xref: /linux/fs/xfs/libxfs/xfs_btree.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37 
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t	*xfs_btree_cur_zone;
42 
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48 	  XFS_FIBT_MAGIC, 0 },
49 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51 	  XFS_REFC_CRC_MAGIC }
52 };
53 
54 __uint32_t
55 xfs_btree_magic(
56 	int			crc,
57 	xfs_btnum_t		btnum)
58 {
59 	__uint32_t		magic = xfs_magics[crc][btnum];
60 
61 	/* Ensure we asked for crc for crc-only magics. */
62 	ASSERT(magic != 0);
63 	return magic;
64 }
65 
66 STATIC int				/* error (0 or EFSCORRUPTED) */
67 xfs_btree_check_lblock(
68 	struct xfs_btree_cur	*cur,	/* btree cursor */
69 	struct xfs_btree_block	*block,	/* btree long form block pointer */
70 	int			level,	/* level of the btree block */
71 	struct xfs_buf		*bp)	/* buffer for block, if any */
72 {
73 	int			lblock_ok = 1; /* block passes checks */
74 	struct xfs_mount	*mp;	/* file system mount point */
75 	xfs_btnum_t		btnum = cur->bc_btnum;
76 	int			crc;
77 
78 	mp = cur->bc_mp;
79 	crc = xfs_sb_version_hascrc(&mp->m_sb);
80 
81 	if (crc) {
82 		lblock_ok = lblock_ok &&
83 			uuid_equal(&block->bb_u.l.bb_uuid,
84 				   &mp->m_sb.sb_meta_uuid) &&
85 			block->bb_u.l.bb_blkno == cpu_to_be64(
86 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
87 	}
88 
89 	lblock_ok = lblock_ok &&
90 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) &&
91 		be16_to_cpu(block->bb_level) == level &&
92 		be16_to_cpu(block->bb_numrecs) <=
93 			cur->bc_ops->get_maxrecs(cur, level) &&
94 		block->bb_u.l.bb_leftsib &&
95 		(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
96 		 XFS_FSB_SANITY_CHECK(mp,
97 			be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
98 		block->bb_u.l.bb_rightsib &&
99 		(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
100 		 XFS_FSB_SANITY_CHECK(mp,
101 			be64_to_cpu(block->bb_u.l.bb_rightsib)));
102 
103 	if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
104 			XFS_ERRTAG_BTREE_CHECK_LBLOCK,
105 			XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
106 		if (bp)
107 			trace_xfs_btree_corrupt(bp, _RET_IP_);
108 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
109 		return -EFSCORRUPTED;
110 	}
111 	return 0;
112 }
113 
114 STATIC int				/* error (0 or EFSCORRUPTED) */
115 xfs_btree_check_sblock(
116 	struct xfs_btree_cur	*cur,	/* btree cursor */
117 	struct xfs_btree_block	*block,	/* btree short form block pointer */
118 	int			level,	/* level of the btree block */
119 	struct xfs_buf		*bp)	/* buffer containing block */
120 {
121 	struct xfs_mount	*mp;	/* file system mount point */
122 	struct xfs_buf		*agbp;	/* buffer for ag. freespace struct */
123 	struct xfs_agf		*agf;	/* ag. freespace structure */
124 	xfs_agblock_t		agflen;	/* native ag. freespace length */
125 	int			sblock_ok = 1; /* block passes checks */
126 	xfs_btnum_t		btnum = cur->bc_btnum;
127 	int			crc;
128 
129 	mp = cur->bc_mp;
130 	crc = xfs_sb_version_hascrc(&mp->m_sb);
131 	agbp = cur->bc_private.a.agbp;
132 	agf = XFS_BUF_TO_AGF(agbp);
133 	agflen = be32_to_cpu(agf->agf_length);
134 
135 	if (crc) {
136 		sblock_ok = sblock_ok &&
137 			uuid_equal(&block->bb_u.s.bb_uuid,
138 				   &mp->m_sb.sb_meta_uuid) &&
139 			block->bb_u.s.bb_blkno == cpu_to_be64(
140 				bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
141 	}
142 
143 	sblock_ok = sblock_ok &&
144 		be32_to_cpu(block->bb_magic) == xfs_btree_magic(crc, btnum) &&
145 		be16_to_cpu(block->bb_level) == level &&
146 		be16_to_cpu(block->bb_numrecs) <=
147 			cur->bc_ops->get_maxrecs(cur, level) &&
148 		(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
149 		 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
150 		block->bb_u.s.bb_leftsib &&
151 		(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
152 		 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
153 		block->bb_u.s.bb_rightsib;
154 
155 	if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
156 			XFS_ERRTAG_BTREE_CHECK_SBLOCK,
157 			XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
158 		if (bp)
159 			trace_xfs_btree_corrupt(bp, _RET_IP_);
160 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
161 		return -EFSCORRUPTED;
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Debug routine: check that block header is ok.
168  */
169 int
170 xfs_btree_check_block(
171 	struct xfs_btree_cur	*cur,	/* btree cursor */
172 	struct xfs_btree_block	*block,	/* generic btree block pointer */
173 	int			level,	/* level of the btree block */
174 	struct xfs_buf		*bp)	/* buffer containing block, if any */
175 {
176 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
177 		return xfs_btree_check_lblock(cur, block, level, bp);
178 	else
179 		return xfs_btree_check_sblock(cur, block, level, bp);
180 }
181 
182 /*
183  * Check that (long) pointer is ok.
184  */
185 int					/* error (0 or EFSCORRUPTED) */
186 xfs_btree_check_lptr(
187 	struct xfs_btree_cur	*cur,	/* btree cursor */
188 	xfs_fsblock_t		bno,	/* btree block disk address */
189 	int			level)	/* btree block level */
190 {
191 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
192 		level > 0 &&
193 		bno != NULLFSBLOCK &&
194 		XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
195 	return 0;
196 }
197 
198 #ifdef DEBUG
199 /*
200  * Check that (short) pointer is ok.
201  */
202 STATIC int				/* error (0 or EFSCORRUPTED) */
203 xfs_btree_check_sptr(
204 	struct xfs_btree_cur	*cur,	/* btree cursor */
205 	xfs_agblock_t		bno,	/* btree block disk address */
206 	int			level)	/* btree block level */
207 {
208 	xfs_agblock_t		agblocks = cur->bc_mp->m_sb.sb_agblocks;
209 
210 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
211 		level > 0 &&
212 		bno != NULLAGBLOCK &&
213 		bno != 0 &&
214 		bno < agblocks);
215 	return 0;
216 }
217 
218 /*
219  * Check that block ptr is ok.
220  */
221 STATIC int				/* error (0 or EFSCORRUPTED) */
222 xfs_btree_check_ptr(
223 	struct xfs_btree_cur	*cur,	/* btree cursor */
224 	union xfs_btree_ptr	*ptr,	/* btree block disk address */
225 	int			index,	/* offset from ptr to check */
226 	int			level)	/* btree block level */
227 {
228 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
229 		return xfs_btree_check_lptr(cur,
230 				be64_to_cpu((&ptr->l)[index]), level);
231 	} else {
232 		return xfs_btree_check_sptr(cur,
233 				be32_to_cpu((&ptr->s)[index]), level);
234 	}
235 }
236 #endif
237 
238 /*
239  * Calculate CRC on the whole btree block and stuff it into the
240  * long-form btree header.
241  *
242  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
243  * it into the buffer so recovery knows what the last modification was that made
244  * it to disk.
245  */
246 void
247 xfs_btree_lblock_calc_crc(
248 	struct xfs_buf		*bp)
249 {
250 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
251 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
252 
253 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
254 		return;
255 	if (bip)
256 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
257 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
258 }
259 
260 bool
261 xfs_btree_lblock_verify_crc(
262 	struct xfs_buf		*bp)
263 {
264 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
265 	struct xfs_mount	*mp = bp->b_target->bt_mount;
266 
267 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
268 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
269 			return false;
270 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
271 	}
272 
273 	return true;
274 }
275 
276 /*
277  * Calculate CRC on the whole btree block and stuff it into the
278  * short-form btree header.
279  *
280  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
281  * it into the buffer so recovery knows what the last modification was that made
282  * it to disk.
283  */
284 void
285 xfs_btree_sblock_calc_crc(
286 	struct xfs_buf		*bp)
287 {
288 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
289 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
290 
291 	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
292 		return;
293 	if (bip)
294 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
295 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
296 }
297 
298 bool
299 xfs_btree_sblock_verify_crc(
300 	struct xfs_buf		*bp)
301 {
302 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
303 	struct xfs_mount	*mp = bp->b_target->bt_mount;
304 
305 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
306 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
307 			return false;
308 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
309 	}
310 
311 	return true;
312 }
313 
314 static int
315 xfs_btree_free_block(
316 	struct xfs_btree_cur	*cur,
317 	struct xfs_buf		*bp)
318 {
319 	int			error;
320 
321 	error = cur->bc_ops->free_block(cur, bp);
322 	if (!error) {
323 		xfs_trans_binval(cur->bc_tp, bp);
324 		XFS_BTREE_STATS_INC(cur, free);
325 	}
326 	return error;
327 }
328 
329 /*
330  * Delete the btree cursor.
331  */
332 void
333 xfs_btree_del_cursor(
334 	xfs_btree_cur_t	*cur,		/* btree cursor */
335 	int		error)		/* del because of error */
336 {
337 	int		i;		/* btree level */
338 
339 	/*
340 	 * Clear the buffer pointers, and release the buffers.
341 	 * If we're doing this in the face of an error, we
342 	 * need to make sure to inspect all of the entries
343 	 * in the bc_bufs array for buffers to be unlocked.
344 	 * This is because some of the btree code works from
345 	 * level n down to 0, and if we get an error along
346 	 * the way we won't have initialized all the entries
347 	 * down to 0.
348 	 */
349 	for (i = 0; i < cur->bc_nlevels; i++) {
350 		if (cur->bc_bufs[i])
351 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
352 		else if (!error)
353 			break;
354 	}
355 	/*
356 	 * Can't free a bmap cursor without having dealt with the
357 	 * allocated indirect blocks' accounting.
358 	 */
359 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
360 	       cur->bc_private.b.allocated == 0);
361 	/*
362 	 * Free the cursor.
363 	 */
364 	kmem_zone_free(xfs_btree_cur_zone, cur);
365 }
366 
367 /*
368  * Duplicate the btree cursor.
369  * Allocate a new one, copy the record, re-get the buffers.
370  */
371 int					/* error */
372 xfs_btree_dup_cursor(
373 	xfs_btree_cur_t	*cur,		/* input cursor */
374 	xfs_btree_cur_t	**ncur)		/* output cursor */
375 {
376 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
377 	int		error;		/* error return value */
378 	int		i;		/* level number of btree block */
379 	xfs_mount_t	*mp;		/* mount structure for filesystem */
380 	xfs_btree_cur_t	*new;		/* new cursor value */
381 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
382 
383 	tp = cur->bc_tp;
384 	mp = cur->bc_mp;
385 
386 	/*
387 	 * Allocate a new cursor like the old one.
388 	 */
389 	new = cur->bc_ops->dup_cursor(cur);
390 
391 	/*
392 	 * Copy the record currently in the cursor.
393 	 */
394 	new->bc_rec = cur->bc_rec;
395 
396 	/*
397 	 * For each level current, re-get the buffer and copy the ptr value.
398 	 */
399 	for (i = 0; i < new->bc_nlevels; i++) {
400 		new->bc_ptrs[i] = cur->bc_ptrs[i];
401 		new->bc_ra[i] = cur->bc_ra[i];
402 		bp = cur->bc_bufs[i];
403 		if (bp) {
404 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
405 						   XFS_BUF_ADDR(bp), mp->m_bsize,
406 						   0, &bp,
407 						   cur->bc_ops->buf_ops);
408 			if (error) {
409 				xfs_btree_del_cursor(new, error);
410 				*ncur = NULL;
411 				return error;
412 			}
413 		}
414 		new->bc_bufs[i] = bp;
415 	}
416 	*ncur = new;
417 	return 0;
418 }
419 
420 /*
421  * XFS btree block layout and addressing:
422  *
423  * There are two types of blocks in the btree: leaf and non-leaf blocks.
424  *
425  * The leaf record start with a header then followed by records containing
426  * the values.  A non-leaf block also starts with the same header, and
427  * then first contains lookup keys followed by an equal number of pointers
428  * to the btree blocks at the previous level.
429  *
430  *		+--------+-------+-------+-------+-------+-------+-------+
431  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
432  *		+--------+-------+-------+-------+-------+-------+-------+
433  *
434  *		+--------+-------+-------+-------+-------+-------+-------+
435  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
436  *		+--------+-------+-------+-------+-------+-------+-------+
437  *
438  * The header is called struct xfs_btree_block for reasons better left unknown
439  * and comes in different versions for short (32bit) and long (64bit) block
440  * pointers.  The record and key structures are defined by the btree instances
441  * and opaque to the btree core.  The block pointers are simple disk endian
442  * integers, available in a short (32bit) and long (64bit) variant.
443  *
444  * The helpers below calculate the offset of a given record, key or pointer
445  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
446  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
447  * inside the btree block is done using indices starting at one, not zero!
448  *
449  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
450  * overlapping intervals.  In such a tree, records are still sorted lowest to
451  * highest and indexed by the smallest key value that refers to the record.
452  * However, nodes are different: each pointer has two associated keys -- one
453  * indexing the lowest key available in the block(s) below (the same behavior
454  * as the key in a regular btree) and another indexing the highest key
455  * available in the block(s) below.  Because records are /not/ sorted by the
456  * highest key, all leaf block updates require us to compute the highest key
457  * that matches any record in the leaf and to recursively update the high keys
458  * in the nodes going further up in the tree, if necessary.  Nodes look like
459  * this:
460  *
461  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
462  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
463  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
464  *
465  * To perform an interval query on an overlapped tree, perform the usual
466  * depth-first search and use the low and high keys to decide if we can skip
467  * that particular node.  If a leaf node is reached, return the records that
468  * intersect the interval.  Note that an interval query may return numerous
469  * entries.  For a non-overlapped tree, simply search for the record associated
470  * with the lowest key and iterate forward until a non-matching record is
471  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
472  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
473  * more detail.
