1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_btree.h" 29 #include "xfs_ialloc.h" 30 #include "xfs_ialloc_btree.h" 31 #include "xfs_alloc.h" 32 #include "xfs_rtalloc.h" 33 #include "xfs_error.h" 34 #include "xfs_bmap.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_icreate_item.h" 39 #include "xfs_icache.h" 40 #include "xfs_trace.h" 41 #include "xfs_log.h" 42 43 44 /* 45 * Allocation group level functions. 46 */ 47 static inline int 48 xfs_ialloc_cluster_alignment( 49 struct xfs_mount *mp) 50 { 51 if (xfs_sb_version_hasalign(&mp->m_sb) && 52 mp->m_sb.sb_inoalignmt >= 53 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 54 return mp->m_sb.sb_inoalignmt; 55 return 1; 56 } 57 58 /* 59 * Lookup a record by ino in the btree given by cur. 60 */ 61 int /* error */ 62 xfs_inobt_lookup( 63 struct xfs_btree_cur *cur, /* btree cursor */ 64 xfs_agino_t ino, /* starting inode of chunk */ 65 xfs_lookup_t dir, /* <=, >=, == */ 66 int *stat) /* success/failure */ 67 { 68 cur->bc_rec.i.ir_startino = ino; 69 cur->bc_rec.i.ir_holemask = 0; 70 cur->bc_rec.i.ir_count = 0; 71 cur->bc_rec.i.ir_freecount = 0; 72 cur->bc_rec.i.ir_free = 0; 73 return xfs_btree_lookup(cur, dir, stat); 74 } 75 76 /* 77 * Update the record referred to by cur to the value given. 78 * This either works (return 0) or gets an EFSCORRUPTED error. 79 */ 80 STATIC int /* error */ 81 xfs_inobt_update( 82 struct xfs_btree_cur *cur, /* btree cursor */ 83 xfs_inobt_rec_incore_t *irec) /* btree record */ 84 { 85 union xfs_btree_rec rec; 86 87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 88 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 89 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 90 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 91 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 92 } else { 93 /* ir_holemask/ir_count not supported on-disk */ 94 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 95 } 96 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 97 return xfs_btree_update(cur, &rec); 98 } 99 100 /* 101 * Get the data from the pointed-to record. 102 */ 103 int /* error */ 104 xfs_inobt_get_rec( 105 struct xfs_btree_cur *cur, /* btree cursor */ 106 xfs_inobt_rec_incore_t *irec, /* btree record */ 107 int *stat) /* output: success/failure */ 108 { 109 union xfs_btree_rec *rec; 110 int error; 111 112 error = xfs_btree_get_rec(cur, &rec, stat); 113 if (error || *stat == 0) 114 return error; 115 116 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 117 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 118 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 119 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 120 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 121 } else { 122 /* 123 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 124 * values for full inode chunks. 125 */ 126 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 127 irec->ir_count = XFS_INODES_PER_CHUNK; 128 irec->ir_freecount = 129 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 130 } 131 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 132 133 return 0; 134 } 135 136 /* 137 * Insert a single inobt record. Cursor must already point to desired location. 138 */ 139 STATIC int 140 xfs_inobt_insert_rec( 141 struct xfs_btree_cur *cur, 142 __uint16_t holemask, 143 __uint8_t count, 144 __int32_t freecount, 145 xfs_inofree_t free, 146 int *stat) 147 { 148 cur->bc_rec.i.ir_holemask = holemask; 149 cur->bc_rec.i.ir_count = count; 150 cur->bc_rec.i.ir_freecount = freecount; 151 cur->bc_rec.i.ir_free = free; 152 return xfs_btree_insert(cur, stat); 153 } 154 155 /* 156 * Insert records describing a newly allocated inode chunk into the inobt. 157 */ 158 STATIC int 159 xfs_inobt_insert( 160 struct xfs_mount *mp, 161 struct xfs_trans *tp, 162 struct xfs_buf *agbp, 163 xfs_agino_t newino, 164 xfs_agino_t newlen, 165 xfs_btnum_t btnum) 166 { 167 struct xfs_btree_cur *cur; 168 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 169 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 170 xfs_agino_t thisino; 171 int i; 172 int error; 173 174 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 175 176 for (thisino = newino; 177 thisino < newino + newlen; 178 thisino += XFS_INODES_PER_CHUNK) { 179 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 180 if (error) { 181 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 182 return error; 183 } 184 ASSERT(i == 0); 185 186 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 187 XFS_INODES_PER_CHUNK, 188 XFS_INODES_PER_CHUNK, 189 XFS_INOBT_ALL_FREE, &i); 190 if (error) { 191 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 192 return error; 193 } 194 ASSERT(i == 1); 195 } 196 197 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 198 199 return 0; 200 } 201 202 /* 203 * Verify that the number of free inodes in the AGI is correct. 204 */ 205 #ifdef DEBUG 206 STATIC int 207 xfs_check_agi_freecount( 208 struct xfs_btree_cur *cur, 209 struct xfs_agi *agi) 210 { 211 if (cur->bc_nlevels == 1) { 212 xfs_inobt_rec_incore_t rec; 213 int freecount = 0; 214 int error; 215 int i; 216 217 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 218 if (error) 219 return error; 220 221 do { 222 error = xfs_inobt_get_rec(cur, &rec, &i); 223 if (error) 224 return error; 225 226 if (i) { 227 freecount += rec.ir_freecount; 228 error = xfs_btree_increment(cur, 0, &i); 229 if (error) 230 return error; 231 } 232 } while (i == 1); 233 234 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 235 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 236 } 237 return 0; 238 } 239 #else 240 #define xfs_check_agi_freecount(cur, agi) 0 241 #endif 242 243 /* 244 * Initialise a new set of inodes. When called without a transaction context 245 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 246 * than logging them (which in a transaction context puts them into the AIL 247 * for writeback rather than the xfsbufd queue). 248 */ 249 int 250 xfs_ialloc_inode_init( 251 struct xfs_mount *mp, 252 struct xfs_trans *tp, 253 struct list_head *buffer_list, 254 int icount, 255 xfs_agnumber_t agno, 256 xfs_agblock_t agbno, 257 xfs_agblock_t length, 258 unsigned int gen) 259 { 260 struct xfs_buf *fbuf; 261 struct xfs_dinode *free; 262 int nbufs, blks_per_cluster, inodes_per_cluster; 263 int version; 264 int i, j; 265 xfs_daddr_t d; 266 xfs_ino_t ino = 0; 267 268 /* 269 * Loop over the new block(s), filling in the inodes. For small block 270 * sizes, manipulate the inodes in buffers which are multiples of the 271 * blocks size. 272 */ 273 blks_per_cluster = xfs_icluster_size_fsb(mp); 274 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 275 nbufs = length / blks_per_cluster; 276 277 /* 278 * Figure out what version number to use in the inodes we create. If 279 * the superblock version has caught up to the one that supports the new 280 * inode format, then use the new inode version. Otherwise use the old 281 * version so that old kernels will continue to be able to use the file 282 * system. 283 * 284 * For v3 inodes, we also need to write the inode number into the inode, 285 * so calculate the first inode number of the chunk here as 286 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 287 * across multiple filesystem blocks (such as a cluster) and so cannot 288 * be used in the cluster buffer loop below. 289 * 290 * Further, because we are writing the inode directly into the buffer 291 * and calculating a CRC on the entire inode, we have ot log the entire 292 * inode so that the entire range the CRC covers is present in the log. 293 * That means for v3 inode we log the entire buffer rather than just the 294 * inode cores. 295 */ 296 if (xfs_sb_version_hascrc(&mp->m_sb)) { 297 version = 3; 298 ino = XFS_AGINO_TO_INO(mp, agno, 299 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 300 301 /* 302 * log the initialisation that is about to take place as an 303 * logical operation. This means the transaction does not 304 * need to log the physical changes to the inode buffers as log 305 * recovery will know what initialisation is actually needed. 306 * Hence we only need to log the buffers as "ordered" buffers so 307 * they track in the AIL as if they were physically logged. 308 */ 309 if (tp) 310 xfs_icreate_log(tp, agno, agbno, icount, 311 mp->m_sb.sb_inodesize, length, gen); 312 } else 313 version = 2; 314 315 for (j = 0; j < nbufs; j++) { 316 /* 317 * Get the block. 318 */ 319 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 320 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 321 mp->m_bsize * blks_per_cluster, 322 XBF_UNMAPPED); 323 if (!fbuf) 324 return -ENOMEM; 325 326 /* Initialize the inode buffers and log them appropriately. */ 327 fbuf->b_ops = &xfs_inode_buf_ops; 328 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 329 for (i = 0; i < inodes_per_cluster; i++) { 330 int ioffset = i << mp->m_sb.sb_inodelog; 331 uint isize = xfs_dinode_size(version); 332 333 free = xfs_make_iptr(mp, fbuf, i); 334 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 335 free->di_version = version; 336 free->di_gen = cpu_to_be32(gen); 337 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 338 339 if (version == 3) { 340 free->di_ino = cpu_to_be64(ino); 341 ino++; 342 uuid_copy(&free->di_uuid, 343 &mp->m_sb.sb_meta_uuid); 344 xfs_dinode_calc_crc(mp, free); 345 } else if (tp) { 346 /* just log the inode core */ 347 xfs_trans_log_buf(tp, fbuf, ioffset, 348 ioffset + isize - 1); 349 } 350 } 351 352 if (tp) { 353 /* 354 * Mark the buffer as an inode allocation buffer so it 355 * sticks in AIL at the point of this allocation 356 * transaction. This ensures the they are on disk before 357 * the tail of the log can be moved past this 358 * transaction (i.e. by preventing relogging from moving 359 * it forward in the log). 