1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * Copyright (c) 2013 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dir2_priv.h" 31 #include "xfs_inode.h" 32 #include "xfs_trans.h" 33 #include "xfs_inode_item.h" 34 #include "xfs_alloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_attr.h" 37 #include "xfs_attr_leaf.h" 38 #include "xfs_error.h" 39 #include "xfs_trace.h" 40 #include "xfs_cksum.h" 41 #include "xfs_buf_item.h" 42 #include "xfs_log.h" 43 44 /* 45 * xfs_da_btree.c 46 * 47 * Routines to implement directories as Btrees of hashed names. 48 */ 49 50 /*======================================================================== 51 * Function prototypes for the kernel. 52 *========================================================================*/ 53 54 /* 55 * Routines used for growing the Btree. 56 */ 57 STATIC int xfs_da3_root_split(xfs_da_state_t *state, 58 xfs_da_state_blk_t *existing_root, 59 xfs_da_state_blk_t *new_child); 60 STATIC int xfs_da3_node_split(xfs_da_state_t *state, 61 xfs_da_state_blk_t *existing_blk, 62 xfs_da_state_blk_t *split_blk, 63 xfs_da_state_blk_t *blk_to_add, 64 int treelevel, 65 int *result); 66 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state, 67 xfs_da_state_blk_t *node_blk_1, 68 xfs_da_state_blk_t *node_blk_2); 69 STATIC void xfs_da3_node_add(xfs_da_state_t *state, 70 xfs_da_state_blk_t *old_node_blk, 71 xfs_da_state_blk_t *new_node_blk); 72 73 /* 74 * Routines used for shrinking the Btree. 75 */ 76 STATIC int xfs_da3_root_join(xfs_da_state_t *state, 77 xfs_da_state_blk_t *root_blk); 78 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval); 79 STATIC void xfs_da3_node_remove(xfs_da_state_t *state, 80 xfs_da_state_blk_t *drop_blk); 81 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state, 82 xfs_da_state_blk_t *src_node_blk, 83 xfs_da_state_blk_t *dst_node_blk); 84 85 /* 86 * Utility routines. 87 */ 88 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state, 89 xfs_da_state_blk_t *drop_blk, 90 xfs_da_state_blk_t *save_blk); 91 92 93 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ 94 95 /* 96 * Allocate a dir-state structure. 97 * We don't put them on the stack since they're large. 98 */ 99 xfs_da_state_t * 100 xfs_da_state_alloc(void) 101 { 102 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); 103 } 104 105 /* 106 * Kill the altpath contents of a da-state structure. 107 */ 108 STATIC void 109 xfs_da_state_kill_altpath(xfs_da_state_t *state) 110 { 111 int i; 112 113 for (i = 0; i < state->altpath.active; i++) 114 state->altpath.blk[i].bp = NULL; 115 state->altpath.active = 0; 116 } 117 118 /* 119 * Free a da-state structure. 120 */ 121 void 122 xfs_da_state_free(xfs_da_state_t *state) 123 { 124 xfs_da_state_kill_altpath(state); 125 #ifdef DEBUG 126 memset((char *)state, 0, sizeof(*state)); 127 #endif /* DEBUG */ 128 kmem_zone_free(xfs_da_state_zone, state); 129 } 130 131 static bool 132 xfs_da3_node_verify( 133 struct xfs_buf *bp) 134 { 135 struct xfs_mount *mp = bp->b_target->bt_mount; 136 struct xfs_da_intnode *hdr = bp->b_addr; 137 struct xfs_da3_icnode_hdr ichdr; 138 const struct xfs_dir_ops *ops; 139 140 ops = xfs_dir_get_ops(mp, NULL); 141 142 ops->node_hdr_from_disk(&ichdr, hdr); 143 144 if (xfs_sb_version_hascrc(&mp->m_sb)) { 145 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 146 147 if (ichdr.magic != XFS_DA3_NODE_MAGIC) 148 return false; 149 150 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid)) 151 return false; 152 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn) 153 return false; 154 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn))) 155 return false; 156 } else { 157 if (ichdr.magic != XFS_DA_NODE_MAGIC) 158 return false; 159 } 160 if (ichdr.level == 0) 161 return false; 162 if (ichdr.level > XFS_DA_NODE_MAXDEPTH) 163 return false; 164 if (ichdr.count == 0) 165 return false; 166 167 /* 168 * we don't know if the node is for and attribute or directory tree, 169 * so only fail if the count is outside both bounds 170 */ 171 if (ichdr.count > mp->m_dir_geo->node_ents && 172 ichdr.count > mp->m_attr_geo->node_ents) 173 return false; 174 175 /* XXX: hash order check? */ 176 177 return true; 178 } 179 180 static void 181 xfs_da3_node_write_verify( 182 struct xfs_buf *bp) 183 { 184 struct xfs_mount *mp = bp->b_target->bt_mount; 185 struct xfs_buf_log_item *bip = bp->b_fspriv; 186 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 187 188 if (!xfs_da3_node_verify(bp)) { 189 xfs_buf_ioerror(bp, -EFSCORRUPTED); 190 xfs_verifier_error(bp); 191 return; 192 } 193 194 if (!xfs_sb_version_hascrc(&mp->m_sb)) 195 return; 196 197 if (bip) 198 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 199 200 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF); 201 } 202 203 /* 204 * leaf/node format detection on trees is sketchy, so a node read can be done on 205 * leaf level blocks when detection identifies the tree as a node format tree 206 * incorrectly. In this case, we need to swap the verifier to match the correct 207 * format of the block being read. 208 */ 209 static void 210 xfs_da3_node_read_verify( 211 struct xfs_buf *bp) 212 { 213 struct xfs_da_blkinfo *info = bp->b_addr; 214 215 switch (be16_to_cpu(info->magic)) { 216 case XFS_DA3_NODE_MAGIC: 217 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) { 218 xfs_buf_ioerror(bp, -EFSBADCRC); 219 break; 220 } 221 /* fall through */ 222 case XFS_DA_NODE_MAGIC: 223 if (!xfs_da3_node_verify(bp)) { 224 xfs_buf_ioerror(bp, -EFSCORRUPTED); 225 break; 226 } 227 return; 228 case XFS_ATTR_LEAF_MAGIC: 229 case XFS_ATTR3_LEAF_MAGIC: 230 bp->b_ops = &xfs_attr3_leaf_buf_ops; 231 bp->b_ops->verify_read(bp); 232 return; 233 case XFS_DIR2_LEAFN_MAGIC: 234 case XFS_DIR3_LEAFN_MAGIC: 235 bp->b_ops = &xfs_dir3_leafn_buf_ops; 236 bp->b_ops->verify_read(bp); 237 return; 238 default: 239 xfs_buf_ioerror(bp, -EFSCORRUPTED); 240 break; 241 } 242 243 /* corrupt block */ 244 xfs_verifier_error(bp); 245 } 246 247 const struct xfs_buf_ops xfs_da3_node_buf_ops = { 248 .name = "xfs_da3_node", 249 .verify_read = xfs_da3_node_read_verify, 250 .verify_write = xfs_da3_node_write_verify, 251 }; 252 253 int 254 xfs_da3_node_read( 255 struct xfs_trans *tp, 256 struct xfs_inode *dp, 257 xfs_dablk_t bno, 258 xfs_daddr_t mappedbno, 259 struct xfs_buf **bpp, 260 int which_fork) 261 { 262 int err; 263 264 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, 265 which_fork, &xfs_da3_node_buf_ops); 266 if (!err && tp) { 267 struct xfs_da_blkinfo *info = (*bpp)->b_addr; 268 int type; 269 270 switch (be16_to_cpu(info->magic)) { 271 case XFS_DA_NODE_MAGIC: 272 case XFS_DA3_NODE_MAGIC: 273 type = XFS_BLFT_DA_NODE_BUF; 274 break; 275 case XFS_ATTR_LEAF_MAGIC: 276 case XFS_ATTR3_LEAF_MAGIC: 277 type = XFS_BLFT_ATTR_LEAF_BUF; 278 break; 279 case XFS_DIR2_LEAFN_MAGIC: 280 case XFS_DIR3_LEAFN_MAGIC: 281 type = XFS_BLFT_DIR_LEAFN_BUF; 282 break; 283 default: 284 type = 0; 285 ASSERT(0); 286 break; 287 } 288 xfs_trans_buf_set_type(tp, *bpp, type); 289 } 290 return err; 291 } 292 293 /*======================================================================== 294 * Routines used for growing the Btree. 295 *========================================================================*/ 296 297 /* 298 * Create the initial contents of an intermediate node. 299 */ 300 int 301 xfs_da3_node_create( 302 struct xfs_da_args *args, 303 xfs_dablk_t blkno, 304 int level, 305 struct xfs_buf **bpp, 306 int whichfork) 307 { 308 struct xfs_da_intnode *node; 309 struct xfs_trans *tp = args->trans; 310 struct xfs_mount *mp = tp->t_mountp; 311 struct xfs_da3_icnode_hdr ichdr = {0}; 312 struct xfs_buf *bp; 313 int error; 314 struct xfs_inode *dp = args->dp; 315 316 trace_xfs_da_node_create(args); 317 ASSERT(level <= XFS_DA_NODE_MAXDEPTH); 318 319 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork); 320 if (error) 321 return error; 322 bp->b_ops = &xfs_da3_node_buf_ops; 323 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 324 node = bp->b_addr; 325 326 if (xfs_sb_version_hascrc(&mp->m_sb)) { 327 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 328 329 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr)); 330 ichdr.magic = XFS_DA3_NODE_MAGIC; 331 hdr3->info.blkno = cpu_to_be64(bp->b_bn); 332 hdr3->info.owner = cpu_to_be64(args->dp->i_ino); 333 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid); 334 } else { 335 ichdr.magic = XFS_DA_NODE_MAGIC; 336 } 337 ichdr.level = level; 338 339 dp->d_ops->node_hdr_to_disk(node, &ichdr); 340 xfs_trans_log_buf(tp, bp, 341 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 342 343 *bpp = bp; 344 return 0; 345 } 346 347 /* 348 * Split a leaf node, rebalance, then possibly split 349 * intermediate nodes, rebalance, etc. 350 */ 351 int /* error */ 352 xfs_da3_split( 353 struct xfs_da_state *state) 354 { 355 struct xfs_da_state_blk *oldblk; 356 struct xfs_da_state_blk *newblk; 357 struct xfs_da_state_blk *addblk; 358 struct xfs_da_intnode *node; 359 int max; 360 int action = 0; 361 int error; 362 int i; 363 364 trace_xfs_da_split(state->args); 365 366 /* 367 * Walk back up the tree splitting/inserting/adjusting as necessary. 368 * If we need to insert and there isn't room, split the node, then 369 * decide which fragment to insert the new block from below into. 370 * Note that we may split the root this way, but we need more fixup. 