xref: /linux/fs/xfs/libxfs/xfs_ialloc.c (revision 26f53f23957f996daa7328f96263011c09cf8552)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_bit.h"
13  #include "xfs_mount.h"
14  #include "xfs_inode.h"
15  #include "xfs_btree.h"
16  #include "xfs_ialloc.h"
17  #include "xfs_ialloc_btree.h"
18  #include "xfs_alloc.h"
19  #include "xfs_errortag.h"
20  #include "xfs_error.h"
21  #include "xfs_bmap.h"
22  #include "xfs_trans.h"
23  #include "xfs_buf_item.h"
24  #include "xfs_icreate_item.h"
25  #include "xfs_icache.h"
26  #include "xfs_trace.h"
27  #include "xfs_log.h"
28  #include "xfs_rmap.h"
29  #include "xfs_ag.h"
30  #include "xfs_health.h"
31  
32  /*
33   * Lookup a record by ino in the btree given by cur.
34   */
35  int					/* error */
36  xfs_inobt_lookup(
37  	struct xfs_btree_cur	*cur,	/* btree cursor */
38  	xfs_agino_t		ino,	/* starting inode of chunk */
39  	xfs_lookup_t		dir,	/* <=, >=, == */
40  	int			*stat)	/* success/failure */
41  {
42  	cur->bc_rec.i.ir_startino = ino;
43  	cur->bc_rec.i.ir_holemask = 0;
44  	cur->bc_rec.i.ir_count = 0;
45  	cur->bc_rec.i.ir_freecount = 0;
46  	cur->bc_rec.i.ir_free = 0;
47  	return xfs_btree_lookup(cur, dir, stat);
48  }
49  
50  /*
51   * Update the record referred to by cur to the value given.
52   * This either works (return 0) or gets an EFSCORRUPTED error.
53   */
54  STATIC int				/* error */
55  xfs_inobt_update(
56  	struct xfs_btree_cur	*cur,	/* btree cursor */
57  	xfs_inobt_rec_incore_t	*irec)	/* btree record */
58  {
59  	union xfs_btree_rec	rec;
60  
61  	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62  	if (xfs_has_sparseinodes(cur->bc_mp)) {
63  		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64  		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65  		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66  	} else {
67  		/* ir_holemask/ir_count not supported on-disk */
68  		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69  	}
70  	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71  	return xfs_btree_update(cur, &rec);
72  }
73  
74  /* Convert on-disk btree record to incore inobt record. */
75  void
76  xfs_inobt_btrec_to_irec(
77  	struct xfs_mount		*mp,
78  	const union xfs_btree_rec	*rec,
79  	struct xfs_inobt_rec_incore	*irec)
80  {
81  	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82  	if (xfs_has_sparseinodes(mp)) {
83  		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84  		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85  		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86  	} else {
87  		/*
88  		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89  		 * values for full inode chunks.
90  		 */
91  		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92  		irec->ir_count = XFS_INODES_PER_CHUNK;
93  		irec->ir_freecount =
94  				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95  	}
96  	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97  }
98  
99  /* Compute the freecount of an incore inode record. */
100  uint8_t
101  xfs_inobt_rec_freecount(
102  	const struct xfs_inobt_rec_incore	*irec)
103  {
104  	uint64_t				realfree = irec->ir_free;
105  
106  	if (xfs_inobt_issparse(irec->ir_holemask))
107  		realfree &= xfs_inobt_irec_to_allocmask(irec);
108  	return hweight64(realfree);
109  }
110  
111  /* Simple checks for inode records. */
112  xfs_failaddr_t
113  xfs_inobt_check_irec(
114  	struct xfs_perag			*pag,
115  	const struct xfs_inobt_rec_incore	*irec)
116  {
117  	/* Record has to be properly aligned within the AG. */
118  	if (!xfs_verify_agino(pag, irec->ir_startino))
119  		return __this_address;
120  	if (!xfs_verify_agino(pag,
121  				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122  		return __this_address;
123  	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124  	    irec->ir_count > XFS_INODES_PER_CHUNK)
125  		return __this_address;
126  	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127  		return __this_address;
128  
129  	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130  		return __this_address;
131  
132  	return NULL;
133  }
134  
135  static inline int
136  xfs_inobt_complain_bad_rec(
137  	struct xfs_btree_cur		*cur,
138  	xfs_failaddr_t			fa,
139  	const struct xfs_inobt_rec_incore *irec)
140  {
141  	struct xfs_mount		*mp = cur->bc_mp;
142  
143  	xfs_warn(mp,
144  		"%sbt record corruption in AG %d detected at %pS!",
145  		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146  	xfs_warn(mp,
147  "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148  		irec->ir_startino, irec->ir_count, irec->ir_freecount,
149  		irec->ir_free, irec->ir_holemask);
150  	xfs_btree_mark_sick(cur);
151  	return -EFSCORRUPTED;
152  }
153  
154  /*
155   * Get the data from the pointed-to record.
156   */
157  int
158  xfs_inobt_get_rec(
159  	struct xfs_btree_cur		*cur,
160  	struct xfs_inobt_rec_incore	*irec,
161  	int				*stat)
162  {
163  	struct xfs_mount		*mp = cur->bc_mp;
164  	union xfs_btree_rec		*rec;
165  	xfs_failaddr_t			fa;
166  	int				error;
167  
168  	error = xfs_btree_get_rec(cur, &rec, stat);
169  	if (error || *stat == 0)
170  		return error;
171  
172  	xfs_inobt_btrec_to_irec(mp, rec, irec);
173  	fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174  	if (fa)
175  		return xfs_inobt_complain_bad_rec(cur, fa, irec);
176  
177  	return 0;
178  }
179  
180  /*
181   * Insert a single inobt record. Cursor must already point to desired location.
182   */
183  int
184  xfs_inobt_insert_rec(
185  	struct xfs_btree_cur	*cur,
186  	uint16_t		holemask,
187  	uint8_t			count,
188  	int32_t			freecount,
189  	xfs_inofree_t		free,
190  	int			*stat)
191  {
192  	cur->bc_rec.i.ir_holemask = holemask;
193  	cur->bc_rec.i.ir_count = count;
194  	cur->bc_rec.i.ir_freecount = freecount;
195  	cur->bc_rec.i.ir_free = free;
196  	return xfs_btree_insert(cur, stat);
197  }
198  
199  /*
200   * Insert records describing a newly allocated inode chunk into the inobt.
201   */
202  STATIC int
203  xfs_inobt_insert(
204  	struct xfs_perag	*pag,
205  	struct xfs_trans	*tp,
206  	struct xfs_buf		*agbp,
207  	xfs_agino_t		newino,
208  	xfs_agino_t		newlen,
209  	bool			is_finobt)
210  {
211  	struct xfs_btree_cur	*cur;
212  	xfs_agino_t		thisino;
213  	int			i;
214  	int			error;
215  
216  	if (is_finobt)
217  		cur = xfs_finobt_init_cursor(pag, tp, agbp);
218  	else
219  		cur = xfs_inobt_init_cursor(pag, tp, agbp);
220  
221  	for (thisino = newino;
222  	     thisino < newino + newlen;
223  	     thisino += XFS_INODES_PER_CHUNK) {
224  		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225  		if (error) {
226  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227  			return error;
228  		}
229  		ASSERT(i == 0);
230  
231  		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232  					     XFS_INODES_PER_CHUNK,
233  					     XFS_INODES_PER_CHUNK,
234  					     XFS_INOBT_ALL_FREE, &i);
235  		if (error) {
236  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237  			return error;
238  		}
239  		ASSERT(i == 1);
240  	}
241  
242  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243  
244  	return 0;
245  }
246  
247  /*
248   * Verify that the number of free inodes in the AGI is correct.
249   */
250  #ifdef DEBUG
251  static int
252  xfs_check_agi_freecount(
253  	struct xfs_btree_cur	*cur)
254  {
255  	if (cur->bc_nlevels == 1) {
256  		xfs_inobt_rec_incore_t rec;
257  		int		freecount = 0;
258  		int		error;
259  		int		i;
260  
261  		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262  		if (error)
263  			return error;
264  
265  		do {
266  			error = xfs_inobt_get_rec(cur, &rec, &i);
267  			if (error)
268  				return error;
269  
270  			if (i) {
271  				freecount += rec.ir_freecount;
272  				error = xfs_btree_increment(cur, 0, &i);
273  				if (error)
274  					return error;
275  			}
276  		} while (i == 1);
277  
278  		if (!xfs_is_shutdown(cur->bc_mp))
279  			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280  	}
281  	return 0;
282  }
283  #else
284  #define xfs_check_agi_freecount(cur)	0
285  #endif
286  
287  /*
288   * Initialise a new set of inodes. When called without a transaction context
289   * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290   * than logging them (which in a transaction context puts them into the AIL
291   * for writeback rather than the xfsbufd queue).
292   */
293  int
294  xfs_ialloc_inode_init(
295  	struct xfs_mount	*mp,
296  	struct xfs_trans	*tp,
297  	struct list_head	*buffer_list,
298  	int			icount,
299  	xfs_agnumber_t		agno,
300  	xfs_agblock_t		agbno,
301  	xfs_agblock_t		length,
302  	unsigned int		gen)
303  {
304  	struct xfs_buf		*fbuf;
305  	struct xfs_dinode	*free;
306  	int			nbufs;
307  	int			version;
308  	int			i, j;
309  	xfs_daddr_t		d;
310  	xfs_ino_t		ino = 0;
311  	int			error;
312  
313  	/*
314  	 * Loop over the new block(s), filling in the inodes.  For small block
315  	 * sizes, manipulate the inodes in buffers  which are multiples of the
316  	 * blocks size.
317  	 */
318  	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319  
320  	/*
321  	 * Figure out what version number to use in the inodes we create.  If
322  	 * the superblock version has caught up to the one that supports the new
323  	 * inode format, then use the new inode version.  Otherwise use the old
324  	 * version so that old kernels will continue to be able to use the file
325  	 * system.
326  	 *
327  	 * For v3 inodes, we also need to write the inode number into the inode,
328  	 * so calculate the first inode number of the chunk here as
329  	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330  	 * across multiple filesystem blocks (such as a cluster) and so cannot
331  	 * be used in the cluster buffer loop below.
332  	 *
333  	 * Further, because we are writing the inode directly into the buffer
334  	 * and calculating a CRC on the entire inode, we have ot log the entire
335  	 * inode so that the entire range the CRC covers is present in the log.
336  	 * That means for v3 inode we log the entire buffer rather than just the
337  	 * inode cores.
338  	 */
339  	if (xfs_has_v3inodes(mp)) {
340  		version = 3;
341  		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342  
343  		/*
344  		 * log the initialisation that is about to take place as an
345  		 * logical operation. This means the transaction does not
346  		 * need to log the physical changes to the inode buffers as log
347  		 * recovery will know what initialisation is actually needed.
348  		 * Hence we only need to log the buffers as "ordered" buffers so
349  		 * they track in the AIL as if they were physically logged.
350  		 */
351  		if (tp)
352  			xfs_icreate_log(tp, agno, agbno, icount,
353  					mp->m_sb.sb_inodesize, length, gen);
354  	} else
355  		version = 2;
356  
357  	for (j = 0; j < nbufs; j++) {
358  		/*
359  		 * Get the block.
360  		 */
361  		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362  				(j * M_IGEO(mp)->blocks_per_cluster));
363  		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364  				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365  				XBF_UNMAPPED, &fbuf);
366  		if (error)
367  			return error;
368  
369  		/* Initialize the inode buffers and log them appropriately. */
370  		fbuf->b_ops = &xfs_inode_buf_ops;
371  		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372  		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373  			int	ioffset = i << mp->m_sb.sb_inodelog;
374  
375  			free = xfs_make_iptr(mp, fbuf, i);
376  			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377  			free->di_version = version;
378  			free->di_gen = cpu_to_be32(gen);
379  			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380  
381  			if (version == 3) {
382  				free->di_ino = cpu_to_be64(ino);
383  				ino++;
384  				uuid_copy(&free->di_uuid,
385  					  &mp->m_sb.sb_meta_uuid);
386  				xfs_dinode_calc_crc(mp, free);
387  			} else if (tp) {
388  				/* just log the inode core */
389  				xfs_trans_log_buf(tp, fbuf, ioffset,
390  					  ioffset + XFS_DINODE_SIZE(mp) - 1);
391  			}
392  		}
393  
394  		if (tp) {
395  			/*
396  			 * Mark the buffer as an inode allocation buffer so it
397  			 * sticks in AIL at the point of this allocation
398  			 * transaction. This ensures the they are on disk before
399  			 * the tail of the log can be moved past this
400  			 * transaction (i.e. by preventing relogging from moving
401  			 * it forward in the log).
