xref: /linux/fs/xfs/libxfs/xfs_defer.c (revision 011f129fee4bd064a3db30ca1a0139548a619482)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_log.h"
21 #include "xfs_rmap.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap.h"
24 #include "xfs_alloc.h"
25 #include "xfs_buf.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_attr.h"
29 #include "xfs_trans_priv.h"
30 
31 static struct kmem_cache	*xfs_defer_pending_cache;
32 
33 /*
34  * Deferred Operations in XFS
35  *
36  * Due to the way locking rules work in XFS, certain transactions (block
37  * mapping and unmapping, typically) have permanent reservations so that
38  * we can roll the transaction to adhere to AG locking order rules and
39  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
40  * the mapping code had a mechanism to perform these deferrals for
41  * extents that were going to be freed; this code makes that facility
42  * more generic.
43  *
44  * When adding the reverse mapping and reflink features, it became
45  * necessary to perform complex remapping multi-transactions to comply
46  * with AG locking order rules, and to be able to spread a single
47  * refcount update operation (an operation on an n-block extent can
48  * update as many as n records!) among multiple transactions.  XFS can
49  * roll a transaction to facilitate this, but using this facility
50  * requires us to log "intent" items in case log recovery needs to
51  * redo the operation, and to log "done" items to indicate that redo
52  * is not necessary.
53  *
54  * Deferred work is tracked in xfs_defer_pending items.  Each pending
55  * item tracks one type of deferred work.  Incoming work items (which
56  * have not yet had an intent logged) are attached to a pending item
57  * on the dop_intake list, where they wait for the caller to finish
58  * the deferred operations.
59  *
60  * Finishing a set of deferred operations is an involved process.  To
61  * start, we define "rolling a deferred-op transaction" as follows:
62  *
63  * > For each xfs_defer_pending item on the dop_intake list,
64  *   - Sort the work items in AG order.  XFS locking
65  *     order rules require us to lock buffers in AG order.
66  *   - Create a log intent item for that type.
67  *   - Attach it to the pending item.
68  *   - Move the pending item from the dop_intake list to the
69  *     dop_pending list.
70  * > Roll the transaction.
71  *
72  * NOTE: To avoid exceeding the transaction reservation, we limit the
73  * number of items that we attach to a given xfs_defer_pending.
74  *
75  * The actual finishing process looks like this:
76  *
77  * > For each xfs_defer_pending in the dop_pending list,
78  *   - Roll the deferred-op transaction as above.
79  *   - Create a log done item for that type, and attach it to the
80  *     log intent item.
81  *   - For each work item attached to the log intent item,
82  *     * Perform the described action.
83  *     * Attach the work item to the log done item.
84  *     * If the result of doing the work was -EAGAIN, ->finish work
85  *       wants a new transaction.  See the "Requesting a Fresh
86  *       Transaction while Finishing Deferred Work" section below for
87  *       details.
88  *
89  * The key here is that we must log an intent item for all pending
90  * work items every time we roll the transaction, and that we must log
91  * a done item as soon as the work is completed.  With this mechanism
92  * we can perform complex remapping operations, chaining intent items
93  * as needed.
94  *
95  * Requesting a Fresh Transaction while Finishing Deferred Work
96  *
97  * If ->finish_item decides that it needs a fresh transaction to
98  * finish the work, it must ask its caller (xfs_defer_finish) for a
99  * continuation.  The most likely cause of this circumstance are the
100  * refcount adjust functions deciding that they've logged enough items
101  * to be at risk of exceeding the transaction reservation.
102  *
103  * To get a fresh transaction, we want to log the existing log done
104  * item to prevent the log intent item from replaying, immediately log
105  * a new log intent item with the unfinished work items, roll the
106  * transaction, and re-call ->finish_item wherever it left off.  The
107  * log done item and the new log intent item must be in the same
108  * transaction or atomicity cannot be guaranteed; defer_finish ensures
109  * that this happens.
110  *
111  * This requires some coordination between ->finish_item and
112  * defer_finish.  Upon deciding to request a new transaction,
113  * ->finish_item should update the current work item to reflect the
114  * unfinished work.  Next, it should reset the log done item's list
115  * count to the number of items finished, and return -EAGAIN.
116  * defer_finish sees the -EAGAIN, logs the new log intent item
117  * with the remaining work items, and leaves the xfs_defer_pending
118  * item at the head of the dop_work queue.  Then it rolls the
119  * transaction and picks up processing where it left off.  It is
120  * required that ->finish_item must be careful to leave enough
121  * transaction reservation to fit the new log intent item.