371 */ 372 max = state->path.active - 1; 373 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); 374 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || 375 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 376 377 addblk = &state->path.blk[max]; /* initial dummy value */ 378 for (i = max; (i >= 0) && addblk; state->path.active--, i--) { 379 oldblk = &state->path.blk[i]; 380 newblk = &state->altpath.blk[i]; 381 382 /* 383 * If a leaf node then 384 * Allocate a new leaf node, then rebalance across them. 385 * else if an intermediate node then 386 * We split on the last layer, must we split the node? 387 */ 388 switch (oldblk->magic) { 389 case XFS_ATTR_LEAF_MAGIC: 390 error = xfs_attr3_leaf_split(state, oldblk, newblk); 391 if ((error != 0) && (error != -ENOSPC)) { 392 return error; /* GROT: attr is inconsistent */ 393 } 394 if (!error) { 395 addblk = newblk; 396 break; 397 } 398 /* 399 * Entry wouldn't fit, split the leaf again. The new 400 * extrablk will be consumed by xfs_da3_node_split if 401 * the node is split. 402 */ 403 state->extravalid = 1; 404 if (state->inleaf) { 405 state->extraafter = 0; /* before newblk */ 406 trace_xfs_attr_leaf_split_before(state->args); 407 error = xfs_attr3_leaf_split(state, oldblk, 408 &state->extrablk); 409 } else { 410 state->extraafter = 1; /* after newblk */ 411 trace_xfs_attr_leaf_split_after(state->args); 412 error = xfs_attr3_leaf_split(state, newblk, 413 &state->extrablk); 414 } 415 if (error) 416 return error; /* GROT: attr inconsistent */ 417 addblk = newblk; 418 break; 419 case XFS_DIR2_LEAFN_MAGIC: 420 error = xfs_dir2_leafn_split(state, oldblk, newblk); 421 if (error) 422 return error; 423 addblk = newblk; 424 break; 425 case XFS_DA_NODE_MAGIC: 426 error = xfs_da3_node_split(state, oldblk, newblk, addblk, 427 max - i, &action); 428 addblk->bp = NULL; 429 if (error) 430 return error; /* GROT: dir is inconsistent */ 431 /* 432 * Record the newly split block for the next time thru? 433 */ 434 if (action) 435 addblk = newblk; 436 else 437 addblk = NULL; 438 break; 439 } 440 441 /* 442 * Update the btree to show the new hashval for this child. 443 */ 444 xfs_da3_fixhashpath(state, &state->path); 445 } 446 if (!addblk) 447 return 0; 448 449 /* 450 * xfs_da3_node_split() should have consumed any extra blocks we added 451 * during a double leaf split in the attr fork. This is guaranteed as 452 * we can't be here if the attr fork only has a single leaf block. 453 */ 454 ASSERT(state->extravalid == 0 || 455 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 456 457 /* 458 * Split the root node. 459 */ 460 ASSERT(state->path.active == 0); 461 oldblk = &state->path.blk[0]; 462 error = xfs_da3_root_split(state, oldblk, addblk); 463 if (error) { 464 addblk->bp = NULL; 465 return error; /* GROT: dir is inconsistent */ 466 } 467 468 /* 469 * Update pointers to the node which used to be block 0 and just got 470 * bumped because of the addition of a new root node. Note that the 471 * original block 0 could be at any position in the list of blocks in 472 * the tree. 473 * 474 * Note: the magic numbers and sibling pointers are in the same physical 475 * place for both v2 and v3 headers (by design). Hence it doesn't matter 476 * which version of the xfs_da_intnode structure we use here as the 477 * result will be the same using either structure. 478 */ 479 node = oldblk->bp->b_addr; 480 if (node->hdr.info.forw) { 481 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno); 482 node = addblk->bp->b_addr; 483 node->hdr.info.back = cpu_to_be32(oldblk->blkno); 484 xfs_trans_log_buf(state->args->trans, addblk->bp, 485 XFS_DA_LOGRANGE(node, &node->hdr.info, 486 sizeof(node->hdr.info))); 487 } 488 node = oldblk->bp->b_addr; 489 if (node->hdr.info.back) { 490 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno); 491 node = addblk->bp->b_addr; 492 node->hdr.info.forw = cpu_to_be32(oldblk->blkno); 493 xfs_trans_log_buf(state->args->trans, addblk->bp, 494 XFS_DA_LOGRANGE(node, &node->hdr.info, 495 sizeof(node->hdr.info))); 496 } 497 addblk->bp = NULL; 498 return 0; 499 } 500 501 /* 502 * Split the root. We have to create a new root and point to the two 503 * parts (the split old root) that we just created. Copy block zero to 504 * the EOF, extending the inode in process. 505 */ 506 STATIC int /* error */ 507 xfs_da3_root_split( 508 struct xfs_da_state *state, 509 struct xfs_da_state_blk *blk1, 510 struct xfs_da_state_blk *blk2) 511 { 512 struct xfs_da_intnode *node; 513 struct xfs_da_intnode *oldroot; 514 struct xfs_da_node_entry *btree; 515 struct xfs_da3_icnode_hdr nodehdr; 516 struct xfs_da_args *args; 517 struct xfs_buf *bp; 518 struct xfs_inode *dp; 519 struct xfs_trans *tp; 520 struct xfs_dir2_leaf *leaf; 521 xfs_dablk_t blkno; 522 int level; 523 int error; 524 int size; 525 526 trace_xfs_da_root_split(state->args); 527 528 /* 529 * Copy the existing (incorrect) block from the root node position 530 * to a free space somewhere. 531 */ 532 args = state->args; 533 error = xfs_da_grow_inode(args, &blkno); 534 if (error) 535 return error; 536 537 dp = args->dp; 538 tp = args->trans; 539 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); 540 if (error) 541 return error; 542 node = bp->b_addr; 543 oldroot = blk1->bp->b_addr; 544 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 545 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) { 546 struct xfs_da3_icnode_hdr icnodehdr; 547 548 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot); 549 btree = dp->d_ops->node_tree_p(oldroot); 550 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot); 551 level = icnodehdr.level; 552 553 /* 554 * we are about to copy oldroot to bp, so set up the type 555 * of bp while we know exactly what it will be. 556 */ 557 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 558 } else { 559 struct xfs_dir3_icleaf_hdr leafhdr; 560 struct xfs_dir2_leaf_entry *ents; 561 562 leaf = (xfs_dir2_leaf_t *)oldroot; 563 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf); 564 ents = dp->d_ops->leaf_ents_p(leaf); 565 566 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC || 567 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC); 568 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf); 569 level = 0; 570 571 /* 572 * we are about to copy oldroot to bp, so set up the type 573 * of bp while we know exactly what it will be. 574 */ 575 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF); 576 } 577 578 /* 579 * we can copy most of the information in the node from one block to 580 * another, but for CRC enabled headers we have to make sure that the 581 * block specific identifiers are kept intact. We update the buffer 582 * directly for this. 583 */ 584 memcpy(node, oldroot, size); 585 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 586 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 587 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node; 588 589 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn); 590 } 591 xfs_trans_log_buf(tp, bp, 0, size - 1); 592 593 bp->b_ops = blk1->bp->b_ops; 594 xfs_trans_buf_copy_type(bp, blk1->bp); 595 blk1->bp = bp; 596 blk1->blkno = blkno; 597 598 /* 599 * Set up the new root node. 600 */ 601 error = xfs_da3_node_create(args, 602 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0, 603 level + 1, &bp, args->whichfork); 604 if (error) 605 return error; 606 607 node = bp->b_addr; 608 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 609 btree = dp->d_ops->node_tree_p(node); 610 btree[0].hashval = cpu_to_be32(blk1->hashval); 611 btree[0].before = cpu_to_be32(blk1->blkno); 612 btree[1].hashval = cpu_to_be32(blk2->hashval); 613 btree[1].before = cpu_to_be32(blk2->blkno); 614 nodehdr.count = 2; 615 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 616 617 #ifdef DEBUG 618 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 619 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 620 ASSERT(blk1->blkno >= args->geo->leafblk && 621 blk1->blkno < args->geo->freeblk); 622 ASSERT(blk2->blkno >= args->geo->leafblk && 623 blk2->blkno < args->geo->freeblk); 624 } 625 #endif 626 627 /* Header is already logged by xfs_da_node_create */ 628 xfs_trans_log_buf(tp, bp, 629 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2)); 630 631 return 0; 632 } 633 634 /* 635 * Split the node, rebalance, then add the new entry. 636 */ 637 STATIC int /* error */ 638 xfs_da3_node_split( 639 struct xfs_da_state *state, 640 struct xfs_da_state_blk *oldblk, 641 struct xfs_da_state_blk *newblk, 642 struct xfs_da_state_blk *addblk, 643 int treelevel, 644 int *result) 645 { 646 struct xfs_da_intnode *node; 647 struct xfs_da3_icnode_hdr nodehdr; 648 xfs_dablk_t blkno; 649 int newcount; 650 int error; 651 int useextra; 652 struct xfs_inode *dp = state->args->dp; 653 654 trace_xfs_da_node_split(state->args); 655 656 node = oldblk->bp->b_addr; 657 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 658 659 /* 660 * With V2 dirs the extra block is data or freespace. 661 */ 662 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; 663 newcount = 1 + useextra; 664 /* 665 * Do we have to split the node? 666 */ 667 if (nodehdr.count + newcount > state->args->geo->node_ents) { 668 /* 669 * Allocate a new node, add to the doubly linked chain of 670 * nodes, then move some of our excess entries into it. 671 */ 672 error = xfs_da_grow_inode(state->args, &blkno); 673 if (error) 674 return error; /* GROT: dir is inconsistent */ 675 676 error = xfs_da3_node_create(state->args, blkno, treelevel, 677 &newblk->bp, state->args->whichfork); 678 if (error) 679 return error; /* GROT: dir is inconsistent */ 680 newblk->blkno = blkno; 681 newblk->magic = XFS_DA_NODE_MAGIC; 682 xfs_da3_node_rebalance(state, oldblk, newblk); 683 error = xfs_da3_blk_link(state, oldblk, newblk); 684 if (error) 685 return error; 686 *result = 1; 687 } else { 688 *result = 0; 689 } 690 691 /* 692 * Insert the new entry(s) into the correct block 693 * (updating last hashval in the process). 694 * 695 * xfs_da3_node_add() inserts BEFORE the given index, 696 * and as a result of using node_lookup_int() we always 697 * point to a valid entry (not after one), but a split 698 * operation always results in a new block whose hashvals 699 * FOLLOW the current block. 