1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_buf_item.h" 18 #include "xfs_inode.h" 19 #include "xfs_inode_item.h" 20 #include "xfs_trace.h" 21 22 /* 23 * Deferred Operations in XFS 24 * 25 * Due to the way locking rules work in XFS, certain transactions (block 26 * mapping and unmapping, typically) have permanent reservations so that 27 * we can roll the transaction to adhere to AG locking order rules and 28 * to unlock buffers between metadata updates. Prior to rmap/reflink, 29 * the mapping code had a mechanism to perform these deferrals for 30 * extents that were going to be freed; this code makes that facility 31 * more generic. 32 * 33 * When adding the reverse mapping and reflink features, it became 34 * necessary to perform complex remapping multi-transactions to comply 35 * with AG locking order rules, and to be able to spread a single 36 * refcount update operation (an operation on an n-block extent can 37 * update as many as n records!) among multiple transactions. XFS can 38 * roll a transaction to facilitate this, but using this facility 39 * requires us to log "intent" items in case log recovery needs to 40 * redo the operation, and to log "done" items to indicate that redo 41 * is not necessary. 42 * 43 * Deferred work is tracked in xfs_defer_pending items. Each pending 44 * item tracks one type of deferred work. Incoming work items (which 45 * have not yet had an intent logged) are attached to a pending item 46 * on the dop_intake list, where they wait for the caller to finish 47 * the deferred operations. 48 * 49 * Finishing a set of deferred operations is an involved process. To 50 * start, we define "rolling a deferred-op transaction" as follows: 51 * 52 * > For each xfs_defer_pending item on the dop_intake list, 53 * - Sort the work items in AG order. XFS locking 54 * order rules require us to lock buffers in AG order. 55 * - Create a log intent item for that type. 56 * - Attach it to the pending item. 57 * - Move the pending item from the dop_intake list to the 58 * dop_pending list. 59 * > Roll the transaction. 60 * 61 * NOTE: To avoid exceeding the transaction reservation, we limit the 62 * number of items that we attach to a given xfs_defer_pending. 63 * 64 * The actual finishing process looks like this: 65 * 66 * > For each xfs_defer_pending in the dop_pending list, 67 * - Roll the deferred-op transaction as above. 68 * - Create a log done item for that type, and attach it to the 69 * log intent item. 70 * - For each work item attached to the log intent item, 71 * * Perform the described action. 72 * * Attach the work item to the log done item. 73 * * If the result of doing the work was -EAGAIN, ->finish work 74 * wants a new transaction. See the "Requesting a Fresh 75 * Transaction while Finishing Deferred Work" section below for 76 * details. 77 * 78 * The key here is that we must log an intent item for all pending 79 * work items every time we roll the transaction, and that we must log 80 * a done item as soon as the work is completed. With this mechanism 81 * we can perform complex remapping operations, chaining intent items 82 * as needed. 83 * 84 * Requesting a Fresh Transaction while Finishing Deferred Work 85 * 86 * If ->finish_item decides that it needs a fresh transaction to 87 * finish the work, it must ask its caller (xfs_defer_finish) for a 88 * continuation. The most likely cause of this circumstance are the 89 * refcount adjust functions deciding that they've logged enough items 90 * to be at risk of exceeding the transaction reservation. 