1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_buf_item.h" 18 #include "xfs_inode.h" 19 #include "xfs_inode_item.h" 20 #include "xfs_trace.h" 21 22 /* 23 * Deferred Operations in XFS 24 * 25 * Due to the way locking rules work in XFS, certain transactions (block 26 * mapping and unmapping, typically) have permanent reservations so that 27 * we can roll the transaction to adhere to AG locking order rules and 28 * to unlock buffers between metadata updates. Prior to rmap/reflink, 29 * the mapping code had a mechanism to perform these deferrals for 30 * extents that were going to be freed; this code makes that facility 31 * more generic. 32 * 33 * When adding the reverse mapping and reflink features, it became 34 * necessary to perform complex remapping multi-transactions to comply 35 * with AG locking order rules, and to be able to spread a single 36 * refcount update operation (an operation on an n-block extent can 37 * update as many as n records!) among multiple transactions. XFS can 38 * roll a transaction to facilitate this, but using this facility 39 * requires us to log "intent" items in case log recovery needs to 40 * redo the operation, and to log "done" items to indicate that redo 41 * is not necessary. 42 * 43 * Deferred work is tracked in xfs_defer_pending items. Each pending 44 * item tracks one type of deferred work. Incoming work items (which 45 * have not yet had an intent logged) are attached to a pending item 46 * on the dop_intake list, where they wait for the caller to finish 47 * the deferred operations. 48 * 49 * Finishing a set of deferred operations is an involved process. To 50 * start, we define "rolling a deferred-op transaction" as follows: 51 * 52 * > For each xfs_defer_pending item on the dop_intake list, 53 * - Sort the work items in AG order. XFS locking 54 * order rules require us to lock buffers in AG order. 55 * - Create a log intent item for that type. 56 * - Attach it to the pending item. 57 * - Move the pending item from the dop_intake list to the 58 * dop_pending list. 59 * > Roll the transaction. 60 * 61 * NOTE: To avoid exceeding the transaction reservation, we limit the 62 * number of items that we attach to a given xfs_defer_pending. 63 * 64 * The actual finishing process looks like this: 65 * 66 * > For each xfs_defer_pending in the dop_pending list, 67 * - Roll the deferred-op transaction as above. 68 * - Create a log done item for that type, and attach it to the 69 * log intent item. 70 * - For each work item attached to the log intent item, 71 * * Perform the described action. 72 * * Attach the work item to the log done item. 73 * * If the result of doing the work was -EAGAIN, ->finish work 74 * wants a new transaction. See the "Requesting a Fresh 75 * Transaction while Finishing Deferred Work" section below for 76 * details. 77 * 78 * The key here is that we must log an intent item for all pending 79 * work items every time we roll the transaction, and that we must log 80 * a done item as soon as the work is completed. With this mechanism 81 * we can perform complex remapping operations, chaining intent items 82 * as needed. 83 * 84 * Requesting a Fresh Transaction while Finishing Deferred Work 85 * 86 * If ->finish_item decides that it needs a fresh transaction to 87 * finish the work, it must ask its caller (xfs_defer_finish) for a 88 * continuation. The most likely cause of this circumstance are the 89 * refcount adjust functions deciding that they've logged enough items 90 * to be at risk of exceeding the transaction reservation. 