402  			 */
403  			xfs_trans_inode_alloc_buf(tp, fbuf);
404  			if (version == 3) {
405  				/*
406  				 * Mark the buffer as ordered so that they are
407  				 * not physically logged in the transaction but
408  				 * still tracked in the AIL as part of the
409  				 * transaction and pin the log appropriately.
410  				 */
411  				xfs_trans_ordered_buf(tp, fbuf);
412  			}
413  		} else {
414  			fbuf->b_flags |= XBF_DONE;
415  			xfs_buf_delwri_queue(fbuf, buffer_list);
416  			xfs_buf_relse(fbuf);
417  		}
418  	}
419  	return 0;
420  }
421  
422  /*
423   * Align startino and allocmask for a recently allocated sparse chunk such that
424   * they are fit for insertion (or merge) into the on-disk inode btrees.
425   *
426   * Background:
427   *
428   * When enabled, sparse inode support increases the inode alignment from cluster
429   * size to inode chunk size. This means that the minimum range between two
430   * non-adjacent inode records in the inobt is large enough for a full inode
431   * record. This allows for cluster sized, cluster aligned block allocation
432   * without need to worry about whether the resulting inode record overlaps with
433   * another record in the tree. Without this basic rule, we would have to deal
434   * with the consequences of overlap by potentially undoing recent allocations in
435   * the inode allocation codepath.
436   *
437   * Because of this alignment rule (which is enforced on mount), there are two
438   * inobt possibilities for newly allocated sparse chunks. One is that the
439   * aligned inode record for the chunk covers a range of inodes not already
440   * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441   * other is that a record already exists at the aligned startino that considers
442   * the newly allocated range as sparse. In the latter case, record content is
443   * merged in hope that sparse inode chunks fill to full chunks over time.
444   */
445  STATIC void
446  xfs_align_sparse_ino(
447  	struct xfs_mount		*mp,
448  	xfs_agino_t			*startino,
449  	uint16_t			*allocmask)
450  {
451  	xfs_agblock_t			agbno;
452  	xfs_agblock_t			mod;
453  	int				offset;
454  
455  	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456  	mod = agbno % mp->m_sb.sb_inoalignmt;
457  	if (!mod)
458  		return;
459  
460  	/* calculate the inode offset and align startino */
461  	offset = XFS_AGB_TO_AGINO(mp, mod);
462  	*startino -= offset;
463  
464  	/*
465  	 * Since startino has been aligned down, left shift allocmask such that
466  	 * it continues to represent the same physical inodes relative to the
467  	 * new startino.
468  	 */
469  	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470  }
471  
472  /*
473   * Determine whether the source inode record can merge into the target. Both
474   * records must be sparse, the inode ranges must match and there must be no
475   * allocation overlap between the records.
476   */
477  STATIC bool
478  __xfs_inobt_can_merge(
479  	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
480  	struct xfs_inobt_rec_incore	*srec)	/* src record */
481  {
482  	uint64_t			talloc;
483  	uint64_t			salloc;
484  
485  	/* records must cover the same inode range */
486  	if (trec->ir_startino != srec->ir_startino)
487  		return false;
488  
489  	/* both records must be sparse */
490  	if (!xfs_inobt_issparse(trec->ir_holemask) ||
491  	    !xfs_inobt_issparse(srec->ir_holemask))
492  		return false;
493  
494  	/* both records must track some inodes */
495  	if (!trec->ir_count || !srec->ir_count)
496  		return false;
497  
498  	/* can't exceed capacity of a full record */
499  	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500  		return false;
501  
502  	/* verify there is no allocation overlap */
503  	talloc = xfs_inobt_irec_to_allocmask(trec);
504  	salloc = xfs_inobt_irec_to_allocmask(srec);
505  	if (talloc & salloc)
506  		return false;
507  
508  	return true;
509  }
510  
511  /*
512   * Merge the source inode record into the target. The caller must call
513   * __xfs_inobt_can_merge() to ensure the merge is valid.
514   */
515  STATIC void
516  __xfs_inobt_rec_merge(
517  	struct xfs_inobt_rec_incore	*trec,	/* target */
518  	struct xfs_inobt_rec_incore	*srec)	/* src */
519  {
520  	ASSERT(trec->ir_startino == srec->ir_startino);
521  
522  	/* combine the counts */
523  	trec->ir_count += srec->ir_count;
524  	trec->ir_freecount += srec->ir_freecount;
525  
526  	/*
527  	 * Merge the holemask and free mask. For both fields, 0 bits refer to
528  	 * allocated inodes. We combine the allocated ranges with bitwise AND.
529  	 */
530  	trec->ir_holemask &= srec->ir_holemask;
531  	trec->ir_free &= srec->ir_free;
532  }
533  
534  /*
535   * Insert a new sparse inode chunk into the associated inode allocation btree.
536   * The inode record for the sparse chunk is pre-aligned to a startino that
537   * should match any pre-existing sparse inode record in the tree. This allows
538   * sparse chunks to fill over time.
539   *
540   * If no preexisting record exists, the provided record is inserted.
541   * If there is a preexisting record, the provided record is merged with the
542   * existing record and updated in place. The merged record is returned in nrec.
543   *
544   * It is considered corruption if a merge is requested and not possible. Given
545   * the sparse inode alignment constraints, this should never happen.
546   */
547  STATIC int
548  xfs_inobt_insert_sprec(
549  	struct xfs_perag		*pag,
550  	struct xfs_trans		*tp,
551  	struct xfs_buf			*agbp,
552  	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
553  {
554  	struct xfs_mount		*mp = pag->pag_mount;
555  	struct xfs_btree_cur		*cur;
556  	int				error;
557  	int				i;
558  	struct xfs_inobt_rec_incore	rec;
559  
560  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
561  
562  	/* the new record is pre-aligned so we know where to look */
563  	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564  	if (error)
565  		goto error;
566  	/* if nothing there, insert a new record and return */
567  	if (i == 0) {
568  		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569  					     nrec->ir_count, nrec->ir_freecount,
570  					     nrec->ir_free, &i);
571  		if (error)
572  			goto error;
573  		if (XFS_IS_CORRUPT(mp, i != 1)) {
574  			xfs_btree_mark_sick(cur);
575  			error = -EFSCORRUPTED;
576  			goto error;
577  		}
578  
579  		goto out;
580  	}
581  
582  	/*
583  	 * A record exists at this startino.  Merge the records.
584  	 */
585  	error = xfs_inobt_get_rec(cur, &rec, &i);
586  	if (error)
587  		goto error;
588  	if (XFS_IS_CORRUPT(mp, i != 1)) {
589  		xfs_btree_mark_sick(cur);
590  		error = -EFSCORRUPTED;
591  		goto error;
592  	}
593  	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594  		xfs_btree_mark_sick(cur);
595  		error = -EFSCORRUPTED;
596  		goto error;
597  	}
598  
599  	/*
600  	 * This should never fail. If we have coexisting records that
601  	 * cannot merge, something is seriously wrong.
602  	 */
603  	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604  		xfs_btree_mark_sick(cur);
605  		error = -EFSCORRUPTED;
606  		goto error;
607  	}
608  
609  	trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610  				 rec.ir_holemask, nrec->ir_startino,
611  				 nrec->ir_holemask);
612  
613  	/* merge to nrec to output the updated record */
614  	__xfs_inobt_rec_merge(nrec, &rec);
615  
616  	trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617  				  nrec->ir_holemask);
618  
619  	error = xfs_inobt_rec_check_count(mp, nrec);
620  	if (error)
621  		goto error;
622  
623  	error = xfs_inobt_update(cur, nrec);
624  	if (error)
625  		goto error;
626  
627  out:
628  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629  	return 0;
630  error:
631  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632  	return error;
633  }
634  
635  /*
636   * Insert a new sparse inode chunk into the free inode btree. The inode
637   * record for the sparse chunk is pre-aligned to a startino that should match
638   * any pre-existing sparse inode record in the tree. This allows sparse chunks
639   * to fill over time.
640   *
641   * The new record is always inserted, overwriting a pre-existing record if
642   * there is one.
643   */
644  STATIC int
645  xfs_finobt_insert_sprec(
646  	struct xfs_perag		*pag,
647  	struct xfs_trans		*tp,
648  	struct xfs_buf			*agbp,
649  	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
650  {
651  	struct xfs_mount		*mp = pag->pag_mount;
652  	struct xfs_btree_cur		*cur;
653  	int				error;
654  	int				i;
655  
656  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
657  
658  	/* the new record is pre-aligned so we know where to look */
659  	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660  	if (error)
661  		goto error;
662  	/* if nothing there, insert a new record and return */
663  	if (i == 0) {
664  		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665  					     nrec->ir_count, nrec->ir_freecount,
666  					     nrec->ir_free, &i);
667  		if (error)
668  			goto error;
669  		if (XFS_IS_CORRUPT(mp, i != 1)) {
670  			xfs_btree_mark_sick(cur);
671  			error = -EFSCORRUPTED;
672  			goto error;
673  		}
674  	} else {
675  		error = xfs_inobt_update(cur, nrec);
676  		if (error)
677  			goto error;
678  	}
679  
680  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681  	return 0;
682  error:
683  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684  	return error;
685  }
686  
687  
688  /*
689   * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
690   * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691   * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692   * inode count threshold, or the usual negative error code for other errors.
693   */
694  STATIC int
695  xfs_ialloc_ag_alloc(
696  	struct xfs_perag	*pag,
697  	struct xfs_trans	*tp,
698  	struct xfs_buf		*agbp)
699  {
700  	struct xfs_agi		*agi;
701  	struct xfs_alloc_arg	args;
702  	int			error;
703  	xfs_agino_t		newino;		/* new first inode's number */
704  	xfs_agino_t		newlen;		/* new number of inodes */
705  	int			isaligned = 0;	/* inode allocation at stripe */
706  						/* unit boundary */
707  	/* init. to full chunk */
708  	struct xfs_inobt_rec_incore rec;
709  	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
710  	uint16_t		allocmask = (uint16_t) -1;
711  	int			do_sparse = 0;
712  
713  	memset(&args, 0, sizeof(args));
714  	args.tp = tp;
715  	args.mp = tp->t_mountp;
716  	args.fsbno = NULLFSBLOCK;
717  	args.oinfo = XFS_RMAP_OINFO_INODES;
718  	args.pag = pag;
719  
720  #ifdef DEBUG
721  	/* randomly do sparse inode allocations */
722  	if (xfs_has_sparseinodes(tp->t_mountp) &&
723  	    igeo->ialloc_min_blks < igeo->ialloc_blks)
724  		do_sparse = get_random_u32_below(2);
725  #endif
726  
727  	/*
728  	 * Locking will ensure that we don't have two callers in here
729  	 * at one time.
730  	 */
731  	newlen = igeo->ialloc_inos;
732  	if (igeo->maxicount &&
733  	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734  							igeo->maxicount)
735  		return -ENOSPC;
736  	args.minlen = args.maxlen = igeo->ialloc_blks;
737  	/*
738  	 * First try to allocate inodes contiguous with the last-allocated
739  	 * chunk of inodes.  If the filesystem is striped, this will fill
740  	 * an entire stripe unit with inodes.
741  	 */
742  	agi = agbp->b_addr;
743  	newino = be32_to_cpu(agi->agi_newino);
744  	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745  		     igeo->ialloc_blks;
746  	if (do_sparse)
747  		goto sparse_alloc;
748  	if (likely(newino != NULLAGINO &&
749  		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
750  		args.prod = 1;
751  
752  		/*
753  		 * We need to take into account alignment here to ensure that
754  		 * we don't modify the free list if we fail to have an exact
755  		 * block. If we don't have an exact match, and every oher
756  		 * attempt allocation attempt fails, we'll end up cancelling
757  		 * a dirty transaction and shutting down.