91 * 92 * To get a fresh transaction, we want to log the existing log done 93 * item to prevent the log intent item from replaying, immediately log 94 * a new log intent item with the unfinished work items, roll the 95 * transaction, and re-call ->finish_item wherever it left off. The 96 * log done item and the new log intent item must be in the same 97 * transaction or atomicity cannot be guaranteed; defer_finish ensures 98 * that this happens. 99 * 100 * This requires some coordination between ->finish_item and 101 * defer_finish. Upon deciding to request a new transaction, 102 * ->finish_item should update the current work item to reflect the 103 * unfinished work. Next, it should reset the log done item's list 104 * count to the number of items finished, and return -EAGAIN. 105 * defer_finish sees the -EAGAIN, logs the new log intent item 106 * with the remaining work items, and leaves the xfs_defer_pending 107 * item at the head of the dop_work queue. Then it rolls the 108 * transaction and picks up processing where it left off. It is 109 * required that ->finish_item must be careful to leave enough 110 * transaction reservation to fit the new log intent item. 111 * 112 * This is an example of remapping the extent (E, E+B) into file X at 113 * offset A and dealing with the extent (C, C+B) already being mapped 114 * there: 115 * +-------------------------------------------------+ 116 * | Unmap file X startblock C offset A length B | t0 117 * | Intent to reduce refcount for extent (C, B) | 118 * | Intent to remove rmap (X, C, A, B) | 119 * | Intent to free extent (D, 1) (bmbt block) | 120 * | Intent to map (X, A, B) at startblock E | 121 * +-------------------------------------------------+ 122 * | Map file X startblock E offset A length B | t1 123 * | Done mapping (X, E, A, B) | 124 * | Intent to increase refcount for extent (E, B) | 125 * | Intent to add rmap (X, E, A, B) | 126 * +-------------------------------------------------+ 127 * | Reduce refcount for extent (C, B) | t2 128 * | Done reducing refcount for extent (C, 9) | 129 * | Intent to reduce refcount for extent (C+9, B-9) | 130 * | (ran out of space after 9 refcount updates) | 131 * +-------------------------------------------------+ 132 * | Reduce refcount for extent (C+9, B+9) | t3 133 * | Done reducing refcount for extent (C+9, B-9) | 134 * | Increase refcount for extent (E, B) | 135 * | Done increasing refcount for extent (E, B) | 136 * | Intent to free extent (C, B) | 137 * | Intent to free extent (F, 1) (refcountbt block) | 138 * | Intent to remove rmap (F, 1, REFC) | 139 * +-------------------------------------------------+ 140 * | Remove rmap (X, C, A, B) | t4 141 * | Done removing rmap (X, C, A, B) | 142 * | Add rmap (X, E, A, B) | 143 * | Done adding rmap (X, E, A, B) | 144 * | Remove rmap (F, 1, REFC) | 145 * | Done removing rmap (F, 1, REFC) | 146 * +-------------------------------------------------+ 147 * | Free extent (C, B) | t5 148 * | Done freeing extent (C, B) | 149 * | Free extent (D, 1) | 150 * | Done freeing extent (D, 1) | 151 * | Free extent (F, 1) | 152 * | Done freeing extent (F, 1) | 153 * +-------------------------------------------------+ 154 * 155 * If we should crash before t2 commits, log recovery replays 156 * the following intent items: 157 * 158 * - Intent to reduce refcount for extent (C, B) 159 * - Intent to remove rmap (X, C, A, B) 160 * - Intent to free extent (D, 1) (bmbt block) 161 * - Intent to increase refcount for extent (E, B) 162 * - Intent to add rmap (X, E, A, B) 163 * 164 * In the process of recovering, it should also generate and take care 165 * of these intent items: 166 * 167 * - Intent to free extent (C, B) 168 * - Intent to free extent (F, 1) (refcountbt block) 169 * - Intent to remove rmap (F, 1, REFC) 170 * 171 * Note that the continuation requested between t2 and t3 is likely to 172 * reoccur. 