360 */ 361 xfs_trans_inode_alloc_buf(tp, fbuf); 362 if (version == 3) { 363 /* 364 * Mark the buffer as ordered so that they are 365 * not physically logged in the transaction but 366 * still tracked in the AIL as part of the 367 * transaction and pin the log appropriately. 368 */ 369 xfs_trans_ordered_buf(tp, fbuf); 370 xfs_trans_log_buf(tp, fbuf, 0, 371 BBTOB(fbuf->b_length) - 1); 372 } 373 } else { 374 fbuf->b_flags |= XBF_DONE; 375 xfs_buf_delwri_queue(fbuf, buffer_list); 376 xfs_buf_relse(fbuf); 377 } 378 } 379 return 0; 380 } 381 382 /* 383 * Align startino and allocmask for a recently allocated sparse chunk such that 384 * they are fit for insertion (or merge) into the on-disk inode btrees. 385 * 386 * Background: 387 * 388 * When enabled, sparse inode support increases the inode alignment from cluster 389 * size to inode chunk size. This means that the minimum range between two 390 * non-adjacent inode records in the inobt is large enough for a full inode 391 * record. This allows for cluster sized, cluster aligned block allocation 392 * without need to worry about whether the resulting inode record overlaps with 393 * another record in the tree. Without this basic rule, we would have to deal 394 * with the consequences of overlap by potentially undoing recent allocations in 395 * the inode allocation codepath. 396 * 397 * Because of this alignment rule (which is enforced on mount), there are two 398 * inobt possibilities for newly allocated sparse chunks. One is that the 399 * aligned inode record for the chunk covers a range of inodes not already 400 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 401 * other is that a record already exists at the aligned startino that considers 402 * the newly allocated range as sparse. In the latter case, record content is 403 * merged in hope that sparse inode chunks fill to full chunks over time. 404 */ 405 STATIC void 406 xfs_align_sparse_ino( 407 struct xfs_mount *mp, 408 xfs_agino_t *startino, 409 uint16_t *allocmask) 410 { 411 xfs_agblock_t agbno; 412 xfs_agblock_t mod; 413 int offset; 414 415 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 416 mod = agbno % mp->m_sb.sb_inoalignmt; 417 if (!mod) 418 return; 419 420 /* calculate the inode offset and align startino */ 421 offset = mod << mp->m_sb.sb_inopblog; 422 *startino -= offset; 423 424 /* 425 * Since startino has been aligned down, left shift allocmask such that 426 * it continues to represent the same physical inodes relative to the 427 * new startino. 428 */ 429 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 430 } 431 432 /* 433 * Determine whether the source inode record can merge into the target. Both 434 * records must be sparse, the inode ranges must match and there must be no 435 * allocation overlap between the records. 436 */ 437 STATIC bool 438 __xfs_inobt_can_merge( 439 struct xfs_inobt_rec_incore *trec, /* tgt record */ 440 struct xfs_inobt_rec_incore *srec) /* src record */ 441 { 442 uint64_t talloc; 443 uint64_t salloc; 444 445 /* records must cover the same inode range */ 446 if (trec->ir_startino != srec->ir_startino) 447 return false; 448 449 /* both records must be sparse */ 450 if (!xfs_inobt_issparse(trec->ir_holemask) || 451 !xfs_inobt_issparse(srec->ir_holemask)) 452 return false; 453 454 /* both records must track some inodes */ 455 if (!trec->ir_count || !srec->ir_count) 456 return false; 457 458 /* can't exceed capacity of a full record */ 459 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 460 return false; 461 462 /* verify there is no allocation overlap */ 463 talloc = xfs_inobt_irec_to_allocmask(trec); 464 salloc = xfs_inobt_irec_to_allocmask(srec); 465 if (talloc & salloc) 466 return false; 467 468 return true; 469 } 470 471 /* 472 * Merge the source inode record into the target. The caller must call 473 * __xfs_inobt_can_merge() to ensure the merge is valid. 474 */ 475 STATIC void 476 __xfs_inobt_rec_merge( 477 struct xfs_inobt_rec_incore *trec, /* target */ 478 struct xfs_inobt_rec_incore *srec) /* src */ 479 { 480 ASSERT(trec->ir_startino == srec->ir_startino); 481 482 /* combine the counts */ 483 trec->ir_count += srec->ir_count; 484 trec->ir_freecount += srec->ir_freecount; 485 486 /* 487 * Merge the holemask and free mask. For both fields, 0 bits refer to 488 * allocated inodes. We combine the allocated ranges with bitwise AND. 489 */ 490 trec->ir_holemask &= srec->ir_holemask; 491 trec->ir_free &= srec->ir_free; 492 } 493 494 /* 495 * Insert a new sparse inode chunk into the associated inode btree. The inode 496 * record for the sparse chunk is pre-aligned to a startino that should match 497 * any pre-existing sparse inode record in the tree. This allows sparse chunks 498 * to fill over time. 499 * 500 * This function supports two modes of handling preexisting records depending on 501 * the merge flag. If merge is true, the provided record is merged with the 502 * existing record and updated in place. The merged record is returned in nrec. 503 * If merge is false, an existing record is replaced with the provided record. 504 * If no preexisting record exists, the provided record is always inserted. 505 * 506 * It is considered corruption if a merge is requested and not possible. Given 507 * the sparse inode alignment constraints, this should never happen. 508 */ 509 STATIC int 510 xfs_inobt_insert_sprec( 511 struct xfs_mount *mp, 512 struct xfs_trans *tp, 513 struct xfs_buf *agbp, 514 int btnum, 515 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 516 bool merge) /* merge or replace */ 517 { 518 struct xfs_btree_cur *cur; 519 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 520 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 521 int error; 522 int i; 523 struct xfs_inobt_rec_incore rec; 524 525 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 526 527 /* the new record is pre-aligned so we know where to look */ 528 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 529 if (error) 530 goto error; 531 /* if nothing there, insert a new record and return */ 532 if (i == 0) { 533 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 534 nrec->ir_count, nrec->ir_freecount, 535 nrec->ir_free, &i); 536 if (error) 537 goto error; 538 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 539 540 goto out; 541 } 542 543 /* 544 * A record exists at this startino. Merge or replace the record 545 * depending on what we've been asked to do. 546 */ 547 if (merge) { 548 error = xfs_inobt_get_rec(cur, &rec, &i); 549 if (error) 550 goto error; 551 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 552 XFS_WANT_CORRUPTED_GOTO(mp, 553 rec.ir_startino == nrec->ir_startino, 554 error); 555 556 /* 557 * This should never fail. If we have coexisting records that 558 * cannot merge, something is seriously wrong. 559 */ 560 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 561 error); 562 563 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 564 rec.ir_holemask, nrec->ir_startino, 565 nrec->ir_holemask); 566 567 /* merge to nrec to output the updated record */ 568 __xfs_inobt_rec_merge(nrec, &rec); 569 570 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 571 nrec->ir_holemask); 572 573 error = xfs_inobt_rec_check_count(mp, nrec); 574 if (error) 575 goto error; 576 } 577 578 error = xfs_inobt_update(cur, nrec); 579 if (error) 580 goto error; 581 582 out: 583 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 584 return 0; 585 error: 586 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 587 return error; 588 } 589 590 /* 591 * Allocate new inodes in the allocation group specified by agbp. 592 * Return 0 for success, else error code. 593 */ 594 STATIC int /* error code or 0 */ 595 xfs_ialloc_ag_alloc( 596 xfs_trans_t *tp, /* transaction pointer */ 597 xfs_buf_t *agbp, /* alloc group buffer */ 598 int *alloc) 599 { 600 xfs_agi_t *agi; /* allocation group header */ 601 xfs_alloc_arg_t args; /* allocation argument structure */ 602 xfs_agnumber_t agno; 603 int error; 604 xfs_agino_t newino; /* new first inode's number */ 605 xfs_agino_t newlen; /* new number of inodes */ 606 int isaligned = 0; /* inode allocation at stripe unit */ 607 /* boundary */ 608 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 609 struct xfs_inobt_rec_incore rec; 610 struct xfs_perag *pag; 611 int do_sparse = 0; 612 613 memset(&args, 0, sizeof(args)); 614 args.tp = tp; 615 args.mp = tp->t_mountp; 616 args.fsbno = NULLFSBLOCK; 617 618 #ifdef DEBUG 619 /* randomly do sparse inode allocations */ 620 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 621 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 622 do_sparse = prandom_u32() & 1; 623 #endif 624 625 /* 626 * Locking will ensure that we don't have two callers in here 627 * at one time. 628 */ 629 newlen = args.mp->m_ialloc_inos; 630 if (args.mp->m_maxicount && 631 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 632 args.mp->m_maxicount) 633 return -ENOSPC; 634 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 635 /* 636 * First try to allocate inodes contiguous with the last-allocated 637 * chunk of inodes. If the filesystem is striped, this will fill 638 * an entire stripe unit with inodes. 639 */ 640 agi = XFS_BUF_TO_AGI(agbp); 641 newino = be32_to_cpu(agi->agi_newino); 642 agno = be32_to_cpu(agi->agi_seqno); 643 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 644 args.mp->m_ialloc_blks; 645 if (do_sparse) 646 goto sparse_alloc; 647 if (likely(newino != NULLAGINO && 648 (args.agbno < be32_to_cpu(agi->agi_length)))) { 649 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 650 args.type = XFS_ALLOCTYPE_THIS_BNO; 651 args.prod = 1; 652 653 /* 654 * We need to take into account alignment here to ensure that 655 * we don't modify the free list if we fail to have an exact 656 * block. If we don't have an exact match, and every oher 657 * attempt allocation attempt fails, we'll end up cancelling 658 * a dirty transaction and shutting down. 659 * 660 * For an exact allocation, alignment must be 1, 661 * however we need to take cluster alignment into account when 662 * fixing up the freelist. Use the minalignslop field to 663 * indicate that extra blocks might be required for alignment, 664 * but not to use them in the actual exact allocation. 