474  *
475  * Why do we care about overlapping intervals?  Let's say you have a bunch of
476  * reverse mapping records on a reflink filesystem:
477  *
478  * 1: +- file A startblock B offset C length D -----------+
479  * 2:      +- file E startblock F offset G length H --------------+
480  * 3:      +- file I startblock F offset J length K --+
481  * 4:                                                        +- file L... --+
482  *
483  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
484  * we'd simply increment the length of record 1.  But how do we find the record
485  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
486  * record 3 because the keys are ordered first by startblock.  An interval
487  * query would return records 1 and 2 because they both overlap (B+D-1), and
488  * from that we can pick out record 1 as the appropriate left neighbor.
489  *
490  * In the non-overlapped case you can do a LE lookup and decrement the cursor
491  * because a record's interval must end before the next record.
492  */
493 
494 /*
495  * Return size of the btree block header for this btree instance.
496  */
497 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
498 {
499 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
500 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
501 			return XFS_BTREE_LBLOCK_CRC_LEN;
502 		return XFS_BTREE_LBLOCK_LEN;
503 	}
504 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
505 		return XFS_BTREE_SBLOCK_CRC_LEN;
506 	return XFS_BTREE_SBLOCK_LEN;
507 }
508 
509 /*
510  * Return size of btree block pointers for this btree instance.
511  */
512 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
513 {
514 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
515 		sizeof(__be64) : sizeof(__be32);
516 }
517 
518 /*
519  * Calculate offset of the n-th record in a btree block.
520  */
521 STATIC size_t
522 xfs_btree_rec_offset(
523 	struct xfs_btree_cur	*cur,
524 	int			n)
525 {
526 	return xfs_btree_block_len(cur) +
527 		(n - 1) * cur->bc_ops->rec_len;
528 }
529 
530 /*
531  * Calculate offset of the n-th key in a btree block.
532  */
533 STATIC size_t
534 xfs_btree_key_offset(
535 	struct xfs_btree_cur	*cur,
536 	int			n)
537 {
538 	return xfs_btree_block_len(cur) +
539 		(n - 1) * cur->bc_ops->key_len;
540 }
541 
542 /*
543  * Calculate offset of the n-th high key in a btree block.
544  */
545 STATIC size_t
546 xfs_btree_high_key_offset(
547 	struct xfs_btree_cur	*cur,
548 	int			n)
549 {
550 	return xfs_btree_block_len(cur) +
551 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
552 }
553 
554 /*
555  * Calculate offset of the n-th block pointer in a btree block.
556  */
557 STATIC size_t
558 xfs_btree_ptr_offset(
559 	struct xfs_btree_cur	*cur,
560 	int			n,
561 	int			level)
562 {
563 	return xfs_btree_block_len(cur) +
564 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
565 		(n - 1) * xfs_btree_ptr_len(cur);
566 }
567 
568 /*
569  * Return a pointer to the n-th record in the btree block.
570  */
571 STATIC union xfs_btree_rec *
572 xfs_btree_rec_addr(
573 	struct xfs_btree_cur	*cur,
574 	int			n,
575 	struct xfs_btree_block	*block)
576 {
577 	return (union xfs_btree_rec *)
578 		((char *)block + xfs_btree_rec_offset(cur, n));
579 }
580 
581 /*
582  * Return a pointer to the n-th key in the btree block.
583  */
584 STATIC union xfs_btree_key *
585 xfs_btree_key_addr(
586 	struct xfs_btree_cur	*cur,
587 	int			n,
588 	struct xfs_btree_block	*block)
589 {
590 	return (union xfs_btree_key *)
591 		((char *)block + xfs_btree_key_offset(cur, n));
592 }
593 
594 /*
595  * Return a pointer to the n-th high key in the btree block.
596  */
597 STATIC union xfs_btree_key *
598 xfs_btree_high_key_addr(
599 	struct xfs_btree_cur	*cur,
600 	int			n,
601 	struct xfs_btree_block	*block)
602 {
603 	return (union xfs_btree_key *)
604 		((char *)block + xfs_btree_high_key_offset(cur, n));
605 }
606 
607 /*
608  * Return a pointer to the n-th block pointer in the btree block.
609  */
610 STATIC union xfs_btree_ptr *
611 xfs_btree_ptr_addr(
612 	struct xfs_btree_cur	*cur,
613 	int			n,
614 	struct xfs_btree_block	*block)
615 {
616 	int			level = xfs_btree_get_level(block);
617 
618 	ASSERT(block->bb_level != 0);
619 
620 	return (union xfs_btree_ptr *)
621 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
622 }
623 
624 /*
625  * Get the root block which is stored in the inode.
626  *
627  * For now this btree implementation assumes the btree root is always
628  * stored in the if_broot field of an inode fork.
629  */
630 STATIC struct xfs_btree_block *
631 xfs_btree_get_iroot(
632 	struct xfs_btree_cur	*cur)
633 {
634 	struct xfs_ifork	*ifp;
635 
636 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
637 	return (struct xfs_btree_block *)ifp->if_broot;
638 }
639 
640 /*
641  * Retrieve the block pointer from the cursor at the given level.
642  * This may be an inode btree root or from a buffer.
643  */
644 STATIC struct xfs_btree_block *		/* generic btree block pointer */
645 xfs_btree_get_block(
646 	struct xfs_btree_cur	*cur,	/* btree cursor */
647 	int			level,	/* level in btree */
648 	struct xfs_buf		**bpp)	/* buffer containing the block */
649 {
650 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
651 	    (level == cur->bc_nlevels - 1)) {
652 		*bpp = NULL;
653 		return xfs_btree_get_iroot(cur);
654 	}
655 
656 	*bpp = cur->bc_bufs[level];
657 	return XFS_BUF_TO_BLOCK(*bpp);
658 }
659 
660 /*
661  * Get a buffer for the block, return it with no data read.
662  * Long-form addressing.
663  */
664 xfs_buf_t *				/* buffer for fsbno */
665 xfs_btree_get_bufl(
666 	xfs_mount_t	*mp,		/* file system mount point */
667 	xfs_trans_t	*tp,		/* transaction pointer */
668 	xfs_fsblock_t	fsbno,		/* file system block number */
669 	uint		lock)		/* lock flags for get_buf */
670 {
671 	xfs_daddr_t		d;		/* real disk block address */
672 
673 	ASSERT(fsbno != NULLFSBLOCK);
674 	d = XFS_FSB_TO_DADDR(mp, fsbno);
675 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
676 }
677 
678 /*
679  * Get a buffer for the block, return it with no data read.
680  * Short-form addressing.
681  */
682 xfs_buf_t *				/* buffer for agno/agbno */
683 xfs_btree_get_bufs(
684 	xfs_mount_t	*mp,		/* file system mount point */
685 	xfs_trans_t	*tp,		/* transaction pointer */
686 	xfs_agnumber_t	agno,		/* allocation group number */
687 	xfs_agblock_t	agbno,		/* allocation group block number */
688 	uint		lock)		/* lock flags for get_buf */
689 {
690 	xfs_daddr_t		d;		/* real disk block address */
691 
692 	ASSERT(agno != NULLAGNUMBER);
693 	ASSERT(agbno != NULLAGBLOCK);
694 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
695 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
696 }
697 
698 /*
699  * Check for the cursor referring to the last block at the given level.
700  */
701 int					/* 1=is last block, 0=not last block */
702 xfs_btree_islastblock(
703 	xfs_btree_cur_t		*cur,	/* btree cursor */
704 	int			level)	/* level to check */
705 {
706 	struct xfs_btree_block	*block;	/* generic btree block pointer */
707 	xfs_buf_t		*bp;	/* buffer containing block */
708 
709 	block = xfs_btree_get_block(cur, level, &bp);
710 	xfs_btree_check_block(cur, block, level, bp);
711 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
712 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
713 	else
714 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
715 }
716 
717 /*
718  * Change the cursor to point to the first record at the given level.
719  * Other levels are unaffected.
720  */
721 STATIC int				/* success=1, failure=0 */
722 xfs_btree_firstrec(
723 	xfs_btree_cur_t		*cur,	/* btree cursor */
724 	int			level)	/* level to change */
725 {
726 	struct xfs_btree_block	*block;	/* generic btree block pointer */
727 	xfs_buf_t		*bp;	/* buffer containing block */
728 
729 	/*
730 	 * Get the block pointer for this level.
731 	 */
732 	block = xfs_btree_get_block(cur, level, &bp);
733 	xfs_btree_check_block(cur, block, level, bp);
734 	/*
735 	 * It's empty, there is no such record.
736 	 */
737 	if (!block->bb_numrecs)
738 		return 0;
739 	/*
740 	 * Set the ptr value to 1, that's the first record/key.
741 	 */
742 	cur->bc_ptrs[level] = 1;
743 	return 1;
744 }
745 
746 /*
747  * Change the cursor to point to the last record in the current block
748  * at the given level.  Other levels are unaffected.
749  */
750 STATIC int				/* success=1, failure=0 */
751 xfs_btree_lastrec(
752 	xfs_btree_cur_t		*cur,	/* btree cursor */
753 	int			level)	/* level to change */
754 {
755 	struct xfs_btree_block	*block;	/* generic btree block pointer */
756 	xfs_buf_t		*bp;	/* buffer containing block */
757 
758 	/*
759 	 * Get the block pointer for this level.
760 	 */
761 	block = xfs_btree_get_block(cur, level, &bp);
762 	xfs_btree_check_block(cur, block, level, bp);
763 	/*
764 	 * It's empty, there is no such record.
765 	 */
766 	if (!block->bb_numrecs)
767 		return 0;
768 	/*
769 	 * Set the ptr value to numrecs, that's the last record/key.
770 	 */
771 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
772 	return 1;
773 }
774 
775 /*
776  * Compute first and last byte offsets for the fields given.
777  * Interprets the offsets table, which contains struct field offsets.
778  */
779 void
780 xfs_btree_offsets(
781 	__int64_t	fields,		/* bitmask of fields */
782 	const short	*offsets,	/* table of field offsets */
783 	int		nbits,		/* number of bits to inspect */
784 	int		*first,		/* output: first byte offset */
785 	int		*last)		/* output: last byte offset */
786 {
787 	int		i;		/* current bit number */
788 	__int64_t	imask;		/* mask for current bit number */
789 
790 	ASSERT(fields != 0);
791 	/*
792 	 * Find the lowest bit, so the first byte offset.
793 	 */
794 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
795 		if (imask & fields) {
796 			*first = offsets[i];
797 			break;
798 		}
799 	}
800 	/*
801 	 * Find the highest bit, so the last byte offset.
802 	 */
803 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
804 		if (imask & fields) {
805 			*last = offsets[i + 1] - 1;
806 			break;
807 		}
808 	}
809 }
810 
811 /*
812  * Get a buffer for the block, return it read in.
813  * Long-form addressing.
814  */
815 int
816 xfs_btree_read_bufl(
817 	struct xfs_mount	*mp,		/* file system mount point */
818 	struct xfs_trans	*tp,		/* transaction pointer */
819 	xfs_fsblock_t		fsbno,		/* file system block number */
820 	uint			lock,		/* lock flags for read_buf */
821 	struct xfs_buf		**bpp,		/* buffer for fsbno */
822 	int			refval,		/* ref count value for buffer */
823 	const struct xfs_buf_ops *ops)
824 {
825 	struct xfs_buf		*bp;		/* return value */
826 	xfs_daddr_t		d;		/* real disk block address */
827 	int			error;
828 
829 	if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
830 		return -EFSCORRUPTED;
831 	d = XFS_FSB_TO_DADDR(mp, fsbno);
832 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
833 				   mp->m_bsize, lock, &bp, ops);
834 	if (error)
835 		return error;
836 	if (bp)
837 		xfs_buf_set_ref(bp, refval);
838 	*bpp = bp;
839 	return 0;
840 }
841 
842 /*
843  * Read-ahead the block, don't wait for it, don't return a buffer.
844  * Long-form addressing.
845  */
846 /* ARGSUSED */
847 void
848 xfs_btree_reada_bufl(
849 	struct xfs_mount	*mp,		/* file system mount point */
850 	xfs_fsblock_t		fsbno,		/* file system block number */
851 	xfs_extlen_t		count,		/* count of filesystem blocks */
852 	const struct xfs_buf_ops *ops)
853 {
854 	xfs_daddr_t		d;
855 
856 	ASSERT(fsbno != NULLFSBLOCK);
857 	d = XFS_FSB_TO_DADDR(mp, fsbno);
858 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
859 }
860 
861 /*
862  * Read-ahead the block, don't wait for it, don't return a buffer.
863  * Short-form addressing.
864  */
865 /* ARGSUSED */
866 void
867 xfs_btree_reada_bufs(
868 	struct xfs_mount	*mp,		/* file system mount point */
869 	xfs_agnumber_t		agno,		/* allocation group number */
870 	xfs_agblock_t		agbno,		/* allocation group block number */
871 	xfs_extlen_t		count,		/* count of filesystem blocks */
872 	const struct xfs_buf_ops *ops)
873 {
874 	xfs_daddr_t		d;
875 
876 	ASSERT(agno != NULLAGNUMBER);
877 	ASSERT(agbno != NULLAGBLOCK);
878 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
879 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
880 }
881 
882 STATIC int
883 xfs_btree_readahead_lblock(
884 	struct xfs_btree_cur	*cur,
885 	int			lr,
886 	struct xfs_btree_block	*block)
887 {
888 	int			rval = 0;
889 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
890 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
891 
892 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
893 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
894 				     cur->bc_ops->buf_ops);
895 		rval++;
896 	}
897 
898 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
899 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
900 				     cur->bc_ops->buf_ops);
901 		rval++;
902 	}
903 
904 	return rval;
905 }
906 
907 STATIC int
908 xfs_btree_readahead_sblock(
909 	struct xfs_btree_cur	*cur,
910 	int			lr,
911 	struct xfs_btree_block *block)
912 {
913 	int			rval = 0;
914 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
915 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
916 
917 
918 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
919 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
920 				     left, 1, cur->bc_ops->buf_ops);
921 		rval++;
922 	}
923 
924 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
925 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
926 				     right, 1, cur->bc_ops->buf_ops);
927 		rval++;
928 	}
929 
930 	return rval;
931 }
932 
933 /*
934  * Read-ahead btree blocks, at the given level.
935  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
936  */
937 STATIC int
938 xfs_btree_readahead(
939 	struct xfs_btree_cur	*cur,		/* btree cursor */
940 	int			lev,		/* level in btree */
941 	int			lr)		/* left/right bits */
942 {
943 	struct xfs_btree_block	*block;
944 
945 	/*
946 	 * No readahead needed if we are at the root level and the
947 	 * btree root is stored in the inode.