122  *
123  * This is an example of remapping the extent (E, E+B) into file X at
124  * offset A and dealing with the extent (C, C+B) already being mapped
125  * there:
126  * +-------------------------------------------------+
127  * | Unmap file X startblock C offset A length B     | t0
128  * | Intent to reduce refcount for extent (C, B)     |
129  * | Intent to remove rmap (X, C, A, B)              |
130  * | Intent to free extent (D, 1) (bmbt block)       |
131  * | Intent to map (X, A, B) at startblock E         |
132  * +-------------------------------------------------+
133  * | Map file X startblock E offset A length B       | t1
134  * | Done mapping (X, E, A, B)                       |
135  * | Intent to increase refcount for extent (E, B)   |
136  * | Intent to add rmap (X, E, A, B)                 |
137  * +-------------------------------------------------+
138  * | Reduce refcount for extent (C, B)               | t2
139  * | Done reducing refcount for extent (C, 9)        |
140  * | Intent to reduce refcount for extent (C+9, B-9) |
141  * | (ran out of space after 9 refcount updates)     |
142  * +-------------------------------------------------+
143  * | Reduce refcount for extent (C+9, B+9)           | t3
144  * | Done reducing refcount for extent (C+9, B-9)    |
145  * | Increase refcount for extent (E, B)             |
146  * | Done increasing refcount for extent (E, B)      |
147  * | Intent to free extent (C, B)                    |
148  * | Intent to free extent (F, 1) (refcountbt block) |
149  * | Intent to remove rmap (F, 1, REFC)              |
150  * +-------------------------------------------------+
151  * | Remove rmap (X, C, A, B)                        | t4
152  * | Done removing rmap (X, C, A, B)                 |
153  * | Add rmap (X, E, A, B)                           |
154  * | Done adding rmap (X, E, A, B)                   |
155  * | Remove rmap (F, 1, REFC)                        |
156  * | Done removing rmap (F, 1, REFC)                 |
157  * +-------------------------------------------------+
158  * | Free extent (C, B)                              | t5
159  * | Done freeing extent (C, B)                      |
160  * | Free extent (D, 1)                              |
161  * | Done freeing extent (D, 1)                      |
162  * | Free extent (F, 1)                              |
163  * | Done freeing extent (F, 1)                      |
164  * +-------------------------------------------------+
165  *
166  * If we should crash before t2 commits, log recovery replays
167  * the following intent items:
168  *
169  * - Intent to reduce refcount for extent (C, B)
170  * - Intent to remove rmap (X, C, A, B)
171  * - Intent to free extent (D, 1) (bmbt block)
172  * - Intent to increase refcount for extent (E, B)
173  * - Intent to add rmap (X, E, A, B)
174  *
175  * In the process of recovering, it should also generate and take care
176  * of these intent items:
177  *
178  * - Intent to free extent (C, B)
179  * - Intent to free extent (F, 1) (refcountbt block)
180  * - Intent to remove rmap (F, 1, REFC)
181  *
182  * Note that the continuation requested between t2 and t3 is likely to
183  * reoccur.
184  */
185 STATIC struct xfs_log_item *
186 xfs_defer_barrier_create_intent(
187 	struct xfs_trans		*tp,
188 	struct list_head		*items,
189 	unsigned int			count,
190 	bool				sort)
191 {
192 	return NULL;
193 }
194 
195 STATIC void
196 xfs_defer_barrier_abort_intent(
197 	struct xfs_log_item		*intent)
198 {
199 	/* empty */
200 }
201 
202 STATIC struct xfs_log_item *
203 xfs_defer_barrier_create_done(
204 	struct xfs_trans		*tp,
205 	struct xfs_log_item		*intent,
206 	unsigned int			count)
207 {
208 	return NULL;
209 }
210 
211 STATIC int
212 xfs_defer_barrier_finish_item(
213 	struct xfs_trans		*tp,
214 	struct xfs_log_item		*done,
215 	struct list_head		*item,
216 	struct xfs_btree_cur		**state)
217 {
218 	ASSERT(0);
219 	return -EFSCORRUPTED;
220 }
221 
222 STATIC void
223 xfs_defer_barrier_cancel_item(
224 	struct list_head		*item)
225 {
226 	ASSERT(0);
227 }
228 
229 static const struct xfs_defer_op_type xfs_barrier_defer_type = {
230 	.max_items	= 1,
231 	.create_intent	= xfs_defer_barrier_create_intent,
232 	.abort_intent	= xfs_defer_barrier_abort_intent,
233 	.create_done	= xfs_defer_barrier_create_done,
234 	.finish_item	= xfs_defer_barrier_finish_item,
235 	.cancel_item	= xfs_defer_barrier_cancel_item,
236 };
237 
238 static const struct xfs_defer_op_type *defer_op_types[] = {
239 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
240 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
241 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
242 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
243 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
244 	[XFS_DEFER_OPS_TYPE_ATTR]	= &xfs_attr_defer_type,
245 	[XFS_DEFER_OPS_TYPE_BARRIER]	= &xfs_barrier_defer_type,
246 };
247 
248 /* Create a log intent done item for a log intent item. */
249 static inline void
250 xfs_defer_create_done(
251 	struct xfs_trans		*tp,
252 	struct xfs_defer_pending	*dfp)
253 {
254 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
255 	struct xfs_log_item		*lip;
256 
257 	/* If there is no log intent item, there can be no log done item. */
258 	if (!dfp->dfp_intent)
259 		return;
260 
261 	/*
262 	 * Mark the transaction dirty, even on error. This ensures the
263 	 * transaction is aborted, which:
264 	 *
265 	 * 1.) releases the log intent item and frees the log done item
266 	 * 2.) shuts down the filesystem
267 	 */
268 	tp->t_flags |= XFS_TRANS_DIRTY;
269 	lip = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
270 	if (!lip)
271 		return;
272 
273 	tp->t_flags |= XFS_TRANS_HAS_INTENT_DONE;
274 	xfs_trans_add_item(tp, lip);
275 	set_bit(XFS_LI_DIRTY, &lip->li_flags);
276 	dfp->dfp_done = lip;
277 }
278 
279 /*
280  * Ensure there's a log intent item associated with this deferred work item if
281  * the operation must be restarted on crash.  Returns 1 if there's a log item;
282  * 0 if there isn't; or a negative errno.