91 * 92 * To get a fresh transaction, we want to log the existing log done 93 * item to prevent the log intent item from replaying, immediately log 94 * a new log intent item with the unfinished work items, roll the 95 * transaction, and re-call ->finish_item wherever it left off. The 96 * log done item and the new log intent item must be in the same 97 * transaction or atomicity cannot be guaranteed; defer_finish ensures 98 * that this happens. 99 * 100 * This requires some coordination between ->finish_item and 101 * defer_finish. Upon deciding to request a new transaction, 102 * ->finish_item should update the current work item to reflect the 103 * unfinished work. Next, it should reset the log done item's list 104 * count to the number of items finished, and return -EAGAIN. 105 * defer_finish sees the -EAGAIN, logs the new log intent item 106 * with the remaining work items, and leaves the xfs_defer_pending 107 * item at the head of the dop_work queue. Then it rolls the 108 * transaction and picks up processing where it left off. It is 109 * required that ->finish_item must be careful to leave enough 110 * transaction reservation to fit the new log intent item. 111 * 112 * This is an example of remapping the extent (E, E+B) into file X at 113 * offset A and dealing with the extent (C, C+B) already being mapped 114 * there: 115 * +-------------------------------------------------+ 116 * | Unmap file X startblock C offset A length B | t0 117 * | Intent to reduce refcount for extent (C, B) | 118 * | Intent to remove rmap (X, C, A, B) | 119 * | Intent to free extent (D, 1) (bmbt block) | 120 * | Intent to map (X, A, B) at startblock E | 121 * +-------------------------------------------------+ 122 * | Map file X startblock E offset A length B | t1 123 * | Done mapping (X, E, A, B) | 124 * | Intent to increase refcount for extent (E, B) | 125 * | Intent to add rmap (X, E, A, B) | 126 * +-------------------------------------------------+ 127 * | Reduce refcount for extent (C, B) | t2 128 * | Done reducing refcount for extent (C, 9) | 129 * | Intent to reduce refcount for extent (C+9, B-9) | 130 * | (ran out of space after 9 refcount updates) | 131 * +-------------------------------------------------+ 132 * | Reduce refcount for extent (C+9, B+9) | t3 133 * | Done reducing refcount for extent (C+9, B-9) | 134 * | Increase refcount for extent (E, B) | 135 * | Done increasing refcount for extent (E, B) | 136 * | Intent to free extent (C, B) | 137 * | Intent to free extent (F, 1) (refcountbt block) | 138 * | Intent to remove rmap (F, 1, REFC) | 139 * +-------------------------------------------------+ 140 * | Remove rmap (X, C, A, B) | t4 141 * | Done removing rmap (X, C, A, B) | 142 * | Add rmap (X, E, A, B) | 143 * | Done adding rmap (X, E, A, B) | 144 * | Remove rmap (F, 1, REFC) | 145 * | Done removing rmap (F, 1, REFC) | 146 * +-------------------------------------------------+ 147 * | Free extent (C, B) | t5 148 * | Done freeing extent (C, B) | 149 * | Free extent (D, 1) | 150 * | Done freeing extent (D, 1) | 151 * | Free extent (F, 1) | 152 * | Done freeing extent (F, 1) | 153 * +-------------------------------------------------+ 154 * 155 * If we should crash before t2 commits, log recovery replays 156 * the following intent items: 157 * 158 * - Intent to reduce refcount for extent (C, B) 159 * - Intent to remove rmap (X, C, A, B) 160 * - Intent to free extent (D, 1) (bmbt block) 161 * - Intent to increase refcount for extent (E, B) 162 * - Intent to add rmap (X, E, A, B) 163 * 164 * In the process of recovering, it should also generate and take care 165 * of these intent items: 166 * 167 * - Intent to free extent (C, B) 168 * - Intent to free extent (F, 1) (refcountbt block) 169 * - Intent to remove rmap (F, 1, REFC) 170 * 171 * Note that the continuation requested between t2 and t3 is likely to 172 * reoccur. 