700 * 701 * If we had double-split op below us, then add the extra block too. 702 */ 703 node = oldblk->bp->b_addr; 704 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 705 if (oldblk->index <= nodehdr.count) { 706 oldblk->index++; 707 xfs_da3_node_add(state, oldblk, addblk); 708 if (useextra) { 709 if (state->extraafter) 710 oldblk->index++; 711 xfs_da3_node_add(state, oldblk, &state->extrablk); 712 state->extravalid = 0; 713 } 714 } else { 715 newblk->index++; 716 xfs_da3_node_add(state, newblk, addblk); 717 if (useextra) { 718 if (state->extraafter) 719 newblk->index++; 720 xfs_da3_node_add(state, newblk, &state->extrablk); 721 state->extravalid = 0; 722 } 723 } 724 725 return 0; 726 } 727 728 /* 729 * Balance the btree elements between two intermediate nodes, 730 * usually one full and one empty. 731 * 732 * NOTE: if blk2 is empty, then it will get the upper half of blk1. 733 */ 734 STATIC void 735 xfs_da3_node_rebalance( 736 struct xfs_da_state *state, 737 struct xfs_da_state_blk *blk1, 738 struct xfs_da_state_blk *blk2) 739 { 740 struct xfs_da_intnode *node1; 741 struct xfs_da_intnode *node2; 742 struct xfs_da_intnode *tmpnode; 743 struct xfs_da_node_entry *btree1; 744 struct xfs_da_node_entry *btree2; 745 struct xfs_da_node_entry *btree_s; 746 struct xfs_da_node_entry *btree_d; 747 struct xfs_da3_icnode_hdr nodehdr1; 748 struct xfs_da3_icnode_hdr nodehdr2; 749 struct xfs_trans *tp; 750 int count; 751 int tmp; 752 int swap = 0; 753 struct xfs_inode *dp = state->args->dp; 754 755 trace_xfs_da_node_rebalance(state->args); 756 757 node1 = blk1->bp->b_addr; 758 node2 = blk2->bp->b_addr; 759 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 760 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 761 btree1 = dp->d_ops->node_tree_p(node1); 762 btree2 = dp->d_ops->node_tree_p(node2); 763 764 /* 765 * Figure out how many entries need to move, and in which direction. 766 * Swap the nodes around if that makes it simpler. 767 */ 768 if (nodehdr1.count > 0 && nodehdr2.count > 0 && 769 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 770 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) < 771 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) { 772 tmpnode = node1; 773 node1 = node2; 774 node2 = tmpnode; 775 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 776 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 777 btree1 = dp->d_ops->node_tree_p(node1); 778 btree2 = dp->d_ops->node_tree_p(node2); 779 swap = 1; 780 } 781 782 count = (nodehdr1.count - nodehdr2.count) / 2; 783 if (count == 0) 784 return; 785 tp = state->args->trans; 786 /* 787 * Two cases: high-to-low and low-to-high. 788 */ 789 if (count > 0) { 790 /* 791 * Move elements in node2 up to make a hole. 792 */ 793 tmp = nodehdr2.count; 794 if (tmp > 0) { 795 tmp *= (uint)sizeof(xfs_da_node_entry_t); 796 btree_s = &btree2[0]; 797 btree_d = &btree2[count]; 798 memmove(btree_d, btree_s, tmp); 799 } 800 801 /* 802 * Move the req'd B-tree elements from high in node1 to 803 * low in node2. 804 */ 805 nodehdr2.count += count; 806 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 807 btree_s = &btree1[nodehdr1.count - count]; 808 btree_d = &btree2[0]; 809 memcpy(btree_d, btree_s, tmp); 810 nodehdr1.count -= count; 811 } else { 812 /* 813 * Move the req'd B-tree elements from low in node2 to 814 * high in node1. 815 */ 816 count = -count; 817 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 818 btree_s = &btree2[0]; 819 btree_d = &btree1[nodehdr1.count]; 820 memcpy(btree_d, btree_s, tmp); 821 nodehdr1.count += count; 822 823 xfs_trans_log_buf(tp, blk1->bp, 824 XFS_DA_LOGRANGE(node1, btree_d, tmp)); 825 826 /* 827 * Move elements in node2 down to fill the hole. 828 */ 829 tmp = nodehdr2.count - count; 830 tmp *= (uint)sizeof(xfs_da_node_entry_t); 831 btree_s = &btree2[count]; 832 btree_d = &btree2[0]; 833 memmove(btree_d, btree_s, tmp); 834 nodehdr2.count -= count; 835 } 836 837 /* 838 * Log header of node 1 and all current bits of node 2. 839 */ 840 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1); 841 xfs_trans_log_buf(tp, blk1->bp, 842 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size)); 843 844 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2); 845 xfs_trans_log_buf(tp, blk2->bp, 846 XFS_DA_LOGRANGE(node2, &node2->hdr, 847 dp->d_ops->node_hdr_size + 848 (sizeof(btree2[0]) * nodehdr2.count))); 849 850 /* 851 * Record the last hashval from each block for upward propagation. 852 * (note: don't use the swapped node pointers) 853 */ 854 if (swap) { 855 node1 = blk1->bp->b_addr; 856 node2 = blk2->bp->b_addr; 857 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 858 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 859 btree1 = dp->d_ops->node_tree_p(node1); 860 btree2 = dp->d_ops->node_tree_p(node2); 861 } 862 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval); 863 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval); 864 865 /* 866 * Adjust the expected index for insertion. 867 */ 868 if (blk1->index >= nodehdr1.count) { 869 blk2->index = blk1->index - nodehdr1.count; 870 blk1->index = nodehdr1.count + 1; /* make it invalid */ 871 } 872 } 873 874 /* 875 * Add a new entry to an intermediate node. 876 */ 877 STATIC void 878 xfs_da3_node_add( 879 struct xfs_da_state *state, 880 struct xfs_da_state_blk *oldblk, 881 struct xfs_da_state_blk *newblk) 882 { 883 struct xfs_da_intnode *node; 884 struct xfs_da3_icnode_hdr nodehdr; 885 struct xfs_da_node_entry *btree; 886 int tmp; 887 struct xfs_inode *dp = state->args->dp; 888 889 trace_xfs_da_node_add(state->args); 890 891 node = oldblk->bp->b_addr; 892 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 893 btree = dp->d_ops->node_tree_p(node); 894 895 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count); 896 ASSERT(newblk->blkno != 0); 897 if (state->args->whichfork == XFS_DATA_FORK) 898 ASSERT(newblk->blkno >= state->args->geo->leafblk && 899 newblk->blkno < state->args->geo->freeblk); 900 901 /* 902 * We may need to make some room before we insert the new node. 903 */ 904 tmp = 0; 905 if (oldblk->index < nodehdr.count) { 906 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree); 907 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp); 908 } 909 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval); 910 btree[oldblk->index].before = cpu_to_be32(newblk->blkno); 911 xfs_trans_log_buf(state->args->trans, oldblk->bp, 912 XFS_DA_LOGRANGE(node, &btree[oldblk->index], 913 tmp + sizeof(*btree))); 914 915 nodehdr.count += 1; 916 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 917 xfs_trans_log_buf(state->args->trans, oldblk->bp, 918 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 919 920 /* 921 * Copy the last hash value from the oldblk to propagate upwards. 922 */ 923 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 924 } 925 926 /*======================================================================== 927 * Routines used for shrinking the Btree. 928 *========================================================================*/ 929 930 /* 931 * Deallocate an empty leaf node, remove it from its parent, 932 * possibly deallocating that block, etc... 933 */ 934 int 935 xfs_da3_join( 936 struct xfs_da_state *state) 937 { 938 struct xfs_da_state_blk *drop_blk; 939 struct xfs_da_state_blk *save_blk; 940 int action = 0; 941 int error; 942 943 trace_xfs_da_join(state->args); 944 945 drop_blk = &state->path.blk[ state->path.active-1 ]; 946 save_blk = &state->altpath.blk[ state->path.active-1 ]; 947 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); 948 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || 949 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); 950 951 /* 952 * Walk back up the tree joining/deallocating as necessary. 953 * When we stop dropping blocks, break out. 954 */ 955 for ( ; state->path.active >= 2; drop_blk--, save_blk--, 956 state->path.active--) { 957 /* 958 * See if we can combine the block with a neighbor. 959 * (action == 0) => no options, just leave 960 * (action == 1) => coalesce, then unlink 961 * (action == 2) => block empty, unlink it 962 */ 963 switch (drop_blk->magic) { 964 case XFS_ATTR_LEAF_MAGIC: 965 error = xfs_attr3_leaf_toosmall(state, &action); 966 if (error) 967 return error; 968 if (action == 0) 969 return 0; 970 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk); 971 break; 972 case XFS_DIR2_LEAFN_MAGIC: 973 error = xfs_dir2_leafn_toosmall(state, &action); 974 if (error) 975 return error; 976 if (action == 0) 977 return 0; 978 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); 979 break; 980 case XFS_DA_NODE_MAGIC: 981 /* 982 * Remove the offending node, fixup hashvals, 983 * check for a toosmall neighbor. 