283  */
284 static int
285 xfs_defer_create_intent(
286 	struct xfs_trans		*tp,
287 	struct xfs_defer_pending	*dfp,
288 	bool				sort)
289 {
290 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
291 	struct xfs_log_item		*lip;
292 
293 	if (dfp->dfp_intent)
294 		return 1;
295 
296 	lip = ops->create_intent(tp, &dfp->dfp_work, dfp->dfp_count, sort);
297 	if (!lip)
298 		return 0;
299 	if (IS_ERR(lip))
300 		return PTR_ERR(lip);
301 
302 	tp->t_flags |= XFS_TRANS_DIRTY;
303 	xfs_trans_add_item(tp, lip);
304 	set_bit(XFS_LI_DIRTY, &lip->li_flags);
305 	dfp->dfp_intent = lip;
306 	return 1;
307 }
308 
309 /*
310  * For each pending item in the intake list, log its intent item and the
311  * associated extents, then add the entire intake list to the end of
312  * the pending list.
313  *
314  * Returns 1 if at least one log item was associated with the deferred work;
315  * 0 if there are no log items; or a negative errno.
316  */
317 static int
318 xfs_defer_create_intents(
319 	struct xfs_trans		*tp)
320 {
321 	struct xfs_defer_pending	*dfp;
322 	int				ret = 0;
323 
324 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
325 		int			ret2;
326 
327 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
328 		ret2 = xfs_defer_create_intent(tp, dfp, true);
329 		if (ret2 < 0)
330 			return ret2;
331 		ret |= ret2;
332 	}
333 	return ret;
334 }
335 
336 static inline void
337 xfs_defer_pending_abort(
338 	struct xfs_mount		*mp,
339 	struct xfs_defer_pending	*dfp)
340 {
341 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
342 
343 	trace_xfs_defer_pending_abort(mp, dfp);
344 
345 	if (dfp->dfp_intent && !dfp->dfp_done) {
346 		ops->abort_intent(dfp->dfp_intent);
347 		dfp->dfp_intent = NULL;
348 	}
349 }
350 
351 static inline void
352 xfs_defer_pending_cancel_work(
353 	struct xfs_mount		*mp,
354 	struct xfs_defer_pending	*dfp)
355 {
356 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
357 	struct list_head		*pwi;
358 	struct list_head		*n;
359 
360 	trace_xfs_defer_cancel_list(mp, dfp);
361 
362 	list_del(&dfp->dfp_list);
363 	list_for_each_safe(pwi, n, &dfp->dfp_work) {
364 		list_del(pwi);
365 		dfp->dfp_count--;
366 		trace_xfs_defer_cancel_item(mp, dfp, pwi);
367 		ops->cancel_item(pwi);
368 	}
369 	ASSERT(dfp->dfp_count == 0);
370 	kmem_cache_free(xfs_defer_pending_cache, dfp);
371 }
372 
373 STATIC void
374 xfs_defer_pending_abort_list(
375 	struct xfs_mount		*mp,
376 	struct list_head		*dop_list)
377 {
378 	struct xfs_defer_pending	*dfp;
379 
380 	/* Abort intent items that don't have a done item. */
381 	list_for_each_entry(dfp, dop_list, dfp_list)
382 		xfs_defer_pending_abort(mp, dfp);
383 }
384 
385 /* Abort all the intents that were committed. */
386 STATIC void
387 xfs_defer_trans_abort(
388 	struct xfs_trans		*tp,
389 	struct list_head		*dop_pending)
390 {
391 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
392 	xfs_defer_pending_abort_list(tp->t_mountp, dop_pending);
393 }
394 
395 /*
396  * Capture resources that the caller said not to release ("held") when the
397  * transaction commits.  Caller is responsible for zero-initializing @dres.
398  */
399 static int
400 xfs_defer_save_resources(
401 	struct xfs_defer_resources	*dres,
402 	struct xfs_trans		*tp)
403 {
404 	struct xfs_buf_log_item		*bli;
405 	struct xfs_inode_log_item	*ili;
406 	struct xfs_log_item		*lip;
407 
408 	BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS);
409 
410 	list_for_each_entry(lip, &tp->t_items, li_trans) {
411 		switch (lip->li_type) {
412 		case XFS_LI_BUF:
413 			bli = container_of(lip, struct xfs_buf_log_item,
414 					   bli_item);
415 			if (bli->bli_flags & XFS_BLI_HOLD) {
416 				if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) {
417 					ASSERT(0);
418 					return -EFSCORRUPTED;
419 				}
420 				if (bli->bli_flags & XFS_BLI_ORDERED)
421 					dres->dr_ordered |=
422 							(1U << dres->dr_bufs);
423 				else
424 					xfs_trans_dirty_buf(tp, bli->bli_buf);
425 				dres->dr_bp[dres->dr_bufs++] = bli->bli_buf;
426 			}
427 			break;
428 		case XFS_LI_INODE:
429 			ili = container_of(lip, struct xfs_inode_log_item,
430 					   ili_item);
431 			if (ili->ili_lock_flags == 0) {
432 				if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) {
433 					ASSERT(0);
434 					return -EFSCORRUPTED;
435 				}
436 				xfs_trans_log_inode(tp, ili->ili_inode,
437 						    XFS_ILOG_CORE);
438 				dres->dr_ip[dres->dr_inos++] = ili->ili_inode;
439 			}
440 			break;
441 		default:
442 			break;
443 		}
444 	}
445 
446 	return 0;
447 }
448 
449 /* Attach the held resources to the transaction. */
450 static void
451 xfs_defer_restore_resources(
452 	struct xfs_trans		*tp,
453 	struct xfs_defer_resources	*dres)
454 {
455 	unsigned short			i;
456 
457 	/* Rejoin the joined inodes. */
458 	for (i = 0; i < dres->dr_inos; i++)
459 		xfs_trans_ijoin(tp, dres->dr_ip[i], 0);
460 
461 	/* Rejoin the buffers and dirty them so the log moves forward. */
462 	for (i = 0; i < dres->dr_bufs; i++) {
463 		xfs_trans_bjoin(tp, dres->dr_bp[i]);
464 		if (dres->dr_ordered & (1U << i))
465 			xfs_trans_ordered_buf(tp, dres->dr_bp[i]);
466 		xfs_trans_bhold(tp, dres->dr_bp[i]);
467 	}
468 }
469 
470 /* Roll a transaction so we can do some deferred op processing. */
471 STATIC int
472 xfs_defer_trans_roll(
473 	struct xfs_trans		**tpp)
474 {
475 	struct xfs_defer_resources	dres = { };
476 	int				error;
477 
478 	error = xfs_defer_save_resources(&dres, *tpp);
479 	if (error)
480 		return error;
481 
482 	trace_xfs_defer_trans_roll(*tpp, _RET_IP_);
483 
484 	/*
485 	 * Roll the transaction.  Rolling always given a new transaction (even
486 	 * if committing the old one fails!) to hand back to the caller, so we
487 	 * join the held resources to the new transaction so that we always
488 	 * return with the held resources joined to @tpp, no matter what
489 	 * happened.