758  		 *
759  		 * For an exact allocation, alignment must be 1,
760  		 * however we need to take cluster alignment into account when
761  		 * fixing up the freelist. Use the minalignslop field to
762  		 * indicate that extra blocks might be required for alignment,
763  		 * but not to use them in the actual exact allocation.
764  		 */
765  		args.alignment = 1;
766  		args.minalignslop = igeo->cluster_align - 1;
767  
768  		/* Allow space for the inode btree to split. */
769  		args.minleft = igeo->inobt_maxlevels;
770  		error = xfs_alloc_vextent_exact_bno(&args,
771  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772  						args.agbno));
773  		if (error)
774  			return error;
775  
776  		/*
777  		 * This request might have dirtied the transaction if the AG can
778  		 * satisfy the request, but the exact block was not available.
779  		 * If the allocation did fail, subsequent requests will relax
780  		 * the exact agbno requirement and increase the alignment
781  		 * instead. It is critical that the total size of the request
782  		 * (len + alignment + slop) does not increase from this point
783  		 * on, so reset minalignslop to ensure it is not included in
784  		 * subsequent requests.
785  		 */
786  		args.minalignslop = 0;
787  	}
788  
789  	if (unlikely(args.fsbno == NULLFSBLOCK)) {
790  		/*
791  		 * Set the alignment for the allocation.
792  		 * If stripe alignment is turned on then align at stripe unit
793  		 * boundary.
794  		 * If the cluster size is smaller than a filesystem block
795  		 * then we're doing I/O for inodes in filesystem block size
796  		 * pieces, so don't need alignment anyway.
797  		 */
798  		isaligned = 0;
799  		if (igeo->ialloc_align) {
800  			ASSERT(!xfs_has_noalign(args.mp));
801  			args.alignment = args.mp->m_dalign;
802  			isaligned = 1;
803  		} else
804  			args.alignment = igeo->cluster_align;
805  		/*
806  		 * Allocate a fixed-size extent of inodes.
807  		 */
808  		args.prod = 1;
809  		/*
810  		 * Allow space for the inode btree to split.
811  		 */
812  		args.minleft = igeo->inobt_maxlevels;
813  		error = xfs_alloc_vextent_near_bno(&args,
814  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815  						be32_to_cpu(agi->agi_root)));
816  		if (error)
817  			return error;
818  	}
819  
820  	/*
821  	 * If stripe alignment is turned on, then try again with cluster
822  	 * alignment.
823  	 */
824  	if (isaligned && args.fsbno == NULLFSBLOCK) {
825  		args.alignment = igeo->cluster_align;
826  		error = xfs_alloc_vextent_near_bno(&args,
827  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828  						be32_to_cpu(agi->agi_root)));
829  		if (error)
830  			return error;
831  	}
832  
833  	/*
834  	 * Finally, try a sparse allocation if the filesystem supports it and
835  	 * the sparse allocation length is smaller than a full chunk.
836  	 */
837  	if (xfs_has_sparseinodes(args.mp) &&
838  	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
839  	    args.fsbno == NULLFSBLOCK) {
840  sparse_alloc:
841  		args.alignment = args.mp->m_sb.sb_spino_align;
842  		args.prod = 1;
843  
844  		args.minlen = igeo->ialloc_min_blks;
845  		args.maxlen = args.minlen;
846  
847  		/*
848  		 * The inode record will be aligned to full chunk size. We must
849  		 * prevent sparse allocation from AG boundaries that result in
850  		 * invalid inode records, such as records that start at agbno 0
851  		 * or extend beyond the AG.
852  		 *
853  		 * Set min agbno to the first aligned, non-zero agbno and max to
854  		 * the last aligned agbno that is at least one full chunk from
855  		 * the end of the AG.
856  		 */
857  		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858  		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
859  					    args.mp->m_sb.sb_inoalignmt) -
860  				 igeo->ialloc_blks;
861  
862  		error = xfs_alloc_vextent_near_bno(&args,
863  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
864  						be32_to_cpu(agi->agi_root)));
865  		if (error)
866  			return error;
867  
868  		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
869  		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
870  		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
871  	}
872  
873  	if (args.fsbno == NULLFSBLOCK)
874  		return -EAGAIN;
875  
876  	ASSERT(args.len == args.minlen);
877  
878  	/*
879  	 * Stamp and write the inode buffers.
880  	 *
881  	 * Seed the new inode cluster with a random generation number. This
882  	 * prevents short-term reuse of generation numbers if a chunk is
883  	 * freed and then immediately reallocated. We use random numbers
884  	 * rather than a linear progression to prevent the next generation
885  	 * number from being easily guessable.
886  	 */
887  	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
888  			args.agbno, args.len, get_random_u32());
889  
890  	if (error)
891  		return error;
892  	/*
893  	 * Convert the results.
894  	 */
895  	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
896  
897  	if (xfs_inobt_issparse(~allocmask)) {
898  		/*
899  		 * We've allocated a sparse chunk. Align the startino and mask.
900  		 */
901  		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
902  
903  		rec.ir_startino = newino;
904  		rec.ir_holemask = ~allocmask;
905  		rec.ir_count = newlen;
906  		rec.ir_freecount = newlen;
907  		rec.ir_free = XFS_INOBT_ALL_FREE;
908  
909  		/*
910  		 * Insert the sparse record into the inobt and allow for a merge
911  		 * if necessary. If a merge does occur, rec is updated to the
912  		 * merged record.
913  		 */
914  		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
915  		if (error == -EFSCORRUPTED) {
916  			xfs_alert(args.mp,
917  	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
918  				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
919  						   rec.ir_startino),
920  				  rec.ir_holemask, rec.ir_count);
921  			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
922  		}
923  		if (error)
924  			return error;
925  
926  		/*
927  		 * We can't merge the part we've just allocated as for the inobt
928  		 * due to finobt semantics. The original record may or may not
929  		 * exist independent of whether physical inodes exist in this
930  		 * sparse chunk.
931  		 *
932  		 * We must update the finobt record based on the inobt record.
933  		 * rec contains the fully merged and up to date inobt record
934  		 * from the previous call. Set merge false to replace any
935  		 * existing record with this one.
936  		 */
937  		if (xfs_has_finobt(args.mp)) {
938  			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
939  			if (error)
940  				return error;
941  		}
942  	} else {
943  		/* full chunk - insert new records to both btrees */
944  		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
945  		if (error)
946  			return error;
947  
948  		if (xfs_has_finobt(args.mp)) {
949  			error = xfs_inobt_insert(pag, tp, agbp, newino,
950  						 newlen, true);
951  			if (error)
952  				return error;
953  		}
954  	}
955  
956  	/*
957  	 * Update AGI counts and newino.
958  	 */
959  	be32_add_cpu(&agi->agi_count, newlen);
960  	be32_add_cpu(&agi->agi_freecount, newlen);
961  	pag->pagi_freecount += newlen;
962  	pag->pagi_count += newlen;
963  	agi->agi_newino = cpu_to_be32(newino);
964  
965  	/*
966  	 * Log allocation group header fields
967  	 */
968  	xfs_ialloc_log_agi(tp, agbp,
969  		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
970  	/*
971  	 * Modify/log superblock values for inode count and inode free count.
972  	 */
973  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
974  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
975  	return 0;
976  }
977  
978  /*
979   * Try to retrieve the next record to the left/right from the current one.
980   */
981  STATIC int
982  xfs_ialloc_next_rec(
983  	struct xfs_btree_cur	*cur,
984  	xfs_inobt_rec_incore_t	*rec,
985  	int			*done,
986  	int			left)
987  {
988  	int                     error;
989  	int			i;
990  
991  	if (left)
992  		error = xfs_btree_decrement(cur, 0, &i);
993  	else
994  		error = xfs_btree_increment(cur, 0, &i);
995  
996  	if (error)
997  		return error;
998  	*done = !i;
999  	if (i) {
1000  		error = xfs_inobt_get_rec(cur, rec, &i);
1001  		if (error)
1002  			return error;
1003  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004  			xfs_btree_mark_sick(cur);
1005  			return -EFSCORRUPTED;
1006  		}
1007  	}
1008  
1009  	return 0;
1010  }
1011  
1012  STATIC int
1013  xfs_ialloc_get_rec(
1014  	struct xfs_btree_cur	*cur,
1015  	xfs_agino_t		agino,
1016  	xfs_inobt_rec_incore_t	*rec,
1017  	int			*done)
1018  {
1019  	int                     error;
1020  	int			i;
1021  
1022  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1023  	if (error)
1024  		return error;
1025  	*done = !i;
1026  	if (i) {
1027  		error = xfs_inobt_get_rec(cur, rec, &i);
1028  		if (error)
1029  			return error;
1030  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031  			xfs_btree_mark_sick(cur);
1032  			return -EFSCORRUPTED;
1033  		}
1034  	}
1035  
1036  	return 0;
1037  }
1038  
1039  /*
1040   * Return the offset of the first free inode in the record. If the inode chunk
1041   * is sparsely allocated, we convert the record holemask to inode granularity
1042   * and mask off the unallocated regions from the inode free mask.
1043   */
1044  STATIC int
1045  xfs_inobt_first_free_inode(
1046  	struct xfs_inobt_rec_incore	*rec)
1047  {
1048  	xfs_inofree_t			realfree;
1049  
1050  	/* if there are no holes, return the first available offset */
1051  	if (!xfs_inobt_issparse(rec->ir_holemask))
1052  		return xfs_lowbit64(rec->ir_free);
1053  
1054  	realfree = xfs_inobt_irec_to_allocmask(rec);
1055  	realfree &= rec->ir_free;
1056  
1057  	return xfs_lowbit64(realfree);
1058  }
1059  
1060  /*
1061   * Allocate an inode using the inobt-only algorithm.
1062   */
1063  STATIC int
1064  xfs_dialloc_ag_inobt(
1065  	struct xfs_perag	*pag,
1066  	struct xfs_trans	*tp,
1067  	struct xfs_buf		*agbp,
1068  	xfs_ino_t		parent,
1069  	xfs_ino_t		*inop)
1070  {
1071  	struct xfs_mount	*mp = tp->t_mountp;
1072  	struct xfs_agi		*agi = agbp->b_addr;
1073  	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1074  	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1075  	struct xfs_btree_cur	*cur, *tcur;
1076  	struct xfs_inobt_rec_incore rec, trec;
1077  	xfs_ino_t		ino;
1078  	int			error;
1079  	int			offset;
1080  	int			i, j;
1081  	int			searchdistance = 10;
1082  
1083  	ASSERT(xfs_perag_initialised_agi(pag));
1084  	ASSERT(xfs_perag_allows_inodes(pag));
1085  	ASSERT(pag->pagi_freecount > 0);
1086  
1087   restart_pagno:
1088  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1089  	/*
1090  	 * If pagino is 0 (this is the root inode allocation) use newino.
1091  	 * This must work because we've just allocated some.
1092  	 */
1093  	if (!pagino)
1094  		pagino = be32_to_cpu(agi->agi_newino);
1095  
1096  	error = xfs_check_agi_freecount(cur);
1097  	if (error)
1098  		goto error0;
1099  
1100  	/*
1101  	 * If in the same AG as the parent, try to get near the parent.
1102  	 */
1103  	if (pagno == pag->pag_agno) {
1104  		int		doneleft;	/* done, to the left */
1105  		int		doneright;	/* done, to the right */
1106  
1107  		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1108  		if (error)
1109  			goto error0;
1110  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1111  			xfs_btree_mark_sick(cur);
1112  			error = -EFSCORRUPTED;
1113  			goto error0;
1114  		}
1115  
1116  		error = xfs_inobt_get_rec(cur, &rec, &j);
1117  		if (error)
1118  			goto error0;
1119  		if (XFS_IS_CORRUPT(mp, j != 1)) {
1120  			xfs_btree_mark_sick(cur);
1121  			error = -EFSCORRUPTED;
1122  			goto error0;
1123  		}
1124  
1125  		if (rec.ir_freecount > 0) {
1126  			/*
1127  			 * Found a free inode in the same chunk
1128  			 * as the parent, done.
1129  			 */
1130  			goto alloc_inode;
1131  		}
1132  
1133  
1134  		/*
1135  		 * In the same AG as parent, but parent's chunk is full.