948 	 */
949 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
950 	    (lev == cur->bc_nlevels - 1))
951 		return 0;
952 
953 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
954 		return 0;
955 
956 	cur->bc_ra[lev] |= lr;
957 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
958 
959 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
960 		return xfs_btree_readahead_lblock(cur, lr, block);
961 	return xfs_btree_readahead_sblock(cur, lr, block);
962 }
963 
964 STATIC xfs_daddr_t
965 xfs_btree_ptr_to_daddr(
966 	struct xfs_btree_cur	*cur,
967 	union xfs_btree_ptr	*ptr)
968 {
969 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
970 		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
971 
972 		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
973 	} else {
974 		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
975 		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
976 
977 		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
978 					be32_to_cpu(ptr->s));
979 	}
980 }
981 
982 /*
983  * Readahead @count btree blocks at the given @ptr location.
984  *
985  * We don't need to care about long or short form btrees here as we have a
986  * method of converting the ptr directly to a daddr available to us.
987  */
988 STATIC void
989 xfs_btree_readahead_ptr(
990 	struct xfs_btree_cur	*cur,
991 	union xfs_btree_ptr	*ptr,
992 	xfs_extlen_t		count)
993 {
994 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
995 			  xfs_btree_ptr_to_daddr(cur, ptr),
996 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
997 }
998 
999 /*
1000  * Set the buffer for level "lev" in the cursor to bp, releasing
1001  * any previous buffer.
1002  */
1003 STATIC void
1004 xfs_btree_setbuf(
1005 	xfs_btree_cur_t		*cur,	/* btree cursor */
1006 	int			lev,	/* level in btree */
1007 	xfs_buf_t		*bp)	/* new buffer to set */
1008 {
1009 	struct xfs_btree_block	*b;	/* btree block */
1010 
1011 	if (cur->bc_bufs[lev])
1012 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1013 	cur->bc_bufs[lev] = bp;
1014 	cur->bc_ra[lev] = 0;
1015 
1016 	b = XFS_BUF_TO_BLOCK(bp);
1017 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1018 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1019 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1020 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1021 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1022 	} else {
1023 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1024 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1025 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1026 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1027 	}
1028 }
1029 
1030 STATIC int
1031 xfs_btree_ptr_is_null(
1032 	struct xfs_btree_cur	*cur,
1033 	union xfs_btree_ptr	*ptr)
1034 {
1035 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1036 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1037 	else
1038 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1039 }
1040 
1041 STATIC void
1042 xfs_btree_set_ptr_null(
1043 	struct xfs_btree_cur	*cur,
1044 	union xfs_btree_ptr	*ptr)
1045 {
1046 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1047 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1048 	else
1049 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1050 }
1051 
1052 /*
1053  * Get/set/init sibling pointers
1054  */
1055 STATIC void
1056 xfs_btree_get_sibling(
1057 	struct xfs_btree_cur	*cur,
1058 	struct xfs_btree_block	*block,
1059 	union xfs_btree_ptr	*ptr,
1060 	int			lr)
1061 {
1062 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1063 
1064 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1065 		if (lr == XFS_BB_RIGHTSIB)
1066 			ptr->l = block->bb_u.l.bb_rightsib;
1067 		else
1068 			ptr->l = block->bb_u.l.bb_leftsib;
1069 	} else {
1070 		if (lr == XFS_BB_RIGHTSIB)
1071 			ptr->s = block->bb_u.s.bb_rightsib;
1072 		else
1073 			ptr->s = block->bb_u.s.bb_leftsib;
1074 	}
1075 }
1076 
1077 STATIC void
1078 xfs_btree_set_sibling(
1079 	struct xfs_btree_cur	*cur,
1080 	struct xfs_btree_block	*block,
1081 	union xfs_btree_ptr	*ptr,
1082 	int			lr)
1083 {
1084 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1085 
1086 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1087 		if (lr == XFS_BB_RIGHTSIB)
1088 			block->bb_u.l.bb_rightsib = ptr->l;
1089 		else
1090 			block->bb_u.l.bb_leftsib = ptr->l;
1091 	} else {
1092 		if (lr == XFS_BB_RIGHTSIB)
1093 			block->bb_u.s.bb_rightsib = ptr->s;
1094 		else
1095 			block->bb_u.s.bb_leftsib = ptr->s;
1096 	}
1097 }
1098 
1099 void
1100 xfs_btree_init_block_int(
1101 	struct xfs_mount	*mp,
1102 	struct xfs_btree_block	*buf,
1103 	xfs_daddr_t		blkno,
1104 	xfs_btnum_t		btnum,
1105 	__u16			level,
1106 	__u16			numrecs,
1107 	__u64			owner,
1108 	unsigned int		flags)
1109 {
1110 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1111 	__u32			magic = xfs_btree_magic(crc, btnum);
1112 
1113 	buf->bb_magic = cpu_to_be32(magic);
1114 	buf->bb_level = cpu_to_be16(level);
1115 	buf->bb_numrecs = cpu_to_be16(numrecs);
1116 
1117 	if (flags & XFS_BTREE_LONG_PTRS) {
1118 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1119 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1120 		if (crc) {
1121 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1122 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1123 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1124 			buf->bb_u.l.bb_pad = 0;
1125 			buf->bb_u.l.bb_lsn = 0;
1126 		}
1127 	} else {
1128 		/* owner is a 32 bit value on short blocks */
1129 		__u32 __owner = (__u32)owner;
1130 
1131 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1132 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1133 		if (crc) {
1134 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1135 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1136 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1137 			buf->bb_u.s.bb_lsn = 0;
1138 		}
1139 	}
1140 }
1141 
1142 void
1143 xfs_btree_init_block(
1144 	struct xfs_mount *mp,
1145 	struct xfs_buf	*bp,
1146 	xfs_btnum_t	btnum,
1147 	__u16		level,
1148 	__u16		numrecs,
1149 	__u64		owner,
1150 	unsigned int	flags)
1151 {
1152 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1153 				 btnum, level, numrecs, owner, flags);
1154 }
1155 
1156 STATIC void
1157 xfs_btree_init_block_cur(
1158 	struct xfs_btree_cur	*cur,
1159 	struct xfs_buf		*bp,
1160 	int			level,
1161 	int			numrecs)
1162 {
1163 	__u64			owner;
1164 
1165 	/*
1166 	 * we can pull the owner from the cursor right now as the different
1167 	 * owners align directly with the pointer size of the btree. This may
1168 	 * change in future, but is safe for current users of the generic btree
1169 	 * code.
1170 	 */
1171 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1172 		owner = cur->bc_private.b.ip->i_ino;
1173 	else
1174 		owner = cur->bc_private.a.agno;
1175 
1176 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1177 				 cur->bc_btnum, level, numrecs,
1178 				 owner, cur->bc_flags);
1179 }
1180 
1181 /*
1182  * Return true if ptr is the last record in the btree and
1183  * we need to track updates to this record.  The decision
1184  * will be further refined in the update_lastrec method.
1185  */
1186 STATIC int
1187 xfs_btree_is_lastrec(
1188 	struct xfs_btree_cur	*cur,
1189 	struct xfs_btree_block	*block,
1190 	int			level)
1191 {
1192 	union xfs_btree_ptr	ptr;
1193 
1194 	if (level > 0)
1195 		return 0;
1196 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1197 		return 0;
1198 
1199 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1200 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1201 		return 0;
1202 	return 1;
1203 }
1204 
1205 STATIC void
1206 xfs_btree_buf_to_ptr(
1207 	struct xfs_btree_cur	*cur,
1208 	struct xfs_buf		*bp,
1209 	union xfs_btree_ptr	*ptr)
1210 {
1211 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1212 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1213 					XFS_BUF_ADDR(bp)));
1214 	else {
1215 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1216 					XFS_BUF_ADDR(bp)));
1217 	}
1218 }
1219 
1220 STATIC void
1221 xfs_btree_set_refs(
1222 	struct xfs_btree_cur	*cur,
1223 	struct xfs_buf		*bp)
1224 {
1225 	switch (cur->bc_btnum) {
1226 	case XFS_BTNUM_BNO:
1227 	case XFS_BTNUM_CNT:
1228 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1229 		break;
1230 	case XFS_BTNUM_INO:
1231 	case XFS_BTNUM_FINO:
1232 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1233 		break;
1234 	case XFS_BTNUM_BMAP:
1235 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1236 		break;
1237 	case XFS_BTNUM_RMAP:
1238 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1239 		break;
1240 	case XFS_BTNUM_REFC:
1241 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1242 		break;
1243 	default:
1244 		ASSERT(0);
1245 	}
1246 }
1247 
1248 STATIC int
1249 xfs_btree_get_buf_block(
1250 	struct xfs_btree_cur	*cur,
1251 	union xfs_btree_ptr	*ptr,
1252 	int			flags,
1253 	struct xfs_btree_block	**block,
1254 	struct xfs_buf		**bpp)
1255 {
1256 	struct xfs_mount	*mp = cur->bc_mp;
1257 	xfs_daddr_t		d;
1258 
1259 	/* need to sort out how callers deal with failures first */
1260 	ASSERT(!(flags & XBF_TRYLOCK));
1261 
1262 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1263 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1264 				 mp->m_bsize, flags);
1265 
1266 	if (!*bpp)
1267 		return -ENOMEM;
1268 
1269 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1270 	*block = XFS_BUF_TO_BLOCK(*bpp);
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Read in the buffer at the given ptr and return the buffer and
1276  * the block pointer within the buffer.
1277  */
1278 STATIC int
1279 xfs_btree_read_buf_block(
1280 	struct xfs_btree_cur	*cur,
1281 	union xfs_btree_ptr	*ptr,
1282 	int			flags,
1283 	struct xfs_btree_block	**block,
1284 	struct xfs_buf		**bpp)
1285 {
1286 	struct xfs_mount	*mp = cur->bc_mp;
1287 	xfs_daddr_t		d;
1288 	int			error;
1289 
1290 	/* need to sort out how callers deal with failures first */
1291 	ASSERT(!(flags & XBF_TRYLOCK));
1292 
1293 	d = xfs_btree_ptr_to_daddr(cur, ptr);
1294 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1295 				   mp->m_bsize, flags, bpp,
1296 				   cur->bc_ops->buf_ops);
1297 	if (error)
1298 		return error;
1299 
1300 	xfs_btree_set_refs(cur, *bpp);
1301 	*block = XFS_BUF_TO_BLOCK(*bpp);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Copy keys from one btree block to another.
1307  */
1308 STATIC void
1309 xfs_btree_copy_keys(
1310 	struct xfs_btree_cur	*cur,
1311 	union xfs_btree_key	*dst_key,
1312 	union xfs_btree_key	*src_key,
1313 	int			numkeys)
1314 {
1315 	ASSERT(numkeys >= 0);
1316 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1317 }
1318 
1319 /*
1320  * Copy records from one btree block to another.
1321  */
1322 STATIC void
1323 xfs_btree_copy_recs(
1324 	struct xfs_btree_cur	*cur,
1325 	union xfs_btree_rec	*dst_rec,
1326 	union xfs_btree_rec	*src_rec,
1327 	int			numrecs)
1328 {
1329 	ASSERT(numrecs >= 0);
1330 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1331 }
1332 
1333 /*
1334  * Copy block pointers from one btree block to another.
1335  */
1336 STATIC void
1337 xfs_btree_copy_ptrs(
1338 	struct xfs_btree_cur	*cur,
1339 	union xfs_btree_ptr	*dst_ptr,
1340 	union xfs_btree_ptr	*src_ptr,
1341 	int			numptrs)
1342 {
1343 	ASSERT(numptrs >= 0);
1344 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1345 }
1346 
1347 /*
1348  * Shift keys one index left/right inside a single btree block.
1349  */
1350 STATIC void
1351 xfs_btree_shift_keys(
1352 	struct xfs_btree_cur	*cur,
1353 	union xfs_btree_key	*key,
1354 	int			dir,
1355 	int			numkeys)
1356 {
1357 	char			*dst_key;
1358 
1359 	ASSERT(numkeys >= 0);
1360 	ASSERT(dir == 1 || dir == -1);
1361 
1362 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1363 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1364 }
1365 
1366 /*
1367  * Shift records one index left/right inside a single btree block.
1368  */
1369 STATIC void
1370 xfs_btree_shift_recs(
1371 	struct xfs_btree_cur	*cur,
1372 	union xfs_btree_rec	*rec,
1373 	int			dir,
1374 	int			numrecs)
1375 {
1376 	char			*dst_rec;
1377 
1378 	ASSERT(numrecs >= 0);
1379 	ASSERT(dir == 1 || dir == -1);
1380 
1381 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1382 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1383 }
1384 
1385 /*
1386  * Shift block pointers one index left/right inside a single btree block.
1387  */
1388 STATIC void
1389 xfs_btree_shift_ptrs(
1390 	struct xfs_btree_cur	*cur,
1391 	union xfs_btree_ptr	*ptr,
1392 	int			dir,
1393 	int			numptrs)
1394 {
1395 	char			*dst_ptr;
1396 
1397 	ASSERT(numptrs >= 0);
1398 	ASSERT(dir == 1 || dir == -1);
1399 
1400 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1401 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403 
1404 /*
1405  * Log key values from the btree block.
1406  */
1407 STATIC void
1408 xfs_btree_log_keys(
1409 	struct xfs_btree_cur	*cur,
1410 	struct xfs_buf		*bp,
1411 	int			first,
1412 	int			last)
1413 {
1414 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1415 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1416 
1417 	if (bp) {
1418 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1419 		xfs_trans_log_buf(cur->bc_tp, bp,
1420 				  xfs_btree_key_offset(cur, first),
1421 				  xfs_btree_key_offset(cur, last + 1) - 1);
1422 	} else {
1423 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1424 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1425 	}
1426 
1427 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1428 }
1429 
1430 /*
1431  * Log record values from the btree block.
1432  */
1433 void
1434 xfs_btree_log_recs(
1435 	struct xfs_btree_cur	*cur,
1436 	struct xfs_buf		*bp,
1437 	int			first,
1438 	int			last)
1439 {
1440 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1441 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1442 
1443 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1444 	xfs_trans_log_buf(cur->bc_tp, bp,
1445 			  xfs_btree_rec_offset(cur, first),
1446 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1447 
1448 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1449 }
1450 
1451 /*
1452  * Log block pointer fields from a btree block (nonleaf).