490 	 */
491 	error = xfs_trans_roll(tpp);
492 
493 	xfs_defer_restore_resources(*tpp, &dres);
494 
495 	if (error)
496 		trace_xfs_defer_trans_roll_error(*tpp, error);
497 	return error;
498 }
499 
500 /*
501  * Free up any items left in the list.
502  */
503 static void
504 xfs_defer_cancel_list(
505 	struct xfs_mount		*mp,
506 	struct list_head		*dop_list)
507 {
508 	struct xfs_defer_pending	*dfp;
509 	struct xfs_defer_pending	*pli;
510 
511 	/*
512 	 * Free the pending items.  Caller should already have arranged
513 	 * for the intent items to be released.
514 	 */
515 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list)
516 		xfs_defer_pending_cancel_work(mp, dfp);
517 }
518 
519 static inline void
520 xfs_defer_relog_intent(
521 	struct xfs_trans		*tp,
522 	struct xfs_defer_pending	*dfp)
523 {
524 	struct xfs_log_item		*lip;
525 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
526 
527 	xfs_defer_create_done(tp, dfp);
528 
529 	lip = ops->relog_intent(tp, dfp->dfp_intent, dfp->dfp_done);
530 	if (lip) {
531 		xfs_trans_add_item(tp, lip);
532 		set_bit(XFS_LI_DIRTY, &lip->li_flags);
533 	}
534 	dfp->dfp_done = NULL;
535 	dfp->dfp_intent = lip;
536 }
537 
538 /*
539  * Prevent a log intent item from pinning the tail of the log by logging a
540  * done item to release the intent item; and then log a new intent item.
541  * The caller should provide a fresh transaction and roll it after we're done.
542  */
543 static void
544 xfs_defer_relog(
545 	struct xfs_trans		**tpp,
546 	struct list_head		*dfops)
547 {
548 	struct xlog			*log = (*tpp)->t_mountp->m_log;
549 	struct xfs_defer_pending	*dfp;
550 	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
551 
552 
553 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
554 
555 	list_for_each_entry(dfp, dfops, dfp_list) {
556 		/*
557 		 * If the log intent item for this deferred op is not a part of
558 		 * the current log checkpoint, relog the intent item to keep
559 		 * the log tail moving forward.  We're ok with this being racy
560 		 * because an incorrect decision means we'll be a little slower
561 		 * at pushing the tail.
562 		 */
563 		if (dfp->dfp_intent == NULL ||
564 		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
565 			continue;
566 
567 		/*
568 		 * Figure out where we need the tail to be in order to maintain
569 		 * the minimum required free space in the log.  Only sample
570 		 * the log threshold once per call.
571 		 */
572 		if (threshold_lsn == NULLCOMMITLSN) {
573 			threshold_lsn = xlog_grant_push_threshold(log, 0);
574 			if (threshold_lsn == NULLCOMMITLSN)
575 				break;
576 		}
577 		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
578 			continue;
579 
580 		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
581 		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
582 
583 		xfs_defer_relog_intent(*tpp, dfp);
584 	}
585 }
586 
587 /*
588  * Log an intent-done item for the first pending intent, and finish the work
589  * items.
590  */
591 int
592 xfs_defer_finish_one(
593 	struct xfs_trans		*tp,
594 	struct xfs_defer_pending	*dfp)
595 {
596 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
597 	struct xfs_btree_cur		*state = NULL;
598 	struct list_head		*li, *n;
599 	int				error;
600 
601 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
602 
603 	xfs_defer_create_done(tp, dfp);
604 	list_for_each_safe(li, n, &dfp->dfp_work) {
605 		list_del(li);
606 		dfp->dfp_count--;
607 		trace_xfs_defer_finish_item(tp->t_mountp, dfp, li);
608 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
609 		if (error == -EAGAIN) {
610 			int		ret;
611 
612 			/*
613 			 * Caller wants a fresh transaction; put the work item
614 			 * back on the list and log a new log intent item to
615 			 * replace the old one.  See "Requesting a Fresh
616 			 * Transaction while Finishing Deferred Work" above.