1136  		 */
1137  
1138  		/* duplicate the cursor, search left & right simultaneously */
1139  		error = xfs_btree_dup_cursor(cur, &tcur);
1140  		if (error)
1141  			goto error0;
1142  
1143  		/*
1144  		 * Skip to last blocks looked up if same parent inode.
1145  		 */
1146  		if (pagino != NULLAGINO &&
1147  		    pag->pagl_pagino == pagino &&
1148  		    pag->pagl_leftrec != NULLAGINO &&
1149  		    pag->pagl_rightrec != NULLAGINO) {
1150  			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1151  						   &trec, &doneleft);
1152  			if (error)
1153  				goto error1;
1154  
1155  			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1156  						   &rec, &doneright);
1157  			if (error)
1158  				goto error1;
1159  		} else {
1160  			/* search left with tcur, back up 1 record */
1161  			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1162  			if (error)
1163  				goto error1;
1164  
1165  			/* search right with cur, go forward 1 record. */
1166  			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1167  			if (error)
1168  				goto error1;
1169  		}
1170  
1171  		/*
1172  		 * Loop until we find an inode chunk with a free inode.
1173  		 */
1174  		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1175  			int	useleft;  /* using left inode chunk this time */
1176  
1177  			/* figure out the closer block if both are valid. */
1178  			if (!doneleft && !doneright) {
1179  				useleft = pagino -
1180  				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1181  				  rec.ir_startino - pagino;
1182  			} else {
1183  				useleft = !doneleft;
1184  			}
1185  
1186  			/* free inodes to the left? */
1187  			if (useleft && trec.ir_freecount) {
1188  				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1189  				cur = tcur;
1190  
1191  				pag->pagl_leftrec = trec.ir_startino;
1192  				pag->pagl_rightrec = rec.ir_startino;
1193  				pag->pagl_pagino = pagino;
1194  				rec = trec;
1195  				goto alloc_inode;
1196  			}
1197  
1198  			/* free inodes to the right? */
1199  			if (!useleft && rec.ir_freecount) {
1200  				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1201  
1202  				pag->pagl_leftrec = trec.ir_startino;
1203  				pag->pagl_rightrec = rec.ir_startino;
1204  				pag->pagl_pagino = pagino;
1205  				goto alloc_inode;
1206  			}
1207  
1208  			/* get next record to check */
1209  			if (useleft) {
1210  				error = xfs_ialloc_next_rec(tcur, &trec,
1211  								 &doneleft, 1);
1212  			} else {
1213  				error = xfs_ialloc_next_rec(cur, &rec,
1214  								 &doneright, 0);
1215  			}
1216  			if (error)
1217  				goto error1;
1218  		}
1219  
1220  		if (searchdistance <= 0) {
1221  			/*
1222  			 * Not in range - save last search
1223  			 * location and allocate a new inode
1224  			 */
1225  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226  			pag->pagl_leftrec = trec.ir_startino;
1227  			pag->pagl_rightrec = rec.ir_startino;
1228  			pag->pagl_pagino = pagino;
1229  
1230  		} else {
1231  			/*
1232  			 * We've reached the end of the btree. because
1233  			 * we are only searching a small chunk of the
1234  			 * btree each search, there is obviously free
1235  			 * inodes closer to the parent inode than we
1236  			 * are now. restart the search again.
1237  			 */
1238  			pag->pagl_pagino = NULLAGINO;
1239  			pag->pagl_leftrec = NULLAGINO;
1240  			pag->pagl_rightrec = NULLAGINO;
1241  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242  			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1243  			goto restart_pagno;
1244  		}
1245  	}
1246  
1247  	/*
1248  	 * In a different AG from the parent.
1249  	 * See if the most recently allocated block has any free.
1250  	 */
1251  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1252  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1253  					 XFS_LOOKUP_EQ, &i);
1254  		if (error)
1255  			goto error0;
1256  
1257  		if (i == 1) {
1258  			error = xfs_inobt_get_rec(cur, &rec, &j);
1259  			if (error)
1260  				goto error0;
1261  
1262  			if (j == 1 && rec.ir_freecount > 0) {
1263  				/*
1264  				 * The last chunk allocated in the group
1265  				 * still has a free inode.
1266  				 */
1267  				goto alloc_inode;
1268  			}
1269  		}
1270  	}
1271  
1272  	/*
1273  	 * None left in the last group, search the whole AG
1274  	 */
1275  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1276  	if (error)
1277  		goto error0;
1278  	if (XFS_IS_CORRUPT(mp, i != 1)) {
1279  		xfs_btree_mark_sick(cur);
1280  		error = -EFSCORRUPTED;
1281  		goto error0;
1282  	}
1283  
1284  	for (;;) {
1285  		error = xfs_inobt_get_rec(cur, &rec, &i);
1286  		if (error)
1287  			goto error0;
1288  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1289  			xfs_btree_mark_sick(cur);
1290  			error = -EFSCORRUPTED;
1291  			goto error0;
1292  		}
1293  		if (rec.ir_freecount > 0)
1294  			break;
1295  		error = xfs_btree_increment(cur, 0, &i);
1296  		if (error)
1297  			goto error0;
1298  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1299  			xfs_btree_mark_sick(cur);
1300  			error = -EFSCORRUPTED;
1301  			goto error0;
1302  		}
1303  	}
1304  
1305  alloc_inode:
1306  	offset = xfs_inobt_first_free_inode(&rec);
1307  	ASSERT(offset >= 0);
1308  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1309  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1310  				   XFS_INODES_PER_CHUNK) == 0);
1311  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1312  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1313  	rec.ir_freecount--;
1314  	error = xfs_inobt_update(cur, &rec);
1315  	if (error)
1316  		goto error0;
1317  	be32_add_cpu(&agi->agi_freecount, -1);
1318  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1319  	pag->pagi_freecount--;
1320  
1321  	error = xfs_check_agi_freecount(cur);
1322  	if (error)
1323  		goto error0;
1324  
1325  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1326  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1327  	*inop = ino;
1328  	return 0;
1329  error1:
1330  	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1331  error0:
1332  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1333  	return error;
1334  }
1335  
1336  /*
1337   * Use the free inode btree to allocate an inode based on distance from the
1338   * parent. Note that the provided cursor may be deleted and replaced.
1339   */
1340  STATIC int
1341  xfs_dialloc_ag_finobt_near(
1342  	xfs_agino_t			pagino,
1343  	struct xfs_btree_cur		**ocur,
1344  	struct xfs_inobt_rec_incore	*rec)
1345  {
1346  	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1347  	struct xfs_btree_cur		*rcur;	/* right search cursor */
1348  	struct xfs_inobt_rec_incore	rrec;
1349  	int				error;
1350  	int				i, j;
1351  
1352  	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1353  	if (error)
1354  		return error;
1355  
1356  	if (i == 1) {
1357  		error = xfs_inobt_get_rec(lcur, rec, &i);
1358  		if (error)
1359  			return error;
1360  		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1361  			xfs_btree_mark_sick(lcur);
1362  			return -EFSCORRUPTED;
1363  		}
1364  
1365  		/*
1366  		 * See if we've landed in the parent inode record. The finobt
1367  		 * only tracks chunks with at least one free inode, so record
1368  		 * existence is enough.
1369  		 */
1370  		if (pagino >= rec->ir_startino &&
1371  		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1372  			return 0;
1373  	}
1374  
1375  	error = xfs_btree_dup_cursor(lcur, &rcur);
1376  	if (error)
1377  		return error;
1378  
1379  	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1380  	if (error)
1381  		goto error_rcur;
1382  	if (j == 1) {
1383  		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1384  		if (error)
1385  			goto error_rcur;
1386  		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1387  			xfs_btree_mark_sick(lcur);
1388  			error = -EFSCORRUPTED;
1389  			goto error_rcur;
1390  		}
1391  	}
1392  
1393  	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1394  		xfs_btree_mark_sick(lcur);
1395  		error = -EFSCORRUPTED;
1396  		goto error_rcur;
1397  	}
1398  	if (i == 1 && j == 1) {
1399  		/*
1400  		 * Both the left and right records are valid. Choose the closer
1401  		 * inode chunk to the target.
1402  		 */
1403  		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1404  		    (rrec.ir_startino - pagino)) {
1405  			*rec = rrec;
1406  			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1407  			*ocur = rcur;
1408  		} else {
1409  			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1410  		}
1411  	} else if (j == 1) {
1412  		/* only the right record is valid */
1413  		*rec = rrec;
1414  		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1415  		*ocur = rcur;
1416  	} else if (i == 1) {
1417  		/* only the left record is valid */
1418  		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1419  	}
1420  
1421  	return 0;
1422  
1423  error_rcur:
1424  	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1425  	return error;
1426  }
1427  
1428  /*
1429   * Use the free inode btree to find a free inode based on a newino hint. If
1430   * the hint is NULL, find the first free inode in the AG.
1431   */
1432  STATIC int
1433  xfs_dialloc_ag_finobt_newino(
1434  	struct xfs_agi			*agi,
1435  	struct xfs_btree_cur		*cur,
1436  	struct xfs_inobt_rec_incore	*rec)
1437  {
1438  	int error;
1439  	int i;
1440  
1441  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1442  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1443  					 XFS_LOOKUP_EQ, &i);
1444  		if (error)
1445  			return error;
1446  		if (i == 1) {
1447  			error = xfs_inobt_get_rec(cur, rec, &i);
1448  			if (error)
1449  				return error;
1450  			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1451  				xfs_btree_mark_sick(cur);
1452  				return -EFSCORRUPTED;
1453  			}
1454  			return 0;
1455  		}
1456  	}
1457  
1458  	/*
1459  	 * Find the first inode available in the AG.
1460  	 */
1461  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1462  	if (error)
1463  		return error;
1464  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1465  		xfs_btree_mark_sick(cur);
1466  		return -EFSCORRUPTED;
1467  	}
1468  
1469  	error = xfs_inobt_get_rec(cur, rec, &i);
1470  	if (error)
1471  		return error;
1472  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1473  		xfs_btree_mark_sick(cur);
1474  		return -EFSCORRUPTED;
1475  	}
1476  
1477  	return 0;
1478  }
1479  
1480  /*
1481   * Update the inobt based on a modification made to the finobt. Also ensure that
1482   * the records from both trees are equivalent post-modification.
1483   */
1484  STATIC int
1485  xfs_dialloc_ag_update_inobt(
1486  	struct xfs_btree_cur		*cur,	/* inobt cursor */
1487  	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1488  	int				offset) /* inode offset */
1489  {
1490  	struct xfs_inobt_rec_incore	rec;
1491  	int				error;
1492  	int				i;
1493  
1494  	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1495  	if (error)
1496  		return error;
1497  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1498  		xfs_btree_mark_sick(cur);
1499  		return -EFSCORRUPTED;
1500  	}
1501  
1502  	error = xfs_inobt_get_rec(cur, &rec, &i);
1503  	if (error)
1504  		return error;
1505  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1506  		xfs_btree_mark_sick(cur);
1507  		return -EFSCORRUPTED;
1508  	}
1509  	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510  				   XFS_INODES_PER_CHUNK) == 0);
1511  
1512  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513  	rec.ir_freecount--;
1514  
1515  	if (XFS_IS_CORRUPT(cur->bc_mp,
1516  			   rec.ir_free != frec->ir_free ||
1517  			   rec.ir_freecount != frec->ir_freecount)) {
1518  		xfs_btree_mark_sick(cur);
1519  		return -EFSCORRUPTED;
1520  	}
1521  
1522  	return xfs_inobt_update(cur, &rec);
1523  }
1524  
1525  /*
1526   * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527   * back to the inobt search algorithm.
1528   *
1529   * The caller selected an AG for us, and made sure that free inodes are
1530   * available.
1531   */
1532  static int
1533  xfs_dialloc_ag(
1534  	struct xfs_perag	*pag,
1535  	struct xfs_trans	*tp,
1536  	struct xfs_buf		*agbp,
1537  	xfs_ino_t		parent,
1538  	xfs_ino_t		*inop)
1539  {
1540  	struct xfs_mount		*mp = tp->t_mountp;
1541  	struct xfs_agi			*agi = agbp->b_addr;
1542  	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1543  	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1544  	struct xfs_btree_cur		*cur;	/* finobt cursor */
1545  	struct xfs_btree_cur		*icur;	/* inobt cursor */
1546  	struct xfs_inobt_rec_incore	rec;
1547  	xfs_ino_t			ino;
1548  	int				error;
1549  	int				offset;
1550  	int				i;
1551  
1552  	if (!xfs_has_finobt(mp))
1553  		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1554  
1555  	/*
1556  	 * If pagino is 0 (this is the root inode allocation) use newino.