1453  */
1454 STATIC void
1455 xfs_btree_log_ptrs(
1456 	struct xfs_btree_cur	*cur,	/* btree cursor */
1457 	struct xfs_buf		*bp,	/* buffer containing btree block */
1458 	int			first,	/* index of first pointer to log */
1459 	int			last)	/* index of last pointer to log */
1460 {
1461 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1462 	XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1463 
1464 	if (bp) {
1465 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1466 		int			level = xfs_btree_get_level(block);
1467 
1468 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1469 		xfs_trans_log_buf(cur->bc_tp, bp,
1470 				xfs_btree_ptr_offset(cur, first, level),
1471 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1472 	} else {
1473 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1474 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1475 	}
1476 
1477 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1478 }
1479 
1480 /*
1481  * Log fields from a btree block header.
1482  */
1483 void
1484 xfs_btree_log_block(
1485 	struct xfs_btree_cur	*cur,	/* btree cursor */
1486 	struct xfs_buf		*bp,	/* buffer containing btree block */
1487 	int			fields)	/* mask of fields: XFS_BB_... */
1488 {
1489 	int			first;	/* first byte offset logged */
1490 	int			last;	/* last byte offset logged */
1491 	static const short	soffsets[] = {	/* table of offsets (short) */
1492 		offsetof(struct xfs_btree_block, bb_magic),
1493 		offsetof(struct xfs_btree_block, bb_level),
1494 		offsetof(struct xfs_btree_block, bb_numrecs),
1495 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1496 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1497 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1498 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1499 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1500 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1501 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1502 		XFS_BTREE_SBLOCK_CRC_LEN
1503 	};
1504 	static const short	loffsets[] = {	/* table of offsets (long) */
1505 		offsetof(struct xfs_btree_block, bb_magic),
1506 		offsetof(struct xfs_btree_block, bb_level),
1507 		offsetof(struct xfs_btree_block, bb_numrecs),
1508 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1509 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1510 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1511 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1512 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1513 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1514 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1515 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1516 		XFS_BTREE_LBLOCK_CRC_LEN
1517 	};
1518 
1519 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1520 	XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1521 
1522 	if (bp) {
1523 		int nbits;
1524 
1525 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1526 			/*
1527 			 * We don't log the CRC when updating a btree
1528 			 * block but instead recreate it during log
1529 			 * recovery.  As the log buffers have checksums
1530 			 * of their own this is safe and avoids logging a crc
1531 			 * update in a lot of places.
1532 			 */
1533 			if (fields == XFS_BB_ALL_BITS)
1534 				fields = XFS_BB_ALL_BITS_CRC;
1535 			nbits = XFS_BB_NUM_BITS_CRC;
1536 		} else {
1537 			nbits = XFS_BB_NUM_BITS;
1538 		}
1539 		xfs_btree_offsets(fields,
1540 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1541 					loffsets : soffsets,
1542 				  nbits, &first, &last);
1543 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1544 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1545 	} else {
1546 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1547 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1548 	}
1549 
1550 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1551 }
1552 
1553 /*
1554  * Increment cursor by one record at the level.
1555  * For nonzero levels the leaf-ward information is untouched.
1556  */
1557 int						/* error */
1558 xfs_btree_increment(
1559 	struct xfs_btree_cur	*cur,
1560 	int			level,
1561 	int			*stat)		/* success/failure */
1562 {
1563 	struct xfs_btree_block	*block;
1564 	union xfs_btree_ptr	ptr;
1565 	struct xfs_buf		*bp;
1566 	int			error;		/* error return value */
1567 	int			lev;
1568 
1569 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1570 	XFS_BTREE_TRACE_ARGI(cur, level);
1571 
1572 	ASSERT(level < cur->bc_nlevels);
1573 
1574 	/* Read-ahead to the right at this level. */
1575 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1576 
1577 	/* Get a pointer to the btree block. */
1578 	block = xfs_btree_get_block(cur, level, &bp);
1579 
1580 #ifdef DEBUG
1581 	error = xfs_btree_check_block(cur, block, level, bp);
1582 	if (error)
1583 		goto error0;
1584 #endif
1585 
1586 	/* We're done if we remain in the block after the increment. */
1587 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1588 		goto out1;
1589 
1590 	/* Fail if we just went off the right edge of the tree. */
1591 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1592 	if (xfs_btree_ptr_is_null(cur, &ptr))
1593 		goto out0;
1594 
1595 	XFS_BTREE_STATS_INC(cur, increment);
1596 
1597 	/*
1598 	 * March up the tree incrementing pointers.
1599 	 * Stop when we don't go off the right edge of a block.
1600 	 */
1601 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1602 		block = xfs_btree_get_block(cur, lev, &bp);
1603 
1604 #ifdef DEBUG
1605 		error = xfs_btree_check_block(cur, block, lev, bp);
1606 		if (error)
1607 			goto error0;
1608 #endif
1609 
1610 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1611 			break;
1612 
1613 		/* Read-ahead the right block for the next loop. */
1614 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1615 	}
1616 
1617 	/*
1618 	 * If we went off the root then we are either seriously
1619 	 * confused or have the tree root in an inode.
1620 	 */
1621 	if (lev == cur->bc_nlevels) {
1622 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1623 			goto out0;
1624 		ASSERT(0);
1625 		error = -EFSCORRUPTED;
1626 		goto error0;
1627 	}
1628 	ASSERT(lev < cur->bc_nlevels);
1629 
1630 	/*
1631 	 * Now walk back down the tree, fixing up the cursor's buffer
1632 	 * pointers and key numbers.
1633 	 */
1634 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1635 		union xfs_btree_ptr	*ptrp;
1636 
1637 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1638 		--lev;
1639 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1640 		if (error)
1641 			goto error0;
1642 
1643 		xfs_btree_setbuf(cur, lev, bp);
1644 		cur->bc_ptrs[lev] = 1;
1645 	}
1646 out1:
1647 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1648 	*stat = 1;
1649 	return 0;
1650 
1651 out0:
1652 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1653 	*stat = 0;
1654 	return 0;
1655 
1656 error0:
1657 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1658 	return error;
1659 }
1660 
1661 /*
1662  * Decrement cursor by one record at the level.
1663  * For nonzero levels the leaf-ward information is untouched.
1664  */
1665 int						/* error */
1666 xfs_btree_decrement(
1667 	struct xfs_btree_cur	*cur,
1668 	int			level,
1669 	int			*stat)		/* success/failure */
1670 {
1671 	struct xfs_btree_block	*block;
1672 	xfs_buf_t		*bp;
1673 	int			error;		/* error return value */
1674 	int			lev;
1675 	union xfs_btree_ptr	ptr;
1676 
1677 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1678 	XFS_BTREE_TRACE_ARGI(cur, level);
1679 
1680 	ASSERT(level < cur->bc_nlevels);
1681 
1682 	/* Read-ahead to the left at this level. */
1683 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1684 
1685 	/* We're done if we remain in the block after the decrement. */
1686 	if (--cur->bc_ptrs[level] > 0)
1687 		goto out1;
1688 
1689 	/* Get a pointer to the btree block. */
1690 	block = xfs_btree_get_block(cur, level, &bp);
1691 
1692 #ifdef DEBUG
1693 	error = xfs_btree_check_block(cur, block, level, bp);
1694 	if (error)
1695 		goto error0;
1696 #endif
1697 
1698 	/* Fail if we just went off the left edge of the tree. */
1699 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1700 	if (xfs_btree_ptr_is_null(cur, &ptr))
1701 		goto out0;
1702 
1703 	XFS_BTREE_STATS_INC(cur, decrement);
1704 
1705 	/*
1706 	 * March up the tree decrementing pointers.
1707 	 * Stop when we don't go off the left edge of a block.
1708 	 */
1709 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1710 		if (--cur->bc_ptrs[lev] > 0)
1711 			break;
1712 		/* Read-ahead the left block for the next loop. */
1713 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1714 	}
1715 
1716 	/*
1717 	 * If we went off the root then we are seriously confused.
1718 	 * or the root of the tree is in an inode.
1719 	 */
1720 	if (lev == cur->bc_nlevels) {
1721 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1722 			goto out0;
1723 		ASSERT(0);
1724 		error = -EFSCORRUPTED;
1725 		goto error0;
1726 	}
1727 	ASSERT(lev < cur->bc_nlevels);
1728 
1729 	/*
1730 	 * Now walk back down the tree, fixing up the cursor's buffer
1731 	 * pointers and key numbers.
1732 	 */
1733 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1734 		union xfs_btree_ptr	*ptrp;
1735 
1736 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1737 		--lev;
1738 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1739 		if (error)
1740 			goto error0;
1741 		xfs_btree_setbuf(cur, lev, bp);
1742 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1743 	}
1744 out1:
1745 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1746 	*stat = 1;
1747 	return 0;
1748 
1749 out0:
1750 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1751 	*stat = 0;
1752 	return 0;
1753 
1754 error0:
1755 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1756 	return error;
1757 }
1758 
1759 STATIC int
1760 xfs_btree_lookup_get_block(
1761 	struct xfs_btree_cur	*cur,	/* btree cursor */
1762 	int			level,	/* level in the btree */
1763 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1764 	struct xfs_btree_block	**blkp) /* return btree block */
1765 {
1766 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1767 	int			error = 0;
1768 
1769 	/* special case the root block if in an inode */
1770 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1771 	    (level == cur->bc_nlevels - 1)) {
1772 		*blkp = xfs_btree_get_iroot(cur);
1773 		return 0;
1774 	}
1775 
1776 	/*
1777 	 * If the old buffer at this level for the disk address we are
1778 	 * looking for re-use it.
1779 	 *
1780 	 * Otherwise throw it away and get a new one.
1781 	 */
1782 	bp = cur->bc_bufs[level];
1783 	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1784 		*blkp = XFS_BUF_TO_BLOCK(bp);
1785 		return 0;
1786 	}
1787 
1788 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1789 	if (error)
1790 		return error;
1791 
1792 	/* Check the inode owner since the verifiers don't. */
1793 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1794 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1795 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1796 			cur->bc_private.b.ip->i_ino)
1797 		goto out_bad;
1798 
1799 	/* Did we get the level we were looking for? */
1800 	if (be16_to_cpu((*blkp)->bb_level) != level)
1801 		goto out_bad;
1802 
1803 	/* Check that internal nodes have at least one record. */
1804 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1805 		goto out_bad;
1806 
1807 	xfs_btree_setbuf(cur, level, bp);
1808 	return 0;
1809 
1810 out_bad:
1811 	*blkp = NULL;
1812 	xfs_trans_brelse(cur->bc_tp, bp);
1813 	return -EFSCORRUPTED;
1814 }
1815 
1816 /*
1817  * Get current search key.  For level 0 we don't actually have a key
1818  * structure so we make one up from the record.  For all other levels
1819  * we just return the right key.
1820  */
1821 STATIC union xfs_btree_key *
1822 xfs_lookup_get_search_key(
1823 	struct xfs_btree_cur	*cur,
1824 	int			level,
1825 	int			keyno,
1826 	struct xfs_btree_block	*block,
1827 	union xfs_btree_key	*kp)
1828 {
1829 	if (level == 0) {
1830 		cur->bc_ops->init_key_from_rec(kp,
1831 				xfs_btree_rec_addr(cur, keyno, block));
1832 		return kp;
1833 	}
1834 
1835 	return xfs_btree_key_addr(cur, keyno, block);
1836 }
1837 
1838 /*
1839  * Lookup the record.  The cursor is made to point to it, based on dir.
1840  * stat is set to 0 if can't find any such record, 1 for success.
1841  */
1842 int					/* error */
1843 xfs_btree_lookup(
1844 	struct xfs_btree_cur	*cur,	/* btree cursor */
1845 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1846 	int			*stat)	/* success/failure */
1847 {
1848 	struct xfs_btree_block	*block;	/* current btree block */
1849 	__int64_t		diff;	/* difference for the current key */
1850 	int			error;	/* error return value */
1851 	int			keyno;	/* current key number */
1852 	int			level;	/* level in the btree */
1853 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1854 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1855 
1856 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1857 	XFS_BTREE_TRACE_ARGI(cur, dir);
1858 
1859 	XFS_BTREE_STATS_INC(cur, lookup);
1860 
1861 	/* No such thing as a zero-level tree. */
1862 	if (cur->bc_nlevels == 0)
1863 		return -EFSCORRUPTED;
1864 
1865 	block = NULL;
1866 	keyno = 0;
1867 
1868 	/* initialise start pointer from cursor */
1869 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1870 	pp = &ptr;
1871 
1872 	/*
1873 	 * Iterate over each level in the btree, starting at the root.
1874 	 * For each level above the leaves, find the key we need, based
1875 	 * on the lookup record, then follow the corresponding block
1876 	 * pointer down to the next level.
1877 	 */
1878 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1879 		/* Get the block we need to do the lookup on. */
1880 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1881 		if (error)
1882 			goto error0;
1883 
1884 		if (diff == 0) {
1885 			/*
1886 			 * If we already had a key match at a higher level, we
1887 			 * know we need to use the first entry in this block.
1888 			 */
1889 			keyno = 1;
1890 		} else {
1891 			/* Otherwise search this block. Do a binary search. */
1892 
1893 			int	high;	/* high entry number */
1894 			int	low;	/* low entry number */
1895 
1896 			/* Set low and high entry numbers, 1-based. */
1897 			low = 1;
1898 			high = xfs_btree_get_numrecs(block);
1899 			if (!high) {
1900 				/* Block is empty, must be an empty leaf. */
1901 				ASSERT(level == 0 && cur->bc_nlevels == 1);
1902 
1903 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1904 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1905 				*stat = 0;
1906 				return 0;
1907 			}
1908 
1909 			/* Binary search the block. */
1910 			while (low <= high) {
1911 				union xfs_btree_key	key;
1912 				union xfs_btree_key	*kp;
1913 
1914 				XFS_BTREE_STATS_INC(cur, compare);
1915 
1916 				/* keyno is average of low and high. */
1917 				keyno = (low + high) >> 1;
1918 
1919 				/* Get current search key */
1920 				kp = xfs_lookup_get_search_key(cur, level,
1921 						keyno, block, &key);
1922 
1923 				/*
1924 				 * Compute difference to get next direction:
1925 				 *  - less than, move right
1926 				 *  - greater than, move left
1927 				 *  - equal, we're done
1928 				 */
1929 				diff = cur->bc_ops->key_diff(cur, kp);
1930 				if (diff < 0)
1931 					low = keyno + 1;
1932 				else if (diff > 0)
1933 					high = keyno - 1;
1934 				else
1935 					break;
1936 			}
1937 		}
1938 
1939 		/*
1940 		 * If there are more levels, set up for the next level
1941 		 * by getting the block number and filling in the cursor.