173 */ 174 175 static const struct xfs_defer_op_type *defer_op_types[] = { 176 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, 177 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, 178 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, 179 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, 180 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, 181 }; 182 183 /* 184 * For each pending item in the intake list, log its intent item and the 185 * associated extents, then add the entire intake list to the end of 186 * the pending list. 187 */ 188 STATIC void 189 xfs_defer_create_intents( 190 struct xfs_trans *tp) 191 { 192 struct list_head *li; 193 struct xfs_defer_pending *dfp; 194 const struct xfs_defer_op_type *ops; 195 196 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { 197 ops = defer_op_types[dfp->dfp_type]; 198 dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count); 199 trace_xfs_defer_create_intent(tp->t_mountp, dfp); 200 list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items); 201 list_for_each(li, &dfp->dfp_work) 202 ops->log_item(tp, dfp->dfp_intent, li); 203 } 204 } 205 206 /* Abort all the intents that were committed. */ 207 STATIC void 208 xfs_defer_trans_abort( 209 struct xfs_trans *tp, 210 struct list_head *dop_pending) 211 { 212 struct xfs_defer_pending *dfp; 213 const struct xfs_defer_op_type *ops; 214 215 trace_xfs_defer_trans_abort(tp, _RET_IP_); 216 217 /* Abort intent items that don't have a done item. */ 218 list_for_each_entry(dfp, dop_pending, dfp_list) { 219 ops = defer_op_types[dfp->dfp_type]; 220 trace_xfs_defer_pending_abort(tp->t_mountp, dfp); 221 if (dfp->dfp_intent && !dfp->dfp_done) { 222 ops->abort_intent(dfp->dfp_intent); 223 dfp->dfp_intent = NULL; 224 } 225 } 226 } 227 228 /* Roll a transaction so we can do some deferred op processing. */ 229 STATIC int 230 xfs_defer_trans_roll( 231 struct xfs_trans **tpp) 232 { 233 struct xfs_trans *tp = *tpp; 234 struct xfs_buf_log_item *bli; 235 struct xfs_inode_log_item *ili; 236 struct xfs_log_item *lip; 237 struct xfs_buf *bplist[XFS_DEFER_OPS_NR_BUFS]; 238 struct xfs_inode *iplist[XFS_DEFER_OPS_NR_INODES]; 239 int bpcount = 0, ipcount = 0; 240 int i; 241 int error; 242 243 list_for_each_entry(lip, &tp->t_items, li_trans) { 244 switch (lip->li_type) { 245 case XFS_LI_BUF: 246 bli = container_of(lip, struct xfs_buf_log_item, 247 bli_item); 248 if (bli->bli_flags & XFS_BLI_HOLD) { 249 if (bpcount >= XFS_DEFER_OPS_NR_BUFS) { 250 ASSERT(0); 251 return -EFSCORRUPTED; 252 } 253 xfs_trans_dirty_buf(tp, bli->bli_buf); 254 bplist[bpcount++] = bli->bli_buf; 255 } 256 break; 257 case XFS_LI_INODE: 258 ili = container_of(lip, struct xfs_inode_log_item, 259 ili_item); 260 if (ili->ili_lock_flags == 0) { 261 if (ipcount >= XFS_DEFER_OPS_NR_INODES) { 262 ASSERT(0); 263 return -EFSCORRUPTED; 264 } 265 xfs_trans_log_inode(tp, ili->ili_inode, 266 XFS_ILOG_CORE); 267 iplist[ipcount++] = ili->ili_inode; 268 } 269 break; 270 default: 271 break; 272 } 273 } 274 275 trace_xfs_defer_trans_roll(tp, _RET_IP_); 276 277 /* 278 * Roll the transaction. Rolling always given a new transaction (even 279 * if committing the old one fails!) to hand back to the caller, so we 280 * join the held resources to the new transaction so that we always 281 * return with the held resources joined to @tpp, no matter what 282 * happened. 