 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2502 		return -EINVAL;
2503 	}
2504 	return 0;
2505 }
2506 
2507 /*
2508  * Log specified fields for the ag hdr (inode section). The growth of the agi
2509  * structure over time requires that we interpret the buffer as two logical
2510  * regions delineated by the end of the unlinked list. This is due to the size
2511  * of the hash table and its location in the middle of the agi.
2512  *
2513  * For example, a request to log a field before agi_unlinked and a field after
2514  * agi_unlinked could cause us to log the entire hash table and use an excessive
2515  * amount of log space. To avoid this behavior, log the region up through
2516  * agi_unlinked in one call and the region after agi_unlinked through the end of
2517  * the structure in another.
2518  */
2519 void
2520 xfs_ialloc_log_agi(
2521 	struct xfs_trans	*tp,
2522 	struct xfs_buf		*bp,
2523 	uint32_t		fields)
2524 {
2525 	int			first;		/* first byte number */
2526 	int			last;		/* last byte number */
2527 	static const short	offsets[] = {	/* field starting offsets */
2528 					/* keep in sync with bit definitions */
2529 		offsetof(xfs_agi_t, agi_magicnum),
2530 		offsetof(xfs_agi_t, agi_versionnum),
2531 		offsetof(xfs_agi_t, agi_seqno),
2532 		offsetof(xfs_agi_t, agi_length),
2533 		offsetof(xfs_agi_t, agi_count),
2534 		offsetof(xfs_agi_t, agi_root),
2535 		offsetof(xfs_agi_t, agi_level),
2536 		offsetof(xfs_agi_t, agi_freecount),
2537 		offsetof(xfs_agi_t, agi_newino),
2538 		offsetof(xfs_agi_t, agi_dirino),
2539 		offsetof(xfs_agi_t, agi_unlinked),
2540 		offsetof(xfs_agi_t, agi_free_root),
2541 		offsetof(xfs_agi_t, agi_free_level),
2542 		offsetof(xfs_agi_t, agi_iblocks),
2543 		sizeof(xfs_agi_t)
2544 	};
2545 #ifdef DEBUG
2546 	struct xfs_agi		*agi = bp->b_addr;
2547 
2548 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2549 #endif
2550 
2551 	/*
2552 	 * Compute byte offsets for the first and last fields in the first
2553 	 * region and log the agi buffer. This only logs up through
2554 	 * agi_unlinked.
2555 	 */
2556 	if (fields & XFS_AGI_ALL_BITS_R1) {
2557 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2558 				  &first, &last);
2559 		xfs_trans_log_buf(tp, bp, first, last);
2560 	}
2561 
2562 	/*
2563 	 * Mask off the bits in the first region and calculate the first and
2564 	 * last field offsets for any bits in the second region.
2565 	 */
2566 	fields &= ~XFS_AGI_ALL_BITS_R1;
2567 	if (fields) {
2568 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2569 				  &first, &last);
2570 		xfs_trans_log_buf(tp, bp, first, last);
2571 	}
2572 }
2573 
2574 static xfs_failaddr_t
2575 xfs_agi_verify(
2576 	struct xfs_buf		*bp)
2577 {
2578 	struct xfs_mount	*mp = bp->b_mount;
2579 	struct xfs_agi		*agi = bp->b_addr;
2580 	xfs_failaddr_t		fa;
2581 	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2582 	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2583 	int			i;
2584 
2585 	if (xfs_has_crc(mp)) {
2586 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2587 			return __this_address;
2588 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2589 			return __this_address;
2590 	}
2591 
2592 	/*
2593 	 * Validate the magic number of the agi block.