617 			 */
618 			list_add(li, &dfp->dfp_work);
619 			dfp->dfp_count++;
620 			dfp->dfp_done = NULL;
621 			dfp->dfp_intent = NULL;
622 			ret = xfs_defer_create_intent(tp, dfp, false);
623 			if (ret < 0)
624 				error = ret;
625 		}
626 
627 		if (error)
628 			goto out;
629 	}
630 
631 	/* Done with the dfp, free it. */
632 	list_del(&dfp->dfp_list);
633 	kmem_cache_free(xfs_defer_pending_cache, dfp);
634 out:
635 	if (ops->finish_cleanup)
636 		ops->finish_cleanup(tp, state, error);
637 	return error;
638 }
639 
640 /* Move all paused deferred work from @tp to @paused_list. */
641 static void
642 xfs_defer_isolate_paused(
643 	struct xfs_trans		*tp,
644 	struct list_head		*paused_list)
645 {
646 	struct xfs_defer_pending	*dfp;
647 	struct xfs_defer_pending	*pli;
648 
649 	list_for_each_entry_safe(dfp, pli, &tp->t_dfops, dfp_list) {
650 		if (!(dfp->dfp_flags & XFS_DEFER_PAUSED))
651 			continue;
652 
653 		list_move_tail(&dfp->dfp_list, paused_list);
654 		trace_xfs_defer_isolate_paused(tp->t_mountp, dfp);
655 	}
656 }
657 
658 /*
659  * Finish all the pending work.  This involves logging intent items for
660  * any work items that wandered in since the last transaction roll (if
661  * one has even happened), rolling the transaction, and finishing the
662  * work items in the first item on the logged-and-pending list.
663  *
664  * If an inode is provided, relog it to the new transaction.
665  */
666 int
667 xfs_defer_finish_noroll(
668 	struct xfs_trans		**tp)
669 {
670 	struct xfs_defer_pending	*dfp = NULL;
671 	int				error = 0;
672 	LIST_HEAD(dop_pending);
673 	LIST_HEAD(dop_paused);
674 
675 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
676 
677 	trace_xfs_defer_finish(*tp, _RET_IP_);
678 
679 	/* Until we run out of pending work to finish... */
680 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
681 		/*
682 		 * Deferred items that are created in the process of finishing
683 		 * other deferred work items should be queued at the head of
684 		 * the pending list, which puts them ahead of the deferred work
685 		 * that was created by the caller.  This keeps the number of
686 		 * pending work items to a minimum, which decreases the amount
687 		 * of time that any one intent item can stick around in memory,
688 		 * pinning the log tail.
689 		 */
690 		int has_intents = xfs_defer_create_intents(*tp);
691 
692 		xfs_defer_isolate_paused(*tp, &dop_paused);
693 
694 		list_splice_init(&(*tp)->t_dfops, &dop_pending);
695 
696 		if (has_intents < 0) {
697 			error = has_intents;
698 			goto out_shutdown;
699 		}
700 		if (has_intents || dfp) {
701 			error = xfs_defer_trans_roll(tp);
702 			if (error)
703 				goto out_shutdown;
704 
705 			/* Relog intent items to keep the log moving. */
706 			xfs_defer_relog(tp, &dop_pending);
707 			xfs_defer_relog(tp, &dop_paused);
708 
709 			if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
710 				error = xfs_defer_trans_roll(tp);
711 				if (error)
712 					goto out_shutdown;
713 			}
714 		}
715 
716 		dfp = list_first_entry_or_null(&dop_pending,
717 				struct xfs_defer_pending, dfp_list);
718 		if (!dfp)
719 			break;
720 		error = xfs_defer_finish_one(*tp, dfp);
721 		if (error && error != -EAGAIN)
722 			goto out_shutdown;
723 	}
724 
725 	/* Requeue the paused items in the outgoing transaction. */
726 	list_splice_tail_init(&dop_paused, &(*tp)->t_dfops);
727 
728 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
729 	return 0;
730 
731 out_shutdown:
732 	list_splice_tail_init(&dop_paused, &dop_pending);
733 	xfs_defer_trans_abort(*tp, &dop_pending);
734 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
735 	trace_xfs_defer_finish_error(*tp, error);
736 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
737 	xfs_defer_cancel(*tp);
738 	return error;
739 }
740 
741 int
742 xfs_defer_finish(
743 	struct xfs_trans	**tp)
744 {
745 #ifdef DEBUG
746 	struct xfs_defer_pending *dfp;
747 #endif
748 	int			error;
749 
750 	/*
751 	 * Finish and roll the transaction once more to avoid returning to the
752 	 * caller with a dirty transaction.
753 	 */
754 	error = xfs_defer_finish_noroll(tp);
755 	if (error)
756 		return error;
757 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
758 		error = xfs_defer_trans_roll(tp);
759 		if (error) {
760 			xfs_force_shutdown((*tp)->t_mountp,
761 					   SHUTDOWN_CORRUPT_INCORE);
762 			return error;
763 		}
764 	}
765 
766 	/* Reset LOWMODE now that we've finished all the dfops. */
767 #ifdef DEBUG
768 	list_for_each_entry(dfp, &(*tp)->t_dfops, dfp_list)
769 		ASSERT(dfp->dfp_flags & XFS_DEFER_PAUSED);
770 #endif
771 	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
772 	return 0;
773 }
774 
775 void
776 xfs_defer_cancel(
777 	struct xfs_trans	*tp)
778 {
779 	struct xfs_mount	*mp = tp->t_mountp;
780 
781 	trace_xfs_defer_cancel(tp, _RET_IP_);
782 	xfs_defer_trans_abort(tp, &tp->t_dfops);
783 	xfs_defer_cancel_list(mp, &tp->t_dfops);
784 }
785 
786 /*
787  * Return the last pending work item attached to this transaction if it matches
788  * the deferred op type.