665 */ 666 args.alignment = 1; 667 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 668 669 /* Allow space for the inode btree to split. */ 670 args.minleft = args.mp->m_in_maxlevels - 1; 671 if ((error = xfs_alloc_vextent(&args))) 672 return error; 673 674 /* 675 * This request might have dirtied the transaction if the AG can 676 * satisfy the request, but the exact block was not available. 677 * If the allocation did fail, subsequent requests will relax 678 * the exact agbno requirement and increase the alignment 679 * instead. It is critical that the total size of the request 680 * (len + alignment + slop) does not increase from this point 681 * on, so reset minalignslop to ensure it is not included in 682 * subsequent requests. 683 */ 684 args.minalignslop = 0; 685 } 686 687 if (unlikely(args.fsbno == NULLFSBLOCK)) { 688 /* 689 * Set the alignment for the allocation. 690 * If stripe alignment is turned on then align at stripe unit 691 * boundary. 692 * If the cluster size is smaller than a filesystem block 693 * then we're doing I/O for inodes in filesystem block size 694 * pieces, so don't need alignment anyway. 695 */ 696 isaligned = 0; 697 if (args.mp->m_sinoalign) { 698 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 699 args.alignment = args.mp->m_dalign; 700 isaligned = 1; 701 } else 702 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 703 /* 704 * Need to figure out where to allocate the inode blocks. 705 * Ideally they should be spaced out through the a.g. 706 * For now, just allocate blocks up front. 707 */ 708 args.agbno = be32_to_cpu(agi->agi_root); 709 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 710 /* 711 * Allocate a fixed-size extent of inodes. 712 */ 713 args.type = XFS_ALLOCTYPE_NEAR_BNO; 714 args.prod = 1; 715 /* 716 * Allow space for the inode btree to split. 717 */ 718 args.minleft = args.mp->m_in_maxlevels - 1; 719 if ((error = xfs_alloc_vextent(&args))) 720 return error; 721 } 722 723 /* 724 * If stripe alignment is turned on, then try again with cluster 725 * alignment. 726 */ 727 if (isaligned && args.fsbno == NULLFSBLOCK) { 728 args.type = XFS_ALLOCTYPE_NEAR_BNO; 729 args.agbno = be32_to_cpu(agi->agi_root); 730 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 731 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 732 if ((error = xfs_alloc_vextent(&args))) 733 return error; 734 } 735 736 /* 737 * Finally, try a sparse allocation if the filesystem supports it and 738 * the sparse allocation length is smaller than a full chunk. 739 */ 740 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 741 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 742 args.fsbno == NULLFSBLOCK) { 743 sparse_alloc: 744 args.type = XFS_ALLOCTYPE_NEAR_BNO; 745 args.agbno = be32_to_cpu(agi->agi_root); 746 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 747 args.alignment = args.mp->m_sb.sb_spino_align; 748 args.prod = 1; 749 750 args.minlen = args.mp->m_ialloc_min_blks; 751 args.maxlen = args.minlen; 752 753 /* 754 * The inode record will be aligned to full chunk size. We must 755 * prevent sparse allocation from AG boundaries that result in 756 * invalid inode records, such as records that start at agbno 0 757 * or extend beyond the AG. 758 * 759 * Set min agbno to the first aligned, non-zero agbno and max to 760 * the last aligned agbno that is at least one full chunk from 761 * the end of the AG. 762 */ 763 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 764 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 765 args.mp->m_sb.sb_inoalignmt) - 766 args.mp->m_ialloc_blks; 767 768 error = xfs_alloc_vextent(&args); 769 if (error) 770 return error; 771 772 newlen = args.len << args.mp->m_sb.sb_inopblog; 773 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 774 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 775 } 776 777 if (args.fsbno == NULLFSBLOCK) { 778 *alloc = 0; 779 return 0; 780 } 781 ASSERT(args.len == args.minlen); 782 783 /* 784 * Stamp and write the inode buffers. 785 * 786 * Seed the new inode cluster with a random generation number. This 787 * prevents short-term reuse of generation numbers if a chunk is 788 * freed and then immediately reallocated. We use random numbers 789 * rather than a linear progression to prevent the next generation 790 * number from being easily guessable. 791 */ 792 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 793 args.agbno, args.len, prandom_u32()); 794 795 if (error) 796 return error; 797 /* 798 * Convert the results. 799 */ 800 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 801 802 if (xfs_inobt_issparse(~allocmask)) { 803 /* 804 * We've allocated a sparse chunk. Align the startino and mask. 805 */ 806 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 807 808 rec.ir_startino = newino; 809 rec.ir_holemask = ~allocmask; 810 rec.ir_count = newlen; 811 rec.ir_freecount = newlen; 812 rec.ir_free = XFS_INOBT_ALL_FREE; 813 814 /* 815 * Insert the sparse record into the inobt and allow for a merge 816 * if necessary. If a merge does occur, rec is updated to the 817 * merged record. 818 */ 819 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 820 &rec, true); 821 if (error == -EFSCORRUPTED) { 822 xfs_alert(args.mp, 823 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 824 XFS_AGINO_TO_INO(args.mp, agno, 825 rec.ir_startino), 826 rec.ir_holemask, rec.ir_count); 827 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 828 } 829 if (error) 830 return error; 831 832 /* 833 * We can't merge the part we've just allocated as for the inobt 834 * due to finobt semantics. The original record may or may not 835 * exist independent of whether physical inodes exist in this 836 * sparse chunk. 837 * 838 * We must update the finobt record based on the inobt record. 839 * rec contains the fully merged and up to date inobt record 840 * from the previous call. Set merge false to replace any 841 * existing record with this one. 842 */ 843 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 844 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 845 XFS_BTNUM_FINO, &rec, 846 false); 847 if (error) 848 return error; 849 } 850 } else { 851 /* full chunk - insert new records to both btrees */ 852 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 853 XFS_BTNUM_INO); 854 if (error) 855 return error; 856 857 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 858 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 859 newlen, XFS_BTNUM_FINO); 860 if (error) 861 return error; 862 } 863 } 864 865 /* 866 * Update AGI counts and newino. 867 */ 868 be32_add_cpu(&agi->agi_count, newlen); 869 be32_add_cpu(&agi->agi_freecount, newlen); 870 pag = xfs_perag_get(args.mp, agno); 871 pag->pagi_freecount += newlen; 872 xfs_perag_put(pag); 873 agi->agi_newino = cpu_to_be32(newino); 874 875 /* 876 * Log allocation group header fields 877 */ 878 xfs_ialloc_log_agi(tp, agbp, 879 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 880 /* 881 * Modify/log superblock values for inode count and inode free count. 882 */ 883 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 884 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 885 *alloc = 1; 886 return 0; 887 } 888 889 STATIC xfs_agnumber_t 890 xfs_ialloc_next_ag( 891 xfs_mount_t *mp) 892 { 893 xfs_agnumber_t agno; 894 895 spin_lock(&mp->m_agirotor_lock); 896 agno = mp->m_agirotor; 897 if (++mp->m_agirotor >= mp->m_maxagi) 898 mp->m_agirotor = 0; 899 spin_unlock(&mp->m_agirotor_lock); 900 901 return agno; 902 } 903 904 /* 905 * Select an allocation group to look for a free inode in, based on the parent 906 * inode and the mode. Return the allocation group buffer. 907 */ 908 STATIC xfs_agnumber_t 909 xfs_ialloc_ag_select( 910 xfs_trans_t *tp, /* transaction pointer */ 911 xfs_ino_t parent, /* parent directory inode number */ 912 umode_t mode, /* bits set to indicate file type */ 913 int okalloc) /* ok to allocate more space */ 914 { 915 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 916 xfs_agnumber_t agno; /* current ag number */ 917 int flags; /* alloc buffer locking flags */ 918 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 919 xfs_extlen_t longest = 0; /* longest extent available */ 920 xfs_mount_t *mp; /* mount point structure */ 921 int needspace; /* file mode implies space allocated */ 922 xfs_perag_t *pag; /* per allocation group data */ 923 xfs_agnumber_t pagno; /* parent (starting) ag number */ 924 int error; 925 926 /* 927 * Files of these types need at least one block if length > 0 928 * (and they won't fit in the inode, but that's hard to figure out). 929 */ 930 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 931 mp = tp->t_mountp; 932 agcount = mp->m_maxagi; 933 if (S_ISDIR(mode)) 934 pagno = xfs_ialloc_next_ag(mp); 935 else { 936 pagno = XFS_INO_TO_AGNO(mp, parent); 937 if (pagno >= agcount) 938 pagno = 0; 939 } 940 941 ASSERT(pagno < agcount); 942 943 /* 944 * Loop through allocation groups, looking for one with a little 945 * free space in it. Note we don't look for free inodes, exactly. 