984 */ 985 xfs_da3_node_remove(state, drop_blk); 986 xfs_da3_fixhashpath(state, &state->path); 987 error = xfs_da3_node_toosmall(state, &action); 988 if (error) 989 return error; 990 if (action == 0) 991 return 0; 992 xfs_da3_node_unbalance(state, drop_blk, save_blk); 993 break; 994 } 995 xfs_da3_fixhashpath(state, &state->altpath); 996 error = xfs_da3_blk_unlink(state, drop_blk, save_blk); 997 xfs_da_state_kill_altpath(state); 998 if (error) 999 return error; 1000 error = xfs_da_shrink_inode(state->args, drop_blk->blkno, 1001 drop_blk->bp); 1002 drop_blk->bp = NULL; 1003 if (error) 1004 return error; 1005 } 1006 /* 1007 * We joined all the way to the top. If it turns out that 1008 * we only have one entry in the root, make the child block 1009 * the new root. 1010 */ 1011 xfs_da3_node_remove(state, drop_blk); 1012 xfs_da3_fixhashpath(state, &state->path); 1013 error = xfs_da3_root_join(state, &state->path.blk[0]); 1014 return error; 1015 } 1016 1017 #ifdef DEBUG 1018 static void 1019 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) 1020 { 1021 __be16 magic = blkinfo->magic; 1022 1023 if (level == 1) { 1024 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1025 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1026 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1027 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1028 } else { 1029 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1030 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)); 1031 } 1032 ASSERT(!blkinfo->forw); 1033 ASSERT(!blkinfo->back); 1034 } 1035 #else /* !DEBUG */ 1036 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) 1037 #endif /* !DEBUG */ 1038 1039 /* 1040 * We have only one entry in the root. Copy the only remaining child of 1041 * the old root to block 0 as the new root node. 1042 */ 1043 STATIC int 1044 xfs_da3_root_join( 1045 struct xfs_da_state *state, 1046 struct xfs_da_state_blk *root_blk) 1047 { 1048 struct xfs_da_intnode *oldroot; 1049 struct xfs_da_args *args; 1050 xfs_dablk_t child; 1051 struct xfs_buf *bp; 1052 struct xfs_da3_icnode_hdr oldroothdr; 1053 struct xfs_da_node_entry *btree; 1054 int error; 1055 struct xfs_inode *dp = state->args->dp; 1056 1057 trace_xfs_da_root_join(state->args); 1058 1059 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); 1060 1061 args = state->args; 1062 oldroot = root_blk->bp->b_addr; 1063 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot); 1064 ASSERT(oldroothdr.forw == 0); 1065 ASSERT(oldroothdr.back == 0); 1066 1067 /* 1068 * If the root has more than one child, then don't do anything. 1069 */ 1070 if (oldroothdr.count > 1) 1071 return 0; 1072 1073 /* 1074 * Read in the (only) child block, then copy those bytes into 1075 * the root block's buffer and free the original child block. 1076 */ 1077 btree = dp->d_ops->node_tree_p(oldroot); 1078 child = be32_to_cpu(btree[0].before); 1079 ASSERT(child != 0); 1080 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp, 1081 args->whichfork); 1082 if (error) 1083 return error; 1084 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level); 1085 1086 /* 1087 * This could be copying a leaf back into the root block in the case of 1088 * there only being a single leaf block left in the tree. Hence we have 1089 * to update the b_ops pointer as well to match the buffer type change 1090 * that could occur. For dir3 blocks we also need to update the block 1091 * number in the buffer header. 1092 */ 1093 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize); 1094 root_blk->bp->b_ops = bp->b_ops; 1095 xfs_trans_buf_copy_type(root_blk->bp, bp); 1096 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) { 1097 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr; 1098 da3->blkno = cpu_to_be64(root_blk->bp->b_bn); 1099 } 1100 xfs_trans_log_buf(args->trans, root_blk->bp, 0, 1101 args->geo->blksize - 1); 1102 error = xfs_da_shrink_inode(args, child, bp); 1103 return error; 1104 } 1105 1106 /* 1107 * Check a node block and its neighbors to see if the block should be 1108 * collapsed into one or the other neighbor. Always keep the block 1109 * with the smaller block number. 1110 * If the current block is over 50% full, don't try to join it, return 0. 1111 * If the block is empty, fill in the state structure and return 2. 1112 * If it can be collapsed, fill in the state structure and return 1. 1113 * If nothing can be done, return 0. 1114 */ 1115 STATIC int 1116 xfs_da3_node_toosmall( 1117 struct xfs_da_state *state, 1118 int *action) 1119 { 1120 struct xfs_da_intnode *node; 1121 struct xfs_da_state_blk *blk; 1122 struct xfs_da_blkinfo *info; 1123 xfs_dablk_t blkno; 1124 struct xfs_buf *bp; 1125 struct xfs_da3_icnode_hdr nodehdr; 1126 int count; 1127 int forward; 1128 int error; 1129 int retval; 1130 int i; 1131 struct xfs_inode *dp = state->args->dp; 1132 1133 trace_xfs_da_node_toosmall(state->args); 1134 1135 /* 1136 * Check for the degenerate case of the block being over 50% full. 1137 * If so, it's not worth even looking to see if we might be able 1138 * to coalesce with a sibling. 1139 */ 1140 blk = &state->path.blk[ state->path.active-1 ]; 1141 info = blk->bp->b_addr; 1142 node = (xfs_da_intnode_t *)info; 1143 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1144 if (nodehdr.count > (state->args->geo->node_ents >> 1)) { 1145 *action = 0; /* blk over 50%, don't try to join */ 1146 return 0; /* blk over 50%, don't try to join */ 1147 } 1148 1149 /* 1150 * Check for the degenerate case of the block being empty. 1151 * If the block is empty, we'll simply delete it, no need to 1152 * coalesce it with a sibling block. We choose (arbitrarily) 1153 * to merge with the forward block unless it is NULL. 1154 */ 1155 if (nodehdr.count == 0) { 1156 /* 1157 * Make altpath point to the block we want to keep and 1158 * path point to the block we want to drop (this one). 1159 */ 1160 forward = (info->forw != 0); 1161 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1162 error = xfs_da3_path_shift(state, &state->altpath, forward, 1163 0, &retval); 1164 if (error) 1165 return error; 1166 if (retval) { 1167 *action = 0; 1168 } else { 1169 *action = 2; 1170 } 1171 return 0; 1172 } 1173 1174 /* 1175 * Examine each sibling block to see if we can coalesce with 1176 * at least 25% free space to spare. We need to figure out 1177 * whether to merge with the forward or the backward block. 1178 * We prefer coalescing with the lower numbered sibling so as 1179 * to shrink a directory over time. 1180 */ 1181 count = state->args->geo->node_ents; 1182 count -= state->args->geo->node_ents >> 2; 1183 count -= nodehdr.count; 1184 1185 /* start with smaller blk num */ 1186 forward = nodehdr.forw < nodehdr.back; 1187 for (i = 0; i < 2; forward = !forward, i++) { 1188 struct xfs_da3_icnode_hdr thdr; 1189 if (forward) 1190 blkno = nodehdr.forw; 1191 else 1192 blkno = nodehdr.back; 1193 if (blkno == 0) 1194 continue; 1195 error = xfs_da3_node_read(state->args->trans, dp, 1196 blkno, -1, &bp, state->args->whichfork); 1197 if (error) 1198 return error; 1199 1200 node = bp->b_addr; 1201 dp->d_ops->node_hdr_from_disk(&thdr, node); 1202 xfs_trans_brelse(state->args->trans, bp); 1203 1204 if (count - thdr.count >= 0) 1205 break; /* fits with at least 25% to spare */ 1206 } 1207 if (i >= 2) { 1208 *action = 0; 1209 return 0; 1210 } 1211 1212 /* 1213 * Make altpath point to the block we want to keep (the lower 1214 * numbered block) and path point to the block we want to drop. 1215 */ 1216 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1217 if (blkno < blk->blkno) { 1218 error = xfs_da3_path_shift(state, &state->altpath, forward, 1219 0, &retval); 1220 } else { 1221 error = xfs_da3_path_shift(state, &state->path, forward, 1222 0, &retval); 1223 } 1224 if (error) 1225 return error; 1226 if (retval) { 1227 *action = 0; 1228 return 0; 1229 } 1230 *action = 1; 1231 return 0; 1232 } 1233 1234 /* 1235 * Pick up the last hashvalue from an intermediate node. 1236 */ 1237 STATIC uint 1238 xfs_da3_node_lasthash( 1239 struct xfs_inode *dp, 1240 struct xfs_buf *bp, 1241 int *count) 1242 { 1243 struct xfs_da_intnode *node; 1244 struct xfs_da_node_entry *btree; 1245 struct xfs_da3_icnode_hdr nodehdr; 1246 1247 node = bp->b_addr; 1248 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1249 if (count) 1250 *count = nodehdr.count; 1251 if (!nodehdr.count) 1252 return 0; 1253 btree = dp->d_ops->node_tree_p(node); 1254 return be32_to_cpu(btree[nodehdr.count - 1].hashval); 1255 } 1256 1257 /* 1258 * Walk back up the tree adjusting hash values as necessary, 1259 * when we stop making changes, return. 1260 */ 1261 void 1262 xfs_da3_fixhashpath( 1263 struct xfs_da_state *state, 1264 struct xfs_da_state_path *path) 1265 { 1266 struct xfs_da_state_blk *blk; 1267 struct xfs_da_intnode *node; 1268 struct xfs_da_node_entry *btree; 1269 xfs_dahash_t lasthash=0; 1270 int level; 1271 int count; 1272 struct xfs_inode *dp = state->args->dp; 1273 1274 trace_xfs_da_fixhashpath(state->args); 1275 1276 level = path->active-1; 1277 blk = &path->blk[ level ]; 1278 switch (blk->magic) { 1279 case XFS_ATTR_LEAF_MAGIC: 1280 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); 1281 if (count == 0) 1282 return; 1283 break; 1284 case XFS_DIR2_LEAFN_MAGIC: 1285 lasthash = xfs_dir2_leafn_lasthash(dp, blk->bp, &count); 1286 if (count == 0) 1287 return; 1288 break; 1289 case XFS_DA_NODE_MAGIC: 1290 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); 1291 if (count == 0) 1292 return; 1293 break; 1294 } 1295 for (blk--, level--; level >= 0; blk--, level--) { 1296 struct xfs_da3_icnode_hdr nodehdr; 1297 1298 node = blk->bp->b_addr; 1299 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1300 btree = dp->d_ops->node_tree_p(node); 1301 if (be32_to_cpu(btree[blk->index].hashval) == lasthash) 1302 break; 1303 blk->hashval = lasthash; 1304 btree[blk->index].hashval = cpu_to_be32(lasthash); 1305 xfs_trans_log_buf(state->args->trans, blk->bp, 1306 XFS_DA_LOGRANGE(node, &btree[blk->index], 1307 sizeof(*btree))); 1308 1309 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1310 } 1311 } 1312 1313 /* 1314 * Remove an entry from an intermediate node. 1315 */ 1316 STATIC void 1317 xfs_da3_node_remove( 1318 struct xfs_da_state *state, 1319 struct xfs_da_state_blk *drop_blk) 1320 { 1321 struct xfs_da_intnode *node; 1322 struct xfs_da3_icnode_hdr nodehdr; 1323 struct xfs_da_node_entry *btree; 1324 int index; 1325 int tmp; 1326 struct xfs_inode *dp = state->args->dp; 1327 1328 trace_xfs_da_node_remove(state->args); 1329 1330 node = drop_blk->bp->b_addr; 1331 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1332 ASSERT(drop_blk->index < nodehdr.count); 1333 ASSERT(drop_blk->index >= 0); 1334 1335 /* 1336 * Copy over the offending entry, or just zero it out. 1337 */ 1338 index = drop_blk->index; 1339 btree = dp->d_ops->node_tree_p(node); 1340 if (index < nodehdr.count - 1) { 1341 tmp = nodehdr.count - index - 1; 1342 tmp *= (uint)sizeof(xfs_da_node_entry_t); 1343 memmove(&btree[index], &btree[index + 1], tmp); 1344 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1345 XFS_DA_LOGRANGE(node, &btree[index], tmp)); 1346 index = nodehdr.count - 1; 1347 } 1348 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t)); 1349 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1350 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index]))); 1351 nodehdr.count -= 1; 1352 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 1353 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1354 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 1355 1356 /* 1357 * Copy the last hash value from the block to propagate upwards. 