789  */
790 static inline struct xfs_defer_pending *
791 xfs_defer_find_last(
792 	struct xfs_trans		*tp,
793 	enum xfs_defer_ops_type		type,
794 	const struct xfs_defer_op_type	*ops)
795 {
796 	struct xfs_defer_pending	*dfp = NULL;
797 
798 	/* No dfops at all? */
799 	if (list_empty(&tp->t_dfops))
800 		return NULL;
801 
802 	dfp = list_last_entry(&tp->t_dfops, struct xfs_defer_pending,
803 			dfp_list);
804 
805 	/* Wrong type? */
806 	if (dfp->dfp_type != type)
807 		return NULL;
808 	return dfp;
809 }
810 
811 /*
812  * Decide if we can add a deferred work item to the last dfops item attached
813  * to the transaction.
814  */
815 static inline bool
816 xfs_defer_can_append(
817 	struct xfs_defer_pending	*dfp,
818 	const struct xfs_defer_op_type	*ops)
819 {
820 	/* Already logged? */
821 	if (dfp->dfp_intent)
822 		return false;
823 
824 	/* Paused items cannot absorb more work */
825 	if (dfp->dfp_flags & XFS_DEFER_PAUSED)
826 		return NULL;
827 
828 	/* Already full? */
829 	if (ops->max_items && dfp->dfp_count >= ops->max_items)
830 		return false;
831 
832 	return true;
833 }
834 
835 /* Create a new pending item at the end of the transaction list. */
836 static inline struct xfs_defer_pending *
837 xfs_defer_alloc(
838 	struct xfs_trans		*tp,
839 	enum xfs_defer_ops_type		type)
840 {
841 	struct xfs_defer_pending	*dfp;
842 
843 	dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
844 			GFP_NOFS | __GFP_NOFAIL);
845 	dfp->dfp_type = type;
846 	INIT_LIST_HEAD(&dfp->dfp_work);
847 	list_add_tail(&dfp->dfp_list, &tp->t_dfops);
848 
849 	return dfp;
850 }
851 
852 /* Add an item for later deferred processing. */
853 struct xfs_defer_pending *
854 xfs_defer_add(
855 	struct xfs_trans		*tp,
856 	enum xfs_defer_ops_type		type,
857 	struct list_head		*li)
858 {
859 	struct xfs_defer_pending	*dfp = NULL;
860 	const struct xfs_defer_op_type	*ops = defer_op_types[type];
861 
862 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
863 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
864 
865 	dfp = xfs_defer_find_last(tp, type, ops);
866 	if (!dfp || !xfs_defer_can_append(dfp, ops))
867 		dfp = xfs_defer_alloc(tp, type);
868 
869 	xfs_defer_add_item(dfp, li);
870 	trace_xfs_defer_add_item(tp->t_mountp, dfp, li);
871 	return dfp;
872 }
873 
874 /*
875  * Add a defer ops barrier to force two otherwise adjacent deferred work items
876  * to be tracked separately and have separate log items.
877  */
878 void
879 xfs_defer_add_barrier(
880 	struct xfs_trans		*tp)
881 {
882 	struct xfs_defer_pending	*dfp;
883 	const enum xfs_defer_ops_type	type = XFS_DEFER_OPS_TYPE_BARRIER;
884 	const struct xfs_defer_op_type	*ops = defer_op_types[type];
885 
886 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
887 
888 	/* If the last defer op added was a barrier, we're done. */
889 	dfp = xfs_defer_find_last(tp, type, ops);
890 	if (dfp)
891 		return;
892 
893 	xfs_defer_alloc(tp, type);
894 
895 	trace_xfs_defer_add_item(tp->t_mountp, dfp, NULL);
896 }
897 
898 /*
899  * Create a pending deferred work item to replay the recovered intent item
900  * and add it to the list.
901  */
902 void
903 xfs_defer_start_recovery(
904 	struct xfs_log_item		*lip,
905 	enum xfs_defer_ops_type		dfp_type,
906 	struct list_head		*r_dfops)
907 {
908 	struct xfs_defer_pending	*dfp;
909 
910 	dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
911 			GFP_NOFS | __GFP_NOFAIL);
912 	dfp->dfp_type = dfp_type;
913 	dfp->dfp_intent = lip;
914 	INIT_LIST_HEAD(&dfp->dfp_work);
915 	list_add_tail(&dfp->dfp_list, r_dfops);
916 }
917 
918 /*
919  * Cancel a deferred work item created to recover a log intent item.  @dfp
920  * will be freed after this function returns.
921  */
922 void
923 xfs_defer_cancel_recovery(
924 	struct xfs_mount		*mp,
925 	struct xfs_defer_pending	*dfp)
926 {
927 	xfs_defer_pending_abort(mp, dfp);
928 	xfs_defer_pending_cancel_work(mp, dfp);
929 }
930 
931 /* Replay the deferred work item created from a recovered log intent item. */
932 int
933 xfs_defer_finish_recovery(
934 	struct xfs_mount		*mp,
935 	struct xfs_defer_pending	*dfp,
936 	struct list_head		*capture_list)
937 {
938 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
939 	int				error;
940 
941 	error = ops->recover_work(dfp, capture_list);
942 	if (error)
943 		trace_xlog_intent_recovery_failed(mp, error,
944 				ops->recover_work);
945 	return error;
946 }
947 
948 /*
949  * Move deferred ops from one transaction to another and reset the source to
950  * initial state. This is primarily used to carry state forward across
951  * transaction rolls with pending dfops.