1557  	 * This must work because we've just allocated some.
1558  	 */
1559  	if (!pagino)
1560  		pagino = be32_to_cpu(agi->agi_newino);
1561  
1562  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1563  
1564  	error = xfs_check_agi_freecount(cur);
1565  	if (error)
1566  		goto error_cur;
1567  
1568  	/*
1569  	 * The search algorithm depends on whether we're in the same AG as the
1570  	 * parent. If so, find the closest available inode to the parent. If
1571  	 * not, consider the agi hint or find the first free inode in the AG.
1572  	 */
1573  	if (pag->pag_agno == pagno)
1574  		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1575  	else
1576  		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1577  	if (error)
1578  		goto error_cur;
1579  
1580  	offset = xfs_inobt_first_free_inode(&rec);
1581  	ASSERT(offset >= 0);
1582  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1583  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1584  				   XFS_INODES_PER_CHUNK) == 0);
1585  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1586  
1587  	/*
1588  	 * Modify or remove the finobt record.
1589  	 */
1590  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1591  	rec.ir_freecount--;
1592  	if (rec.ir_freecount)
1593  		error = xfs_inobt_update(cur, &rec);
1594  	else
1595  		error = xfs_btree_delete(cur, &i);
1596  	if (error)
1597  		goto error_cur;
1598  
1599  	/*
1600  	 * The finobt has now been updated appropriately. We haven't updated the
1601  	 * agi and superblock yet, so we can create an inobt cursor and validate
1602  	 * the original freecount. If all is well, make the equivalent update to
1603  	 * the inobt using the finobt record and offset information.
1604  	 */
1605  	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1606  
1607  	error = xfs_check_agi_freecount(icur);
1608  	if (error)
1609  		goto error_icur;
1610  
1611  	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1612  	if (error)
1613  		goto error_icur;
1614  
1615  	/*
1616  	 * Both trees have now been updated. We must update the perag and
1617  	 * superblock before we can check the freecount for each btree.
1618  	 */
1619  	be32_add_cpu(&agi->agi_freecount, -1);
1620  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1621  	pag->pagi_freecount--;
1622  
1623  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1624  
1625  	error = xfs_check_agi_freecount(icur);
1626  	if (error)
1627  		goto error_icur;
1628  	error = xfs_check_agi_freecount(cur);
1629  	if (error)
1630  		goto error_icur;
1631  
1632  	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1633  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1634  	*inop = ino;
1635  	return 0;
1636  
1637  error_icur:
1638  	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639  error_cur:
1640  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641  	return error;
1642  }
1643  
1644  static int
1645  xfs_dialloc_roll(
1646  	struct xfs_trans	**tpp,
1647  	struct xfs_buf		*agibp)
1648  {
1649  	struct xfs_trans	*tp = *tpp;
1650  	struct xfs_dquot_acct	*dqinfo;
1651  	int			error;
1652  
1653  	/*
1654  	 * Hold to on to the agibp across the commit so no other allocation can
1655  	 * come in and take the free inodes we just allocated for our caller.
1656  	 */
1657  	xfs_trans_bhold(tp, agibp);
1658  
1659  	/*
1660  	 * We want the quota changes to be associated with the next transaction,
1661  	 * NOT this one. So, detach the dqinfo from this and attach it to the
1662  	 * next transaction.
1663  	 */
1664  	dqinfo = tp->t_dqinfo;
1665  	tp->t_dqinfo = NULL;
1666  
1667  	error = xfs_trans_roll(&tp);
1668  
1669  	/* Re-attach the quota info that we detached from prev trx. */
1670  	tp->t_dqinfo = dqinfo;
1671  
1672  	/*
1673  	 * Join the buffer even on commit error so that the buffer is released
1674  	 * when the caller cancels the transaction and doesn't have to handle
1675  	 * this error case specially.
1676  	 */
1677  	xfs_trans_bjoin(tp, agibp);
1678  	*tpp = tp;
1679  	return error;
1680  }
1681  
1682  static bool
1683  xfs_dialloc_good_ag(
1684  	struct xfs_perag	*pag,
1685  	struct xfs_trans	*tp,
1686  	umode_t			mode,
1687  	int			flags,
1688  	bool			ok_alloc)
1689  {
1690  	struct xfs_mount	*mp = tp->t_mountp;
1691  	xfs_extlen_t		ineed;
1692  	xfs_extlen_t		longest = 0;
1693  	int			needspace;
1694  	int			error;
1695  
1696  	if (!pag)
1697  		return false;
1698  	if (!xfs_perag_allows_inodes(pag))
1699  		return false;
1700  
1701  	if (!xfs_perag_initialised_agi(pag)) {
1702  		error = xfs_ialloc_read_agi(pag, tp, NULL);
1703  		if (error)
1704  			return false;
1705  	}
1706  
1707  	if (pag->pagi_freecount)
1708  		return true;
1709  	if (!ok_alloc)
1710  		return false;
1711  
1712  	if (!xfs_perag_initialised_agf(pag)) {
1713  		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1714  		if (error)
1715  			return false;
1716  	}
1717  
1718  	/*
1719  	 * Check that there is enough free space for the file plus a chunk of
1720  	 * inodes if we need to allocate some. If this is the first pass across
1721  	 * the AGs, take into account the potential space needed for alignment
1722  	 * of inode chunks when checking the longest contiguous free space in
1723  	 * the AG - this prevents us from getting ENOSPC because we have free
1724  	 * space larger than ialloc_blks but alignment constraints prevent us
1725  	 * from using it.
1726  	 *
1727  	 * If we can't find an AG with space for full alignment slack to be
1728  	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1729  	 * don't include alignment for the second pass and so if we fail
1730  	 * allocation due to alignment issues then it is most likely a real
1731  	 * ENOSPC condition.
1732  	 *
1733  	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1734  	 * reservations that xfs_alloc_fix_freelist() now does via
1735  	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1736  	 * be more than large enough for the check below to succeed, but
1737  	 * xfs_alloc_space_available() will fail because of the non-zero
1738  	 * metadata reservation and hence we won't actually be able to allocate
1739  	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1740  	 * because of this.
1741  	 */
1742  	ineed = M_IGEO(mp)->ialloc_min_blks;
1743  	if (flags && ineed > 1)
1744  		ineed += M_IGEO(mp)->cluster_align;
1745  	longest = pag->pagf_longest;
1746  	if (!longest)
1747  		longest = pag->pagf_flcount > 0;
1748  	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1749  
1750  	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1751  		return false;
1752  	return true;
1753  }
1754  
1755  static int
1756  xfs_dialloc_try_ag(
1757  	struct xfs_perag	*pag,
1758  	struct xfs_trans	**tpp,
1759  	xfs_ino_t		parent,
1760  	xfs_ino_t		*new_ino,
1761  	bool			ok_alloc)
1762  {
1763  	struct xfs_buf		*agbp;
1764  	xfs_ino_t		ino;
1765  	int			error;
1766  
1767  	/*
1768  	 * Then read in the AGI buffer and recheck with the AGI buffer
1769  	 * lock held.
1770  	 */
1771  	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1772  	if (error)
1773  		return error;
1774  
1775  	if (!pag->pagi_freecount) {
1776  		if (!ok_alloc) {
1777  			error = -EAGAIN;
1778  			goto out_release;
1779  		}
1780  
1781  		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1782  		if (error < 0)
1783  			goto out_release;
1784  
1785  		/*
1786  		 * We successfully allocated space for an inode cluster in this
1787  		 * AG.  Roll the transaction so that we can allocate one of the
1788  		 * new inodes.
1789  		 */
1790  		ASSERT(pag->pagi_freecount > 0);
1791  		error = xfs_dialloc_roll(tpp, agbp);
1792  		if (error)
1793  			goto out_release;
1794  	}
1795  
1796  	/* Allocate an inode in the found AG */
1797  	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1798  	if (!error)
1799  		*new_ino = ino;
1800  	return error;
1801  
1802  out_release:
1803  	xfs_trans_brelse(*tpp, agbp);
1804  	return error;
1805  }
1806  
1807  /*
1808   * Allocate an on-disk inode.
1809   *
1810   * Mode is used to tell whether the new inode is a directory and hence where to
1811   * locate it. The on-disk inode that is allocated will be returned in @new_ino
1812   * on success, otherwise an error will be set to indicate the failure (e.g.
1813   * -ENOSPC).
1814   */
1815  int
1816  xfs_dialloc(
1817  	struct xfs_trans	**tpp,
1818  	xfs_ino_t		parent,
1819  	umode_t			mode,
1820  	xfs_ino_t		*new_ino)
1821  {
1822  	struct xfs_mount	*mp = (*tpp)->t_mountp;
1823  	xfs_agnumber_t		agno;
1824  	int			error = 0;
1825  	xfs_agnumber_t		start_agno;
1826  	struct xfs_perag	*pag;
1827  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1828  	bool			ok_alloc = true;
1829  	bool			low_space = false;
1830  	int			flags;
1831  	xfs_ino_t		ino = NULLFSINO;
1832  
1833  	/*
1834  	 * Directories, symlinks, and regular files frequently allocate at least
1835  	 * one block, so factor that potential expansion when we examine whether
1836  	 * an AG has enough space for file creation.
1837  	 */
1838  	if (S_ISDIR(mode))
1839  		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1840  				mp->m_maxagi;
1841  	else {
1842  		start_agno = XFS_INO_TO_AGNO(mp, parent);
1843  		if (start_agno >= mp->m_maxagi)
1844  			start_agno = 0;
1845  	}
1846  
1847  	/*
1848  	 * If we have already hit the ceiling of inode blocks then clear
1849  	 * ok_alloc so we scan all available agi structures for a free
1850  	 * inode.
1851  	 *
1852  	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1853  	 * which will sacrifice the preciseness but improve the performance.
1854  	 */
1855  	if (igeo->maxicount &&
1856  	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1857  							> igeo->maxicount) {
1858  		ok_alloc = false;
1859  	}
1860  
1861  	/*
1862  	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1863  	 * have free inodes in them rather than use up free space allocating new
1864  	 * inode chunks. Hence we turn off allocation for the first non-blocking
1865  	 * pass through the AGs if we are near ENOSPC to consume free inodes
1866  	 * that we can immediately allocate, but then we allow allocation on the
1867  	 * second pass if we fail to find an AG with free inodes in it.
1868  	 */
1869  	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1870  			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1871  		ok_alloc = false;
1872  		low_space = true;
1873  	}
1874  
1875  	/*
1876  	 * Loop until we find an allocation group that either has free inodes
1877  	 * or in which we can allocate some inodes.  Iterate through the
1878  	 * allocation groups upward, wrapping at the end.
1879  	 */
1880  	flags = XFS_ALLOC_FLAG_TRYLOCK;
1881  retry:
1882  	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1883  		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1884  			error = xfs_dialloc_try_ag(pag, tpp, parent,
1885  					&ino, ok_alloc);
1886  			if (error != -EAGAIN)
1887  				break;
1888  			error = 0;
1889  		}
1890  
1891  		if (xfs_is_shutdown(mp)) {
1892  			error = -EFSCORRUPTED;
1893  			break;
1894  		}
1895  	}
1896  	if (pag)
1897  		xfs_perag_rele(pag);
1898  	if (error)
1899  		return error;
1900  	if (ino == NULLFSINO) {
1901  		if (flags) {
1902  			flags = 0;
1903  			if (low_space)
1904  				ok_alloc = true;
1905  			goto retry;
1906  		}
1907  		return -ENOSPC;
1908  	}
1909  	*new_ino = ino;
1910  	return 0;
1911  }
1912  
1913  /*
1914   * Free the blocks of an inode chunk. We must consider that the inode chunk
1915   * might be sparse and only free the regions that are allocated as part of the
1916   * chunk.