1358 */ 1359 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval); 1360 } 1361 1362 /* 1363 * Unbalance the elements between two intermediate nodes, 1364 * move all Btree elements from one node into another. 1365 */ 1366 STATIC void 1367 xfs_da3_node_unbalance( 1368 struct xfs_da_state *state, 1369 struct xfs_da_state_blk *drop_blk, 1370 struct xfs_da_state_blk *save_blk) 1371 { 1372 struct xfs_da_intnode *drop_node; 1373 struct xfs_da_intnode *save_node; 1374 struct xfs_da_node_entry *drop_btree; 1375 struct xfs_da_node_entry *save_btree; 1376 struct xfs_da3_icnode_hdr drop_hdr; 1377 struct xfs_da3_icnode_hdr save_hdr; 1378 struct xfs_trans *tp; 1379 int sindex; 1380 int tmp; 1381 struct xfs_inode *dp = state->args->dp; 1382 1383 trace_xfs_da_node_unbalance(state->args); 1384 1385 drop_node = drop_blk->bp->b_addr; 1386 save_node = save_blk->bp->b_addr; 1387 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node); 1388 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node); 1389 drop_btree = dp->d_ops->node_tree_p(drop_node); 1390 save_btree = dp->d_ops->node_tree_p(save_node); 1391 tp = state->args->trans; 1392 1393 /* 1394 * If the dying block has lower hashvals, then move all the 1395 * elements in the remaining block up to make a hole. 1396 */ 1397 if ((be32_to_cpu(drop_btree[0].hashval) < 1398 be32_to_cpu(save_btree[0].hashval)) || 1399 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) < 1400 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) { 1401 /* XXX: check this - is memmove dst correct? */ 1402 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t); 1403 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp); 1404 1405 sindex = 0; 1406 xfs_trans_log_buf(tp, save_blk->bp, 1407 XFS_DA_LOGRANGE(save_node, &save_btree[0], 1408 (save_hdr.count + drop_hdr.count) * 1409 sizeof(xfs_da_node_entry_t))); 1410 } else { 1411 sindex = save_hdr.count; 1412 xfs_trans_log_buf(tp, save_blk->bp, 1413 XFS_DA_LOGRANGE(save_node, &save_btree[sindex], 1414 drop_hdr.count * sizeof(xfs_da_node_entry_t))); 1415 } 1416 1417 /* 1418 * Move all the B-tree elements from drop_blk to save_blk. 1419 */ 1420 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t); 1421 memcpy(&save_btree[sindex], &drop_btree[0], tmp); 1422 save_hdr.count += drop_hdr.count; 1423 1424 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr); 1425 xfs_trans_log_buf(tp, save_blk->bp, 1426 XFS_DA_LOGRANGE(save_node, &save_node->hdr, 1427 dp->d_ops->node_hdr_size)); 1428 1429 /* 1430 * Save the last hashval in the remaining block for upward propagation. 1431 */ 1432 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval); 1433 } 1434 1435 /*======================================================================== 1436 * Routines used for finding things in the Btree. 1437 *========================================================================*/ 1438 1439 /* 1440 * Walk down the Btree looking for a particular filename, filling 1441 * in the state structure as we go. 1442 * 1443 * We will set the state structure to point to each of the elements 1444 * in each of the nodes where either the hashval is or should be. 1445 * 1446 * We support duplicate hashval's so for each entry in the current 1447 * node that could contain the desired hashval, descend. This is a 1448 * pruned depth-first tree search. 1449 */ 1450 int /* error */ 1451 xfs_da3_node_lookup_int( 1452 struct xfs_da_state *state, 1453 int *result) 1454 { 1455 struct xfs_da_state_blk *blk; 1456 struct xfs_da_blkinfo *curr; 1457 struct xfs_da_intnode *node; 1458 struct xfs_da_node_entry *btree; 1459 struct xfs_da3_icnode_hdr nodehdr; 1460 struct xfs_da_args *args; 1461 xfs_dablk_t blkno; 1462 xfs_dahash_t hashval; 1463 xfs_dahash_t btreehashval; 1464 int probe; 1465 int span; 1466 int max; 1467 int error; 1468 int retval; 1469 struct xfs_inode *dp = state->args->dp; 1470 1471 args = state->args; 1472 1473 /* 1474 * Descend thru the B-tree searching each level for the right 1475 * node to use, until the right hashval is found. 1476 */ 1477 blkno = (args->whichfork == XFS_DATA_FORK)? args->geo->leafblk : 0; 1478 for (blk = &state->path.blk[0], state->path.active = 1; 1479 state->path.active <= XFS_DA_NODE_MAXDEPTH; 1480 blk++, state->path.active++) { 1481 /* 1482 * Read the next node down in the tree. 1483 */ 1484 blk->blkno = blkno; 1485 error = xfs_da3_node_read(args->trans, args->dp, blkno, 1486 -1, &blk->bp, args->whichfork); 1487 if (error) { 1488 blk->blkno = 0; 1489 state->path.active--; 1490 return error; 1491 } 1492 curr = blk->bp->b_addr; 1493 blk->magic = be16_to_cpu(curr->magic); 1494 1495 if (blk->magic == XFS_ATTR_LEAF_MAGIC || 1496 blk->magic == XFS_ATTR3_LEAF_MAGIC) { 1497 blk->magic = XFS_ATTR_LEAF_MAGIC; 1498 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1499 break; 1500 } 1501 1502 if (blk->magic == XFS_DIR2_LEAFN_MAGIC || 1503 blk->magic == XFS_DIR3_LEAFN_MAGIC) { 1504 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1505 blk->hashval = xfs_dir2_leafn_lasthash(args->dp, 1506 blk->bp, NULL); 1507 break; 1508 } 1509 1510 blk->magic = XFS_DA_NODE_MAGIC; 1511 1512 1513 /* 1514 * Search an intermediate node for a match. 1515 */ 1516 node = blk->bp->b_addr; 1517 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1518 btree = dp->d_ops->node_tree_p(node); 1519 1520 max = nodehdr.count; 1521 blk->hashval = be32_to_cpu(btree[max - 1].hashval); 1522 1523 /* 1524 * Binary search. (note: small blocks will skip loop) 1525 */ 1526 probe = span = max / 2; 1527 hashval = args->hashval; 1528 while (span > 4) { 1529 span /= 2; 1530 btreehashval = be32_to_cpu(btree[probe].hashval); 1531 if (btreehashval < hashval) 1532 probe += span; 1533 else if (btreehashval > hashval) 1534 probe -= span; 1535 else 1536 break; 1537 } 1538 ASSERT((probe >= 0) && (probe < max)); 1539 ASSERT((span <= 4) || 1540 (be32_to_cpu(btree[probe].hashval) == hashval)); 1541 1542 /* 1543 * Since we may have duplicate hashval's, find the first 1544 * matching hashval in the node. 1545 */ 1546 while (probe > 0 && 1547 be32_to_cpu(btree[probe].hashval) >= hashval) { 1548 probe--; 1549 } 1550 while (probe < max && 1551 be32_to_cpu(btree[probe].hashval) < hashval) { 1552 probe++; 1553 } 1554 1555 /* 1556 * Pick the right block to descend on. 1557 */ 1558 if (probe == max) { 1559 blk->index = max - 1; 1560 blkno = be32_to_cpu(btree[max - 1].before); 1561 } else { 1562 blk->index = probe; 1563 blkno = be32_to_cpu(btree[probe].before); 1564 } 1565 } 1566 1567 /* 1568 * A leaf block that ends in the hashval that we are interested in 1569 * (final hashval == search hashval) means that the next block may 1570 * contain more entries with the same hashval, shift upward to the 1571 * next leaf and keep searching. 1572 */ 1573 for (;;) { 1574 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { 1575 retval = xfs_dir2_leafn_lookup_int(blk->bp, args, 1576 &blk->index, state); 1577 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1578 retval = xfs_attr3_leaf_lookup_int(blk->bp, args); 1579 blk->index = args->index; 1580 args->blkno = blk->blkno; 1581 } else { 1582 ASSERT(0); 1583 return -EFSCORRUPTED; 1584 } 1585 if (((retval == -ENOENT) || (retval == -ENOATTR)) && 1586 (blk->hashval == args->hashval)) { 1587 error = xfs_da3_path_shift(state, &state->path, 1, 1, 1588 &retval); 1589 if (error) 1590 return error; 1591 if (retval == 0) { 1592 continue; 1593 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1594 /* path_shift() gives ENOENT */ 1595 retval = -ENOATTR; 1596 } 1597 } 1598 break; 1599 } 1600 *result = retval; 1601 return 0; 1602 } 1603 1604 /*======================================================================== 1605 * Utility routines. 1606 *========================================================================*/ 1607 1608 /* 1609 * Compare two intermediate nodes for "order". 1610 */ 1611 STATIC int 1612 xfs_da3_node_order( 1613 struct xfs_inode *dp, 1614 struct xfs_buf *node1_bp, 1615 struct xfs_buf *node2_bp) 1616 { 1617 struct xfs_da_intnode *node1; 1618 struct xfs_da_intnode *node2; 1619 struct xfs_da_node_entry *btree1; 1620 struct xfs_da_node_entry *btree2; 1621 struct xfs_da3_icnode_hdr node1hdr; 1622 struct xfs_da3_icnode_hdr node2hdr; 1623 1624 node1 = node1_bp->b_addr; 1625 node2 = node2_bp->b_addr; 1626 dp->d_ops->node_hdr_from_disk(&node1hdr, node1); 1627 dp->d_ops->node_hdr_from_disk(&node2hdr, node2); 1628 btree1 = dp->d_ops->node_tree_p(node1); 1629 btree2 = dp->d_ops->node_tree_p(node2); 1630 1631 if (node1hdr.count > 0 && node2hdr.count > 0 && 1632 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 1633 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) < 1634 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) { 1635 return 1; 1636 } 1637 return 0; 1638 } 1639 1640 /* 1641 * Link a new block into a doubly linked list of blocks (of whatever type). 