952  */
953 void
954 xfs_defer_move(
955 	struct xfs_trans	*dtp,
956 	struct xfs_trans	*stp)
957 {
958 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
959 
960 	/*
961 	 * Low free space mode was historically controlled by a dfops field.
962 	 * This meant that low mode state potentially carried across multiple
963 	 * transaction rolls. Transfer low mode on a dfops move to preserve
964 	 * that behavior.
965 	 */
966 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
967 	stp->t_flags &= ~XFS_TRANS_LOWMODE;
968 }
969 
970 /*
971  * Prepare a chain of fresh deferred ops work items to be completed later.  Log
972  * recovery requires the ability to put off until later the actual finishing
973  * work so that it can process unfinished items recovered from the log in
974  * correct order.
975  *
976  * Create and log intent items for all the work that we're capturing so that we
977  * can be assured that the items will get replayed if the system goes down
978  * before log recovery gets a chance to finish the work it put off.  The entire
979  * deferred ops state is transferred to the capture structure and the
980  * transaction is then ready for the caller to commit it.  If there are no
981  * intent items to capture, this function returns NULL.
982  *
983  * If capture_ip is not NULL, the capture structure will obtain an extra
984  * reference to the inode.
985  */
986 static struct xfs_defer_capture *
987 xfs_defer_ops_capture(
988 	struct xfs_trans		*tp)
989 {
990 	struct xfs_defer_capture	*dfc;
991 	unsigned short			i;
992 	int				error;
993 
994 	if (list_empty(&tp->t_dfops))
995 		return NULL;
996 
997 	error = xfs_defer_create_intents(tp);
998 	if (error < 0)
999 		return ERR_PTR(error);
1000 
1001 	/* Create an object to capture the defer ops. */
1002 	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
1003 	INIT_LIST_HEAD(&dfc->dfc_list);
1004 	INIT_LIST_HEAD(&dfc->dfc_dfops);
1005 
1006 	/* Move the dfops chain and transaction state to the capture struct. */
1007 	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
1008 	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
1009 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
1010 
1011 	/* Capture the remaining block reservations along with the dfops. */
1012 	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
1013 	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
1014 
1015 	/* Preserve the log reservation size. */
1016 	dfc->dfc_logres = tp->t_log_res;
1017 
1018 	error = xfs_defer_save_resources(&dfc->dfc_held, tp);
1019 	if (error) {
1020 		/*
1021 		 * Resource capture should never fail, but if it does, we
1022 		 * still have to shut down the log and release things
1023 		 * properly.
1024 		 */
1025 		xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE);
1026 	}
1027 
1028 	/*
1029 	 * Grab extra references to the inodes and buffers because callers are
1030 	 * expected to release their held references after we commit the
1031 	 * transaction.
1032 	 */
1033 	for (i = 0; i < dfc->dfc_held.dr_inos; i++) {
1034 		ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL));
1035 		ihold(VFS_I(dfc->dfc_held.dr_ip[i]));
1036 	}
1037 
1038 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
1039 		xfs_buf_hold(dfc->dfc_held.dr_bp[i]);
1040 
1041 	return dfc;
1042 }
1043 
1044 /* Release all resources that we used to capture deferred ops. */
1045 void
1046 xfs_defer_ops_capture_abort(
1047 	struct xfs_mount		*mp,
1048 	struct xfs_defer_capture	*dfc)
1049 {
1050 	unsigned short			i;
1051 
1052 	xfs_defer_pending_abort_list(mp, &dfc->dfc_dfops);
1053 	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
1054 
1055 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
1056 		xfs_buf_relse(dfc->dfc_held.dr_bp[i]);
1057 
1058 	for (i = 0; i < dfc->dfc_held.dr_inos; i++)
1059 		xfs_irele(dfc->dfc_held.dr_ip[i]);
1060 
1061 	kmem_free(dfc);
1062 }
1063 
1064 /*
1065  * Capture any deferred ops and commit the transaction.  This is the last step
1066  * needed to finish a log intent item that we recovered from the log.  If any
1067  * of the deferred ops operate on an inode, the caller must pass in that inode
1068  * so that the reference can be transferred to the capture structure.  The
1069  * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
1070  * xfs_defer_ops_continue.
1071  */
1072 int
1073 xfs_defer_ops_capture_and_commit(
1074 	struct xfs_trans		*tp,
1075 	struct list_head		*capture_list)
1076 {
1077 	struct xfs_mount		*mp = tp->t_mountp;
1078 	struct xfs_defer_capture	*dfc;
1079 	int				error;
1080 
1081 	/* If we don't capture anything, commit transaction and exit. */
1082 	dfc = xfs_defer_ops_capture(tp);
1083 	if (IS_ERR(dfc)) {
1084 		xfs_trans_cancel(tp);
1085 		return PTR_ERR(dfc);
1086 	}
1087 	if (!dfc)
1088 		return xfs_trans_commit(tp);
1089 
1090 	/* Commit the transaction and add the capture structure to the list. */
1091 	error = xfs_trans_commit(tp);
1092 	if (error) {
1093 		xfs_defer_ops_capture_abort(mp, dfc);
1094 		return error;
1095 	}
1096 
1097 	list_add_tail(&dfc->dfc_list, capture_list);
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Attach a chain of captured deferred ops to a new transaction and free the
1103  * capture structure.  If an inode was captured, it will be passed back to the
1104  * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
1105  * The caller now owns the inode reference.