283 */ 284 error = xfs_trans_roll(tpp); 285 tp = *tpp; 286 287 /* Rejoin the joined inodes. */ 288 for (i = 0; i < ipcount; i++) 289 xfs_trans_ijoin(tp, iplist[i], 0); 290 291 /* Rejoin the buffers and dirty them so the log moves forward. */ 292 for (i = 0; i < bpcount; i++) { 293 xfs_trans_bjoin(tp, bplist[i]); 294 xfs_trans_bhold(tp, bplist[i]); 295 } 296 297 if (error) 298 trace_xfs_defer_trans_roll_error(tp, error); 299 return error; 300 } 301 302 /* 303 * Reset an already used dfops after finish. 304 */ 305 static void 306 xfs_defer_reset( 307 struct xfs_trans *tp) 308 { 309 ASSERT(list_empty(&tp->t_dfops)); 310 311 /* 312 * Low mode state transfers across transaction rolls to mirror dfops 313 * lifetime. Clear it now that dfops is reset. 314 */ 315 tp->t_flags &= ~XFS_TRANS_LOWMODE; 316 } 317 318 /* 319 * Free up any items left in the list. 320 */ 321 static void 322 xfs_defer_cancel_list( 323 struct xfs_mount *mp, 324 struct list_head *dop_list) 325 { 326 struct xfs_defer_pending *dfp; 327 struct xfs_defer_pending *pli; 328 struct list_head *pwi; 329 struct list_head *n; 330 const struct xfs_defer_op_type *ops; 331 332 /* 333 * Free the pending items. Caller should already have arranged 334 * for the intent items to be released. 335 */ 336 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) { 337 ops = defer_op_types[dfp->dfp_type]; 338 trace_xfs_defer_cancel_list(mp, dfp); 339 list_del(&dfp->dfp_list); 340 list_for_each_safe(pwi, n, &dfp->dfp_work) { 341 list_del(pwi); 342 dfp->dfp_count--; 343 ops->cancel_item(pwi); 344 } 345 ASSERT(dfp->dfp_count == 0); 346 kmem_free(dfp); 347 } 348 } 349 350 /* 351 * Finish all the pending work. This involves logging intent items for 352 * any work items that wandered in since the last transaction roll (if 353 * one has even happened), rolling the transaction, and finishing the 354 * work items in the first item on the logged-and-pending list. 355 * 356 * If an inode is provided, relog it to the new transaction. 357 */ 358 int 359 xfs_defer_finish_noroll( 360 struct xfs_trans **tp) 361 { 362 struct xfs_defer_pending *dfp; 363 struct list_head *li; 364 struct list_head *n; 365 void *state; 366 int error = 0; 367 const struct xfs_defer_op_type *ops; 368 LIST_HEAD(dop_pending); 369 370 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 371 372 trace_xfs_defer_finish(*tp, _RET_IP_); 373 374 /* Until we run out of pending work to finish... */ 375 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { 376 /* log intents and pull in intake items */ 377 xfs_defer_create_intents(*tp); 378 list_splice_tail_init(&(*tp)->t_dfops, &dop_pending); 379 380 /* 381 * Roll the transaction. 382 */ 383 error = xfs_defer_trans_roll(tp); 384 if (error) 385 goto out; 386 387 /* Log an intent-done item for the first pending item. */ 388 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, 389 dfp_list); 390 ops = defer_op_types[dfp->dfp_type]; 391 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp); 392 dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent, 393 dfp->dfp_count); 394 395 /* Finish the work items. */ 396 state = NULL; 397 list_for_each_safe(li, n, &dfp->dfp_work) { 398 list_del(li); 399 dfp->dfp_count--; 400 error = ops->finish_item(*tp, li, dfp->dfp_done, 401 &state); 402 if (error == -EAGAIN) { 403 /* 404 * Caller wants a fresh transaction; 405 * put the work item back on the list 406 * and jump out. 407 */ 408 list_add(li, &dfp->dfp_work); 409 dfp->dfp_count++; 410 break; 411 } else if (error) { 412 /* 413 * Clean up after ourselves and jump out. 414 * xfs_defer_cancel will take care of freeing 415 * all these lists and stuff. 