946 * Instead, we include whether there is a need to allocate inodes 947 * to mean that blocks must be allocated for them, 948 * if none are currently free. 949 */ 950 agno = pagno; 951 flags = XFS_ALLOC_FLAG_TRYLOCK; 952 for (;;) { 953 pag = xfs_perag_get(mp, agno); 954 if (!pag->pagi_inodeok) { 955 xfs_ialloc_next_ag(mp); 956 goto nextag; 957 } 958 959 if (!pag->pagi_init) { 960 error = xfs_ialloc_pagi_init(mp, tp, agno); 961 if (error) 962 goto nextag; 963 } 964 965 if (pag->pagi_freecount) { 966 xfs_perag_put(pag); 967 return agno; 968 } 969 970 if (!okalloc) 971 goto nextag; 972 973 if (!pag->pagf_init) { 974 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 975 if (error) 976 goto nextag; 977 } 978 979 /* 980 * Check that there is enough free space for the file plus a 981 * chunk of inodes if we need to allocate some. If this is the 982 * first pass across the AGs, take into account the potential 983 * space needed for alignment of inode chunks when checking the 984 * longest contiguous free space in the AG - this prevents us 985 * from getting ENOSPC because we have free space larger than 986 * m_ialloc_blks but alignment constraints prevent us from using 987 * it. 988 * 989 * If we can't find an AG with space for full alignment slack to 990 * be taken into account, we must be near ENOSPC in all AGs. 991 * Hence we don't include alignment for the second pass and so 992 * if we fail allocation due to alignment issues then it is most 993 * likely a real ENOSPC condition. 994 */ 995 ineed = mp->m_ialloc_min_blks; 996 if (flags && ineed > 1) 997 ineed += xfs_ialloc_cluster_alignment(mp); 998 longest = pag->pagf_longest; 999 if (!longest) 1000 longest = pag->pagf_flcount > 0; 1001 1002 if (pag->pagf_freeblks >= needspace + ineed && 1003 longest >= ineed) { 1004 xfs_perag_put(pag); 1005 return agno; 1006 } 1007 nextag: 1008 xfs_perag_put(pag); 1009 /* 1010 * No point in iterating over the rest, if we're shutting 1011 * down. 1012 */ 1013 if (XFS_FORCED_SHUTDOWN(mp)) 1014 return NULLAGNUMBER; 1015 agno++; 1016 if (agno >= agcount) 1017 agno = 0; 1018 if (agno == pagno) { 1019 if (flags == 0) 1020 return NULLAGNUMBER; 1021 flags = 0; 1022 } 1023 } 1024 } 1025 1026 /* 1027 * Try to retrieve the next record to the left/right from the current one. 1028 */ 1029 STATIC int 1030 xfs_ialloc_next_rec( 1031 struct xfs_btree_cur *cur, 1032 xfs_inobt_rec_incore_t *rec, 1033 int *done, 1034 int left) 1035 { 1036 int error; 1037 int i; 1038 1039 if (left) 1040 error = xfs_btree_decrement(cur, 0, &i); 1041 else 1042 error = xfs_btree_increment(cur, 0, &i); 1043 1044 if (error) 1045 return error; 1046 *done = !i; 1047 if (i) { 1048 error = xfs_inobt_get_rec(cur, rec, &i); 1049 if (error) 1050 return error; 1051 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1052 } 1053 1054 return 0; 1055 } 1056 1057 STATIC int 1058 xfs_ialloc_get_rec( 1059 struct xfs_btree_cur *cur, 1060 xfs_agino_t agino, 1061 xfs_inobt_rec_incore_t *rec, 1062 int *done) 1063 { 1064 int error; 1065 int i; 1066 1067 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1068 if (error) 1069 return error; 1070 *done = !i; 1071 if (i) { 1072 error = xfs_inobt_get_rec(cur, rec, &i); 1073 if (error) 1074 return error; 1075 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1076 } 1077 1078 return 0; 1079 } 1080 1081 /* 1082 * Return the offset of the first free inode in the record. If the inode chunk 1083 * is sparsely allocated, we convert the record holemask to inode granularity 1084 * and mask off the unallocated regions from the inode free mask. 1085 */ 1086 STATIC int 1087 xfs_inobt_first_free_inode( 1088 struct xfs_inobt_rec_incore *rec) 1089 { 1090 xfs_inofree_t realfree; 1091 1092 /* if there are no holes, return the first available offset */ 1093 if (!xfs_inobt_issparse(rec->ir_holemask)) 1094 return xfs_lowbit64(rec->ir_free); 1095 1096 realfree = xfs_inobt_irec_to_allocmask(rec); 1097 realfree &= rec->ir_free; 1098 1099 return xfs_lowbit64(realfree); 1100 } 1101 1102 /* 1103 * Allocate an inode using the inobt-only algorithm. 1104 */ 1105 STATIC int 1106 xfs_dialloc_ag_inobt( 1107 struct xfs_trans *tp, 1108 struct xfs_buf *agbp, 1109 xfs_ino_t parent, 1110 xfs_ino_t *inop) 1111 { 1112 struct xfs_mount *mp = tp->t_mountp; 1113 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1114 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1115 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1116 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1117 struct xfs_perag *pag; 1118 struct xfs_btree_cur *cur, *tcur; 1119 struct xfs_inobt_rec_incore rec, trec; 1120 xfs_ino_t ino; 1121 int error; 1122 int offset; 1123 int i, j; 1124 1125 pag = xfs_perag_get(mp, agno); 1126 1127 ASSERT(pag->pagi_init); 1128 ASSERT(pag->pagi_inodeok); 1129 ASSERT(pag->pagi_freecount > 0); 1130 1131 restart_pagno: 1132 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1133 /* 1134 * If pagino is 0 (this is the root inode allocation) use newino. 1135 * This must work because we've just allocated some. 1136 */ 1137 if (!pagino) 1138 pagino = be32_to_cpu(agi->agi_newino); 1139 1140 error = xfs_check_agi_freecount(cur, agi); 1141 if (error) 1142 goto error0; 1143 1144 /* 1145 * If in the same AG as the parent, try to get near the parent. 1146 */ 1147 if (pagno == agno) { 1148 int doneleft; /* done, to the left */ 1149 int doneright; /* done, to the right */ 1150 int searchdistance = 10; 1151 1152 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1153 if (error) 1154 goto error0; 1155 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1156 1157 error = xfs_inobt_get_rec(cur, &rec, &j); 1158 if (error) 1159 goto error0; 1160 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1161 1162 if (rec.ir_freecount > 0) { 1163 /* 1164 * Found a free inode in the same chunk 1165 * as the parent, done. 1166 */ 1167 goto alloc_inode; 1168 } 1169 1170 1171 /* 1172 * In the same AG as parent, but parent's chunk is full. 1173 */ 1174 1175 /* duplicate the cursor, search left & right simultaneously */ 1176 error = xfs_btree_dup_cursor(cur, &tcur); 1177 if (error) 1178 goto error0; 1179 1180 /* 1181 * Skip to last blocks looked up if same parent inode. 1182 */ 1183 if (pagino != NULLAGINO && 1184 pag->pagl_pagino == pagino && 1185 pag->pagl_leftrec != NULLAGINO && 1186 pag->pagl_rightrec != NULLAGINO) { 1187 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1188 &trec, &doneleft); 1189 if (error) 1190 goto error1; 1191 1192 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1193 &rec, &doneright); 1194 if (error) 1195 goto error1; 1196 } else { 1197 /* search left with tcur, back up 1 record */ 1198 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1199 if (error) 1200 goto error1; 1201 1202 /* search right with cur, go forward 1 record. */ 1203 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1204 if (error) 1205 goto error1; 1206 } 1207 1208 /* 1209 * Loop until we find an inode chunk with a free inode. 1210 */ 1211 while (!doneleft || !doneright) { 1212 int useleft; /* using left inode chunk this time */ 1213 1214 if (!--searchdistance) { 1215 /* 1216 * Not in range - save last search 1217 * location and allocate a new inode 1218 */ 1219 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1220 pag->pagl_leftrec = trec.ir_startino; 1221 pag->pagl_rightrec = rec.ir_startino; 1222 pag->pagl_pagino = pagino; 1223 goto newino; 1224 } 1225 1226 /* figure out the closer block if both are valid. */ 1227 if (!doneleft && !doneright) { 1228 useleft = pagino - 1229 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1230 rec.ir_startino - pagino; 1231 } else { 1232 useleft = !doneleft; 1233 } 1234 1235 /* free inodes to the left? */ 1236 if (useleft && trec.ir_freecount) { 1237 rec = trec; 1238 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1239 cur = tcur; 1240 1241 pag->pagl_leftrec = trec.ir_startino; 1242 pag->pagl_rightrec = rec.ir_startino; 1243 pag->pagl_pagino = pagino; 1244 goto alloc_inode; 1245 } 1246 1247 /* free inodes to the right? */ 1248 if (!useleft && rec.ir_freecount) { 1249 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1250 1251 pag->pagl_leftrec = trec.ir_startino; 1252 pag->pagl_rightrec = rec.ir_startino; 1253 pag->pagl_pagino = pagino; 1254 goto alloc_inode; 1255 } 1256 1257 /* get next record to check */ 1258 if (useleft) { 1259 error = xfs_ialloc_next_rec(tcur, &trec, 1260 &doneleft, 1); 1261 } else { 1262 error = xfs_ialloc_next_rec(cur, &rec, 1263 &doneright, 0); 1264 } 1265 if (error) 1266 goto error1; 1267 } 1268 1269 /* 1270 * We've reached the end of the btree. because 1271 * we are only searching a small chunk of the 1272 * btree each search, there is obviously free 1273 * inodes closer to the parent inode than we 1274 * are now. restart the search again. 1275 */ 1276 pag->pagl_pagino = NULLAGINO; 1277 pag->pagl_leftrec = NULLAGINO; 1278 pag->pagl_rightrec = NULLAGINO; 1279 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1280 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1281 goto restart_pagno; 1282 } 1283 1284 /* 1285 * In a different AG from the parent. 1286 * See if the most recently allocated block has any free. 1287 */ 1288 newino: 1289 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1290 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1291 XFS_LOOKUP_EQ, &i); 1292 if (error) 1293 goto error0; 1294 1295 if (i == 1) { 1296 error = xfs_inobt_get_rec(cur, &rec, &j); 1297 if (error) 1298 goto error0; 1299 1300 if (j == 1 && rec.ir_freecount > 0) { 1301 /* 1302 * The last chunk allocated in the group 1303 * still has a free inode. 1304 */ 1305 goto alloc_inode; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * None left in the last group, search the whole AG 1312 */ 1313 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1314 if (error) 1315 goto error0; 1316 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1317 1318 for (;;) { 1319 error = xfs_inobt_get_rec(cur, &rec, &i); 1320 if (error) 1321 goto error0; 1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1323 if (rec.ir_freecount > 0) 1324 break; 1325 error = xfs_btree_increment(cur, 0, &i); 1326 if (error) 1327 goto error0; 1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1329 } 1330 1331 alloc_inode: 1332 offset = xfs_inobt_first_free_inode(&rec); 1333 ASSERT(offset >= 0); 1334 ASSERT(offset < XFS_INODES_PER_CHUNK); 1335 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1336 XFS_INODES_PER_CHUNK) == 0); 1337 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1338 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1339 rec.ir_freecount--; 1340 error = xfs_inobt_update(cur, &rec); 1341 if (error) 1342 goto error0; 1343 be32_add_cpu(&agi->agi_freecount, -1); 1344 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1345 pag->pagi_freecount--; 1346 1347 error = xfs_check_agi_freecount(cur, agi); 1348 if (error) 1349 goto error0; 1350 1351 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1352 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1353 xfs_perag_put(pag); 1354 *inop = ino; 1355 return 0; 1356 error1: 1357 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1358 error0: 1359 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1360 xfs_perag_put(pag); 1361 return error; 1362 } 1363 1364 /* 1365 * Use the free inode btree to allocate an inode based on distance from the 1366 * parent. Note that the provided cursor may be deleted and replaced. 