1917   */
1918  static int
1919  xfs_difree_inode_chunk(
1920  	struct xfs_trans		*tp,
1921  	xfs_agnumber_t			agno,
1922  	struct xfs_inobt_rec_incore	*rec)
1923  {
1924  	struct xfs_mount		*mp = tp->t_mountp;
1925  	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1926  							rec->ir_startino);
1927  	int				startidx, endidx;
1928  	int				nextbit;
1929  	xfs_agblock_t			agbno;
1930  	int				contigblk;
1931  	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1932  
1933  	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1934  		/* not sparse, calculate extent info directly */
1935  		return xfs_free_extent_later(tp,
1936  				XFS_AGB_TO_FSB(mp, agno, sagbno),
1937  				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1938  				XFS_AG_RESV_NONE, false);
1939  	}
1940  
1941  	/* holemask is only 16-bits (fits in an unsigned long) */
1942  	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1943  	holemask[0] = rec->ir_holemask;
1944  
1945  	/*
1946  	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1947  	 * holemask and convert the start/end index of each range to an extent.
1948  	 * We start with the start and end index both pointing at the first 0 in
1949  	 * the mask.
1950  	 */
1951  	startidx = endidx = find_first_zero_bit(holemask,
1952  						XFS_INOBT_HOLEMASK_BITS);
1953  	nextbit = startidx + 1;
1954  	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1955  		int error;
1956  
1957  		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1958  					     nextbit);
1959  		/*
1960  		 * If the next zero bit is contiguous, update the end index of
1961  		 * the current range and continue.
1962  		 */
1963  		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1964  		    nextbit == endidx + 1) {
1965  			endidx = nextbit;
1966  			goto next;
1967  		}
1968  
1969  		/*
1970  		 * nextbit is not contiguous with the current end index. Convert
1971  		 * the current start/end to an extent and add it to the free
1972  		 * list.
1973  		 */
1974  		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1975  				  mp->m_sb.sb_inopblock;
1976  		contigblk = ((endidx - startidx + 1) *
1977  			     XFS_INODES_PER_HOLEMASK_BIT) /
1978  			    mp->m_sb.sb_inopblock;
1979  
1980  		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1981  		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1982  		error = xfs_free_extent_later(tp,
1983  				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1984  				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1985  				false);
1986  		if (error)
1987  			return error;
1988  
1989  		/* reset range to current bit and carry on... */
1990  		startidx = endidx = nextbit;
1991  
1992  next:
1993  		nextbit++;
1994  	}
1995  	return 0;
1996  }
1997  
1998  STATIC int
1999  xfs_difree_inobt(
2000  	struct xfs_perag		*pag,
2001  	struct xfs_trans		*tp,
2002  	struct xfs_buf			*agbp,
2003  	xfs_agino_t			agino,
2004  	struct xfs_icluster		*xic,
2005  	struct xfs_inobt_rec_incore	*orec)
2006  {
2007  	struct xfs_mount		*mp = pag->pag_mount;
2008  	struct xfs_agi			*agi = agbp->b_addr;
2009  	struct xfs_btree_cur		*cur;
2010  	struct xfs_inobt_rec_incore	rec;
2011  	int				ilen;
2012  	int				error;
2013  	int				i;
2014  	int				off;
2015  
2016  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2017  	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2018  
2019  	/*
2020  	 * Initialize the cursor.
2021  	 */
2022  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2023  
2024  	error = xfs_check_agi_freecount(cur);
2025  	if (error)
2026  		goto error0;
2027  
2028  	/*
2029  	 * Look for the entry describing this inode.
2030  	 */
2031  	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2032  		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2033  			__func__, error);
2034  		goto error0;
2035  	}
2036  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2037  		xfs_btree_mark_sick(cur);
2038  		error = -EFSCORRUPTED;
2039  		goto error0;
2040  	}
2041  	error = xfs_inobt_get_rec(cur, &rec, &i);
2042  	if (error) {
2043  		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2044  			__func__, error);
2045  		goto error0;
2046  	}
2047  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2048  		xfs_btree_mark_sick(cur);
2049  		error = -EFSCORRUPTED;
2050  		goto error0;
2051  	}
2052  	/*
2053  	 * Get the offset in the inode chunk.
2054  	 */
2055  	off = agino - rec.ir_startino;
2056  	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2057  	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2058  	/*
2059  	 * Mark the inode free & increment the count.
2060  	 */
2061  	rec.ir_free |= XFS_INOBT_MASK(off);
2062  	rec.ir_freecount++;
2063  
2064  	/*
2065  	 * When an inode chunk is free, it becomes eligible for removal. Don't
2066  	 * remove the chunk if the block size is large enough for multiple inode
2067  	 * chunks (that might not be free).
2068  	 */
2069  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2070  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2071  		xic->deleted = true;
2072  		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2073  				rec.ir_startino);
2074  		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2075  
2076  		/*
2077  		 * Remove the inode cluster from the AGI B+Tree, adjust the
2078  		 * AGI and Superblock inode counts, and mark the disk space
2079  		 * to be freed when the transaction is committed.
2080  		 */
2081  		ilen = rec.ir_freecount;
2082  		be32_add_cpu(&agi->agi_count, -ilen);
2083  		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2084  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2085  		pag->pagi_freecount -= ilen - 1;
2086  		pag->pagi_count -= ilen;
2087  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2088  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2089  
2090  		if ((error = xfs_btree_delete(cur, &i))) {
2091  			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2092  				__func__, error);
2093  			goto error0;
2094  		}
2095  
2096  		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2097  		if (error)
2098  			goto error0;
2099  	} else {
2100  		xic->deleted = false;
2101  
2102  		error = xfs_inobt_update(cur, &rec);
2103  		if (error) {
2104  			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2105  				__func__, error);
2106  			goto error0;
2107  		}
2108  
2109  		/*
2110  		 * Change the inode free counts and log the ag/sb changes.
2111  		 */
2112  		be32_add_cpu(&agi->agi_freecount, 1);
2113  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2114  		pag->pagi_freecount++;
2115  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2116  	}
2117  
2118  	error = xfs_check_agi_freecount(cur);
2119  	if (error)
2120  		goto error0;
2121  
2122  	*orec = rec;
2123  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2124  	return 0;
2125  
2126  error0:
2127  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2128  	return error;
2129  }
2130  
2131  /*
2132   * Free an inode in the free inode btree.
2133   */
2134  STATIC int
2135  xfs_difree_finobt(
2136  	struct xfs_perag		*pag,
2137  	struct xfs_trans		*tp,
2138  	struct xfs_buf			*agbp,
2139  	xfs_agino_t			agino,
2140  	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2141  {
2142  	struct xfs_mount		*mp = pag->pag_mount;
2143  	struct xfs_btree_cur		*cur;
2144  	struct xfs_inobt_rec_incore	rec;
2145  	int				offset = agino - ibtrec->ir_startino;
2146  	int				error;
2147  	int				i;
2148  
2149  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2150  
2151  	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2152  	if (error)
2153  		goto error;
2154  	if (i == 0) {
2155  		/*
2156  		 * If the record does not exist in the finobt, we must have just
2157  		 * freed an inode in a previously fully allocated chunk. If not,
2158  		 * something is out of sync.
2159  		 */
2160  		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2161  			xfs_btree_mark_sick(cur);
2162  			error = -EFSCORRUPTED;
2163  			goto error;
2164  		}
2165  
2166  		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2167  					     ibtrec->ir_count,
2168  					     ibtrec->ir_freecount,
2169  					     ibtrec->ir_free, &i);
2170  		if (error)
2171  			goto error;
2172  		ASSERT(i == 1);
2173  
2174  		goto out;
2175  	}
2176  
2177  	/*
2178  	 * Read and update the existing record. We could just copy the ibtrec
2179  	 * across here, but that would defeat the purpose of having redundant
2180  	 * metadata. By making the modifications independently, we can catch
2181  	 * corruptions that we wouldn't see if we just copied from one record
2182  	 * to another.
2183  	 */
2184  	error = xfs_inobt_get_rec(cur, &rec, &i);
2185  	if (error)
2186  		goto error;
2187  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2188  		xfs_btree_mark_sick(cur);
2189  		error = -EFSCORRUPTED;
2190  		goto error;
2191  	}
2192  
2193  	rec.ir_free |= XFS_INOBT_MASK(offset);
2194  	rec.ir_freecount++;
2195  
2196  	if (XFS_IS_CORRUPT(mp,
2197  			   rec.ir_free != ibtrec->ir_free ||
2198  			   rec.ir_freecount != ibtrec->ir_freecount)) {
2199  		xfs_btree_mark_sick(cur);
2200  		error = -EFSCORRUPTED;
2201  		goto error;
2202  	}
2203  
2204  	/*
2205  	 * The content of inobt records should always match between the inobt
2206  	 * and finobt. The lifecycle of records in the finobt is different from
2207  	 * the inobt in that the finobt only tracks records with at least one
2208  	 * free inode. Hence, if all of the inodes are free and we aren't
2209  	 * keeping inode chunks permanently on disk, remove the record.
2210  	 * Otherwise, update the record with the new information.
2211  	 *
2212  	 * Note that we currently can't free chunks when the block size is large
2213  	 * enough for multiple chunks. Leave the finobt record to remain in sync
2214  	 * with the inobt.
2215  	 */
2216  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2217  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2218  		error = xfs_btree_delete(cur, &i);
2219  		if (error)
2220  			goto error;
2221  		ASSERT(i == 1);
2222  	} else {
2223  		error = xfs_inobt_update(cur, &rec);
2224  		if (error)
2225  			goto error;
2226  	}
2227  
2228  out:
2229  	error = xfs_check_agi_freecount(cur);
2230  	if (error)
2231  		goto error;
2232  
2233  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2234  	return 0;
2235  
2236  error:
2237  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2238  	return error;
2239  }
2240  
2241  /*
2242   * Free disk inode.  Carefully avoids touching the incore inode, all
2243   * manipulations incore are the caller's responsibility.
2244   * The on-disk inode is not changed by this operation, only the
2245   * btree (free inode mask) is changed.
2246   */
2247  int
2248  xfs_difree(
2249  	struct xfs_trans	*tp,
2250  	struct xfs_perag	*pag,
2251  	xfs_ino_t		inode,
2252  	struct xfs_icluster	*xic)
2253  {
2254  	/* REFERENCED */
2255  	xfs_agblock_t		agbno;	/* block number containing inode */
2256  	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2257  	xfs_agino_t		agino;	/* allocation group inode number */
2258  	int			error;	/* error return value */
2259  	struct xfs_mount	*mp = tp->t_mountp;
2260  	struct xfs_inobt_rec_incore rec;/* btree record */
2261  
2262  	/*
2263  	 * Break up inode number into its components.
2264  	 */
2265  	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2266  		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2267  			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2268  		ASSERT(0);
2269  		return -EINVAL;
2270  	}
2271  	agino = XFS_INO_TO_AGINO(mp, inode);
2272  	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2273  		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2274  			__func__, (unsigned long long)inode,
2275  			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2276  		ASSERT(0);
2277  		return -EINVAL;
2278  	}
2279  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280  	if (agbno >= mp->m_sb.sb_agblocks)  {
2281  		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2282  			__func__, agbno, mp->m_sb.sb_agblocks);
2283  		ASSERT(0);
2284  		return -EINVAL;
2285  	}
2286  	/*
2287  	 * Get the allocation group header.
2288  	 */
2289  	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2290  	if (error) {
2291  		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2292  			__func__, error);
2293  		return error;
2294  	}
2295  
2296  	/*
2297  	 * Fix up the inode allocation btree.
2298  	 */
2299  	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2300  	if (error)
2301  		goto error0;
2302  
2303  	/*
2304  	 * Fix up the free inode btree.