1942 		 */
1943 		if (level > 0) {
1944 			/*
1945 			 * If we moved left, need the previous key number,
1946 			 * unless there isn't one.
1947 			 */
1948 			if (diff > 0 && --keyno < 1)
1949 				keyno = 1;
1950 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1951 
1952 #ifdef DEBUG
1953 			error = xfs_btree_check_ptr(cur, pp, 0, level);
1954 			if (error)
1955 				goto error0;
1956 #endif
1957 			cur->bc_ptrs[level] = keyno;
1958 		}
1959 	}
1960 
1961 	/* Done with the search. See if we need to adjust the results. */
1962 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1963 		keyno++;
1964 		/*
1965 		 * If ge search and we went off the end of the block, but it's
1966 		 * not the last block, we're in the wrong block.
1967 		 */
1968 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1969 		if (dir == XFS_LOOKUP_GE &&
1970 		    keyno > xfs_btree_get_numrecs(block) &&
1971 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1972 			int	i;
1973 
1974 			cur->bc_ptrs[0] = keyno;
1975 			error = xfs_btree_increment(cur, 0, &i);
1976 			if (error)
1977 				goto error0;
1978 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1979 			XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1980 			*stat = 1;
1981 			return 0;
1982 		}
1983 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1984 		keyno--;
1985 	cur->bc_ptrs[0] = keyno;
1986 
1987 	/* Return if we succeeded or not. */
1988 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1989 		*stat = 0;
1990 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1991 		*stat = 1;
1992 	else
1993 		*stat = 0;
1994 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1995 	return 0;
1996 
1997 error0:
1998 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1999 	return error;
2000 }
2001 
2002 /* Find the high key storage area from a regular key. */
2003 STATIC union xfs_btree_key *
2004 xfs_btree_high_key_from_key(
2005 	struct xfs_btree_cur	*cur,
2006 	union xfs_btree_key	*key)
2007 {
2008 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2009 	return (union xfs_btree_key *)((char *)key +
2010 			(cur->bc_ops->key_len / 2));
2011 }
2012 
2013 /* Determine the low (and high if overlapped) keys of a leaf block */
2014 STATIC void
2015 xfs_btree_get_leaf_keys(
2016 	struct xfs_btree_cur	*cur,
2017 	struct xfs_btree_block	*block,
2018 	union xfs_btree_key	*key)
2019 {
2020 	union xfs_btree_key	max_hkey;
2021 	union xfs_btree_key	hkey;
2022 	union xfs_btree_rec	*rec;
2023 	union xfs_btree_key	*high;
2024 	int			n;
2025 
2026 	rec = xfs_btree_rec_addr(cur, 1, block);
2027 	cur->bc_ops->init_key_from_rec(key, rec);
2028 
2029 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2030 
2031 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2032 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2033 			rec = xfs_btree_rec_addr(cur, n, block);
2034 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2035 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2036 					> 0)
2037 				max_hkey = hkey;
2038 		}
2039 
2040 		high = xfs_btree_high_key_from_key(cur, key);
2041 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2042 	}
2043 }
2044 
2045 /* Determine the low (and high if overlapped) keys of a node block */
2046 STATIC void
2047 xfs_btree_get_node_keys(
2048 	struct xfs_btree_cur	*cur,
2049 	struct xfs_btree_block	*block,
2050 	union xfs_btree_key	*key)
2051 {
2052 	union xfs_btree_key	*hkey;
2053 	union xfs_btree_key	*max_hkey;
2054 	union xfs_btree_key	*high;
2055 	int			n;
2056 
2057 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2058 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2059 				cur->bc_ops->key_len / 2);
2060 
2061 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2062 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2063 			hkey = xfs_btree_high_key_addr(cur, n, block);
2064 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2065 				max_hkey = hkey;
2066 		}
2067 
2068 		high = xfs_btree_high_key_from_key(cur, key);
2069 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2070 	} else {
2071 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2072 				cur->bc_ops->key_len);
2073 	}
2074 }
2075 
2076 /* Derive the keys for any btree block. */
2077 STATIC void
2078 xfs_btree_get_keys(
2079 	struct xfs_btree_cur	*cur,
2080 	struct xfs_btree_block	*block,
2081 	union xfs_btree_key	*key)
2082 {
2083 	if (be16_to_cpu(block->bb_level) == 0)
2084 		xfs_btree_get_leaf_keys(cur, block, key);
2085 	else
2086 		xfs_btree_get_node_keys(cur, block, key);
2087 }
2088 
2089 /*
2090  * Decide if we need to update the parent keys of a btree block.  For
2091  * a standard btree this is only necessary if we're updating the first
2092  * record/key.  For an overlapping btree, we must always update the
2093  * keys because the highest key can be in any of the records or keys
2094  * in the block.
2095  */
2096 static inline bool
2097 xfs_btree_needs_key_update(
2098 	struct xfs_btree_cur	*cur,
2099 	int			ptr)
2100 {
2101 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2102 }
2103 
2104 /*
2105  * Update the low and high parent keys of the given level, progressing
2106  * towards the root.  If force_all is false, stop if the keys for a given
2107  * level do not need updating.
2108  */
2109 STATIC int
2110 __xfs_btree_updkeys(
2111 	struct xfs_btree_cur	*cur,
2112 	int			level,
2113 	struct xfs_btree_block	*block,
2114 	struct xfs_buf		*bp0,
2115 	bool			force_all)
2116 {
2117 	union xfs_btree_key	key;	/* keys from current level */
2118 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2119 	union xfs_btree_key	*hkey;
2120 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2121 	union xfs_btree_key	*nhkey;
2122 	struct xfs_buf		*bp;
2123 	int			ptr;
2124 
2125 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2126 
2127 	/* Exit if there aren't any parent levels to update. */
2128 	if (level + 1 >= cur->bc_nlevels)
2129 		return 0;
2130 
2131 	trace_xfs_btree_updkeys(cur, level, bp0);
2132 
2133 	lkey = &key;
2134 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2135 	xfs_btree_get_keys(cur, block, lkey);
2136 	for (level++; level < cur->bc_nlevels; level++) {
2137 #ifdef DEBUG
2138 		int		error;
2139 #endif
2140 		block = xfs_btree_get_block(cur, level, &bp);
2141 		trace_xfs_btree_updkeys(cur, level, bp);
2142 #ifdef DEBUG
2143 		error = xfs_btree_check_block(cur, block, level, bp);
2144 		if (error) {
2145 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2146 			return error;
2147 		}
2148 #endif
2149 		ptr = cur->bc_ptrs[level];
2150 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2151 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2152 		if (!force_all &&
2153 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2154 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2155 			break;
2156 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2157 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2158 		if (level + 1 >= cur->bc_nlevels)
2159 			break;
2160 		xfs_btree_get_node_keys(cur, block, lkey);
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 /* Update all the keys from some level in cursor back to the root. */
2167 STATIC int
2168 xfs_btree_updkeys_force(
2169 	struct xfs_btree_cur	*cur,
2170 	int			level)
2171 {
2172 	struct xfs_buf		*bp;
2173 	struct xfs_btree_block	*block;
2174 
2175 	block = xfs_btree_get_block(cur, level, &bp);
2176 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2177 }
2178 
2179 /*
2180  * Update the parent keys of the given level, progressing towards the root.
2181  */
2182 STATIC int
2183 xfs_btree_update_keys(
2184 	struct xfs_btree_cur	*cur,
2185 	int			level)
2186 {
2187 	struct xfs_btree_block	*block;
2188 	struct xfs_buf		*bp;
2189 	union xfs_btree_key	*kp;
2190 	union xfs_btree_key	key;
2191 	int			ptr;
2192 
2193 	ASSERT(level >= 0);
2194 
2195 	block = xfs_btree_get_block(cur, level, &bp);
2196 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2197 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2198 
2199 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2200 	XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2201 
2202 	/*
2203 	 * Go up the tree from this level toward the root.
2204 	 * At each level, update the key value to the value input.
2205 	 * Stop when we reach a level where the cursor isn't pointing
2206 	 * at the first entry in the block.
2207 	 */
2208 	xfs_btree_get_keys(cur, block, &key);
2209 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2210 #ifdef DEBUG
2211 		int		error;
2212 #endif
2213 		block = xfs_btree_get_block(cur, level, &bp);
2214 #ifdef DEBUG
2215 		error = xfs_btree_check_block(cur, block, level, bp);
2216 		if (error) {
2217 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2218 			return error;
2219 		}
2220 #endif
2221 		ptr = cur->bc_ptrs[level];
2222 		kp = xfs_btree_key_addr(cur, ptr, block);
2223 		xfs_btree_copy_keys(cur, kp, &key, 1);
2224 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2225 	}
2226 
2227 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2228 	return 0;
2229 }
2230 
2231 /*
2232  * Update the record referred to by cur to the value in the
2233  * given record. This either works (return 0) or gets an
2234  * EFSCORRUPTED error.
2235  */
2236 int
2237 xfs_btree_update(
2238 	struct xfs_btree_cur	*cur,
2239 	union xfs_btree_rec	*rec)
2240 {
2241 	struct xfs_btree_block	*block;
2242 	struct xfs_buf		*bp;
2243 	int			error;
2244 	int			ptr;
2245 	union xfs_btree_rec	*rp;
2246 
2247 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2248 	XFS_BTREE_TRACE_ARGR(cur, rec);
2249 
2250 	/* Pick up the current block. */
2251 	block = xfs_btree_get_block(cur, 0, &bp);
2252 
2253 #ifdef DEBUG
2254 	error = xfs_btree_check_block(cur, block, 0, bp);
2255 	if (error)
2256 		goto error0;
2257 #endif
2258 	/* Get the address of the rec to be updated. */
2259 	ptr = cur->bc_ptrs[0];
2260 	rp = xfs_btree_rec_addr(cur, ptr, block);
2261 
2262 	/* Fill in the new contents and log them. */
2263 	xfs_btree_copy_recs(cur, rp, rec, 1);
2264 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2265 
2266 	/*
2267 	 * If we are tracking the last record in the tree and
2268 	 * we are at the far right edge of the tree, update it.
2269 	 */
2270 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2271 		cur->bc_ops->update_lastrec(cur, block, rec,
2272 					    ptr, LASTREC_UPDATE);
2273 	}
2274 
2275 	/* Pass new key value up to our parent. */
2276 	if (xfs_btree_needs_key_update(cur, ptr)) {
2277 		error = xfs_btree_update_keys(cur, 0);
2278 		if (error)
2279 			goto error0;
2280 	}
2281 
2282 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2283 	return 0;
2284 
2285 error0:
2286 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2287 	return error;
2288 }
2289 
2290 /*
2291  * Move 1 record left from cur/level if possible.
2292  * Update cur to reflect the new path.
2293  */
2294 STATIC int					/* error */
2295 xfs_btree_lshift(
2296 	struct xfs_btree_cur	*cur,
2297 	int			level,
2298 	int			*stat)		/* success/failure */
2299 {
2300 	struct xfs_buf		*lbp;		/* left buffer pointer */
2301 	struct xfs_btree_block	*left;		/* left btree block */
2302 	int			lrecs;		/* left record count */
2303 	struct xfs_buf		*rbp;		/* right buffer pointer */
2304 	struct xfs_btree_block	*right;		/* right btree block */
2305 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2306 	int			rrecs;		/* right record count */
2307 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2308 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2309 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2310 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2311 	int			error;		/* error return value */
2312 	int			i;
2313 
2314 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2315 	XFS_BTREE_TRACE_ARGI(cur, level);
2316 
2317 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2318 	    level == cur->bc_nlevels - 1)
2319 		goto out0;
2320 
2321 	/* Set up variables for this block as "right". */
2322 	right = xfs_btree_get_block(cur, level, &rbp);
2323 
2324 #ifdef DEBUG
2325 	error = xfs_btree_check_block(cur, right, level, rbp);
2326 	if (error)
2327 		goto error0;
2328 #endif
2329 
2330 	/* If we've got no left sibling then we can't shift an entry left. */
2331 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2332 	if (xfs_btree_ptr_is_null(cur, &lptr))
2333 		goto out0;
2334 
2335 	/*
2336 	 * If the cursor entry is the one that would be moved, don't
2337 	 * do it... it's too complicated.
2338 	 */
2339 	if (cur->bc_ptrs[level] <= 1)
2340 		goto out0;
2341 
2342 	/* Set up the left neighbor as "left". */
2343 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2344 	if (error)
2345 		goto error0;
2346 
2347 	/* If it's full, it can't take another entry. */
2348 	lrecs = xfs_btree_get_numrecs(left);
2349 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2350 		goto out0;
2351 
2352 	rrecs = xfs_btree_get_numrecs(right);
2353 
2354 	/*
2355 	 * We add one entry to the left side and remove one for the right side.
2356 	 * Account for it here, the changes will be updated on disk and logged
2357 	 * later.
2358 	 */
2359 	lrecs++;
2360 	rrecs--;
2361 
2362 	XFS_BTREE_STATS_INC(cur, lshift);
2363 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2364 
2365 	/*
2366 	 * If non-leaf, copy a key and a ptr to the left block.
2367 	 * Log the changes to the left block.
2368 	 */
2369 	if (level > 0) {
2370 		/* It's a non-leaf.  Move keys and pointers. */
2371 		union xfs_btree_key	*lkp;	/* left btree key */
2372 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2373 
2374 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2375 		rkp = xfs_btree_key_addr(cur, 1, right);
2376 
2377 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2378 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2379 #ifdef DEBUG
2380 		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2381 		if (error)
2382 			goto error0;
2383 #endif
2384 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2385 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2386 
2387 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2388 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2389 
2390 		ASSERT(cur->bc_ops->keys_inorder(cur,
2391 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2392 	} else {
2393 		/* It's a leaf.  Move records.  */
2394 		union xfs_btree_rec	*lrp;	/* left record pointer */
2395 
2396 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2397 		rrp = xfs_btree_rec_addr(cur, 1, right);
2398 
2399 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2400 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2401 
2402 		ASSERT(cur->bc_ops->recs_inorder(cur,
2403 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2404 	}
2405 
2406 	xfs_btree_set_numrecs(left, lrecs);
2407 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2408 
2409 	xfs_btree_set_numrecs(right, rrecs);
2410 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2411 
2412 	/*
2413 	 * Slide the contents of right down one entry.