2594 	 */
2595 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2596 		return __this_address;
2597 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2598 		return __this_address;
2599 
2600 	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2601 	if (fa)
2602 		return fa;
2603 
2604 	if (be32_to_cpu(agi->agi_level) < 1 ||
2605 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2606 		return __this_address;
2607 
2608 	if (xfs_has_finobt(mp) &&
2609 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2610 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2611 		return __this_address;
2612 
2613 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2614 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2615 			continue;
2616 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2617 			return __this_address;
2618 	}
2619 
2620 	return NULL;
2621 }
2622 
2623 static void
2624 xfs_agi_read_verify(
2625 	struct xfs_buf	*bp)
2626 {
2627 	struct xfs_mount *mp = bp->b_mount;
2628 	xfs_failaddr_t	fa;
2629 
2630 	if (xfs_has_crc(mp) &&
2631 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2632 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2633 	else {
2634 		fa = xfs_agi_verify(bp);
2635 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2636 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2637 	}
2638 }
2639 
2640 static void
2641 xfs_agi_write_verify(
2642 	struct xfs_buf	*bp)
2643 {
2644 	struct xfs_mount	*mp = bp->b_mount;
2645 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2646 	struct xfs_agi		*agi = bp->b_addr;
2647 	xfs_failaddr_t		fa;
2648 
2649 	fa = xfs_agi_verify(bp);
2650 	if (fa) {
2651 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2652 		return;
2653 	}
2654 
2655 	if (!xfs_has_crc(mp))
2656 		return;
2657 
2658 	if (bip)
2659 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2660 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2661 }
2662 
2663 const struct xfs_buf_ops xfs_agi_buf_ops = {
2664 	.name = "xfs_agi",
2665 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2666 	.verify_read = xfs_agi_read_verify,
2667 	.verify_write = xfs_agi_write_verify,
2668 	.verify_struct = xfs_agi_verify,
2669 };
2670 
2671 /*
2672  * Read in the allocation group header (inode allocation section)
2673  */
2674 int
2675 xfs_read_agi(
2676 	struct xfs_perag	*pag,
2677 	struct xfs_trans	*tp,
2678 	struct xfs_buf		**agibpp)
2679 {
2680 	struct xfs_mount	*mp = pag->pag_mount;
2681 	int			error;
2682 
2683 	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2684 
2685 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2686 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2687 			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2688 	if (xfs_metadata_is_sick(error))
2689 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2690 	if (error)
2691 		return error;
2692 	if (tp)
2693 		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2694 
2695 	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2696 	return 0;
2697 }
2698 
2699 /*
2700  * Read in the agi and initialise the per-ag data. If the caller supplies a
2701  * @agibpp, return the locked AGI buffer to them, otherwise release it.
2702  */
2703 int
2704 xfs_ialloc_read_agi(
2705 	struct xfs_perag	*pag,
2706 	struct xfs_trans	*tp,
2707 	struct xfs_buf		**agibpp)
2708 {
2709 	struct xfs_buf		*agibp;
2710 	struct xfs_agi		*agi;
2711 	int			error;
2712 
2713 	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2714 
2715 	error = xfs_read_agi(pag, tp, &agibp);
2716 	if (error)
2717 		return error;
2718 
2719 	agi = agibp->b_addr;
2720 	if (!xfs_perag_initialised_agi(pag)) {
2721 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2722 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2723 		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2724 	}
2725 
2726 	/*
2727 	 * It's possible for these to be out of sync if
2728 	 * we are in the middle of a forced shutdown.
2729 	 */
2730 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2731 		xfs_is_shutdown(pag->pag_mount));
2732 	if (agibpp)
2733 		*agibpp = agibp;
2734 	else
2735 		xfs_trans_brelse(tp, agibp);
2736 	return 0;
2737 }
2738 
2739 /* How many inodes are backed by inode clusters ondisk? */
2740 STATIC int
2741 xfs_ialloc_count_ondisk(
2742 	struct xfs_btree_cur		*cur,
2743 	xfs_agino_t			low,
2744 	xfs_agino_t			high,
2745 	unsigned int			*allocated)
2746 {
2747 	struct xfs_inobt_rec_incore	irec;
2748 	unsigned int			ret = 0;
2749 	int				has_record;
2750 	int				error;
2751 
2752 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2753 	if (error)
2754 		return error;
2755 
2756 	while (has_record) {
2757 		unsigned int		i, hole_idx;
2758 
2759 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2760 		if (error)
2761 			return error;
2762 		if (irec.ir_startino > high)
2763 			break;
2764 
2765 		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2766 			if (irec.ir_startino + i < low)
2767 				continue;
2768 			if (irec.ir_startino + i > high)
2769 				break;
2770 
2771 			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2772 			if (!(irec.ir_holemask & (1U << hole_idx)))
2773 				ret++;
2774 		}
2775 
2776 		error = xfs_btree_increment(cur, 0, &has_record);
2777 		if (error)
2778 			return error;
2779 	}