1367 */ 1368 STATIC int 1369 xfs_dialloc_ag_finobt_near( 1370 xfs_agino_t pagino, 1371 struct xfs_btree_cur **ocur, 1372 struct xfs_inobt_rec_incore *rec) 1373 { 1374 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1375 struct xfs_btree_cur *rcur; /* right search cursor */ 1376 struct xfs_inobt_rec_incore rrec; 1377 int error; 1378 int i, j; 1379 1380 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1381 if (error) 1382 return error; 1383 1384 if (i == 1) { 1385 error = xfs_inobt_get_rec(lcur, rec, &i); 1386 if (error) 1387 return error; 1388 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1389 1390 /* 1391 * See if we've landed in the parent inode record. The finobt 1392 * only tracks chunks with at least one free inode, so record 1393 * existence is enough. 1394 */ 1395 if (pagino >= rec->ir_startino && 1396 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1397 return 0; 1398 } 1399 1400 error = xfs_btree_dup_cursor(lcur, &rcur); 1401 if (error) 1402 return error; 1403 1404 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1405 if (error) 1406 goto error_rcur; 1407 if (j == 1) { 1408 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1409 if (error) 1410 goto error_rcur; 1411 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1412 } 1413 1414 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1415 if (i == 1 && j == 1) { 1416 /* 1417 * Both the left and right records are valid. Choose the closer 1418 * inode chunk to the target. 1419 */ 1420 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1421 (rrec.ir_startino - pagino)) { 1422 *rec = rrec; 1423 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1424 *ocur = rcur; 1425 } else { 1426 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1427 } 1428 } else if (j == 1) { 1429 /* only the right record is valid */ 1430 *rec = rrec; 1431 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1432 *ocur = rcur; 1433 } else if (i == 1) { 1434 /* only the left record is valid */ 1435 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1436 } 1437 1438 return 0; 1439 1440 error_rcur: 1441 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1442 return error; 1443 } 1444 1445 /* 1446 * Use the free inode btree to find a free inode based on a newino hint. If 1447 * the hint is NULL, find the first free inode in the AG. 1448 */ 1449 STATIC int 1450 xfs_dialloc_ag_finobt_newino( 1451 struct xfs_agi *agi, 1452 struct xfs_btree_cur *cur, 1453 struct xfs_inobt_rec_incore *rec) 1454 { 1455 int error; 1456 int i; 1457 1458 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1459 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1460 XFS_LOOKUP_EQ, &i); 1461 if (error) 1462 return error; 1463 if (i == 1) { 1464 error = xfs_inobt_get_rec(cur, rec, &i); 1465 if (error) 1466 return error; 1467 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1468 return 0; 1469 } 1470 } 1471 1472 /* 1473 * Find the first inode available in the AG. 1474 */ 1475 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1476 if (error) 1477 return error; 1478 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1479 1480 error = xfs_inobt_get_rec(cur, rec, &i); 1481 if (error) 1482 return error; 1483 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1484 1485 return 0; 1486 } 1487 1488 /* 1489 * Update the inobt based on a modification made to the finobt. Also ensure that 1490 * the records from both trees are equivalent post-modification. 1491 */ 1492 STATIC int 1493 xfs_dialloc_ag_update_inobt( 1494 struct xfs_btree_cur *cur, /* inobt cursor */ 1495 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1496 int offset) /* inode offset */ 1497 { 1498 struct xfs_inobt_rec_incore rec; 1499 int error; 1500 int i; 1501 1502 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1503 if (error) 1504 return error; 1505 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1506 1507 error = xfs_inobt_get_rec(cur, &rec, &i); 1508 if (error) 1509 return error; 1510 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1511 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1512 XFS_INODES_PER_CHUNK) == 0); 1513 1514 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1515 rec.ir_freecount--; 1516 1517 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1518 (rec.ir_freecount == frec->ir_freecount)); 1519 1520 return xfs_inobt_update(cur, &rec); 1521 } 1522 1523 /* 1524 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1525 * back to the inobt search algorithm. 1526 * 1527 * The caller selected an AG for us, and made sure that free inodes are 1528 * available. 1529 */ 1530 STATIC int 1531 xfs_dialloc_ag( 1532 struct xfs_trans *tp, 1533 struct xfs_buf *agbp, 1534 xfs_ino_t parent, 1535 xfs_ino_t *inop) 1536 { 1537 struct xfs_mount *mp = tp->t_mountp; 1538 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1539 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1540 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1541 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1542 struct xfs_perag *pag; 1543 struct xfs_btree_cur *cur; /* finobt cursor */ 1544 struct xfs_btree_cur *icur; /* inobt cursor */ 1545 struct xfs_inobt_rec_incore rec; 1546 xfs_ino_t ino; 1547 int error; 1548 int offset; 1549 int i; 1550 1551 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1552 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1553 1554 pag = xfs_perag_get(mp, agno); 1555 1556 /* 1557 * If pagino is 0 (this is the root inode allocation) use newino. 1558 * This must work because we've just allocated some. 1559 */ 1560 if (!pagino) 1561 pagino = be32_to_cpu(agi->agi_newino); 1562 1563 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1564 1565 error = xfs_check_agi_freecount(cur, agi); 1566 if (error) 1567 goto error_cur; 1568 1569 /* 1570 * The search algorithm depends on whether we're in the same AG as the 1571 * parent. If so, find the closest available inode to the parent. If 1572 * not, consider the agi hint or find the first free inode in the AG. 1573 */ 1574 if (agno == pagno) 1575 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1576 else 1577 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1578 if (error) 1579 goto error_cur; 1580 1581 offset = xfs_inobt_first_free_inode(&rec); 1582 ASSERT(offset >= 0); 1583 ASSERT(offset < XFS_INODES_PER_CHUNK); 1584 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1585 XFS_INODES_PER_CHUNK) == 0); 1586 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1587 1588 /* 1589 * Modify or remove the finobt record. 1590 */ 1591 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1592 rec.ir_freecount--; 1593 if (rec.ir_freecount) 1594 error = xfs_inobt_update(cur, &rec); 1595 else 1596 error = xfs_btree_delete(cur, &i); 1597 if (error) 1598 goto error_cur; 1599 1600 /* 1601 * The finobt has now been updated appropriately. We haven't updated the 1602 * agi and superblock yet, so we can create an inobt cursor and validate 1603 * the original freecount. If all is well, make the equivalent update to 1604 * the inobt using the finobt record and offset information. 1605 */ 1606 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1607 1608 error = xfs_check_agi_freecount(icur, agi); 1609 if (error) 1610 goto error_icur; 1611 1612 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1613 if (error) 1614 goto error_icur; 1615 1616 /* 1617 * Both trees have now been updated. We must update the perag and 1618 * superblock before we can check the freecount for each btree. 1619 */ 1620 be32_add_cpu(&agi->agi_freecount, -1); 1621 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1622 pag->pagi_freecount--; 1623 1624 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1625 1626 error = xfs_check_agi_freecount(icur, agi); 1627 if (error) 1628 goto error_icur; 1629 error = xfs_check_agi_freecount(cur, agi); 1630 if (error) 1631 goto error_icur; 1632 1633 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1634 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1635 xfs_perag_put(pag); 1636 *inop = ino; 1637 return 0; 1638 1639 error_icur: 1640 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1641 error_cur: 1642 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1643 xfs_perag_put(pag); 1644 return error; 1645 } 1646 1647 /* 1648 * Allocate an inode on disk. 1649 * 1650 * Mode is used to tell whether the new inode will need space, and whether it 1651 * is a directory. 1652 * 1653 * This function is designed to be called twice if it has to do an allocation 1654 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1655 * If an inode is available without having to performn an allocation, an inode 1656 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1657 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1658 * The caller should then commit the current transaction, allocate a 1659 * new transaction, and call xfs_dialloc() again, passing in the previous value 1660 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1661 * buffer is locked across the two calls, the second call is guaranteed to have 1662 * a free inode available. 