416 */ 417 if (ops->finish_cleanup) 418 ops->finish_cleanup(*tp, state, error); 419 goto out; 420 } 421 } 422 if (error == -EAGAIN) { 423 /* 424 * Caller wants a fresh transaction, so log a 425 * new log intent item to replace the old one 426 * and roll the transaction. See "Requesting 427 * a Fresh Transaction while Finishing 428 * Deferred Work" above. 429 */ 430 dfp->dfp_intent = ops->create_intent(*tp, 431 dfp->dfp_count); 432 dfp->dfp_done = NULL; 433 list_for_each(li, &dfp->dfp_work) 434 ops->log_item(*tp, dfp->dfp_intent, li); 435 } else { 436 /* Done with the dfp, free it. */ 437 list_del(&dfp->dfp_list); 438 kmem_free(dfp); 439 } 440 441 if (ops->finish_cleanup) 442 ops->finish_cleanup(*tp, state, error); 443 } 444 445 out: 446 if (error) { 447 xfs_defer_trans_abort(*tp, &dop_pending); 448 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); 449 trace_xfs_defer_finish_error(*tp, error); 450 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); 451 xfs_defer_cancel(*tp); 452 return error; 453 } 454 455 trace_xfs_defer_finish_done(*tp, _RET_IP_); 456 return 0; 457 } 458 459 int 460 xfs_defer_finish( 461 struct xfs_trans **tp) 462 { 463 int error; 464 465 /* 466 * Finish and roll the transaction once more to avoid returning to the 467 * caller with a dirty transaction. 468 */ 469 error = xfs_defer_finish_noroll(tp); 470 if (error) 471 return error; 472 if ((*tp)->t_flags & XFS_TRANS_DIRTY) { 473 error = xfs_defer_trans_roll(tp); 474 if (error) { 475 xfs_force_shutdown((*tp)->t_mountp, 476 SHUTDOWN_CORRUPT_INCORE); 477 return error; 478 } 479 } 480 xfs_defer_reset(*tp); 481 return 0; 482 } 483 484 void 485 xfs_defer_cancel( 486 struct xfs_trans *tp) 487 { 488 struct xfs_mount *mp = tp->t_mountp; 489 490 trace_xfs_defer_cancel(tp, _RET_IP_); 491 xfs_defer_cancel_list(mp, &tp->t_dfops); 492 } 493 494 /* Add an item for later deferred processing. */ 495 void 496 xfs_defer_add( 497 struct xfs_trans *tp, 498 enum xfs_defer_ops_type type, 499 struct list_head *li) 500 { 501 struct xfs_defer_pending *dfp = NULL; 502 const struct xfs_defer_op_type *ops; 503 504 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 505 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); 506 507 /* 508 * Add the item to a pending item at the end of the intake list. 509 * If the last pending item has the same type, reuse it. Else, 510 * create a new pending item at the end of the intake list. 511 */ 512 if (!list_empty(&tp->t_dfops)) { 513 dfp = list_last_entry(&tp->t_dfops, 514 struct xfs_defer_pending, dfp_list); 515 ops = defer_op_types[dfp->dfp_type]; 516 if (dfp->dfp_type != type || 517 (ops->max_items && dfp->dfp_count >= ops->max_items)) 518 dfp = NULL; 519 } 520 if (!dfp) { 521 dfp = kmem_alloc(sizeof(struct xfs_defer_pending), 522 KM_SLEEP | KM_NOFS); 523 dfp->dfp_type = type; 524 dfp->dfp_intent = NULL; 525 dfp->dfp_done = NULL; 526 dfp->dfp_count = 0; 527 INIT_LIST_HEAD(&dfp->dfp_work); 528 list_add_tail(&dfp->dfp_list, &tp->t_dfops); 529 } 530 531 list_add_tail(li, &dfp->dfp_work); 532 dfp->dfp_count++; 533 } 534 535 /* 536 * Move deferred ops from one transaction to another and reset the source to 537 * initial state. This is primarily used to carry state forward across 538 * transaction rolls with pending dfops. 539 */ 540 void 541 xfs_defer_move( 542 struct xfs_trans *dtp, 543 struct xfs_trans *stp) 544 { 545 list_splice_init(&stp->t_dfops, &dtp->t_dfops); 546 547 /* 548 * Low free space mode was historically controlled by a dfops field. 549 * This meant that low mode state potentially carried across multiple 550 * transaction rolls. Transfer low mode on a dfops move to preserve 551 * that behavior. 552 */ 553 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); 554 555 xfs_defer_reset(stp); 556 } 557