173 */ 174 175 static const struct xfs_defer_op_type *defer_op_types[] = { 176 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, 177 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, 178 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, 179 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, 180 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, 181 }; 182 183 /* 184 * For each pending item in the intake list, log its intent item and the 185 * associated extents, then add the entire intake list to the end of 186 * the pending list. 187 */ 188 STATIC void 189 xfs_defer_create_intents( 190 struct xfs_trans *tp) 191 { 192 struct list_head *li; 193 struct xfs_defer_pending *dfp; 194 const struct xfs_defer_op_type *ops; 195 196 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { 197 ops = defer_op_types[dfp->dfp_type]; 198 dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count); 199 trace_xfs_defer_create_intent(tp->t_mountp, dfp); 200 list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items); 201 list_for_each(li, &dfp->dfp_work) 202 ops->log_item(tp, dfp->dfp_intent, li); 203 } 204 } 205 206 /* Abort all the intents that were committed. */ 207 STATIC void 208 xfs_defer_trans_abort( 209 struct xfs_trans *tp, 210 struct list_head *dop_pending) 211 { 212 struct xfs_defer_pending *dfp; 213 const struct xfs_defer_op_type *ops; 214 215 trace_xfs_defer_trans_abort(tp, _RET_IP_); 216 217 /* Abort intent items that don't have a done item. */ 218 list_for_each_entry(dfp, dop_pending, dfp_list) { 219 ops = defer_op_types[dfp->dfp_type]; 220 trace_xfs_defer_pending_abort(tp->t_mountp, dfp); 221 if (dfp->dfp_intent && !dfp->dfp_done) { 222 ops->abort_intent(dfp->dfp_intent); 223 dfp->dfp_intent = NULL; 224 } 225 } 226 } 227 228 /* Roll a transaction so we can do some deferred op processing. */ 229 STATIC int 230 xfs_defer_trans_roll( 231 struct xfs_trans **tpp) 232 { 233 struct xfs_trans *tp = *tpp; 234 struct xfs_buf_log_item *bli; 235 struct xfs_inode_log_item *ili; 236 struct xfs_log_item *lip; 237 struct xfs_buf *bplist[XFS_DEFER_OPS_NR_BUFS]; 238 struct xfs_inode *iplist[XFS_DEFER_OPS_NR_INODES]; 239 int bpcount = 0, ipcount = 0; 240 int i; 241 int error; 242 243 list_for_each_entry(lip, &tp->t_items, li_trans) { 244 switch (lip->li_type) { 245 case XFS_LI_BUF: 246 bli = container_of(lip, struct xfs_buf_log_item, 247 bli_item); 248 if (bli->bli_flags & XFS_BLI_HOLD) { 249 if (bpcount >= XFS_DEFER_OPS_NR_BUFS) { 250 ASSERT(0); 251 return -EFSCORRUPTED; 252 } 253 xfs_trans_dirty_buf(tp, bli->bli_buf); 254 bplist[bpcount++] = bli->bli_buf; 255 } 256 break; 257 case XFS_LI_INODE: 258 ili = container_of(lip, struct xfs_inode_log_item, 259 ili_item); 260 if (ili->ili_lock_flags == 0) { 261 if (ipcount >= XFS_DEFER_OPS_NR_INODES) { 262 ASSERT(0); 263 return -EFSCORRUPTED; 264 } 265 xfs_trans_log_inode(tp, ili->ili_inode, 266 XFS_ILOG_CORE); 267 iplist[ipcount++] = ili->ili_inode; 268 } 269 break; 270 default: 271 break; 272 } 273 } 274 275 trace_xfs_defer_trans_roll(tp, _RET_IP_); 276 277 /* Roll the transaction. */ 278 error = xfs_trans_roll(tpp); 279 tp = *tpp; 280 if (error) { 281 trace_xfs_defer_trans_roll_error(tp, error); 282 return error; 283 } 284 285 /* Rejoin the joined inodes. */ 286 for (i = 0; i < ipcount; i++) 287 xfs_trans_ijoin(tp, iplist[i], 0); 288 289 /* Rejoin the buffers and dirty them so the log moves forward. */ 290 for (i = 0; i < bpcount; i++) { 291 xfs_trans_bjoin(tp, bplist[i]); 292 xfs_trans_bhold(tp, bplist[i]); 293 } 294 295 return error; 296 } 297 298 /* 299 * Reset an already used dfops after finish. 