2414 	 */
2415 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2416 	if (level > 0) {
2417 		/* It's a nonleaf. operate on keys and ptrs */
2418 #ifdef DEBUG
2419 		int			i;		/* loop index */
2420 
2421 		for (i = 0; i < rrecs; i++) {
2422 			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2423 			if (error)
2424 				goto error0;
2425 		}
2426 #endif
2427 		xfs_btree_shift_keys(cur,
2428 				xfs_btree_key_addr(cur, 2, right),
2429 				-1, rrecs);
2430 		xfs_btree_shift_ptrs(cur,
2431 				xfs_btree_ptr_addr(cur, 2, right),
2432 				-1, rrecs);
2433 
2434 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2435 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2436 	} else {
2437 		/* It's a leaf. operate on records */
2438 		xfs_btree_shift_recs(cur,
2439 			xfs_btree_rec_addr(cur, 2, right),
2440 			-1, rrecs);
2441 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2442 	}
2443 
2444 	/*
2445 	 * Using a temporary cursor, update the parent key values of the
2446 	 * block on the left.
2447 	 */
2448 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2449 		error = xfs_btree_dup_cursor(cur, &tcur);
2450 		if (error)
2451 			goto error0;
2452 		i = xfs_btree_firstrec(tcur, level);
2453 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2454 
2455 		error = xfs_btree_decrement(tcur, level, &i);
2456 		if (error)
2457 			goto error1;
2458 
2459 		/* Update the parent high keys of the left block, if needed. */
2460 		error = xfs_btree_update_keys(tcur, level);
2461 		if (error)
2462 			goto error1;
2463 
2464 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2465 	}
2466 
2467 	/* Update the parent keys of the right block. */
2468 	error = xfs_btree_update_keys(cur, level);
2469 	if (error)
2470 		goto error0;
2471 
2472 	/* Slide the cursor value left one. */
2473 	cur->bc_ptrs[level]--;
2474 
2475 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2476 	*stat = 1;
2477 	return 0;
2478 
2479 out0:
2480 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2481 	*stat = 0;
2482 	return 0;
2483 
2484 error0:
2485 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2486 	return error;
2487 
2488 error1:
2489 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2490 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2491 	return error;
2492 }
2493 
2494 /*
2495  * Move 1 record right from cur/level if possible.
2496  * Update cur to reflect the new path.
2497  */
2498 STATIC int					/* error */
2499 xfs_btree_rshift(
2500 	struct xfs_btree_cur	*cur,
2501 	int			level,
2502 	int			*stat)		/* success/failure */
2503 {
2504 	struct xfs_buf		*lbp;		/* left buffer pointer */
2505 	struct xfs_btree_block	*left;		/* left btree block */
2506 	struct xfs_buf		*rbp;		/* right buffer pointer */
2507 	struct xfs_btree_block	*right;		/* right btree block */
2508 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2509 	union xfs_btree_ptr	rptr;		/* right block pointer */
2510 	union xfs_btree_key	*rkp;		/* right btree key */
2511 	int			rrecs;		/* right record count */
2512 	int			lrecs;		/* left record count */
2513 	int			error;		/* error return value */
2514 	int			i;		/* loop counter */
2515 
2516 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2517 	XFS_BTREE_TRACE_ARGI(cur, level);
2518 
2519 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2520 	    (level == cur->bc_nlevels - 1))
2521 		goto out0;
2522 
2523 	/* Set up variables for this block as "left". */
2524 	left = xfs_btree_get_block(cur, level, &lbp);
2525 
2526 #ifdef DEBUG
2527 	error = xfs_btree_check_block(cur, left, level, lbp);
2528 	if (error)
2529 		goto error0;
2530 #endif
2531 
2532 	/* If we've got no right sibling then we can't shift an entry right. */
2533 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2534 	if (xfs_btree_ptr_is_null(cur, &rptr))
2535 		goto out0;
2536 
2537 	/*
2538 	 * If the cursor entry is the one that would be moved, don't
2539 	 * do it... it's too complicated.
2540 	 */
2541 	lrecs = xfs_btree_get_numrecs(left);
2542 	if (cur->bc_ptrs[level] >= lrecs)
2543 		goto out0;
2544 
2545 	/* Set up the right neighbor as "right". */
2546 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2547 	if (error)
2548 		goto error0;
2549 
2550 	/* If it's full, it can't take another entry. */
2551 	rrecs = xfs_btree_get_numrecs(right);
2552 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2553 		goto out0;
2554 
2555 	XFS_BTREE_STATS_INC(cur, rshift);
2556 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2557 
2558 	/*
2559 	 * Make a hole at the start of the right neighbor block, then
2560 	 * copy the last left block entry to the hole.
2561 	 */
2562 	if (level > 0) {
2563 		/* It's a nonleaf. make a hole in the keys and ptrs */
2564 		union xfs_btree_key	*lkp;
2565 		union xfs_btree_ptr	*lpp;
2566 		union xfs_btree_ptr	*rpp;
2567 
2568 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2569 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2570 		rkp = xfs_btree_key_addr(cur, 1, right);
2571 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2572 
2573 #ifdef DEBUG
2574 		for (i = rrecs - 1; i >= 0; i--) {
2575 			error = xfs_btree_check_ptr(cur, rpp, i, level);
2576 			if (error)
2577 				goto error0;
2578 		}
2579 #endif
2580 
2581 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2582 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2583 
2584 #ifdef DEBUG
2585 		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2586 		if (error)
2587 			goto error0;
2588 #endif
2589 
2590 		/* Now put the new data in, and log it. */
2591 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2592 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2593 
2594 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2595 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2596 
2597 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2598 			xfs_btree_key_addr(cur, 2, right)));
2599 	} else {
2600 		/* It's a leaf. make a hole in the records */
2601 		union xfs_btree_rec	*lrp;
2602 		union xfs_btree_rec	*rrp;
2603 
2604 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2605 		rrp = xfs_btree_rec_addr(cur, 1, right);
2606 
2607 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2608 
2609 		/* Now put the new data in, and log it. */
2610 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2611 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2612 	}
2613 
2614 	/*
2615 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2616 	 */
2617 	xfs_btree_set_numrecs(left, --lrecs);
2618 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2619 
2620 	xfs_btree_set_numrecs(right, ++rrecs);
2621 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2622 
2623 	/*
2624 	 * Using a temporary cursor, update the parent key values of the
2625 	 * block on the right.
2626 	 */
2627 	error = xfs_btree_dup_cursor(cur, &tcur);
2628 	if (error)
2629 		goto error0;
2630 	i = xfs_btree_lastrec(tcur, level);
2631 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2632 
2633 	error = xfs_btree_increment(tcur, level, &i);
2634 	if (error)
2635 		goto error1;
2636 
2637 	/* Update the parent high keys of the left block, if needed. */
2638 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2639 		error = xfs_btree_update_keys(cur, level);
2640 		if (error)
2641 			goto error1;
2642 	}
2643 
2644 	/* Update the parent keys of the right block. */
2645 	error = xfs_btree_update_keys(tcur, level);
2646 	if (error)
2647 		goto error1;
2648 
2649 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2650 
2651 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2652 	*stat = 1;
2653 	return 0;
2654 
2655 out0:
2656 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2657 	*stat = 0;
2658 	return 0;
2659 
2660 error0:
2661 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2662 	return error;
2663 
2664 error1:
2665 	XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2666 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2667 	return error;
2668 }
2669 
2670 /*
2671  * Split cur/level block in half.
2672  * Return new block number and the key to its first
2673  * record (to be inserted into parent).
2674  */
2675 STATIC int					/* error */
2676 __xfs_btree_split(
2677 	struct xfs_btree_cur	*cur,
2678 	int			level,
2679 	union xfs_btree_ptr	*ptrp,
2680 	union xfs_btree_key	*key,
2681 	struct xfs_btree_cur	**curp,
2682 	int			*stat)		/* success/failure */
2683 {
2684 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2685 	struct xfs_buf		*lbp;		/* left buffer pointer */
2686 	struct xfs_btree_block	*left;		/* left btree block */
2687 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2688 	struct xfs_buf		*rbp;		/* right buffer pointer */
2689 	struct xfs_btree_block	*right;		/* right btree block */
2690 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2691 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2692 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2693 	int			lrecs;
2694 	int			rrecs;
2695 	int			src_index;
2696 	int			error;		/* error return value */
2697 #ifdef DEBUG
2698 	int			i;
2699 #endif
2700 
2701 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2702 	XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2703 
2704 	XFS_BTREE_STATS_INC(cur, split);
2705 
2706 	/* Set up left block (current one). */
2707 	left = xfs_btree_get_block(cur, level, &lbp);
2708 
2709 #ifdef DEBUG
2710 	error = xfs_btree_check_block(cur, left, level, lbp);
2711 	if (error)
2712 		goto error0;
2713 #endif
2714 
2715 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2716 
2717 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2718 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2719 	if (error)
2720 		goto error0;
2721 	if (*stat == 0)
2722 		goto out0;
2723 	XFS_BTREE_STATS_INC(cur, alloc);
2724 
2725 	/* Set up the new block as "right". */
2726 	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2727 	if (error)
2728 		goto error0;
2729 
2730 	/* Fill in the btree header for the new right block. */
2731 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2732 
2733 	/*
2734 	 * Split the entries between the old and the new block evenly.
2735 	 * Make sure that if there's an odd number of entries now, that
2736 	 * each new block will have the same number of entries.
2737 	 */
2738 	lrecs = xfs_btree_get_numrecs(left);
2739 	rrecs = lrecs / 2;
2740 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2741 		rrecs++;
2742 	src_index = (lrecs - rrecs + 1);
2743 
2744 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2745 
2746 	/* Adjust numrecs for the later get_*_keys() calls. */
2747 	lrecs -= rrecs;
2748 	xfs_btree_set_numrecs(left, lrecs);
2749 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2750 
2751 	/*
2752 	 * Copy btree block entries from the left block over to the
2753 	 * new block, the right. Update the right block and log the
2754 	 * changes.
2755 	 */
2756 	if (level > 0) {
2757 		/* It's a non-leaf.  Move keys and pointers. */
2758 		union xfs_btree_key	*lkp;	/* left btree key */
2759 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2760 		union xfs_btree_key	*rkp;	/* right btree key */
2761 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2762 
2763 		lkp = xfs_btree_key_addr(cur, src_index, left);
2764 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2765 		rkp = xfs_btree_key_addr(cur, 1, right);
2766 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2767 
2768 #ifdef DEBUG
2769 		for (i = src_index; i < rrecs; i++) {
2770 			error = xfs_btree_check_ptr(cur, lpp, i, level);
2771 			if (error)
2772 				goto error0;
2773 		}
2774 #endif
2775 
2776 		/* Copy the keys & pointers to the new block. */
2777 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779 
2780 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782 
2783 		/* Stash the keys of the new block for later insertion. */
2784 		xfs_btree_get_node_keys(cur, right, key);
2785 	} else {
2786 		/* It's a leaf.  Move records.  */
2787 		union xfs_btree_rec	*lrp;	/* left record pointer */
2788 		union xfs_btree_rec	*rrp;	/* right record pointer */
2789 
2790 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2791 		rrp = xfs_btree_rec_addr(cur, 1, right);
2792 
2793 		/* Copy records to the new block. */
2794 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796 
2797 		/* Stash the keys of the new block for later insertion. */
2798 		xfs_btree_get_leaf_keys(cur, right, key);
2799 	}
2800 
2801 	/*
2802 	 * Find the left block number by looking in the buffer.
2803 	 * Adjust sibling pointers.
2804 	 */
2805 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809 
2810 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812 
2813 	/*
2814 	 * If there's a block to the new block's right, make that block
2815 	 * point back to right instead of to left.
2816 	 */
2817 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818 		error = xfs_btree_read_buf_block(cur, &rrptr,
2819 							0, &rrblock, &rrbp);
2820 		if (error)
2821 			goto error0;
2822 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824 	}
2825 
2826 	/* Update the parent high keys of the left block, if needed. */
2827 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828 		error = xfs_btree_update_keys(cur, level);
2829 		if (error)
2830 			goto error0;
2831 	}
2832 
2833 	/*
2834 	 * If the cursor is really in the right block, move it there.
2835 	 * If it's just pointing past the last entry in left, then we'll
2836 	 * insert there, so don't change anything in that case.
2837 	 */
2838 	if (cur->bc_ptrs[level] > lrecs + 1) {
2839 		xfs_btree_setbuf(cur, level, rbp);
2840 		cur->bc_ptrs[level] -= lrecs;
2841 	}
2842 	/*
2843 	 * If there are more levels, we'll need another cursor which refers
2844 	 * the right block, no matter where this cursor was.
2845 	 */
2846 	if (level + 1 < cur->bc_nlevels) {
2847 		error = xfs_btree_dup_cursor(cur, curp);
2848 		if (error)
2849 			goto error0;
2850 		(*curp)->bc_ptrs[level + 1]++;
2851 	}
2852 	*ptrp = rptr;
2853 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2854 	*stat = 1;
2855 	return 0;
2856 out0:
2857 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2858 	*stat = 0;
2859 	return 0;
2860 
2861 error0:
2862 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2863 	return error;
2864 }
2865 
2866 struct xfs_btree_split_args {
2867 	struct xfs_btree_cur	*cur;
2868 	int			level;
2869 	union xfs_btree_ptr	*ptrp;
2870 	union xfs_btree_key	*key;
2871 	struct xfs_btree_cur	**curp;
2872 	int			*stat;		/* success/failure */
2873 	int			result;
2874 	bool			kswapd;	/* allocation in kswapd context */
2875 	struct completion	*done;
2876 	struct work_struct	work;
2877 };
2878 
2879 /*
2880  * Stack switching interfaces for allocation
2881  */
2882 static void
2883 xfs_btree_split_worker(
2884 	struct work_struct	*work)
2885 {
2886 	struct xfs_btree_split_args	*args = container_of(work,
2887 						struct xfs_btree_split_args, work);
2888 	unsigned long		pflags;
2889 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2890 
2891 	/*
2892 	 * we are in a transaction context here, but may also be doing work
2893 	 * in kswapd context, and hence we may need to inherit that state
2894 	 * temporarily to ensure that we don't block waiting for memory reclaim
2895 	 * in any way.