1663 * 1664 * Once we successfully pick an inode its number is returned and the on-disk 1665 * data structures are updated. The inode itself is not read in, since doing so 1666 * would break ordering constraints with xfs_reclaim. 1667 */ 1668 int 1669 xfs_dialloc( 1670 struct xfs_trans *tp, 1671 xfs_ino_t parent, 1672 umode_t mode, 1673 int okalloc, 1674 struct xfs_buf **IO_agbp, 1675 xfs_ino_t *inop) 1676 { 1677 struct xfs_mount *mp = tp->t_mountp; 1678 struct xfs_buf *agbp; 1679 xfs_agnumber_t agno; 1680 int error; 1681 int ialloced; 1682 int noroom = 0; 1683 xfs_agnumber_t start_agno; 1684 struct xfs_perag *pag; 1685 1686 if (*IO_agbp) { 1687 /* 1688 * If the caller passes in a pointer to the AGI buffer, 1689 * continue where we left off before. In this case, we 1690 * know that the allocation group has free inodes. 1691 */ 1692 agbp = *IO_agbp; 1693 goto out_alloc; 1694 } 1695 1696 /* 1697 * We do not have an agbp, so select an initial allocation 1698 * group for inode allocation. 1699 */ 1700 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1701 if (start_agno == NULLAGNUMBER) { 1702 *inop = NULLFSINO; 1703 return 0; 1704 } 1705 1706 /* 1707 * If we have already hit the ceiling of inode blocks then clear 1708 * okalloc so we scan all available agi structures for a free 1709 * inode. 1710 * 1711 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1712 * which will sacrifice the preciseness but improve the performance. 1713 */ 1714 if (mp->m_maxicount && 1715 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1716 > mp->m_maxicount) { 1717 noroom = 1; 1718 okalloc = 0; 1719 } 1720 1721 /* 1722 * Loop until we find an allocation group that either has free inodes 1723 * or in which we can allocate some inodes. Iterate through the 1724 * allocation groups upward, wrapping at the end. 1725 */ 1726 agno = start_agno; 1727 for (;;) { 1728 pag = xfs_perag_get(mp, agno); 1729 if (!pag->pagi_inodeok) { 1730 xfs_ialloc_next_ag(mp); 1731 goto nextag; 1732 } 1733 1734 if (!pag->pagi_init) { 1735 error = xfs_ialloc_pagi_init(mp, tp, agno); 1736 if (error) 1737 goto out_error; 1738 } 1739 1740 /* 1741 * Do a first racy fast path check if this AG is usable. 1742 */ 1743 if (!pag->pagi_freecount && !okalloc) 1744 goto nextag; 1745 1746 /* 1747 * Then read in the AGI buffer and recheck with the AGI buffer 1748 * lock held. 1749 */ 1750 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1751 if (error) 1752 goto out_error; 1753 1754 if (pag->pagi_freecount) { 1755 xfs_perag_put(pag); 1756 goto out_alloc; 1757 } 1758 1759 if (!okalloc) 1760 goto nextag_relse_buffer; 1761 1762 1763 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1764 if (error) { 1765 xfs_trans_brelse(tp, agbp); 1766 1767 if (error != -ENOSPC) 1768 goto out_error; 1769 1770 xfs_perag_put(pag); 1771 *inop = NULLFSINO; 1772 return 0; 1773 } 1774 1775 if (ialloced) { 1776 /* 1777 * We successfully allocated some inodes, return 1778 * the current context to the caller so that it 1779 * can commit the current transaction and call 1780 * us again where we left off. 1781 */ 1782 ASSERT(pag->pagi_freecount > 0); 1783 xfs_perag_put(pag); 1784 1785 *IO_agbp = agbp; 1786 *inop = NULLFSINO; 1787 return 0; 1788 } 1789 1790 nextag_relse_buffer: 1791 xfs_trans_brelse(tp, agbp); 1792 nextag: 1793 xfs_perag_put(pag); 1794 if (++agno == mp->m_sb.sb_agcount) 1795 agno = 0; 1796 if (agno == start_agno) { 1797 *inop = NULLFSINO; 1798 return noroom ? -ENOSPC : 0; 1799 } 1800 } 1801 1802 out_alloc: 1803 *IO_agbp = NULL; 1804 return xfs_dialloc_ag(tp, agbp, parent, inop); 1805 out_error: 1806 xfs_perag_put(pag); 1807 return error; 1808 } 1809 1810 /* 1811 * Free the blocks of an inode chunk. We must consider that the inode chunk 1812 * might be sparse and only free the regions that are allocated as part of the 1813 * chunk. 1814 */ 1815 STATIC void 1816 xfs_difree_inode_chunk( 1817 struct xfs_mount *mp, 1818 xfs_agnumber_t agno, 1819 struct xfs_inobt_rec_incore *rec, 1820 struct xfs_bmap_free *flist) 1821 { 1822 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1823 int startidx, endidx; 1824 int nextbit; 1825 xfs_agblock_t agbno; 1826 int contigblk; 1827 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1828 1829 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1830 /* not sparse, calculate extent info directly */ 1831 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1832 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)), 1833 mp->m_ialloc_blks, flist, mp); 1834 return; 1835 } 1836 1837 /* holemask is only 16-bits (fits in an unsigned long) */ 1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1839 holemask[0] = rec->ir_holemask; 1840 1841 /* 1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1843 * holemask and convert the start/end index of each range to an extent. 1844 * We start with the start and end index both pointing at the first 0 in 1845 * the mask. 1846 */ 1847 startidx = endidx = find_first_zero_bit(holemask, 1848 XFS_INOBT_HOLEMASK_BITS); 1849 nextbit = startidx + 1; 1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1852 nextbit); 1853 /* 1854 * If the next zero bit is contiguous, update the end index of 1855 * the current range and continue. 1856 */ 1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1858 nextbit == endidx + 1) { 1859 endidx = nextbit; 1860 goto next; 1861 } 1862 1863 /* 1864 * nextbit is not contiguous with the current end index. Convert 1865 * the current start/end to an extent and add it to the free 1866 * list. 1867 */ 1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1869 mp->m_sb.sb_inopblock; 1870 contigblk = ((endidx - startidx + 1) * 1871 XFS_INODES_PER_HOLEMASK_BIT) / 1872 mp->m_sb.sb_inopblock; 1873 1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1876 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, 1877 flist, mp); 1878 1879 /* reset range to current bit and carry on... */ 1880 startidx = endidx = nextbit; 1881 1882 next: 1883 nextbit++; 1884 } 1885 } 1886 1887 STATIC int 1888 xfs_difree_inobt( 1889 struct xfs_mount *mp, 1890 struct xfs_trans *tp, 1891 struct xfs_buf *agbp, 1892 xfs_agino_t agino, 1893 struct xfs_bmap_free *flist, 1894 struct xfs_icluster *xic, 1895 struct xfs_inobt_rec_incore *orec) 1896 { 1897 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1898 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1899 struct xfs_perag *pag; 1900 struct xfs_btree_cur *cur; 1901 struct xfs_inobt_rec_incore rec; 1902 int ilen; 1903 int error; 1904 int i; 1905 int off; 1906 1907 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1908 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1909 1910 /* 1911 * Initialize the cursor. 1912 */ 1913 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1914 1915 error = xfs_check_agi_freecount(cur, agi); 1916 if (error) 1917 goto error0; 1918 1919 /* 1920 * Look for the entry describing this inode. 1921 */ 1922 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1923 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1924 __func__, error); 1925 goto error0; 1926 } 1927 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1928 error = xfs_inobt_get_rec(cur, &rec, &i); 1929 if (error) { 1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1931 __func__, error); 1932 goto error0; 1933 } 1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1935 /* 1936 * Get the offset in the inode chunk. 1937 */ 1938 off = agino - rec.ir_startino; 1939 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1940 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1941 /* 1942 * Mark the inode free & increment the count. 1943 */ 1944 rec.ir_free |= XFS_INOBT_MASK(off); 1945 rec.ir_freecount++; 1946 1947 /* 1948 * When an inode chunk is free, it becomes eligible for removal. Don't 1949 * remove the chunk if the block size is large enough for multiple inode 1950 * chunks (that might not be free). 1951 */ 1952 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1953 rec.ir_free == XFS_INOBT_ALL_FREE && 1954 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1955 xic->deleted = 1; 1956 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1957 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1958 1959 /* 1960 * Remove the inode cluster from the AGI B+Tree, adjust the 1961 * AGI and Superblock inode counts, and mark the disk space 1962 * to be freed when the transaction is committed. 1963 */ 1964 ilen = rec.ir_freecount; 1965 be32_add_cpu(&agi->agi_count, -ilen); 1966 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1967 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1968 pag = xfs_perag_get(mp, agno); 1969 pag->pagi_freecount -= ilen - 1; 1970 xfs_perag_put(pag); 1971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1973 1974 if ((error = xfs_btree_delete(cur, &i))) { 1975 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1976 __func__, error); 1977 goto error0; 1978 } 1979 1980 xfs_difree_inode_chunk(mp, agno, &rec, flist); 1981 } else { 1982 xic->deleted = 0; 1983 1984 error = xfs_inobt_update(cur, &rec); 1985 if (error) { 1986 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1987 __func__, error); 1988 goto error0; 1989 } 1990 1991 /* 1992 * Change the inode free counts and log the ag/sb changes. 1993 */ 1994 be32_add_cpu(&agi->agi_freecount, 1); 1995 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1996 pag = xfs_perag_get(mp, agno); 1997 pag->pagi_freecount++; 1998 xfs_perag_put(pag); 1999 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2000 } 2001 2002 error = xfs_check_agi_freecount(cur, agi); 2003 if (error) 2004 goto error0; 2005 2006 *orec = rec; 2007 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2008 return 0; 2009 2010 error0: 2011 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2012 return error; 2013 } 2014 2015 /* 2016 * Free an inode in the free inode btree. 