300 */ 301 static void 302 xfs_defer_reset( 303 struct xfs_trans *tp) 304 { 305 ASSERT(list_empty(&tp->t_dfops)); 306 307 /* 308 * Low mode state transfers across transaction rolls to mirror dfops 309 * lifetime. Clear it now that dfops is reset. 310 */ 311 tp->t_flags &= ~XFS_TRANS_LOWMODE; 312 } 313 314 /* 315 * Free up any items left in the list. 316 */ 317 static void 318 xfs_defer_cancel_list( 319 struct xfs_mount *mp, 320 struct list_head *dop_list) 321 { 322 struct xfs_defer_pending *dfp; 323 struct xfs_defer_pending *pli; 324 struct list_head *pwi; 325 struct list_head *n; 326 const struct xfs_defer_op_type *ops; 327 328 /* 329 * Free the pending items. Caller should already have arranged 330 * for the intent items to be released. 331 */ 332 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) { 333 ops = defer_op_types[dfp->dfp_type]; 334 trace_xfs_defer_cancel_list(mp, dfp); 335 list_del(&dfp->dfp_list); 336 list_for_each_safe(pwi, n, &dfp->dfp_work) { 337 list_del(pwi); 338 dfp->dfp_count--; 339 ops->cancel_item(pwi); 340 } 341 ASSERT(dfp->dfp_count == 0); 342 kmem_free(dfp); 343 } 344 } 345 346 /* 347 * Finish all the pending work. This involves logging intent items for 348 * any work items that wandered in since the last transaction roll (if 349 * one has even happened), rolling the transaction, and finishing the 350 * work items in the first item on the logged-and-pending list. 351 * 352 * If an inode is provided, relog it to the new transaction. 353 */ 354 int 355 xfs_defer_finish_noroll( 356 struct xfs_trans **tp) 357 { 358 struct xfs_defer_pending *dfp; 359 struct list_head *li; 360 struct list_head *n; 361 void *state; 362 int error = 0; 363 const struct xfs_defer_op_type *ops; 364 LIST_HEAD(dop_pending); 365 366 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 367 368 trace_xfs_defer_finish(*tp, _RET_IP_); 369 370 /* Until we run out of pending work to finish... */ 371 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { 372 /* log intents and pull in intake items */ 373 xfs_defer_create_intents(*tp); 374 list_splice_tail_init(&(*tp)->t_dfops, &dop_pending); 375 376 /* 377 * Roll the transaction. 378 */ 379 error = xfs_defer_trans_roll(tp); 380 if (error) 381 goto out; 382 383 /* Log an intent-done item for the first pending item. */ 384 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, 385 dfp_list); 386 ops = defer_op_types[dfp->dfp_type]; 387 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp); 388 dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent, 389 dfp->dfp_count); 390 391 /* Finish the work items. */ 392 state = NULL; 393 list_for_each_safe(li, n, &dfp->dfp_work) { 394 list_del(li); 395 dfp->dfp_count--; 396 error = ops->finish_item(*tp, li, dfp->dfp_done, 397 &state); 398 if (error == -EAGAIN) { 399 /* 400 * Caller wants a fresh transaction; 401 * put the work item back on the list 402 * and jump out. 403 */ 404 list_add(li, &dfp->dfp_work); 405 dfp->dfp_count++; 406 break; 407 } else if (error) { 408 /* 409 * Clean up after ourselves and jump out. 410 * xfs_defer_cancel will take care of freeing 411 * all these lists and stuff. 412 */ 413 if (ops->finish_cleanup) 414 ops->finish_cleanup(*tp, state, error); 415 goto out; 416 } 417 } 418 if (error == -EAGAIN) { 419 /* 420 * Caller wants a fresh transaction, so log a 421 * new log intent item to replace the old one 422 * and roll the transaction. See "Requesting 423 * a Fresh Transaction while Finishing 424 * Deferred Work" above. 