1642 */ 1643 int /* error */ 1644 xfs_da3_blk_link( 1645 struct xfs_da_state *state, 1646 struct xfs_da_state_blk *old_blk, 1647 struct xfs_da_state_blk *new_blk) 1648 { 1649 struct xfs_da_blkinfo *old_info; 1650 struct xfs_da_blkinfo *new_info; 1651 struct xfs_da_blkinfo *tmp_info; 1652 struct xfs_da_args *args; 1653 struct xfs_buf *bp; 1654 int before = 0; 1655 int error; 1656 struct xfs_inode *dp = state->args->dp; 1657 1658 /* 1659 * Set up environment. 1660 */ 1661 args = state->args; 1662 ASSERT(args != NULL); 1663 old_info = old_blk->bp->b_addr; 1664 new_info = new_blk->bp->b_addr; 1665 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || 1666 old_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1667 old_blk->magic == XFS_ATTR_LEAF_MAGIC); 1668 1669 switch (old_blk->magic) { 1670 case XFS_ATTR_LEAF_MAGIC: 1671 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); 1672 break; 1673 case XFS_DIR2_LEAFN_MAGIC: 1674 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp); 1675 break; 1676 case XFS_DA_NODE_MAGIC: 1677 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp); 1678 break; 1679 } 1680 1681 /* 1682 * Link blocks in appropriate order. 1683 */ 1684 if (before) { 1685 /* 1686 * Link new block in before existing block. 1687 */ 1688 trace_xfs_da_link_before(args); 1689 new_info->forw = cpu_to_be32(old_blk->blkno); 1690 new_info->back = old_info->back; 1691 if (old_info->back) { 1692 error = xfs_da3_node_read(args->trans, dp, 1693 be32_to_cpu(old_info->back), 1694 -1, &bp, args->whichfork); 1695 if (error) 1696 return error; 1697 ASSERT(bp != NULL); 1698 tmp_info = bp->b_addr; 1699 ASSERT(tmp_info->magic == old_info->magic); 1700 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); 1701 tmp_info->forw = cpu_to_be32(new_blk->blkno); 1702 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1703 } 1704 old_info->back = cpu_to_be32(new_blk->blkno); 1705 } else { 1706 /* 1707 * Link new block in after existing block. 1708 */ 1709 trace_xfs_da_link_after(args); 1710 new_info->forw = old_info->forw; 1711 new_info->back = cpu_to_be32(old_blk->blkno); 1712 if (old_info->forw) { 1713 error = xfs_da3_node_read(args->trans, dp, 1714 be32_to_cpu(old_info->forw), 1715 -1, &bp, args->whichfork); 1716 if (error) 1717 return error; 1718 ASSERT(bp != NULL); 1719 tmp_info = bp->b_addr; 1720 ASSERT(tmp_info->magic == old_info->magic); 1721 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); 1722 tmp_info->back = cpu_to_be32(new_blk->blkno); 1723 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1724 } 1725 old_info->forw = cpu_to_be32(new_blk->blkno); 1726 } 1727 1728 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); 1729 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); 1730 return 0; 1731 } 1732 1733 /* 1734 * Unlink a block from a doubly linked list of blocks. 1735 */ 1736 STATIC int /* error */ 1737 xfs_da3_blk_unlink( 1738 struct xfs_da_state *state, 1739 struct xfs_da_state_blk *drop_blk, 1740 struct xfs_da_state_blk *save_blk) 1741 { 1742 struct xfs_da_blkinfo *drop_info; 1743 struct xfs_da_blkinfo *save_info; 1744 struct xfs_da_blkinfo *tmp_info; 1745 struct xfs_da_args *args; 1746 struct xfs_buf *bp; 1747 int error; 1748 1749 /* 1750 * Set up environment. 1751 */ 1752 args = state->args; 1753 ASSERT(args != NULL); 1754 save_info = save_blk->bp->b_addr; 1755 drop_info = drop_blk->bp->b_addr; 1756 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || 1757 save_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1758 save_blk->magic == XFS_ATTR_LEAF_MAGIC); 1759 ASSERT(save_blk->magic == drop_blk->magic); 1760 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || 1761 (be32_to_cpu(save_info->back) == drop_blk->blkno)); 1762 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || 1763 (be32_to_cpu(drop_info->back) == save_blk->blkno)); 1764 1765 /* 1766 * Unlink the leaf block from the doubly linked chain of leaves. 1767 */ 1768 if (be32_to_cpu(save_info->back) == drop_blk->blkno) { 1769 trace_xfs_da_unlink_back(args); 1770 save_info->back = drop_info->back; 1771 if (drop_info->back) { 1772 error = xfs_da3_node_read(args->trans, args->dp, 1773 be32_to_cpu(drop_info->back), 1774 -1, &bp, args->whichfork); 1775 if (error) 1776 return error; 1777 ASSERT(bp != NULL); 1778 tmp_info = bp->b_addr; 1779 ASSERT(tmp_info->magic == save_info->magic); 1780 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); 1781 tmp_info->forw = cpu_to_be32(save_blk->blkno); 1782 xfs_trans_log_buf(args->trans, bp, 0, 1783 sizeof(*tmp_info) - 1); 1784 } 1785 } else { 1786 trace_xfs_da_unlink_forward(args); 1787 save_info->forw = drop_info->forw; 1788 if (drop_info->forw) { 1789 error = xfs_da3_node_read(args->trans, args->dp, 1790 be32_to_cpu(drop_info->forw), 1791 -1, &bp, args->whichfork); 1792 if (error) 1793 return error; 1794 ASSERT(bp != NULL); 1795 tmp_info = bp->b_addr; 1796 ASSERT(tmp_info->magic == save_info->magic); 1797 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); 1798 tmp_info->back = cpu_to_be32(save_blk->blkno); 1799 xfs_trans_log_buf(args->trans, bp, 0, 1800 sizeof(*tmp_info) - 1); 1801 } 1802 } 1803 1804 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); 1805 return 0; 1806 } 1807 1808 /* 1809 * Move a path "forward" or "!forward" one block at the current level. 1810 * 1811 * This routine will adjust a "path" to point to the next block 1812 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the 1813 * Btree, including updating pointers to the intermediate nodes between 1814 * the new bottom and the root. 1815 */ 1816 int /* error */ 1817 xfs_da3_path_shift( 1818 struct xfs_da_state *state, 1819 struct xfs_da_state_path *path, 1820 int forward, 1821 int release, 1822 int *result) 1823 { 1824 struct xfs_da_state_blk *blk; 1825 struct xfs_da_blkinfo *info; 1826 struct xfs_da_intnode *node; 1827 struct xfs_da_args *args; 1828 struct xfs_da_node_entry *btree; 1829 struct xfs_da3_icnode_hdr nodehdr; 1830 struct xfs_buf *bp; 1831 xfs_dablk_t blkno = 0; 1832 int level; 1833 int error; 1834 struct xfs_inode *dp = state->args->dp; 1835 1836 trace_xfs_da_path_shift(state->args); 1837 1838 /* 1839 * Roll up the Btree looking for the first block where our 1840 * current index is not at the edge of the block. Note that 1841 * we skip the bottom layer because we want the sibling block. 1842 */ 1843 args = state->args; 1844 ASSERT(args != NULL); 1845 ASSERT(path != NULL); 1846 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); 1847 level = (path->active-1) - 1; /* skip bottom layer in path */ 1848 for (blk = &path->blk[level]; level >= 0; blk--, level--) { 1849 node = blk->bp->b_addr; 1850 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1851 btree = dp->d_ops->node_tree_p(node); 1852 1853 if (forward && (blk->index < nodehdr.count - 1)) { 1854 blk->index++; 1855 blkno = be32_to_cpu(btree[blk->index].before); 1856 break; 1857 } else if (!forward && (blk->index > 0)) { 1858 blk->index--; 1859 blkno = be32_to_cpu(btree[blk->index].before); 1860 break; 1861 } 1862 } 1863 if (level < 0) { 1864 *result = -ENOENT; /* we're out of our tree */ 1865 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); 1866 return 0; 1867 } 1868 1869 /* 1870 * Roll down the edge of the subtree until we reach the 1871 * same depth we were at originally. 1872 */ 1873 for (blk++, level++; level < path->active; blk++, level++) { 1874 /* 1875 * Read the next child block into a local buffer. 1876 */ 1877 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp, 1878 args->whichfork); 1879 if (error) 1880 return error; 1881 1882 /* 1883 * Release the old block (if it's dirty, the trans doesn't 1884 * actually let go) and swap the local buffer into the path 1885 * structure. This ensures failure of the above read doesn't set 1886 * a NULL buffer in an active slot in the path. 1887 */ 1888 if (release) 1889 xfs_trans_brelse(args->trans, blk->bp); 1890 blk->blkno = blkno; 1891 blk->bp = bp; 1892 1893 info = blk->bp->b_addr; 1894 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1895 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 1896 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1897 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1898 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1899 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1900 1901 1902 /* 1903 * Note: we flatten the magic number to a single type so we 1904 * don't have to compare against crc/non-crc types elsewhere. 1905 */ 1906 switch (be16_to_cpu(info->magic)) { 1907 case XFS_DA_NODE_MAGIC: 1908 case XFS_DA3_NODE_MAGIC: 1909 blk->magic = XFS_DA_NODE_MAGIC; 1910 node = (xfs_da_intnode_t *)info; 1911 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1912 btree = dp->d_ops->node_tree_p(node); 1913 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1914 if (forward) 1915 blk->index = 0; 1916 else 1917 blk->index = nodehdr.count - 1; 1918 blkno = be32_to_cpu(btree[blk->index].before); 1919 break; 1920 case XFS_ATTR_LEAF_MAGIC: 1921 case XFS_ATTR3_LEAF_MAGIC: 1922 blk->magic = XFS_ATTR_LEAF_MAGIC; 1923 ASSERT(level == path->active-1); 1924 blk->index = 0; 1925 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1926 break; 1927 case XFS_DIR2_LEAFN_MAGIC: 1928 case XFS_DIR3_LEAFN_MAGIC: 1929 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1930 ASSERT(level == path->active-1); 1931 blk->index = 0; 1932 blk->hashval = xfs_dir2_leafn_lasthash(args->dp, 1933 blk->bp, NULL); 1934 break; 1935 default: 1936 ASSERT(0); 1937 break; 1938 } 1939 } 1940 *result = 0; 1941 return 0; 1942 } 1943 1944 1945 /*======================================================================== 1946 * Utility routines. 