2896 	 */
2897 	if (args->kswapd)
2898 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2899 
2900 	current_set_flags_nested(&pflags, new_pflags);
2901 
2902 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2903 					 args->key, args->curp, args->stat);
2904 	complete(args->done);
2905 
2906 	current_restore_flags_nested(&pflags, new_pflags);
2907 }
2908 
2909 /*
2910  * BMBT split requests often come in with little stack to work on. Push
2911  * them off to a worker thread so there is lots of stack to use. For the other
2912  * btree types, just call directly to avoid the context switch overhead here.
2913  */
2914 STATIC int					/* error */
2915 xfs_btree_split(
2916 	struct xfs_btree_cur	*cur,
2917 	int			level,
2918 	union xfs_btree_ptr	*ptrp,
2919 	union xfs_btree_key	*key,
2920 	struct xfs_btree_cur	**curp,
2921 	int			*stat)		/* success/failure */
2922 {
2923 	struct xfs_btree_split_args	args;
2924 	DECLARE_COMPLETION_ONSTACK(done);
2925 
2926 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2927 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2928 
2929 	args.cur = cur;
2930 	args.level = level;
2931 	args.ptrp = ptrp;
2932 	args.key = key;
2933 	args.curp = curp;
2934 	args.stat = stat;
2935 	args.done = &done;
2936 	args.kswapd = current_is_kswapd();
2937 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2938 	queue_work(xfs_alloc_wq, &args.work);
2939 	wait_for_completion(&done);
2940 	destroy_work_on_stack(&args.work);
2941 	return args.result;
2942 }
2943 
2944 
2945 /*
2946  * Copy the old inode root contents into a real block and make the
2947  * broot point to it.
2948  */
2949 int						/* error */
2950 xfs_btree_new_iroot(
2951 	struct xfs_btree_cur	*cur,		/* btree cursor */
2952 	int			*logflags,	/* logging flags for inode */
2953 	int			*stat)		/* return status - 0 fail */
2954 {
2955 	struct xfs_buf		*cbp;		/* buffer for cblock */
2956 	struct xfs_btree_block	*block;		/* btree block */
2957 	struct xfs_btree_block	*cblock;	/* child btree block */
2958 	union xfs_btree_key	*ckp;		/* child key pointer */
2959 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2960 	union xfs_btree_key	*kp;		/* pointer to btree key */
2961 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2962 	union xfs_btree_ptr	nptr;		/* new block addr */
2963 	int			level;		/* btree level */
2964 	int			error;		/* error return code */
2965 #ifdef DEBUG
2966 	int			i;		/* loop counter */
2967 #endif
2968 
2969 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2970 	XFS_BTREE_STATS_INC(cur, newroot);
2971 
2972 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2973 
2974 	level = cur->bc_nlevels - 1;
2975 
2976 	block = xfs_btree_get_iroot(cur);
2977 	pp = xfs_btree_ptr_addr(cur, 1, block);
2978 
2979 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2980 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2981 	if (error)
2982 		goto error0;
2983 	if (*stat == 0) {
2984 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2985 		return 0;
2986 	}
2987 	XFS_BTREE_STATS_INC(cur, alloc);
2988 
2989 	/* Copy the root into a real block. */
2990 	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2991 	if (error)
2992 		goto error0;
2993 
2994 	/*
2995 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2996 	 * In that case have to also ensure the blkno remains correct
2997 	 */
2998 	memcpy(cblock, block, xfs_btree_block_len(cur));
2999 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3000 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3001 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3002 		else
3003 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3004 	}
3005 
3006 	be16_add_cpu(&block->bb_level, 1);
3007 	xfs_btree_set_numrecs(block, 1);
3008 	cur->bc_nlevels++;
3009 	cur->bc_ptrs[level + 1] = 1;
3010 
3011 	kp = xfs_btree_key_addr(cur, 1, block);
3012 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3013 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3014 
3015 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3016 #ifdef DEBUG
3017 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3018 		error = xfs_btree_check_ptr(cur, pp, i, level);
3019 		if (error)
3020 			goto error0;
3021 	}
3022 #endif
3023 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3024 
3025 #ifdef DEBUG
3026 	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3027 	if (error)
3028 		goto error0;
3029 #endif
3030 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3031 
3032 	xfs_iroot_realloc(cur->bc_private.b.ip,
3033 			  1 - xfs_btree_get_numrecs(cblock),
3034 			  cur->bc_private.b.whichfork);
3035 
3036 	xfs_btree_setbuf(cur, level, cbp);
3037 
3038 	/*
3039 	 * Do all this logging at the end so that
3040 	 * the root is at the right level.
3041 	 */
3042 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3043 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3044 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3045 
3046 	*logflags |=
3047 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3048 	*stat = 1;
3049 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3050 	return 0;
3051 error0:
3052 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3053 	return error;
3054 }
3055 
3056 /*
3057  * Allocate a new root block, fill it in.
3058  */
3059 STATIC int				/* error */
3060 xfs_btree_new_root(
3061 	struct xfs_btree_cur	*cur,	/* btree cursor */
3062 	int			*stat)	/* success/failure */
3063 {
3064 	struct xfs_btree_block	*block;	/* one half of the old root block */
3065 	struct xfs_buf		*bp;	/* buffer containing block */
3066 	int			error;	/* error return value */
3067 	struct xfs_buf		*lbp;	/* left buffer pointer */
3068 	struct xfs_btree_block	*left;	/* left btree block */
3069 	struct xfs_buf		*nbp;	/* new (root) buffer */
3070 	struct xfs_btree_block	*new;	/* new (root) btree block */
3071 	int			nptr;	/* new value for key index, 1 or 2 */
3072 	struct xfs_buf		*rbp;	/* right buffer pointer */
3073 	struct xfs_btree_block	*right;	/* right btree block */
3074 	union xfs_btree_ptr	rptr;
3075 	union xfs_btree_ptr	lptr;
3076 
3077 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3078 	XFS_BTREE_STATS_INC(cur, newroot);
3079 
3080 	/* initialise our start point from the cursor */
3081 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3082 
3083 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3084 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3085 	if (error)
3086 		goto error0;
3087 	if (*stat == 0)
3088 		goto out0;
3089 	XFS_BTREE_STATS_INC(cur, alloc);
3090 
3091 	/* Set up the new block. */
3092 	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3093 	if (error)
3094 		goto error0;
3095 
3096 	/* Set the root in the holding structure  increasing the level by 1. */
3097 	cur->bc_ops->set_root(cur, &lptr, 1);
3098 
3099 	/*
3100 	 * At the previous root level there are now two blocks: the old root,
3101 	 * and the new block generated when it was split.  We don't know which
3102 	 * one the cursor is pointing at, so we set up variables "left" and
3103 	 * "right" for each case.
3104 	 */
3105 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3106 
3107 #ifdef DEBUG
3108 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3109 	if (error)
3110 		goto error0;
3111 #endif
3112 
3113 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3114 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3115 		/* Our block is left, pick up the right block. */
3116 		lbp = bp;
3117 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3118 		left = block;
3119 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3120 		if (error)
3121 			goto error0;
3122 		bp = rbp;
3123 		nptr = 1;
3124 	} else {
3125 		/* Our block is right, pick up the left block. */
3126 		rbp = bp;
3127 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3128 		right = block;
3129 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3130 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3131 		if (error)
3132 			goto error0;
3133 		bp = lbp;
3134 		nptr = 2;
3135 	}
3136 
3137 	/* Fill in the new block's btree header and log it. */
3138 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3139 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3140 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3141 			!xfs_btree_ptr_is_null(cur, &rptr));
3142 
3143 	/* Fill in the key data in the new root. */
3144 	if (xfs_btree_get_level(left) > 0) {
3145 		/*
3146 		 * Get the keys for the left block's keys and put them directly
3147 		 * in the parent block.  Do the same for the right block.
3148 		 */
3149 		xfs_btree_get_node_keys(cur, left,
3150 				xfs_btree_key_addr(cur, 1, new));
3151 		xfs_btree_get_node_keys(cur, right,
3152 				xfs_btree_key_addr(cur, 2, new));
3153 	} else {
3154 		/*
3155 		 * Get the keys for the left block's records and put them
3156 		 * directly in the parent block.  Do the same for the right
3157 		 * block.
3158 		 */
3159 		xfs_btree_get_leaf_keys(cur, left,
3160 			xfs_btree_key_addr(cur, 1, new));
3161 		xfs_btree_get_leaf_keys(cur, right,
3162 			xfs_btree_key_addr(cur, 2, new));
3163 	}
3164 	xfs_btree_log_keys(cur, nbp, 1, 2);
3165 
3166 	/* Fill in the pointer data in the new root. */
3167 	xfs_btree_copy_ptrs(cur,
3168 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3169 	xfs_btree_copy_ptrs(cur,
3170 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3171 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3172 
3173 	/* Fix up the cursor. */
3174 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3175 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3176 	cur->bc_nlevels++;
3177 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3178 	*stat = 1;
3179 	return 0;
3180 error0:
3181 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3182 	return error;
3183 out0:
3184 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3185 	*stat = 0;
3186 	return 0;
3187 }
3188 
3189 STATIC int
3190 xfs_btree_make_block_unfull(
3191 	struct xfs_btree_cur	*cur,	/* btree cursor */
3192 	int			level,	/* btree level */
3193 	int			numrecs,/* # of recs in block */
3194 	int			*oindex,/* old tree index */
3195 	int			*index,	/* new tree index */
3196 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3197 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3198 	union xfs_btree_key	*key,	/* key of new block */
3199 	int			*stat)
3200 {
3201 	int			error = 0;
3202 
3203 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3204 	    level == cur->bc_nlevels - 1) {
3205 	    	struct xfs_inode *ip = cur->bc_private.b.ip;
3206 
3207 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3208 			/* A root block that can be made bigger. */
3209 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3210 			*stat = 1;
3211 		} else {
3212 			/* A root block that needs replacing */
3213 			int	logflags = 0;
3214 
3215 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3216 			if (error || *stat == 0)
3217 				return error;
3218 
3219 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3220 		}
3221 
3222 		return 0;
3223 	}
3224 
3225 	/* First, try shifting an entry to the right neighbor. */
3226 	error = xfs_btree_rshift(cur, level, stat);
3227 	if (error || *stat)
3228 		return error;
3229 
3230 	/* Next, try shifting an entry to the left neighbor. */
3231 	error = xfs_btree_lshift(cur, level, stat);
3232 	if (error)
3233 		return error;
3234 
3235 	if (*stat) {
3236 		*oindex = *index = cur->bc_ptrs[level];
3237 		return 0;
3238 	}
3239 
3240 	/*
3241 	 * Next, try splitting the current block in half.
3242 	 *
3243 	 * If this works we have to re-set our variables because we
3244 	 * could be in a different block now.
3245 	 */
3246 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3247 	if (error || *stat == 0)
3248 		return error;
3249 
3250 
3251 	*index = cur->bc_ptrs[level];
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Insert one record/level.  Return information to the caller
3257  * allowing the next level up to proceed if necessary.
3258  */
3259 STATIC int
3260 xfs_btree_insrec(
3261 	struct xfs_btree_cur	*cur,	/* btree cursor */
3262 	int			level,	/* level to insert record at */
3263 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3264 	union xfs_btree_rec	*rec,	/* record to insert */
3265 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3266 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3267 	int			*stat)	/* success/failure */
3268 {
3269 	struct xfs_btree_block	*block;	/* btree block */
3270 	struct xfs_buf		*bp;	/* buffer for block */
3271 	union xfs_btree_ptr	nptr;	/* new block ptr */
3272 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3273 	union xfs_btree_key	nkey;	/* new block key */
3274 	union xfs_btree_key	*lkey;
3275 	int			optr;	/* old key/record index */
3276 	int			ptr;	/* key/record index */
3277 	int			numrecs;/* number of records */
3278 	int			error;	/* error return value */
3279 #ifdef DEBUG
3280 	int			i;
3281 #endif
3282 	xfs_daddr_t		old_bn;
3283 
3284 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3285 	XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3286 
3287 	ncur = NULL;
3288 	lkey = &nkey;
3289 
3290 	/*
3291 	 * If we have an external root pointer, and we've made it to the
3292 	 * root level, allocate a new root block and we're done.
3293 	 */
3294 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3295 	    (level >= cur->bc_nlevels)) {
3296 		error = xfs_btree_new_root(cur, stat);
3297 		xfs_btree_set_ptr_null(cur, ptrp);
3298 
3299 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3300 		return error;
3301 	}
3302 
3303 	/* If we're off the left edge, return failure. */
3304 	ptr = cur->bc_ptrs[level];
3305 	if (ptr == 0) {
3306 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3307 		*stat = 0;
3308 		return 0;
3309 	}
3310 
3311 	optr = ptr;
3312 
3313 	XFS_BTREE_STATS_INC(cur, insrec);
3314 
3315 	/* Get pointers to the btree buffer and block. */
3316 	block = xfs_btree_get_block(cur, level, &bp);
3317 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3318 	numrecs = xfs_btree_get_numrecs(block);
3319 
3320 #ifdef DEBUG
3321 	error = xfs_btree_check_block(cur, block, level, bp);
3322 	if (error)
3323 		goto error0;
3324 
3325 	/* Check that the new entry is being inserted in the right place. */
3326 	if (ptr <= numrecs) {
3327 		if (level == 0) {
3328 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3329 				xfs_btree_rec_addr(cur, ptr, block)));
3330 		} else {
3331 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3332 				xfs_btree_key_addr(cur, ptr, block)));
3333 		}
3334 	}
3335 #endif
3336 
3337 	/*
3338 	 * If the block is full, we can't insert the new entry until we
3339 	 * make the block un-full.
3340 	 */
3341 	xfs_btree_set_ptr_null(cur, &nptr);
3342 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3343 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3344 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3345 		if (error || *stat == 0)
3346 			goto error0;
3347 	}
3348 
3349 	/*
3350 	 * The current block may have changed if the block was
3351 	 * previously full and we have just made space in it.
3352 	 */
3353 	block = xfs_btree_get_block(cur, level, &bp);
3354 	numrecs = xfs_btree_get_numrecs(block);
3355 
3356 #ifdef DEBUG
3357 	error = xfs_btree_check_block(cur, block, level, bp);
3358 	if (error)
3359 		return error;
3360 #endif
3361 
3362 	/*
3363 	 * At this point we know there's room for our new entry in the block
3364 	 * we're pointing at.