2780 
2781 	*allocated = ret;
2782 	return 0;
2783 }
2784 
2785 /* Is there an inode record covering a given extent? */
2786 int
2787 xfs_ialloc_has_inodes_at_extent(
2788 	struct xfs_btree_cur	*cur,
2789 	xfs_agblock_t		bno,
2790 	xfs_extlen_t		len,
2791 	enum xbtree_recpacking	*outcome)
2792 {
2793 	xfs_agino_t		agino;
2794 	xfs_agino_t		last_agino;
2795 	unsigned int		allocated;
2796 	int			error;
2797 
2798 	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2799 	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2800 
2801 	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2802 	if (error)
2803 		return error;
2804 
2805 	if (allocated == 0)
2806 		*outcome = XBTREE_RECPACKING_EMPTY;
2807 	else if (allocated == last_agino - agino + 1)
2808 		*outcome = XBTREE_RECPACKING_FULL;
2809 	else
2810 		*outcome = XBTREE_RECPACKING_SPARSE;
2811 	return 0;
2812 }
2813 
2814 struct xfs_ialloc_count_inodes {
2815 	xfs_agino_t			count;
2816 	xfs_agino_t			freecount;
2817 };
2818 
2819 /* Record inode counts across all inobt records. */
2820 STATIC int
2821 xfs_ialloc_count_inodes_rec(
2822 	struct xfs_btree_cur		*cur,
2823 	const union xfs_btree_rec	*rec,
2824 	void				*priv)
2825 {
2826 	struct xfs_inobt_rec_incore	irec;
2827 	struct xfs_ialloc_count_inodes	*ci = priv;
2828 	xfs_failaddr_t			fa;
2829 
2830 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2831 	fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2832 	if (fa)
2833 		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2834 
2835 	ci->count += irec.ir_count;
2836 	ci->freecount += irec.ir_freecount;
2837 
2838 	return 0;
2839 }
2840 
2841 /* Count allocated and free inodes under an inobt. */
2842 int
2843 xfs_ialloc_count_inodes(
2844 	struct xfs_btree_cur		*cur,
2845 	xfs_agino_t			*count,
2846 	xfs_agino_t			*freecount)
2847 {
2848 	struct xfs_ialloc_count_inodes	ci = {0};
2849 	int				error;
2850 
2851 	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2852 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2853 	if (error)
2854 		return error;
2855 
2856 	*count = ci.count;
2857 	*freecount = ci.freecount;
2858 	return 0;
2859 }
2860 
2861 /*
2862  * Initialize inode-related geometry information.
2863  *
2864  * Compute the inode btree min and max levels and set maxicount.
2865  *
2866  * Set the inode cluster size.  This may still be overridden by the file
2867  * system block size if it is larger than the chosen cluster size.
2868  *
2869  * For v5 filesystems, scale the cluster size with the inode size to keep a
2870  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2871  * inode alignment value appropriately for larger cluster sizes.
2872  *
2873  * Then compute the inode cluster alignment information.
2874  */
2875 void
2876 xfs_ialloc_setup_geometry(
2877 	struct xfs_mount	*mp)
2878 {
2879 	struct xfs_sb		*sbp = &mp->m_sb;
2880 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2881 	uint64_t		icount;
2882 	uint			inodes;
2883 
2884 	igeo->new_diflags2 = 0;
2885 	if (xfs_has_bigtime(mp))
2886 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2887 	if (xfs_has_large_extent_counts(mp))
2888 		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2889 
2890 	/* Compute inode btree geometry. */
2891 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2892 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2893 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2894 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2895 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2896 
2897 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2898 			sbp->sb_inopblock);
2899 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2900 
2901 	if (sbp->sb_spino_align)
2902 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2903 	else
2904 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2905 
2906 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2907 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2908 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2909 			inodes);
2910 	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2911 
2912 	/*
2913 	 * Set the maximum inode count for this filesystem, being careful not
2914 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2915 	 * users should never get here due to failing sb verification, but
2916 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2917 	 */
2918 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2919 		/*
2920 		 * Make sure the maximum inode count is a multiple
2921 		 * of the units we allocate inodes in.
2922 		 */
2923 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2924 		do_div(icount, 100);
2925 		do_div(icount, igeo->ialloc_blks);
2926 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2927 				icount * igeo->ialloc_blks);
2928 	} else {
2929 		igeo->maxicount = 0;
2930 	}
2931 
2932 	/*
2933 	 * Compute the desired size of an inode cluster buffer size, which
2934 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2935 	 * sizes.
2936 	 *
2937 	 * Preserve the desired inode cluster size because the sparse inodes
2938 	 * feature uses that desired size (not the actual size) to compute the
2939 	 * sparse inode alignment.  The mount code validates this value, so we
2940 	 * cannot change the behavior.