1947 *========================================================================*/ 1948 1949 /* 1950 * Implement a simple hash on a character string. 1951 * Rotate the hash value by 7 bits, then XOR each character in. 1952 * This is implemented with some source-level loop unrolling. 1953 */ 1954 xfs_dahash_t 1955 xfs_da_hashname(const __uint8_t *name, int namelen) 1956 { 1957 xfs_dahash_t hash; 1958 1959 /* 1960 * Do four characters at a time as long as we can. 1961 */ 1962 for (hash = 0; namelen >= 4; namelen -= 4, name += 4) 1963 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ 1964 (name[3] << 0) ^ rol32(hash, 7 * 4); 1965 1966 /* 1967 * Now do the rest of the characters. 1968 */ 1969 switch (namelen) { 1970 case 3: 1971 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ 1972 rol32(hash, 7 * 3); 1973 case 2: 1974 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); 1975 case 1: 1976 return (name[0] << 0) ^ rol32(hash, 7 * 1); 1977 default: /* case 0: */ 1978 return hash; 1979 } 1980 } 1981 1982 enum xfs_dacmp 1983 xfs_da_compname( 1984 struct xfs_da_args *args, 1985 const unsigned char *name, 1986 int len) 1987 { 1988 return (args->namelen == len && memcmp(args->name, name, len) == 0) ? 1989 XFS_CMP_EXACT : XFS_CMP_DIFFERENT; 1990 } 1991 1992 static xfs_dahash_t 1993 xfs_default_hashname( 1994 struct xfs_name *name) 1995 { 1996 return xfs_da_hashname(name->name, name->len); 1997 } 1998 1999 const struct xfs_nameops xfs_default_nameops = { 2000 .hashname = xfs_default_hashname, 2001 .compname = xfs_da_compname 2002 }; 2003 2004 int 2005 xfs_da_grow_inode_int( 2006 struct xfs_da_args *args, 2007 xfs_fileoff_t *bno, 2008 int count) 2009 { 2010 struct xfs_trans *tp = args->trans; 2011 struct xfs_inode *dp = args->dp; 2012 int w = args->whichfork; 2013 xfs_rfsblock_t nblks = dp->i_d.di_nblocks; 2014 struct xfs_bmbt_irec map, *mapp; 2015 int nmap, error, got, i, mapi; 2016 2017 /* 2018 * Find a spot in the file space to put the new block. 2019 */ 2020 error = xfs_bmap_first_unused(tp, dp, count, bno, w); 2021 if (error) 2022 return error; 2023 2024 /* 2025 * Try mapping it in one filesystem block. 2026 */ 2027 nmap = 1; 2028 ASSERT(args->firstblock != NULL); 2029 error = xfs_bmapi_write(tp, dp, *bno, count, 2030 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, 2031 args->firstblock, args->total, &map, &nmap, 2032 args->dfops); 2033 if (error) 2034 return error; 2035 2036 ASSERT(nmap <= 1); 2037 if (nmap == 1) { 2038 mapp = ↦ 2039 mapi = 1; 2040 } else if (nmap == 0 && count > 1) { 2041 xfs_fileoff_t b; 2042 int c; 2043 2044 /* 2045 * If we didn't get it and the block might work if fragmented, 2046 * try without the CONTIG flag. Loop until we get it all. 2047 */ 2048 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); 2049 for (b = *bno, mapi = 0; b < *bno + count; ) { 2050 nmap = MIN(XFS_BMAP_MAX_NMAP, count); 2051 c = (int)(*bno + count - b); 2052 error = xfs_bmapi_write(tp, dp, b, c, 2053 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, 2054 args->firstblock, args->total, 2055 &mapp[mapi], &nmap, args->dfops); 2056 if (error) 2057 goto out_free_map; 2058 if (nmap < 1) 2059 break; 2060 mapi += nmap; 2061 b = mapp[mapi - 1].br_startoff + 2062 mapp[mapi - 1].br_blockcount; 2063 } 2064 } else { 2065 mapi = 0; 2066 mapp = NULL; 2067 } 2068 2069 /* 2070 * Count the blocks we got, make sure it matches the total. 2071 */ 2072 for (i = 0, got = 0; i < mapi; i++) 2073 got += mapp[i].br_blockcount; 2074 if (got != count || mapp[0].br_startoff != *bno || 2075 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != 2076 *bno + count) { 2077 error = -ENOSPC; 2078 goto out_free_map; 2079 } 2080 2081 /* account for newly allocated blocks in reserved blocks total */ 2082 args->total -= dp->i_d.di_nblocks - nblks; 2083 2084 out_free_map: 2085 if (mapp != &map) 2086 kmem_free(mapp); 2087 return error; 2088 } 2089 2090 /* 2091 * Add a block to the btree ahead of the file. 2092 * Return the new block number to the caller. 2093 */ 2094 int 2095 xfs_da_grow_inode( 2096 struct xfs_da_args *args, 2097 xfs_dablk_t *new_blkno) 2098 { 2099 xfs_fileoff_t bno; 2100 int error; 2101 2102 trace_xfs_da_grow_inode(args); 2103 2104 bno = args->geo->leafblk; 2105 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount); 2106 if (!error) 2107 *new_blkno = (xfs_dablk_t)bno; 2108 return error; 2109 } 2110 2111 /* 2112 * Ick. We need to always be able to remove a btree block, even 2113 * if there's no space reservation because the filesystem is full. 2114 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. 2115 * It swaps the target block with the last block in the file. The 2116 * last block in the file can always be removed since it can't cause 2117 * a bmap btree split to do that. 2118 */ 2119 STATIC int 2120 xfs_da3_swap_lastblock( 2121 struct xfs_da_args *args, 2122 xfs_dablk_t *dead_blknop, 2123 struct xfs_buf **dead_bufp) 2124 { 2125 struct xfs_da_blkinfo *dead_info; 2126 struct xfs_da_blkinfo *sib_info; 2127 struct xfs_da_intnode *par_node; 2128 struct xfs_da_intnode *dead_node; 2129 struct xfs_dir2_leaf *dead_leaf2; 2130 struct xfs_da_node_entry *btree; 2131 struct xfs_da3_icnode_hdr par_hdr; 2132 struct xfs_inode *dp; 2133 struct xfs_trans *tp; 2134 struct xfs_mount *mp; 2135 struct xfs_buf *dead_buf; 2136 struct xfs_buf *last_buf; 2137 struct xfs_buf *sib_buf; 2138 struct xfs_buf *par_buf; 2139 xfs_dahash_t dead_hash; 2140 xfs_fileoff_t lastoff; 2141 xfs_dablk_t dead_blkno; 2142 xfs_dablk_t last_blkno; 2143 xfs_dablk_t sib_blkno; 2144 xfs_dablk_t par_blkno; 2145 int error; 2146 int w; 2147 int entno; 2148 int level; 2149 int dead_level; 2150 2151 trace_xfs_da_swap_lastblock(args); 2152 2153 dead_buf = *dead_bufp; 2154 dead_blkno = *dead_blknop; 2155 tp = args->trans; 2156 dp = args->dp; 2157 w = args->whichfork; 2158 ASSERT(w == XFS_DATA_FORK); 2159 mp = dp->i_mount; 2160 lastoff = args->geo->freeblk; 2161 error = xfs_bmap_last_before(tp, dp, &lastoff, w); 2162 if (error) 2163 return error; 2164 if (unlikely(lastoff == 0)) { 2165 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, 2166 mp); 2167 return -EFSCORRUPTED; 2168 } 2169 /* 2170 * Read the last block in the btree space. 2171 */ 2172 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount; 2173 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w); 2174 if (error) 2175 return error; 2176 /* 2177 * Copy the last block into the dead buffer and log it. 2178 */ 2179 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize); 2180 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1); 2181 dead_info = dead_buf->b_addr; 2182 /* 2183 * Get values from the moved block. 2184 */ 2185 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 2186 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 2187 struct xfs_dir3_icleaf_hdr leafhdr; 2188 struct xfs_dir2_leaf_entry *ents; 2189 2190 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; 2191 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2); 2192 ents = dp->d_ops->leaf_ents_p(dead_leaf2); 2193 dead_level = 0; 2194 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval); 2195 } else { 2196 struct xfs_da3_icnode_hdr deadhdr; 2197 2198 dead_node = (xfs_da_intnode_t *)dead_info; 2199 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node); 2200 btree = dp->d_ops->node_tree_p(dead_node); 2201 dead_level = deadhdr.level; 2202 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval); 2203 } 2204 sib_buf = par_buf = NULL; 2205 /* 2206 * If the moved block has a left sibling, fix up the pointers. 2207 */ 2208 if ((sib_blkno = be32_to_cpu(dead_info->back))) { 2209 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2210 if (error) 2211 goto done; 2212 sib_info = sib_buf->b_addr; 2213 if (unlikely( 2214 be32_to_cpu(sib_info->forw) != last_blkno || 2215 sib_info->magic != dead_info->magic)) { 2216 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", 2217 XFS_ERRLEVEL_LOW, mp); 2218 error = -EFSCORRUPTED; 2219 goto done; 2220 } 2221 sib_info->forw = cpu_to_be32(dead_blkno); 2222 xfs_trans_log_buf(tp, sib_buf, 2223 XFS_DA_LOGRANGE(sib_info, &sib_info->forw, 2224 sizeof(sib_info->forw))); 2225 sib_buf = NULL; 2226 } 2227 /* 2228 * If the moved block has a right sibling, fix up the pointers. 2229 */ 2230 if ((sib_blkno = be32_to_cpu(dead_info->forw))) { 2231 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2232 if (error) 2233 goto done; 2234 sib_info = sib_buf->b_addr; 2235 if (unlikely( 2236 be32_to_cpu(sib_info->back) != last_blkno || 2237 sib_info->magic != dead_info->magic)) { 2238 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", 2239 XFS_ERRLEVEL_LOW, mp); 2240 error = -EFSCORRUPTED; 2241 goto done; 2242 } 2243 sib_info->back = cpu_to_be32(dead_blkno); 2244 xfs_trans_log_buf(tp, sib_buf, 2245 XFS_DA_LOGRANGE(sib_info, &sib_info->back, 2246 sizeof(sib_info->back))); 2247 sib_buf = NULL; 2248 } 2249 par_blkno = args->geo->leafblk; 2250 level = -1; 2251 /* 2252 * Walk down the tree looking for the parent of the moved block. 2253 */ 2254 for (;;) { 2255 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2256 if (error) 2257 goto done; 2258 par_node = par_buf->b_addr; 2259 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2260 if (level >= 0 && level != par_hdr.level + 1) { 2261 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", 2262 XFS_ERRLEVEL_LOW, mp); 2263 error = -EFSCORRUPTED; 2264 goto done; 2265 } 2266 level = par_hdr.level; 2267 btree = dp->d_ops->node_tree_p(par_node); 2268 for (entno = 0; 2269 entno < par_hdr.count && 2270 be32_to_cpu(btree[entno].hashval) < dead_hash; 2271 entno++) 2272 continue; 2273 if (entno == par_hdr.count) { 2274 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", 2275 XFS_ERRLEVEL_LOW, mp); 2276 error = -EFSCORRUPTED; 2277 goto done; 2278 } 2279 par_blkno = be32_to_cpu(btree[entno].before); 2280 if (level == dead_level + 1) 2281 break; 2282 xfs_trans_brelse(tp, par_buf); 2283 par_buf = NULL; 2284 } 2285 /* 2286 * We're in the right parent block. 