425 */ 426 dfp->dfp_intent = ops->create_intent(*tp, 427 dfp->dfp_count); 428 dfp->dfp_done = NULL; 429 list_for_each(li, &dfp->dfp_work) 430 ops->log_item(*tp, dfp->dfp_intent, li); 431 } else { 432 /* Done with the dfp, free it. */ 433 list_del(&dfp->dfp_list); 434 kmem_free(dfp); 435 } 436 437 if (ops->finish_cleanup) 438 ops->finish_cleanup(*tp, state, error); 439 } 440 441 out: 442 if (error) { 443 xfs_defer_trans_abort(*tp, &dop_pending); 444 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); 445 trace_xfs_defer_finish_error(*tp, error); 446 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); 447 xfs_defer_cancel(*tp); 448 return error; 449 } 450 451 trace_xfs_defer_finish_done(*tp, _RET_IP_); 452 return 0; 453 } 454 455 int 456 xfs_defer_finish( 457 struct xfs_trans **tp) 458 { 459 int error; 460 461 /* 462 * Finish and roll the transaction once more to avoid returning to the 463 * caller with a dirty transaction. 464 */ 465 error = xfs_defer_finish_noroll(tp); 466 if (error) 467 return error; 468 if ((*tp)->t_flags & XFS_TRANS_DIRTY) { 469 error = xfs_defer_trans_roll(tp); 470 if (error) { 471 xfs_force_shutdown((*tp)->t_mountp, 472 SHUTDOWN_CORRUPT_INCORE); 473 return error; 474 } 475 } 476 xfs_defer_reset(*tp); 477 return 0; 478 } 479 480 void 481 xfs_defer_cancel( 482 struct xfs_trans *tp) 483 { 484 struct xfs_mount *mp = tp->t_mountp; 485 486 trace_xfs_defer_cancel(tp, _RET_IP_); 487 xfs_defer_cancel_list(mp, &tp->t_dfops); 488 } 489 490 /* Add an item for later deferred processing. */ 491 void 492 xfs_defer_add( 493 struct xfs_trans *tp, 494 enum xfs_defer_ops_type type, 495 struct list_head *li) 496 { 497 struct xfs_defer_pending *dfp = NULL; 498 const struct xfs_defer_op_type *ops; 499 500 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 501 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); 502 503 /* 504 * Add the item to a pending item at the end of the intake list. 505 * If the last pending item has the same type, reuse it. Else, 506 * create a new pending item at the end of the intake list. 507 */ 508 if (!list_empty(&tp->t_dfops)) { 509 dfp = list_last_entry(&tp->t_dfops, 510 struct xfs_defer_pending, dfp_list); 511 ops = defer_op_types[dfp->dfp_type]; 512 if (dfp->dfp_type != type || 513 (ops->max_items && dfp->dfp_count >= ops->max_items)) 514 dfp = NULL; 515 } 516 if (!dfp) { 517 dfp = kmem_alloc(sizeof(struct xfs_defer_pending), 518 KM_SLEEP | KM_NOFS); 519 dfp->dfp_type = type; 520 dfp->dfp_intent = NULL; 521 dfp->dfp_done = NULL; 522 dfp->dfp_count = 0; 523 INIT_LIST_HEAD(&dfp->dfp_work); 524 list_add_tail(&dfp->dfp_list, &tp->t_dfops); 525 } 526 527 list_add_tail(li, &dfp->dfp_work); 528 dfp->dfp_count++; 529 } 530 531 /* 532 * Move deferred ops from one transaction to another and reset the source to 533 * initial state. This is primarily used to carry state forward across 534 * transaction rolls with pending dfops. 535 */ 536 void 537 xfs_defer_move( 538 struct xfs_trans *dtp, 539 struct xfs_trans *stp) 540 { 541 list_splice_init(&stp->t_dfops, &dtp->t_dfops); 542 543 /* 544 * Low free space mode was historically controlled by a dfops field. 545 * This meant that low mode state potentially carried across multiple 546 * transaction rolls. Transfer low mode on a dfops move to preserve 547 * that behavior. 548 */ 549 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); 550 551 xfs_defer_reset(stp); 552 } 553