2017 */ 2018 STATIC int 2019 xfs_difree_finobt( 2020 struct xfs_mount *mp, 2021 struct xfs_trans *tp, 2022 struct xfs_buf *agbp, 2023 xfs_agino_t agino, 2024 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2025 { 2026 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2027 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2028 struct xfs_btree_cur *cur; 2029 struct xfs_inobt_rec_incore rec; 2030 int offset = agino - ibtrec->ir_startino; 2031 int error; 2032 int i; 2033 2034 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2035 2036 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2037 if (error) 2038 goto error; 2039 if (i == 0) { 2040 /* 2041 * If the record does not exist in the finobt, we must have just 2042 * freed an inode in a previously fully allocated chunk. If not, 2043 * something is out of sync. 2044 */ 2045 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2046 2047 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2048 ibtrec->ir_count, 2049 ibtrec->ir_freecount, 2050 ibtrec->ir_free, &i); 2051 if (error) 2052 goto error; 2053 ASSERT(i == 1); 2054 2055 goto out; 2056 } 2057 2058 /* 2059 * Read and update the existing record. We could just copy the ibtrec 2060 * across here, but that would defeat the purpose of having redundant 2061 * metadata. By making the modifications independently, we can catch 2062 * corruptions that we wouldn't see if we just copied from one record 2063 * to another. 2064 */ 2065 error = xfs_inobt_get_rec(cur, &rec, &i); 2066 if (error) 2067 goto error; 2068 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2069 2070 rec.ir_free |= XFS_INOBT_MASK(offset); 2071 rec.ir_freecount++; 2072 2073 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2074 (rec.ir_freecount == ibtrec->ir_freecount), 2075 error); 2076 2077 /* 2078 * The content of inobt records should always match between the inobt 2079 * and finobt. The lifecycle of records in the finobt is different from 2080 * the inobt in that the finobt only tracks records with at least one 2081 * free inode. Hence, if all of the inodes are free and we aren't 2082 * keeping inode chunks permanently on disk, remove the record. 2083 * Otherwise, update the record with the new information. 2084 * 2085 * Note that we currently can't free chunks when the block size is large 2086 * enough for multiple chunks. Leave the finobt record to remain in sync 2087 * with the inobt. 2088 */ 2089 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2090 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2091 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2092 error = xfs_btree_delete(cur, &i); 2093 if (error) 2094 goto error; 2095 ASSERT(i == 1); 2096 } else { 2097 error = xfs_inobt_update(cur, &rec); 2098 if (error) 2099 goto error; 2100 } 2101 2102 out: 2103 error = xfs_check_agi_freecount(cur, agi); 2104 if (error) 2105 goto error; 2106 2107 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2108 return 0; 2109 2110 error: 2111 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2112 return error; 2113 } 2114 2115 /* 2116 * Free disk inode. Carefully avoids touching the incore inode, all 2117 * manipulations incore are the caller's responsibility. 2118 * The on-disk inode is not changed by this operation, only the 2119 * btree (free inode mask) is changed. 2120 */ 2121 int 2122 xfs_difree( 2123 struct xfs_trans *tp, /* transaction pointer */ 2124 xfs_ino_t inode, /* inode to be freed */ 2125 struct xfs_bmap_free *flist, /* extents to free */ 2126 struct xfs_icluster *xic) /* cluster info if deleted */ 2127 { 2128 /* REFERENCED */ 2129 xfs_agblock_t agbno; /* block number containing inode */ 2130 struct xfs_buf *agbp; /* buffer for allocation group header */ 2131 xfs_agino_t agino; /* allocation group inode number */ 2132 xfs_agnumber_t agno; /* allocation group number */ 2133 int error; /* error return value */ 2134 struct xfs_mount *mp; /* mount structure for filesystem */ 2135 struct xfs_inobt_rec_incore rec;/* btree record */ 2136 2137 mp = tp->t_mountp; 2138 2139 /* 2140 * Break up inode number into its components. 2141 */ 2142 agno = XFS_INO_TO_AGNO(mp, inode); 2143 if (agno >= mp->m_sb.sb_agcount) { 2144 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2145 __func__, agno, mp->m_sb.sb_agcount); 2146 ASSERT(0); 2147 return -EINVAL; 2148 } 2149 agino = XFS_INO_TO_AGINO(mp, inode); 2150 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2151 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2152 __func__, (unsigned long long)inode, 2153 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2154 ASSERT(0); 2155 return -EINVAL; 2156 } 2157 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2158 if (agbno >= mp->m_sb.sb_agblocks) { 2159 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2160 __func__, agbno, mp->m_sb.sb_agblocks); 2161 ASSERT(0); 2162 return -EINVAL; 2163 } 2164 /* 2165 * Get the allocation group header. 2166 */ 2167 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2168 if (error) { 2169 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2170 __func__, error); 2171 return error; 2172 } 2173 2174 /* 2175 * Fix up the inode allocation btree. 2176 */ 2177 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec); 2178 if (error) 2179 goto error0; 2180 2181 /* 2182 * Fix up the free inode btree. 2183 */ 2184 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2185 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2186 if (error) 2187 goto error0; 2188 } 2189 2190 return 0; 2191 2192 error0: 2193 return error; 2194 } 2195 2196 STATIC int 2197 xfs_imap_lookup( 2198 struct xfs_mount *mp, 2199 struct xfs_trans *tp, 2200 xfs_agnumber_t agno, 2201 xfs_agino_t agino, 2202 xfs_agblock_t agbno, 2203 xfs_agblock_t *chunk_agbno, 2204 xfs_agblock_t *offset_agbno, 2205 int flags) 2206 { 2207 struct xfs_inobt_rec_incore rec; 2208 struct xfs_btree_cur *cur; 2209 struct xfs_buf *agbp; 2210 int error; 2211 int i; 2212 2213 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2214 if (error) { 2215 xfs_alert(mp, 2216 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2217 __func__, error, agno); 2218 return error; 2219 } 2220 2221 /* 2222 * Lookup the inode record for the given agino. If the record cannot be 2223 * found, then it's an invalid inode number and we should abort. Once 2224 * we have a record, we need to ensure it contains the inode number 2225 * we are looking up. 2226 */ 2227 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2228 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2229 if (!error) { 2230 if (i) 2231 error = xfs_inobt_get_rec(cur, &rec, &i); 2232 if (!error && i == 0) 2233 error = -EINVAL; 2234 } 2235 2236 xfs_trans_brelse(tp, agbp); 2237 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2238 if (error) 2239 return error; 2240 2241 /* check that the returned record contains the required inode */ 2242 if (rec.ir_startino > agino || 2243 rec.ir_startino + mp->m_ialloc_inos <= agino) 2244 return -EINVAL; 2245 2246 /* for untrusted inodes check it is allocated first */ 2247 if ((flags & XFS_IGET_UNTRUSTED) && 2248 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2249 return -EINVAL; 2250 2251 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2252 *offset_agbno = agbno - *chunk_agbno; 2253 return 0; 2254 } 2255 2256 /* 2257 * Return the location of the inode in imap, for mapping it into a buffer. 2258 */ 2259 int 2260 xfs_imap( 2261 xfs_mount_t *mp, /* file system mount structure */ 2262 xfs_trans_t *tp, /* transaction pointer */ 2263 xfs_ino_t ino, /* inode to locate */ 2264 struct xfs_imap *imap, /* location map structure */ 2265 uint flags) /* flags for inode btree lookup */ 2266 { 2267 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2268 xfs_agino_t agino; /* inode number within alloc group */ 2269 xfs_agnumber_t agno; /* allocation group number */ 2270 int blks_per_cluster; /* num blocks per inode cluster */ 2271 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2272 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2273 int error; /* error code */ 2274 int offset; /* index of inode in its buffer */ 2275 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2276 2277 ASSERT(ino != NULLFSINO); 2278 2279 /* 2280 * Split up the inode number into its parts. 2281 */ 2282 agno = XFS_INO_TO_AGNO(mp, ino); 2283 agino = XFS_INO_TO_AGINO(mp, ino); 2284 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2285 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2286 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2287 #ifdef DEBUG 2288 /* 2289 * Don't output diagnostic information for untrusted inodes 2290 * as they can be invalid without implying corruption. 2291 */ 2292 if (flags & XFS_IGET_UNTRUSTED) 2293 return -EINVAL; 2294 if (agno >= mp->m_sb.sb_agcount) { 2295 xfs_alert(mp, 2296 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2297 __func__, agno, mp->m_sb.sb_agcount); 2298 } 2299 if (agbno >= mp->m_sb.sb_agblocks) { 2300 xfs_alert(mp, 2301 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2302 __func__, (unsigned long long)agbno, 2303 (unsigned long)mp->m_sb.sb_agblocks); 2304 } 2305 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2306 xfs_alert(mp, 2307 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2308 __func__, ino, 2309 XFS_AGINO_TO_INO(mp, agno, agino)); 2310 } 2311 xfs_stack_trace(); 2312 #endif /* DEBUG */ 2313 return -EINVAL; 2314 } 2315 2316 blks_per_cluster = xfs_icluster_size_fsb(mp); 2317 2318 /* 2319 * For bulkstat and handle lookups, we have an untrusted inode number 2320 * that we have to verify is valid. We cannot do this just by reading 2321 * the inode buffer as it may have been unlinked and removed leaving 2322 * inodes in stale state on disk. Hence we have to do a btree lookup 2323 * in all cases where an untrusted inode number is passed. 2324 */ 2325 if (flags & XFS_IGET_UNTRUSTED) { 2326 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2327 &chunk_agbno, &offset_agbno, flags); 2328 if (error) 2329 return error; 2330 goto out_map; 2331 } 2332 2333 /* 2334 * If the inode cluster size is the same as the blocksize or 2335 * smaller we get to the buffer by simple arithmetics. 