2287 * Look for the right entry. 2288 */ 2289 for (;;) { 2290 for (; 2291 entno < par_hdr.count && 2292 be32_to_cpu(btree[entno].before) != last_blkno; 2293 entno++) 2294 continue; 2295 if (entno < par_hdr.count) 2296 break; 2297 par_blkno = par_hdr.forw; 2298 xfs_trans_brelse(tp, par_buf); 2299 par_buf = NULL; 2300 if (unlikely(par_blkno == 0)) { 2301 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", 2302 XFS_ERRLEVEL_LOW, mp); 2303 error = -EFSCORRUPTED; 2304 goto done; 2305 } 2306 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2307 if (error) 2308 goto done; 2309 par_node = par_buf->b_addr; 2310 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2311 if (par_hdr.level != level) { 2312 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", 2313 XFS_ERRLEVEL_LOW, mp); 2314 error = -EFSCORRUPTED; 2315 goto done; 2316 } 2317 btree = dp->d_ops->node_tree_p(par_node); 2318 entno = 0; 2319 } 2320 /* 2321 * Update the parent entry pointing to the moved block. 2322 */ 2323 btree[entno].before = cpu_to_be32(dead_blkno); 2324 xfs_trans_log_buf(tp, par_buf, 2325 XFS_DA_LOGRANGE(par_node, &btree[entno].before, 2326 sizeof(btree[entno].before))); 2327 *dead_blknop = last_blkno; 2328 *dead_bufp = last_buf; 2329 return 0; 2330 done: 2331 if (par_buf) 2332 xfs_trans_brelse(tp, par_buf); 2333 if (sib_buf) 2334 xfs_trans_brelse(tp, sib_buf); 2335 xfs_trans_brelse(tp, last_buf); 2336 return error; 2337 } 2338 2339 /* 2340 * Remove a btree block from a directory or attribute. 2341 */ 2342 int 2343 xfs_da_shrink_inode( 2344 xfs_da_args_t *args, 2345 xfs_dablk_t dead_blkno, 2346 struct xfs_buf *dead_buf) 2347 { 2348 xfs_inode_t *dp; 2349 int done, error, w, count; 2350 xfs_trans_t *tp; 2351 2352 trace_xfs_da_shrink_inode(args); 2353 2354 dp = args->dp; 2355 w = args->whichfork; 2356 tp = args->trans; 2357 count = args->geo->fsbcount; 2358 for (;;) { 2359 /* 2360 * Remove extents. If we get ENOSPC for a dir we have to move 2361 * the last block to the place we want to kill. 2362 */ 2363 error = xfs_bunmapi(tp, dp, dead_blkno, count, 2364 xfs_bmapi_aflag(w), 0, args->firstblock, 2365 args->dfops, &done); 2366 if (error == -ENOSPC) { 2367 if (w != XFS_DATA_FORK) 2368 break; 2369 error = xfs_da3_swap_lastblock(args, &dead_blkno, 2370 &dead_buf); 2371 if (error) 2372 break; 2373 } else { 2374 break; 2375 } 2376 } 2377 xfs_trans_binval(tp, dead_buf); 2378 return error; 2379 } 2380 2381 /* 2382 * See if the mapping(s) for this btree block are valid, i.e. 2383 * don't contain holes, are logically contiguous, and cover the whole range. 2384 */ 2385 STATIC int 2386 xfs_da_map_covers_blocks( 2387 int nmap, 2388 xfs_bmbt_irec_t *mapp, 2389 xfs_dablk_t bno, 2390 int count) 2391 { 2392 int i; 2393 xfs_fileoff_t off; 2394 2395 for (i = 0, off = bno; i < nmap; i++) { 2396 if (mapp[i].br_startblock == HOLESTARTBLOCK || 2397 mapp[i].br_startblock == DELAYSTARTBLOCK) { 2398 return 0; 2399 } 2400 if (off != mapp[i].br_startoff) { 2401 return 0; 2402 } 2403 off += mapp[i].br_blockcount; 2404 } 2405 return off == bno + count; 2406 } 2407 2408 /* 2409 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map. 2410 * 2411 * For the single map case, it is assumed that the caller has provided a pointer 2412 * to a valid xfs_buf_map. For the multiple map case, this function will 2413 * allocate the xfs_buf_map to hold all the maps and replace the caller's single 2414 * map pointer with the allocated map. 2415 */ 2416 static int 2417 xfs_buf_map_from_irec( 2418 struct xfs_mount *mp, 2419 struct xfs_buf_map **mapp, 2420 int *nmaps, 2421 struct xfs_bmbt_irec *irecs, 2422 int nirecs) 2423 { 2424 struct xfs_buf_map *map; 2425 int i; 2426 2427 ASSERT(*nmaps == 1); 2428 ASSERT(nirecs >= 1); 2429 2430 if (nirecs > 1) { 2431 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), 2432 KM_SLEEP | KM_NOFS); 2433 if (!map) 2434 return -ENOMEM; 2435 *mapp = map; 2436 } 2437 2438 *nmaps = nirecs; 2439 map = *mapp; 2440 for (i = 0; i < *nmaps; i++) { 2441 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK && 2442 irecs[i].br_startblock != HOLESTARTBLOCK); 2443 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock); 2444 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount); 2445 } 2446 return 0; 2447 } 2448 2449 /* 2450 * Map the block we are given ready for reading. There are three possible return 2451 * values: 2452 * -1 - will be returned if we land in a hole and mappedbno == -2 so the 2453 * caller knows not to execute a subsequent read. 2454 * 0 - if we mapped the block successfully 2455 * >0 - positive error number if there was an error. 2456 */ 2457 static int 2458 xfs_dabuf_map( 2459 struct xfs_inode *dp, 2460 xfs_dablk_t bno, 2461 xfs_daddr_t mappedbno, 2462 int whichfork, 2463 struct xfs_buf_map **map, 2464 int *nmaps) 2465 { 2466 struct xfs_mount *mp = dp->i_mount; 2467 int nfsb; 2468 int error = 0; 2469 struct xfs_bmbt_irec irec; 2470 struct xfs_bmbt_irec *irecs = &irec; 2471 int nirecs; 2472 2473 ASSERT(map && *map); 2474 ASSERT(*nmaps == 1); 2475 2476 if (whichfork == XFS_DATA_FORK) 2477 nfsb = mp->m_dir_geo->fsbcount; 2478 else 2479 nfsb = mp->m_attr_geo->fsbcount; 2480 2481 /* 2482 * Caller doesn't have a mapping. -2 means don't complain 2483 * if we land in a hole. 2484 */ 2485 if (mappedbno == -1 || mappedbno == -2) { 2486 /* 2487 * Optimize the one-block case. 2488 */ 2489 if (nfsb != 1) 2490 irecs = kmem_zalloc(sizeof(irec) * nfsb, 2491 KM_SLEEP | KM_NOFS); 2492 2493 nirecs = nfsb; 2494 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs, 2495 &nirecs, xfs_bmapi_aflag(whichfork)); 2496 if (error) 2497 goto out; 2498 } else { 2499 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); 2500 irecs->br_startoff = (xfs_fileoff_t)bno; 2501 irecs->br_blockcount = nfsb; 2502 irecs->br_state = 0; 2503 nirecs = 1; 2504 } 2505 2506 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) { 2507 error = mappedbno == -2 ? -1 : -EFSCORRUPTED; 2508 if (unlikely(error == -EFSCORRUPTED)) { 2509 if (xfs_error_level >= XFS_ERRLEVEL_LOW) { 2510 int i; 2511 xfs_alert(mp, "%s: bno %lld dir: inode %lld", 2512 __func__, (long long)bno, 2513 (long long)dp->i_ino); 2514 for (i = 0; i < *nmaps; i++) { 2515 xfs_alert(mp, 2516 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", 2517 i, 2518 (long long)irecs[i].br_startoff, 2519 (long long)irecs[i].br_startblock, 2520 (long long)irecs[i].br_blockcount, 2521 irecs[i].br_state); 2522 } 2523 } 2524 XFS_ERROR_REPORT("xfs_da_do_buf(1)", 2525 XFS_ERRLEVEL_LOW, mp); 2526 } 2527 goto out; 2528 } 2529 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs); 2530 out: 2531 if (irecs != &irec) 2532 kmem_free(irecs); 2533 return error; 2534 } 2535 2536 /* 2537 * Get a buffer for the dir/attr block. 2538 */ 2539 int 2540 xfs_da_get_buf( 2541 struct xfs_trans *trans, 2542 struct xfs_inode *dp, 2543 xfs_dablk_t bno, 2544 xfs_daddr_t mappedbno, 2545 struct xfs_buf **bpp, 2546 int whichfork) 2547 { 2548 struct xfs_buf *bp; 2549 struct xfs_buf_map map; 2550 struct xfs_buf_map *mapp; 2551 int nmap; 2552 int error; 2553 2554 *bpp = NULL; 2555 mapp = ↦ 2556 nmap = 1; 2557 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2558 &mapp, &nmap); 2559 if (error) { 2560 /* mapping a hole is not an error, but we don't continue */ 2561 if (error == -1) 2562 error = 0; 2563 goto out_free; 2564 } 2565 2566 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp, 2567 mapp, nmap, 0); 2568 error = bp ? bp->b_error : -EIO; 2569 if (error) { 2570 if (bp) 2571 xfs_trans_brelse(trans, bp); 2572 goto out_free; 2573 } 2574 2575 *bpp = bp; 2576 2577 out_free: 2578 if (mapp != &map) 2579 kmem_free(mapp); 2580 2581 return error; 2582 } 2583 2584 /* 2585 * Get a buffer for the dir/attr block, fill in the contents. 2586 */ 2587 int 2588 xfs_da_read_buf( 2589 struct xfs_trans *trans, 2590 struct xfs_inode *dp, 2591 xfs_dablk_t bno, 2592 xfs_daddr_t mappedbno, 2593 struct xfs_buf **bpp, 2594 int whichfork, 2595 const struct xfs_buf_ops *ops) 2596 { 2597 struct xfs_buf *bp; 2598 struct xfs_buf_map map; 2599 struct xfs_buf_map *mapp; 2600 int nmap; 2601 int error; 2602 2603 *bpp = NULL; 2604 mapp = ↦ 2605 nmap = 1; 2606 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2607 &mapp, &nmap); 2608 if (error) { 2609 /* mapping a hole is not an error, but we don't continue */ 2610 if (error == -1) 2611 error = 0; 2612 goto out_free; 2613 } 2614 2615 error = xfs_trans_read_buf_map(dp->i_mount, trans, 2616 dp->i_mount->m_ddev_targp, 2617 mapp, nmap, 0, &bp, ops); 2618 if (error) 2619 goto out_free; 2620 2621 if (whichfork == XFS_ATTR_FORK) 2622 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); 2623 else 2624 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); 2625 *bpp = bp; 2626 out_free: 2627 if (mapp != &map) 2628 kmem_free(mapp); 2629 2630 return error; 2631 } 2632 2633 /* 2634 * Readahead the dir/attr block. 2635 */ 2636 int 2637 xfs_da_reada_buf( 2638 struct xfs_inode *dp, 2639 xfs_dablk_t bno, 2640 xfs_daddr_t mappedbno, 2641 int whichfork, 2642 const struct xfs_buf_ops *ops) 2643 { 2644 struct xfs_buf_map map; 2645 struct xfs_buf_map *mapp; 2646 int nmap; 2647 int error; 2648 2649 mapp = ↦ 2650 nmap = 1; 2651 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2652 &mapp, &nmap); 2653 if (error) { 2654 /* mapping a hole is not an error, but we don't continue */ 2655 if (error == -1) 2656 error = 0; 2657 goto out_free; 2658 } 2659 2660 mappedbno = mapp[0].bm_bn; 2661 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops); 2662 2663 out_free: 2664 if (mapp != &map) 2665 kmem_free(mapp); 2666 2667 return error; 2668 } 2669