2941 	 */
2942 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2943 	if (xfs_has_v3inodes(mp)) {
2944 		int	new_size = igeo->inode_cluster_size_raw;
2945 
2946 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2947 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2948 			igeo->inode_cluster_size_raw = new_size;
2949 	}
2950 
2951 	/* Calculate inode cluster ratios. */
2952 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2953 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2954 				igeo->inode_cluster_size_raw);
2955 	else
2956 		igeo->blocks_per_cluster = 1;
2957 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2958 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2959 
2960 	/* Calculate inode cluster alignment. */
2961 	if (xfs_has_align(mp) &&
2962 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2963 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2964 	else
2965 		igeo->cluster_align = 1;
2966 	igeo->inoalign_mask = igeo->cluster_align - 1;
2967 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2968 
2969 	/*
2970 	 * If we are using stripe alignment, check whether
2971 	 * the stripe unit is a multiple of the inode alignment
2972 	 */
2973 	if (mp->m_dalign && igeo->inoalign_mask &&
2974 	    !(mp->m_dalign & igeo->inoalign_mask))
2975 		igeo->ialloc_align = mp->m_dalign;
2976 	else
2977 		igeo->ialloc_align = 0;
2978 }
2979 
2980 /* Compute the location of the root directory inode that is laid out by mkfs. */
2981 xfs_ino_t
2982 xfs_ialloc_calc_rootino(
2983 	struct xfs_mount	*mp,
2984 	int			sunit)
2985 {
2986 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2987 	xfs_agblock_t		first_bno;
2988 
2989 	/*
2990 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2991 	 * because libxfs knows how to create allocation groups now.
2992 	 *
2993 	 * first_bno is the first block in which mkfs could possibly have
2994 	 * allocated the root directory inode, once we factor in the metadata
2995 	 * that mkfs formats before it.  Namely, the four AG headers...
2996 	 */
2997 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2998 
2999 	/* ...the two free space btree roots... */
3000 	first_bno += 2;
3001 
3002 	/* ...the inode btree root... */
3003 	first_bno += 1;
3004 
3005 	/* ...the initial AGFL... */
3006 	first_bno += xfs_alloc_min_freelist(mp, NULL);
3007 
3008 	/* ...the free inode btree root... */
3009 	if (xfs_has_finobt(mp))
3010 		first_bno++;
3011 
3012 	/* ...the reverse mapping btree root... */
3013 	if (xfs_has_rmapbt(mp))
3014 		first_bno++;
3015 
3016 	/* ...the reference count btree... */
3017 	if (xfs_has_reflink(mp))
3018 		first_bno++;
3019 
3020 	/*
3021 	 * ...and the log, if it is allocated in the first allocation group.
3022 	 *
3023 	 * This can happen with filesystems that only have a single
3024 	 * allocation group, or very odd geometries created by old mkfs
3025 	 * versions on very small filesystems.
3026 	 */
3027 	if (xfs_ag_contains_log(mp, 0))
3028 		 first_bno += mp->m_sb.sb_logblocks;
3029 
3030 	/*
3031 	 * Now round first_bno up to whatever allocation alignment is given
3032 	 * by the filesystem or was passed in.
3033 	 */
3034 	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3035 		first_bno = roundup(first_bno, sunit);
3036 	else if (xfs_has_align(mp) &&
3037 			mp->m_sb.sb_inoalignmt > 1)
3038 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3039 
3040 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3041 }
3042 
3043 /*
3044  * Ensure there are not sparse inode clusters that cross the new EOAG.
3045  *
3046  * This is a no-op for non-spinode filesystems since clusters are always fully
3047  * allocated and checking the bnobt suffices.  However, a spinode filesystem
3048  * could have a record where the upper inodes are free blocks.  If those blocks
3049  * were removed from the filesystem, the inode record would extend beyond EOAG,
3050  * which will be flagged as corruption.
3051  */
3052 int
3053 xfs_ialloc_check_shrink(
3054 	struct xfs_perag	*pag,
3055 	struct xfs_trans	*tp,
3056 	struct xfs_buf		*agibp,
3057 	xfs_agblock_t		new_length)
3058 {
3059 	struct xfs_inobt_rec_incore rec;
3060 	struct xfs_btree_cur	*cur;
3061 	xfs_agino_t		agino;
3062 	int			has;
3063 	int			error;
3064 
3065 	if (!xfs_has_sparseinodes(pag->pag_mount))
3066 		return 0;
3067 
3068 	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3069 
3070 	/* Look up the inobt record that would correspond to the new EOFS. */
3071 	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3072 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3073 	if (error || !has)
3074 		goto out;
3075 
3076 	error = xfs_inobt_get_rec(cur, &rec, &has);
3077 	if (error)
3078 		goto out;
3079 
3080 	if (!has) {
3081 		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3082 		error = -EFSCORRUPTED;
3083 		goto out;
3084 	}
3085 
3086 	/* If the record covers inodes that would be beyond EOFS, bail out. */
3087 	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3088 		error = -ENOSPC;
3089 		goto out;
3090 	}
3091 out:
3092 	xfs_btree_del_cursor(cur, error);
3093 	return error;
3094 }
3095