2305  	 */
2306  	if (xfs_has_finobt(mp)) {
2307  		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2308  		if (error)
2309  			goto error0;
2310  	}
2311  
2312  	return 0;
2313  
2314  error0:
2315  	return error;
2316  }
2317  
2318  STATIC int
2319  xfs_imap_lookup(
2320  	struct xfs_perag	*pag,
2321  	struct xfs_trans	*tp,
2322  	xfs_agino_t		agino,
2323  	xfs_agblock_t		agbno,
2324  	xfs_agblock_t		*chunk_agbno,
2325  	xfs_agblock_t		*offset_agbno,
2326  	int			flags)
2327  {
2328  	struct xfs_mount	*mp = pag->pag_mount;
2329  	struct xfs_inobt_rec_incore rec;
2330  	struct xfs_btree_cur	*cur;
2331  	struct xfs_buf		*agbp;
2332  	int			error;
2333  	int			i;
2334  
2335  	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2336  	if (error) {
2337  		xfs_alert(mp,
2338  			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2339  			__func__, error, pag->pag_agno);
2340  		return error;
2341  	}
2342  
2343  	/*
2344  	 * Lookup the inode record for the given agino. If the record cannot be
2345  	 * found, then it's an invalid inode number and we should abort. Once
2346  	 * we have a record, we need to ensure it contains the inode number
2347  	 * we are looking up.
2348  	 */
2349  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2350  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2351  	if (!error) {
2352  		if (i)
2353  			error = xfs_inobt_get_rec(cur, &rec, &i);
2354  		if (!error && i == 0)
2355  			error = -EINVAL;
2356  	}
2357  
2358  	xfs_trans_brelse(tp, agbp);
2359  	xfs_btree_del_cursor(cur, error);
2360  	if (error)
2361  		return error;
2362  
2363  	/* check that the returned record contains the required inode */
2364  	if (rec.ir_startino > agino ||
2365  	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2366  		return -EINVAL;
2367  
2368  	/* for untrusted inodes check it is allocated first */
2369  	if ((flags & XFS_IGET_UNTRUSTED) &&
2370  	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2371  		return -EINVAL;
2372  
2373  	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2374  	*offset_agbno = agbno - *chunk_agbno;
2375  	return 0;
2376  }
2377  
2378  /*
2379   * Return the location of the inode in imap, for mapping it into a buffer.
2380   */
2381  int
2382  xfs_imap(
2383  	struct xfs_perag	*pag,
2384  	struct xfs_trans	*tp,
2385  	xfs_ino_t		ino,	/* inode to locate */
2386  	struct xfs_imap		*imap,	/* location map structure */
2387  	uint			flags)	/* flags for inode btree lookup */
2388  {
2389  	struct xfs_mount	*mp = pag->pag_mount;
2390  	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2391  	xfs_agino_t		agino;	/* inode number within alloc group */
2392  	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2393  	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2394  	int			error;	/* error code */
2395  	int			offset;	/* index of inode in its buffer */
2396  	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2397  
2398  	ASSERT(ino != NULLFSINO);
2399  
2400  	/*
2401  	 * Split up the inode number into its parts.
2402  	 */
2403  	agino = XFS_INO_TO_AGINO(mp, ino);
2404  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2405  	if (agbno >= mp->m_sb.sb_agblocks ||
2406  	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2407  		error = -EINVAL;
2408  #ifdef DEBUG
2409  		/*
2410  		 * Don't output diagnostic information for untrusted inodes
2411  		 * as they can be invalid without implying corruption.
2412  		 */
2413  		if (flags & XFS_IGET_UNTRUSTED)
2414  			return error;
2415  		if (agbno >= mp->m_sb.sb_agblocks) {
2416  			xfs_alert(mp,
2417  		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2418  				__func__, (unsigned long long)agbno,
2419  				(unsigned long)mp->m_sb.sb_agblocks);
2420  		}
2421  		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2422  			xfs_alert(mp,
2423  		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2424  				__func__, ino,
2425  				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2426  		}
2427  		xfs_stack_trace();
2428  #endif /* DEBUG */
2429  		return error;
2430  	}
2431  
2432  	/*
2433  	 * For bulkstat and handle lookups, we have an untrusted inode number
2434  	 * that we have to verify is valid. We cannot do this just by reading
2435  	 * the inode buffer as it may have been unlinked and removed leaving
2436  	 * inodes in stale state on disk. Hence we have to do a btree lookup
2437  	 * in all cases where an untrusted inode number is passed.
2438  	 */
2439  	if (flags & XFS_IGET_UNTRUSTED) {
2440  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2441  					&chunk_agbno, &offset_agbno, flags);
2442  		if (error)
2443  			return error;
2444  		goto out_map;
2445  	}
2446  
2447  	/*
2448  	 * If the inode cluster size is the same as the blocksize or
2449  	 * smaller we get to the buffer by simple arithmetics.
2450  	 */
2451  	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2452  		offset = XFS_INO_TO_OFFSET(mp, ino);
2453  		ASSERT(offset < mp->m_sb.sb_inopblock);
2454  
2455  		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2456  		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2457  		imap->im_boffset = (unsigned short)(offset <<
2458  							mp->m_sb.sb_inodelog);
2459  		return 0;
2460  	}
2461  
2462  	/*
2463  	 * If the inode chunks are aligned then use simple maths to
2464  	 * find the location. Otherwise we have to do a btree
2465  	 * lookup to find the location.
2466  	 */
2467  	if (M_IGEO(mp)->inoalign_mask) {
2468  		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2469  		chunk_agbno = agbno - offset_agbno;
2470  	} else {
2471  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2472  					&chunk_agbno, &offset_agbno, flags);
2473  		if (error)
2474  			return error;
2475  	}
2476  
2477  out_map:
2478  	ASSERT(agbno >= chunk_agbno);
2479  	cluster_agbno = chunk_agbno +
2480  		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2481  		 M_IGEO(mp)->blocks_per_cluster);
2482  	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2483  		XFS_INO_TO_OFFSET(mp, ino);
2484  
2485  	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2486  	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2487  	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2488  
2489  	/*
2490  	 * If the inode number maps to a block outside the bounds
2491  	 * of the file system then return NULL rather than calling
2492  	 * read_buf and panicing when we get an error from the
2493  	 * driver.
2494  	 */
2495  	if ((imap->im_blkno + imap->im_len) >
2496  	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2497  		xfs_alert(mp,
2498  	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2499  			__func__, (unsigned long long) imap->im_blkno,
2500  			(unsigned long long) imap->im_len,
2501  			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2502  		return -EINVAL;
2503  	}
2504  	return 0;
2505  }
2506  
2507  /*
2508   * Log specified fields for the ag hdr (inode section). The growth of the agi
2509   * structure over time requires that we interpret the buffer as two logical
2510   * regions delineated by the end of the unlinked list. This is due to the size
2511   * of the hash table and its location in the middle of the agi.
2512   *
2513   * For example, a request to log a field before agi_unlinked and a field after
2514   * agi_unlinked could cause us to log the entire hash table and use an excessive
2515   * amount of log space. To avoid this behavior, log the region up through
2516   * agi_unlinked in one call and the region after agi_unlinked through the end of
2517   * the structure in another.
2518   */
2519  void
2520  xfs_ialloc_log_agi(
2521  	struct xfs_trans	*tp,
2522  	struct xfs_buf		*bp,
2523  	uint32_t		fields)
2524  {
2525  	int			first;		/* first byte number */
2526  	int			last;		/* last byte number */
2527  	static const short	offsets[] = {	/* field starting offsets */
2528  					/* keep in sync with bit definitions */
2529  		offsetof(xfs_agi_t, agi_magicnum),
2530  		offsetof(xfs_agi_t, agi_versionnum),
2531  		offsetof(xfs_agi_t, agi_seqno),
2532  		offsetof(xfs_agi_t, agi_length),
2533  		offsetof(xfs_agi_t, agi_count),
2534  		offsetof(xfs_agi_t, agi_root),
2535  		offsetof(xfs_agi_t, agi_level),
2536  		offsetof(xfs_agi_t, agi_freecount),
2537  		offsetof(xfs_agi_t, agi_newino),
2538  		offsetof(xfs_agi_t, agi_dirino),
2539  		offsetof(xfs_agi_t, agi_unlinked),
2540  		offsetof(xfs_agi_t, agi_free_root),
2541  		offsetof(xfs_agi_t, agi_free_level),
2542  		offsetof(xfs_agi_t, agi_iblocks),
2543  		sizeof(xfs_agi_t)
2544  	};
2545  #ifdef DEBUG
2546  	struct xfs_agi		*agi = bp->b_addr;
2547  
2548  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2549  #endif
2550  
2551  	/*
2552  	 * Compute byte offsets for the first and last fields in the first
2553  	 * region and log the agi buffer. This only logs up through
2554  	 * agi_unlinked.
2555  	 */
2556  	if (fields & XFS_AGI_ALL_BITS_R1) {
2557  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2558  				  &first, &last);
2559  		xfs_trans_log_buf(tp, bp, first, last);
2560  	}
2561  
2562  	/*
2563  	 * Mask off the bits in the first region and calculate the first and
2564  	 * last field offsets for any bits in the second region.
2565  	 */
2566  	fields &= ~XFS_AGI_ALL_BITS_R1;
2567  	if (fields) {
2568  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2569  				  &first, &last);
2570  		xfs_trans_log_buf(tp, bp, first, last);
2571  	}
2572  }
2573  
2574  static xfs_failaddr_t
2575  xfs_agi_verify(
2576  	struct xfs_buf		*bp)
2577  {
2578  	struct xfs_mount	*mp = bp->b_mount;
2579  	struct xfs_agi		*agi = bp->b_addr;
2580  	xfs_failaddr_t		fa;
2581  	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2582  	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2583  	int			i;
2584  
2585  	if (xfs_has_crc(mp)) {
2586  		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2587  			return __this_address;
2588  		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2589  			return __this_address;
2590  	}
2591  
2592  	/*
2593  	 * Validate the magic number of the agi block.
2594  	 */
2595  	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2596  		return __this_address;
2597  	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2598  		return __this_address;
2599  
2600  	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2601  	if (fa)
2602  		return fa;
2603  
2604  	if (be32_to_cpu(agi->agi_level) < 1 ||
2605  	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2606  		return __this_address;
2607  
2608  	if (xfs_has_finobt(mp) &&
2609  	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2610  	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2611  		return __this_address;
2612  
2613  	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2614  		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2615  			continue;
2616  		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2617  			return __this_address;
2618  	}
2619  
2620  	return NULL;
2621  }
2622  
2623  static void
2624  xfs_agi_read_verify(
2625  	struct xfs_buf	*bp)
2626  {
2627  	struct xfs_mount *mp = bp->b_mount;
2628  	xfs_failaddr_t	fa;
2629  
2630  	if (xfs_has_crc(mp) &&
2631  	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2632  		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2633  	else {
2634  		fa = xfs_agi_verify(bp);
2635  		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2636  			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2637  	}
2638  }
2639  
2640  static void
2641  xfs_agi_write_verify(
2642  	struct xfs_buf	*bp)
2643  {
2644  	struct xfs_mount	*mp = bp->b_mount;
2645  	struct xfs_buf_log_item	*bip = bp->b_log_item;
2646  	struct xfs_agi		*agi = bp->b_addr;
2647  	xfs_failaddr_t		fa;
2648  
2649  	fa = xfs_agi_verify(bp);
2650  	if (fa) {
2651  		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2652  		return;
2653  	}
2654  
2655  	if (!xfs_has_crc(mp))
2656  		return;
2657  
2658  	if (bip)
2659  		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2660  	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2661  }
2662  
2663  const struct xfs_buf_ops xfs_agi_buf_ops = {
2664  	.name = "xfs_agi",
2665  	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2666  	.verify_read = xfs_agi_read_verify,
2667  	.verify_write = xfs_agi_write_verify,
2668  	.verify_struct = xfs_agi_verify,
2669  };
2670  
2671  /*
2672   * Read in the allocation group header (inode allocation section)
2673   */
2674  int
2675  xfs_read_agi(
2676  	struct xfs_perag	*pag,
2677  	struct xfs_trans	*tp,
2678  	struct xfs_buf		**agibpp)
2679  {
2680  	struct xfs_mount	*mp = pag->pag_mount;
2681  	int			error;
2682  
2683  	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2684  
2685  	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2686  			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2687  			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2688  	if (xfs_metadata_is_sick(error))
2689  		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2690  	if (error)
2691  		return error;
2692  	if (tp)
2693  		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2694  
2695  	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2696  	return 0;
2697  }
2698  
2699  /*
2700   * Read in the agi and initialise the per-ag data. If the caller supplies a
2701   * @agibpp, return the locked AGI buffer to them, otherwise release it.