2336 */ 2337 if (blks_per_cluster == 1) { 2338 offset = XFS_INO_TO_OFFSET(mp, ino); 2339 ASSERT(offset < mp->m_sb.sb_inopblock); 2340 2341 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2342 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2343 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2344 return 0; 2345 } 2346 2347 /* 2348 * If the inode chunks are aligned then use simple maths to 2349 * find the location. Otherwise we have to do a btree 2350 * lookup to find the location. 2351 */ 2352 if (mp->m_inoalign_mask) { 2353 offset_agbno = agbno & mp->m_inoalign_mask; 2354 chunk_agbno = agbno - offset_agbno; 2355 } else { 2356 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2357 &chunk_agbno, &offset_agbno, flags); 2358 if (error) 2359 return error; 2360 } 2361 2362 out_map: 2363 ASSERT(agbno >= chunk_agbno); 2364 cluster_agbno = chunk_agbno + 2365 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2366 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2367 XFS_INO_TO_OFFSET(mp, ino); 2368 2369 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2370 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2371 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2372 2373 /* 2374 * If the inode number maps to a block outside the bounds 2375 * of the file system then return NULL rather than calling 2376 * read_buf and panicing when we get an error from the 2377 * driver. 2378 */ 2379 if ((imap->im_blkno + imap->im_len) > 2380 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2381 xfs_alert(mp, 2382 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2383 __func__, (unsigned long long) imap->im_blkno, 2384 (unsigned long long) imap->im_len, 2385 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2386 return -EINVAL; 2387 } 2388 return 0; 2389 } 2390 2391 /* 2392 * Compute and fill in value of m_in_maxlevels. 2393 */ 2394 void 2395 xfs_ialloc_compute_maxlevels( 2396 xfs_mount_t *mp) /* file system mount structure */ 2397 { 2398 int level; 2399 uint maxblocks; 2400 uint maxleafents; 2401 int minleafrecs; 2402 int minnoderecs; 2403 2404 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 2405 XFS_INODES_PER_CHUNK_LOG; 2406 minleafrecs = mp->m_inobt_mnr[0]; 2407 minnoderecs = mp->m_inobt_mnr[1]; 2408 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 2409 for (level = 1; maxblocks > 1; level++) 2410 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 2411 mp->m_in_maxlevels = level; 2412 } 2413 2414 /* 2415 * Log specified fields for the ag hdr (inode section). The growth of the agi 2416 * structure over time requires that we interpret the buffer as two logical 2417 * regions delineated by the end of the unlinked list. This is due to the size 2418 * of the hash table and its location in the middle of the agi. 2419 * 2420 * For example, a request to log a field before agi_unlinked and a field after 2421 * agi_unlinked could cause us to log the entire hash table and use an excessive 2422 * amount of log space. To avoid this behavior, log the region up through 2423 * agi_unlinked in one call and the region after agi_unlinked through the end of 2424 * the structure in another. 2425 */ 2426 void 2427 xfs_ialloc_log_agi( 2428 xfs_trans_t *tp, /* transaction pointer */ 2429 xfs_buf_t *bp, /* allocation group header buffer */ 2430 int fields) /* bitmask of fields to log */ 2431 { 2432 int first; /* first byte number */ 2433 int last; /* last byte number */ 2434 static const short offsets[] = { /* field starting offsets */ 2435 /* keep in sync with bit definitions */ 2436 offsetof(xfs_agi_t, agi_magicnum), 2437 offsetof(xfs_agi_t, agi_versionnum), 2438 offsetof(xfs_agi_t, agi_seqno), 2439 offsetof(xfs_agi_t, agi_length), 2440 offsetof(xfs_agi_t, agi_count), 2441 offsetof(xfs_agi_t, agi_root), 2442 offsetof(xfs_agi_t, agi_level), 2443 offsetof(xfs_agi_t, agi_freecount), 2444 offsetof(xfs_agi_t, agi_newino), 2445 offsetof(xfs_agi_t, agi_dirino), 2446 offsetof(xfs_agi_t, agi_unlinked), 2447 offsetof(xfs_agi_t, agi_free_root), 2448 offsetof(xfs_agi_t, agi_free_level), 2449 sizeof(xfs_agi_t) 2450 }; 2451 #ifdef DEBUG 2452 xfs_agi_t *agi; /* allocation group header */ 2453 2454 agi = XFS_BUF_TO_AGI(bp); 2455 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2456 #endif 2457 2458 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 2459 2460 /* 2461 * Compute byte offsets for the first and last fields in the first 2462 * region and log the agi buffer. This only logs up through 2463 * agi_unlinked. 2464 */ 2465 if (fields & XFS_AGI_ALL_BITS_R1) { 2466 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2467 &first, &last); 2468 xfs_trans_log_buf(tp, bp, first, last); 2469 } 2470 2471 /* 2472 * Mask off the bits in the first region and calculate the first and 2473 * last field offsets for any bits in the second region. 2474 */ 2475 fields &= ~XFS_AGI_ALL_BITS_R1; 2476 if (fields) { 2477 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2478 &first, &last); 2479 xfs_trans_log_buf(tp, bp, first, last); 2480 } 2481 } 2482 2483 #ifdef DEBUG 2484 STATIC void 2485 xfs_check_agi_unlinked( 2486 struct xfs_agi *agi) 2487 { 2488 int i; 2489 2490 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2491 ASSERT(agi->agi_unlinked[i]); 2492 } 2493 #else 2494 #define xfs_check_agi_unlinked(agi) 2495 #endif 2496 2497 static bool 2498 xfs_agi_verify( 2499 struct xfs_buf *bp) 2500 { 2501 struct xfs_mount *mp = bp->b_target->bt_mount; 2502 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2503 2504 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2506 return false; 2507 if (!xfs_log_check_lsn(mp, 2508 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2509 return false; 2510 } 2511 2512 /* 2513 * Validate the magic number of the agi block. 2514 */ 2515 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2516 return false; 2517 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2518 return false; 2519 2520 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2521 return false; 2522 /* 2523 * during growfs operations, the perag is not fully initialised, 2524 * so we can't use it for any useful checking. growfs ensures we can't 2525 * use it by using uncached buffers that don't have the perag attached 2526 * so we can detect and avoid this problem. 2527 */ 2528 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2529 return false; 2530 2531 xfs_check_agi_unlinked(agi); 2532 return true; 2533 } 2534 2535 static void 2536 xfs_agi_read_verify( 2537 struct xfs_buf *bp) 2538 { 2539 struct xfs_mount *mp = bp->b_target->bt_mount; 2540 2541 if (xfs_sb_version_hascrc(&mp->m_sb) && 2542 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2543 xfs_buf_ioerror(bp, -EFSBADCRC); 2544 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2545 XFS_ERRTAG_IALLOC_READ_AGI, 2546 XFS_RANDOM_IALLOC_READ_AGI)) 2547 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2548 2549 if (bp->b_error) 2550 xfs_verifier_error(bp); 2551 } 2552 2553 static void 2554 xfs_agi_write_verify( 2555 struct xfs_buf *bp) 2556 { 2557 struct xfs_mount *mp = bp->b_target->bt_mount; 2558 struct xfs_buf_log_item *bip = bp->b_fspriv; 2559 2560 if (!xfs_agi_verify(bp)) { 2561 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2562 xfs_verifier_error(bp); 2563 return; 2564 } 2565 2566 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2567 return; 2568 2569 if (bip) 2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2572 } 2573 2574 const struct xfs_buf_ops xfs_agi_buf_ops = { 2575 .name = "xfs_agi", 2576 .verify_read = xfs_agi_read_verify, 2577 .verify_write = xfs_agi_write_verify, 2578 }; 2579 2580 /* 2581 * Read in the allocation group header (inode allocation section) 2582 */ 2583 int 2584 xfs_read_agi( 2585 struct xfs_mount *mp, /* file system mount structure */ 2586 struct xfs_trans *tp, /* transaction pointer */ 2587 xfs_agnumber_t agno, /* allocation group number */ 2588 struct xfs_buf **bpp) /* allocation group hdr buf */ 2589 { 2590 int error; 2591 2592 trace_xfs_read_agi(mp, agno); 2593 2594 ASSERT(agno != NULLAGNUMBER); 2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2598 if (error) 2599 return error; 2600 2601 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2602 return 0; 2603 } 2604 2605 int 2606 xfs_ialloc_read_agi( 2607 struct xfs_mount *mp, /* file system mount structure */ 2608 struct xfs_trans *tp, /* transaction pointer */ 2609 xfs_agnumber_t agno, /* allocation group number */ 2610 struct xfs_buf **bpp) /* allocation group hdr buf */ 2611 { 2612 struct xfs_agi *agi; /* allocation group header */ 2613 struct xfs_perag *pag; /* per allocation group data */ 2614 int error; 2615 2616 trace_xfs_ialloc_read_agi(mp, agno); 2617 2618 error = xfs_read_agi(mp, tp, agno, bpp); 2619 if (error) 2620 return error; 2621 2622 agi = XFS_BUF_TO_AGI(*bpp); 2623 pag = xfs_perag_get(mp, agno); 2624 if (!pag->pagi_init) { 2625 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2626 pag->pagi_count = be32_to_cpu(agi->agi_count); 2627 pag->pagi_init = 1; 2628 } 2629 2630 /* 2631 * It's possible for these to be out of sync if 2632 * we are in the middle of a forced shutdown. 2633 */ 2634 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2635 XFS_FORCED_SHUTDOWN(mp)); 2636 xfs_perag_put(pag); 2637 return 0; 2638 } 2639 2640 /* 2641 * Read in the agi to initialise the per-ag data in the mount structure 2642 */ 2643 int 2644 xfs_ialloc_pagi_init( 2645 xfs_mount_t *mp, /* file system mount structure */ 2646 xfs_trans_t *tp, /* transaction pointer */ 2647 xfs_agnumber_t agno) /* allocation group number */ 2648 { 2649 xfs_buf_t *bp = NULL; 2650 int error; 2651 2652 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2653 if (error) 2654 return error; 2655 if (bp) 2656 xfs_trans_brelse(tp, bp); 2657 return 0; 2658 } 2659