1106  */
1107 void
1108 xfs_defer_ops_continue(
1109 	struct xfs_defer_capture	*dfc,
1110 	struct xfs_trans		*tp,
1111 	struct xfs_defer_resources	*dres)
1112 {
1113 	unsigned int			i;
1114 
1115 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1116 	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
1117 
1118 	/* Lock the captured resources to the new transaction. */
1119 	if (dfc->dfc_held.dr_inos == 2)
1120 		xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL,
1121 				    dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL);
1122 	else if (dfc->dfc_held.dr_inos == 1)
1123 		xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL);
1124 
1125 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
1126 		xfs_buf_lock(dfc->dfc_held.dr_bp[i]);
1127 
1128 	/* Join the captured resources to the new transaction. */
1129 	xfs_defer_restore_resources(tp, &dfc->dfc_held);
1130 	memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources));
1131 	dres->dr_bufs = 0;
1132 
1133 	/* Move captured dfops chain and state to the transaction. */
1134 	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
1135 	tp->t_flags |= dfc->dfc_tpflags;
1136 
1137 	kmem_free(dfc);
1138 }
1139 
1140 /* Release the resources captured and continued during recovery. */
1141 void
1142 xfs_defer_resources_rele(
1143 	struct xfs_defer_resources	*dres)
1144 {
1145 	unsigned short			i;
1146 
1147 	for (i = 0; i < dres->dr_inos; i++) {
1148 		xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL);
1149 		xfs_irele(dres->dr_ip[i]);
1150 		dres->dr_ip[i] = NULL;
1151 	}
1152 
1153 	for (i = 0; i < dres->dr_bufs; i++) {
1154 		xfs_buf_relse(dres->dr_bp[i]);
1155 		dres->dr_bp[i] = NULL;
1156 	}
1157 
1158 	dres->dr_inos = 0;
1159 	dres->dr_bufs = 0;
1160 	dres->dr_ordered = 0;
1161 }
1162 
1163 static inline int __init
1164 xfs_defer_init_cache(void)
1165 {
1166 	xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending",
1167 			sizeof(struct xfs_defer_pending),
1168 			0, 0, NULL);
1169 
1170 	return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM;
1171 }
1172 
1173 static inline void
1174 xfs_defer_destroy_cache(void)
1175 {
1176 	kmem_cache_destroy(xfs_defer_pending_cache);
1177 	xfs_defer_pending_cache = NULL;
1178 }
1179 
1180 /* Set up caches for deferred work items. */
1181 int __init
1182 xfs_defer_init_item_caches(void)
1183 {
1184 	int				error;
1185 
1186 	error = xfs_defer_init_cache();
1187 	if (error)
1188 		return error;
1189 	error = xfs_rmap_intent_init_cache();
1190 	if (error)
1191 		goto err;
1192 	error = xfs_refcount_intent_init_cache();
1193 	if (error)
1194 		goto err;
1195 	error = xfs_bmap_intent_init_cache();
1196 	if (error)
1197 		goto err;
1198 	error = xfs_extfree_intent_init_cache();
1199 	if (error)
1200 		goto err;
1201 	error = xfs_attr_intent_init_cache();
1202 	if (error)
1203 		goto err;
1204 	return 0;
1205 err:
1206 	xfs_defer_destroy_item_caches();
1207 	return error;
1208 }
1209 
1210 /* Destroy all the deferred work item caches, if they've been allocated. */
1211 void
1212 xfs_defer_destroy_item_caches(void)
1213 {
1214 	xfs_attr_intent_destroy_cache();
1215 	xfs_extfree_intent_destroy_cache();
1216 	xfs_bmap_intent_destroy_cache();
1217 	xfs_refcount_intent_destroy_cache();
1218 	xfs_rmap_intent_destroy_cache();
1219 	xfs_defer_destroy_cache();
1220 }
1221 
1222 /*
1223  * Mark a deferred work item so that it will be requeued indefinitely without
1224  * being finished.  Caller must ensure there are no data dependencies on this
1225  * work item in the meantime.
1226  */
1227 void
1228 xfs_defer_item_pause(
1229 	struct xfs_trans		*tp,
1230 	struct xfs_defer_pending	*dfp)
1231 {
1232 	ASSERT(!(dfp->dfp_flags & XFS_DEFER_PAUSED));
1233 
1234 	dfp->dfp_flags |= XFS_DEFER_PAUSED;
1235 
1236 	trace_xfs_defer_item_pause(tp->t_mountp, dfp);
1237 }
1238 
1239 /*
1240  * Release a paused deferred work item so that it will be finished during the
1241  * next transaction roll.
1242  */
1243 void
1244 xfs_defer_item_unpause(
1245 	struct xfs_trans		*tp,
1246 	struct xfs_defer_pending	*dfp)
1247 {
1248 	ASSERT(dfp->dfp_flags & XFS_DEFER_PAUSED);
1249 
1250 	dfp->dfp_flags &= ~XFS_DEFER_PAUSED;
1251 
1252 	trace_xfs_defer_item_unpause(tp->t_mountp, dfp);
1253 }
1254