2702   */
2703  int
2704  xfs_ialloc_read_agi(
2705  	struct xfs_perag	*pag,
2706  	struct xfs_trans	*tp,
2707  	struct xfs_buf		**agibpp)
2708  {
2709  	struct xfs_buf		*agibp;
2710  	struct xfs_agi		*agi;
2711  	int			error;
2712  
2713  	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2714  
2715  	error = xfs_read_agi(pag, tp, &agibp);
2716  	if (error)
2717  		return error;
2718  
2719  	agi = agibp->b_addr;
2720  	if (!xfs_perag_initialised_agi(pag)) {
2721  		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2722  		pag->pagi_count = be32_to_cpu(agi->agi_count);
2723  		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2724  	}
2725  
2726  	/*
2727  	 * It's possible for these to be out of sync if
2728  	 * we are in the middle of a forced shutdown.
2729  	 */
2730  	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2731  		xfs_is_shutdown(pag->pag_mount));
2732  	if (agibpp)
2733  		*agibpp = agibp;
2734  	else
2735  		xfs_trans_brelse(tp, agibp);
2736  	return 0;
2737  }
2738  
2739  /* How many inodes are backed by inode clusters ondisk? */
2740  STATIC int
2741  xfs_ialloc_count_ondisk(
2742  	struct xfs_btree_cur		*cur,
2743  	xfs_agino_t			low,
2744  	xfs_agino_t			high,
2745  	unsigned int			*allocated)
2746  {
2747  	struct xfs_inobt_rec_incore	irec;
2748  	unsigned int			ret = 0;
2749  	int				has_record;
2750  	int				error;
2751  
2752  	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2753  	if (error)
2754  		return error;
2755  
2756  	while (has_record) {
2757  		unsigned int		i, hole_idx;
2758  
2759  		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2760  		if (error)
2761  			return error;
2762  		if (irec.ir_startino > high)
2763  			break;
2764  
2765  		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2766  			if (irec.ir_startino + i < low)
2767  				continue;
2768  			if (irec.ir_startino + i > high)
2769  				break;
2770  
2771  			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2772  			if (!(irec.ir_holemask & (1U << hole_idx)))
2773  				ret++;
2774  		}
2775  
2776  		error = xfs_btree_increment(cur, 0, &has_record);
2777  		if (error)
2778  			return error;
2779  	}
2780  
2781  	*allocated = ret;
2782  	return 0;
2783  }
2784  
2785  /* Is there an inode record covering a given extent? */
2786  int
2787  xfs_ialloc_has_inodes_at_extent(
2788  	struct xfs_btree_cur	*cur,
2789  	xfs_agblock_t		bno,
2790  	xfs_extlen_t		len,
2791  	enum xbtree_recpacking	*outcome)
2792  {
2793  	xfs_agino_t		agino;
2794  	xfs_agino_t		last_agino;
2795  	unsigned int		allocated;
2796  	int			error;
2797  
2798  	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2799  	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2800  
2801  	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2802  	if (error)
2803  		return error;
2804  
2805  	if (allocated == 0)
2806  		*outcome = XBTREE_RECPACKING_EMPTY;
2807  	else if (allocated == last_agino - agino + 1)
2808  		*outcome = XBTREE_RECPACKING_FULL;
2809  	else
2810  		*outcome = XBTREE_RECPACKING_SPARSE;
2811  	return 0;
2812  }
2813  
2814  struct xfs_ialloc_count_inodes {
2815  	xfs_agino_t			count;
2816  	xfs_agino_t			freecount;
2817  };
2818  
2819  /* Record inode counts across all inobt records. */
2820  STATIC int
2821  xfs_ialloc_count_inodes_rec(
2822  	struct xfs_btree_cur		*cur,
2823  	const union xfs_btree_rec	*rec,
2824  	void				*priv)
2825  {
2826  	struct xfs_inobt_rec_incore	irec;
2827  	struct xfs_ialloc_count_inodes	*ci = priv;
2828  	xfs_failaddr_t			fa;
2829  
2830  	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2831  	fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2832  	if (fa)
2833  		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2834  
2835  	ci->count += irec.ir_count;
2836  	ci->freecount += irec.ir_freecount;
2837  
2838  	return 0;
2839  }
2840  
2841  /* Count allocated and free inodes under an inobt. */
2842  int
2843  xfs_ialloc_count_inodes(
2844  	struct xfs_btree_cur		*cur,
2845  	xfs_agino_t			*count,
2846  	xfs_agino_t			*freecount)
2847  {
2848  	struct xfs_ialloc_count_inodes	ci = {0};
2849  	int				error;
2850  
2851  	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2852  	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2853  	if (error)
2854  		return error;
2855  
2856  	*count = ci.count;
2857  	*freecount = ci.freecount;
2858  	return 0;
2859  }
2860  
2861  /*
2862   * Initialize inode-related geometry information.
2863   *
2864   * Compute the inode btree min and max levels and set maxicount.
2865   *
2866   * Set the inode cluster size.  This may still be overridden by the file
2867   * system block size if it is larger than the chosen cluster size.
2868   *
2869   * For v5 filesystems, scale the cluster size with the inode size to keep a
2870   * constant ratio of inode per cluster buffer, but only if mkfs has set the
2871   * inode alignment value appropriately for larger cluster sizes.
2872   *
2873   * Then compute the inode cluster alignment information.
2874   */
2875  void
2876  xfs_ialloc_setup_geometry(
2877  	struct xfs_mount	*mp)
2878  {
2879  	struct xfs_sb		*sbp = &mp->m_sb;
2880  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2881  	uint64_t		icount;
2882  	uint			inodes;
2883  
2884  	igeo->new_diflags2 = 0;
2885  	if (xfs_has_bigtime(mp))
2886  		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2887  	if (xfs_has_large_extent_counts(mp))
2888  		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2889  
2890  	/* Compute inode btree geometry. */
2891  	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2892  	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2893  	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2894  	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2895  	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2896  
2897  	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2898  			sbp->sb_inopblock);
2899  	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2900  
2901  	if (sbp->sb_spino_align)
2902  		igeo->ialloc_min_blks = sbp->sb_spino_align;
2903  	else
2904  		igeo->ialloc_min_blks = igeo->ialloc_blks;
2905  
2906  	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2907  	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2908  	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2909  			inodes);
2910  	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2911  
2912  	/*
2913  	 * Set the maximum inode count for this filesystem, being careful not
2914  	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2915  	 * users should never get here due to failing sb verification, but
2916  	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2917  	 */
2918  	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2919  		/*
2920  		 * Make sure the maximum inode count is a multiple
2921  		 * of the units we allocate inodes in.
2922  		 */
2923  		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2924  		do_div(icount, 100);
2925  		do_div(icount, igeo->ialloc_blks);
2926  		igeo->maxicount = XFS_FSB_TO_INO(mp,
2927  				icount * igeo->ialloc_blks);
2928  	} else {
2929  		igeo->maxicount = 0;
2930  	}
2931  
2932  	/*
2933  	 * Compute the desired size of an inode cluster buffer size, which
2934  	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2935  	 * sizes.
2936  	 *
2937  	 * Preserve the desired inode cluster size because the sparse inodes
2938  	 * feature uses that desired size (not the actual size) to compute the
2939  	 * sparse inode alignment.  The mount code validates this value, so we
2940  	 * cannot change the behavior.
2941  	 */
2942  	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2943  	if (xfs_has_v3inodes(mp)) {
2944  		int	new_size = igeo->inode_cluster_size_raw;
2945  
2946  		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2947  		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2948  			igeo->inode_cluster_size_raw = new_size;
2949  	}
2950  
2951  	/* Calculate inode cluster ratios. */
2952  	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2953  		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2954  				igeo->inode_cluster_size_raw);
2955  	else
2956  		igeo->blocks_per_cluster = 1;
2957  	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2958  	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2959  
2960  	/* Calculate inode cluster alignment. */
2961  	if (xfs_has_align(mp) &&
2962  	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2963  		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2964  	else
2965  		igeo->cluster_align = 1;
2966  	igeo->inoalign_mask = igeo->cluster_align - 1;
2967  	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2968  
2969  	/*
2970  	 * If we are using stripe alignment, check whether
2971  	 * the stripe unit is a multiple of the inode alignment
2972  	 */
2973  	if (mp->m_dalign && igeo->inoalign_mask &&
2974  	    !(mp->m_dalign & igeo->inoalign_mask))
2975  		igeo->ialloc_align = mp->m_dalign;
2976  	else
2977  		igeo->ialloc_align = 0;
2978  }
2979  
2980  /* Compute the location of the root directory inode that is laid out by mkfs. */
2981  xfs_ino_t
2982  xfs_ialloc_calc_rootino(
2983  	struct xfs_mount	*mp,
2984  	int			sunit)
2985  {
2986  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2987  	xfs_agblock_t		first_bno;
2988  
2989  	/*
2990  	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2991  	 * because libxfs knows how to create allocation groups now.
2992  	 *
2993  	 * first_bno is the first block in which mkfs could possibly have
2994  	 * allocated the root directory inode, once we factor in the metadata
2995  	 * that mkfs formats before it.  Namely, the four AG headers...
2996  	 */
2997  	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2998  
2999  	/* ...the two free space btree roots... */
3000  	first_bno += 2;
3001  
3002  	/* ...the inode btree root... */
3003  	first_bno += 1;
3004  
3005  	/* ...the initial AGFL... */
3006  	first_bno += xfs_alloc_min_freelist(mp, NULL);
3007  
3008  	/* ...the free inode btree root... */
3009  	if (xfs_has_finobt(mp))
3010  		first_bno++;
3011  
3012  	/* ...the reverse mapping btree root... */
3013  	if (xfs_has_rmapbt(mp))
3014  		first_bno++;
3015  
3016  	/* ...the reference count btree... */
3017  	if (xfs_has_reflink(mp))
3018  		first_bno++;
3019  
3020  	/*
3021  	 * ...and the log, if it is allocated in the first allocation group.
3022  	 *
3023  	 * This can happen with filesystems that only have a single
3024  	 * allocation group, or very odd geometries created by old mkfs
3025  	 * versions on very small filesystems.
3026  	 */
3027  	if (xfs_ag_contains_log(mp, 0))
3028  		 first_bno += mp->m_sb.sb_logblocks;
3029  
3030  	/*
3031  	 * Now round first_bno up to whatever allocation alignment is given
3032  	 * by the filesystem or was passed in.
3033  	 */
3034  	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3035  		first_bno = roundup(first_bno, sunit);
3036  	else if (xfs_has_align(mp) &&
3037  			mp->m_sb.sb_inoalignmt > 1)
3038  		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3039  
3040  	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3041  }
3042  
3043  /*
3044   * Ensure there are not sparse inode clusters that cross the new EOAG.
3045   *
3046   * This is a no-op for non-spinode filesystems since clusters are always fully
3047   * allocated and checking the bnobt suffices.  However, a spinode filesystem
3048   * could have a record where the upper inodes are free blocks.  If those blocks
3049   * were removed from the filesystem, the inode record would extend beyond EOAG,
3050   * which will be flagged as corruption.
3051   */
3052  int
3053  xfs_ialloc_check_shrink(
3054  	struct xfs_perag	*pag,
3055  	struct xfs_trans	*tp,
3056  	struct xfs_buf		*agibp,
3057  	xfs_agblock_t		new_length)
3058  {
3059  	struct xfs_inobt_rec_incore rec;
3060  	struct xfs_btree_cur	*cur;
3061  	xfs_agino_t		agino;
3062  	int			has;
3063  	int			error;
3064  
3065  	if (!xfs_has_sparseinodes(pag->pag_mount))
3066  		return 0;
3067  
3068  	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3069  
3070  	/* Look up the inobt record that would correspond to the new EOFS. */
3071  	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3072  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3073  	if (error || !has)
3074  		goto out;
3075  
3076  	error = xfs_inobt_get_rec(cur, &rec, &has);
3077  	if (error)
3078  		goto out;
3079  
3080  	if (!has) {
3081  		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3082  		error = -EFSCORRUPTED;
3083  		goto out;
3084  	}
3085  
3086  	/* If the record covers inodes that would be beyond EOFS, bail out. */
3087  	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3088  		error = -ENOSPC;
3089  		goto out;
3090  	}
3091  out:
3092  	xfs_btree_del_cursor(cur, error);
3093  	return error;
3094  }
3095