3365 	 */
3366 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3367 
3368 	if (level > 0) {
3369 		/* It's a nonleaf. make a hole in the keys and ptrs */
3370 		union xfs_btree_key	*kp;
3371 		union xfs_btree_ptr	*pp;
3372 
3373 		kp = xfs_btree_key_addr(cur, ptr, block);
3374 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3375 
3376 #ifdef DEBUG
3377 		for (i = numrecs - ptr; i >= 0; i--) {
3378 			error = xfs_btree_check_ptr(cur, pp, i, level);
3379 			if (error)
3380 				return error;
3381 		}
3382 #endif
3383 
3384 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3385 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3386 
3387 #ifdef DEBUG
3388 		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3389 		if (error)
3390 			goto error0;
3391 #endif
3392 
3393 		/* Now put the new data in, bump numrecs and log it. */
3394 		xfs_btree_copy_keys(cur, kp, key, 1);
3395 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3396 		numrecs++;
3397 		xfs_btree_set_numrecs(block, numrecs);
3398 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3399 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3400 #ifdef DEBUG
3401 		if (ptr < numrecs) {
3402 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3403 				xfs_btree_key_addr(cur, ptr + 1, block)));
3404 		}
3405 #endif
3406 	} else {
3407 		/* It's a leaf. make a hole in the records */
3408 		union xfs_btree_rec             *rp;
3409 
3410 		rp = xfs_btree_rec_addr(cur, ptr, block);
3411 
3412 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3413 
3414 		/* Now put the new data in, bump numrecs and log it. */
3415 		xfs_btree_copy_recs(cur, rp, rec, 1);
3416 		xfs_btree_set_numrecs(block, ++numrecs);
3417 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3418 #ifdef DEBUG
3419 		if (ptr < numrecs) {
3420 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3421 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3422 		}
3423 #endif
3424 	}
3425 
3426 	/* Log the new number of records in the btree header. */
3427 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3428 
3429 	/*
3430 	 * If we just inserted into a new tree block, we have to
3431 	 * recalculate nkey here because nkey is out of date.
3432 	 *
3433 	 * Otherwise we're just updating an existing block (having shoved
3434 	 * some records into the new tree block), so use the regular key
3435 	 * update mechanism.
3436 	 */
3437 	if (bp && bp->b_bn != old_bn) {
3438 		xfs_btree_get_keys(cur, block, lkey);
3439 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3440 		error = xfs_btree_update_keys(cur, level);
3441 		if (error)
3442 			goto error0;
3443 	}
3444 
3445 	/*
3446 	 * If we are tracking the last record in the tree and
3447 	 * we are at the far right edge of the tree, update it.
3448 	 */
3449 	if (xfs_btree_is_lastrec(cur, block, level)) {
3450 		cur->bc_ops->update_lastrec(cur, block, rec,
3451 					    ptr, LASTREC_INSREC);
3452 	}
3453 
3454 	/*
3455 	 * Return the new block number, if any.
3456 	 * If there is one, give back a record value and a cursor too.
3457 	 */
3458 	*ptrp = nptr;
3459 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3460 		xfs_btree_copy_keys(cur, key, lkey, 1);
3461 		*curp = ncur;
3462 	}
3463 
3464 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3465 	*stat = 1;
3466 	return 0;
3467 
3468 error0:
3469 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3470 	return error;
3471 }
3472 
3473 /*
3474  * Insert the record at the point referenced by cur.
3475  *
3476  * A multi-level split of the tree on insert will invalidate the original
3477  * cursor.  All callers of this function should assume that the cursor is
3478  * no longer valid and revalidate it.
3479  */
3480 int
3481 xfs_btree_insert(
3482 	struct xfs_btree_cur	*cur,
3483 	int			*stat)
3484 {
3485 	int			error;	/* error return value */
3486 	int			i;	/* result value, 0 for failure */
3487 	int			level;	/* current level number in btree */
3488 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3489 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3490 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3491 	union xfs_btree_key	bkey;	/* key of block to insert */
3492 	union xfs_btree_key	*key;
3493 	union xfs_btree_rec	rec;	/* record to insert */
3494 
3495 	level = 0;
3496 	ncur = NULL;
3497 	pcur = cur;
3498 	key = &bkey;
3499 
3500 	xfs_btree_set_ptr_null(cur, &nptr);
3501 
3502 	/* Make a key out of the record data to be inserted, and save it. */
3503 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3504 	cur->bc_ops->init_key_from_rec(key, &rec);
3505 
3506 	/*
3507 	 * Loop going up the tree, starting at the leaf level.
3508 	 * Stop when we don't get a split block, that must mean that
3509 	 * the insert is finished with this level.
3510 	 */
3511 	do {
3512 		/*
3513 		 * Insert nrec/nptr into this level of the tree.
3514 		 * Note if we fail, nptr will be null.
3515 		 */
3516 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3517 				&ncur, &i);
3518 		if (error) {
3519 			if (pcur != cur)
3520 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3521 			goto error0;
3522 		}
3523 
3524 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3525 		level++;
3526 
3527 		/*
3528 		 * See if the cursor we just used is trash.
3529 		 * Can't trash the caller's cursor, but otherwise we should
3530 		 * if ncur is a new cursor or we're about to be done.
3531 		 */
3532 		if (pcur != cur &&
3533 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3534 			/* Save the state from the cursor before we trash it */
3535 			if (cur->bc_ops->update_cursor)
3536 				cur->bc_ops->update_cursor(pcur, cur);
3537 			cur->bc_nlevels = pcur->bc_nlevels;
3538 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3539 		}
3540 		/* If we got a new cursor, switch to it. */
3541 		if (ncur) {
3542 			pcur = ncur;
3543 			ncur = NULL;
3544 		}
3545 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3546 
3547 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3548 	*stat = i;
3549 	return 0;
3550 error0:
3551 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3552 	return error;
3553 }
3554 
3555 /*
3556  * Try to merge a non-leaf block back into the inode root.
3557  *
3558  * Note: the killroot names comes from the fact that we're effectively
3559  * killing the old root block.  But because we can't just delete the
3560  * inode we have to copy the single block it was pointing to into the
3561  * inode.
3562  */
3563 STATIC int
3564 xfs_btree_kill_iroot(
3565 	struct xfs_btree_cur	*cur)
3566 {
3567 	int			whichfork = cur->bc_private.b.whichfork;
3568 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3569 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3570 	struct xfs_btree_block	*block;
3571 	struct xfs_btree_block	*cblock;
3572 	union xfs_btree_key	*kp;
3573 	union xfs_btree_key	*ckp;
3574 	union xfs_btree_ptr	*pp;
3575 	union xfs_btree_ptr	*cpp;
3576 	struct xfs_buf		*cbp;
3577 	int			level;
3578 	int			index;
3579 	int			numrecs;
3580 	int			error;
3581 #ifdef DEBUG
3582 	union xfs_btree_ptr	ptr;
3583 	int			i;
3584 #endif
3585 
3586 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3587 
3588 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3589 	ASSERT(cur->bc_nlevels > 1);
3590 
3591 	/*
3592 	 * Don't deal with the root block needs to be a leaf case.
3593 	 * We're just going to turn the thing back into extents anyway.
3594 	 */
3595 	level = cur->bc_nlevels - 1;
3596 	if (level == 1)
3597 		goto out0;
3598 
3599 	/*
3600 	 * Give up if the root has multiple children.
3601 	 */
3602 	block = xfs_btree_get_iroot(cur);
3603 	if (xfs_btree_get_numrecs(block) != 1)
3604 		goto out0;
3605 
3606 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3607 	numrecs = xfs_btree_get_numrecs(cblock);
3608 
3609 	/*
3610 	 * Only do this if the next level will fit.
3611 	 * Then the data must be copied up to the inode,
3612 	 * instead of freeing the root you free the next level.
3613 	 */
3614 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3615 		goto out0;
3616 
3617 	XFS_BTREE_STATS_INC(cur, killroot);
3618 
3619 #ifdef DEBUG
3620 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3621 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3622 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3623 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3624 #endif
3625 
3626 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3627 	if (index) {
3628 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3629 				  cur->bc_private.b.whichfork);
3630 		block = ifp->if_broot;
3631 	}
3632 
3633 	be16_add_cpu(&block->bb_numrecs, index);
3634 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3635 
3636 	kp = xfs_btree_key_addr(cur, 1, block);
3637 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3638 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3639 
3640 	pp = xfs_btree_ptr_addr(cur, 1, block);
3641 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3642 #ifdef DEBUG
3643 	for (i = 0; i < numrecs; i++) {
3644 		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3645 		if (error) {
3646 			XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3647 			return error;
3648 		}
3649 	}
3650 #endif
3651 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3652 
3653 	error = xfs_btree_free_block(cur, cbp);
3654 	if (error) {
3655 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3656 		return error;
3657 	}
3658 
3659 	cur->bc_bufs[level - 1] = NULL;
3660 	be16_add_cpu(&block->bb_level, -1);
3661 	xfs_trans_log_inode(cur->bc_tp, ip,
3662 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3663 	cur->bc_nlevels--;
3664 out0:
3665 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3666 	return 0;
3667 }
3668 
3669 /*
3670  * Kill the current root node, and replace it with it's only child node.
3671  */
3672 STATIC int
3673 xfs_btree_kill_root(
3674 	struct xfs_btree_cur	*cur,
3675 	struct xfs_buf		*bp,
3676 	int			level,
3677 	union xfs_btree_ptr	*newroot)
3678 {
3679 	int			error;
3680 
3681 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3682 	XFS_BTREE_STATS_INC(cur, killroot);
3683 
3684 	/*
3685 	 * Update the root pointer, decreasing the level by 1 and then
3686 	 * free the old root.
3687 	 */
3688 	cur->bc_ops->set_root(cur, newroot, -1);
3689 
3690 	error = xfs_btree_free_block(cur, bp);
3691 	if (error) {
3692 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3693 		return error;
3694 	}
3695 
3696 	cur->bc_bufs[level] = NULL;
3697 	cur->bc_ra[level] = 0;
3698 	cur->bc_nlevels--;
3699 
3700 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3701 	return 0;
3702 }
3703 
3704 STATIC int
3705 xfs_btree_dec_cursor(
3706 	struct xfs_btree_cur	*cur,
3707 	int			level,
3708 	int			*stat)
3709 {
3710 	int			error;
3711 	int			i;
3712 
3713 	if (level > 0) {
3714 		error = xfs_btree_decrement(cur, level, &i);
3715 		if (error)
3716 			return error;
3717 	}
3718 
3719 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3720 	*stat = 1;
3721 	return 0;
3722 }
3723 
3724 /*
3725  * Single level of the btree record deletion routine.
3726  * Delete record pointed to by cur/level.
3727  * Remove the record from its block then rebalance the tree.
3728  * Return 0 for error, 1 for done, 2 to go on to the next level.
3729  */
3730 STATIC int					/* error */
3731 xfs_btree_delrec(
3732 	struct xfs_btree_cur	*cur,		/* btree cursor */
3733 	int			level,		/* level removing record from */
3734 	int			*stat)		/* fail/done/go-on */
3735 {
3736 	struct xfs_btree_block	*block;		/* btree block */
3737 	union xfs_btree_ptr	cptr;		/* current block ptr */
3738 	struct xfs_buf		*bp;		/* buffer for block */
3739 	int			error;		/* error return value */
3740 	int			i;		/* loop counter */
3741 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3742 	struct xfs_buf		*lbp;		/* left buffer pointer */
3743 	struct xfs_btree_block	*left;		/* left btree block */
3744 	int			lrecs = 0;	/* left record count */
3745 	int			ptr;		/* key/record index */
3746 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3747 	struct xfs_buf		*rbp;		/* right buffer pointer */
3748 	struct xfs_btree_block	*right;		/* right btree block */
3749 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3750 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3751 	int			rrecs = 0;	/* right record count */
3752 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3753 	int			numrecs;	/* temporary numrec count */
3754 
3755 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3756 	XFS_BTREE_TRACE_ARGI(cur, level);
3757 
3758 	tcur = NULL;
3759 
3760 	/* Get the index of the entry being deleted, check for nothing there. */
3761 	ptr = cur->bc_ptrs[level];
3762 	if (ptr == 0) {
3763 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3764 		*stat = 0;
3765 		return 0;
3766 	}
3767 
3768 	/* Get the buffer & block containing the record or key/ptr. */
3769 	block = xfs_btree_get_block(cur, level, &bp);
3770 	numrecs = xfs_btree_get_numrecs(block);
3771 
3772 #ifdef DEBUG
3773 	error = xfs_btree_check_block(cur, block, level, bp);
3774 	if (error)
3775 		goto error0;
3776 #endif
3777 
3778 	/* Fail if we're off the end of the block. */
3779 	if (ptr > numrecs) {
3780 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3781 		*stat = 0;
3782 		return 0;
3783 	}
3784 
3785 	XFS_BTREE_STATS_INC(cur, delrec);
3786 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3787 
3788 	/* Excise the entries being deleted. */
3789 	if (level > 0) {
3790 		/* It's a nonleaf. operate on keys and ptrs */
3791 		union xfs_btree_key	*lkp;
3792 		union xfs_btree_ptr	*lpp;
3793 
3794 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3795 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3796 
3797 #ifdef DEBUG
3798 		for (i = 0; i < numrecs - ptr; i++) {
3799 			error = xfs_btree_check_ptr(cur, lpp, i, level);
3800 			if (error)
3801 				goto error0;
3802 		}
3803 #endif
3804 
3805 		if (ptr < numrecs) {
3806 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3807 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3808 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3809 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3810 		}
3811 	} else {
3812 		/* It's a leaf. operate on records */
3813 		if (ptr < numrecs) {
3814 			xfs_btree_shift_recs(cur,
3815 				xfs_btree_rec_addr(cur, ptr + 1, block),
3816 				-1, numrecs - ptr);
3817 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3818 		}
3819 	}
3820 
3821 	/*
3822 	 * Decrement and log the number of entries in the block.
3823 	 */
3824 	xfs_btree_set_numrecs(block, --numrecs);
3825 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3826 
3827 	/*
3828 	 * If we are tracking the last record in the tree and
3829 	 * we are at the far right edge of the tree, update it.
3830 	 */
3831 	if (xfs_btree_is_lastrec(cur, block, level)) {
3832 		cur->bc_ops->update_lastrec(cur, block, NULL,
3833 					    ptr, LASTREC_DELREC);
3834 	}
3835 
3836 	/*
3837 	 * We're at the root level.  First, shrink the root block in-memory.
3838 	 * Try to get rid of the next level down.  If we can't then there's
3839 	 * nothing left to do.
3840 	 */
3841 	if (level == cur->bc_nlevels - 1) {
3842 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3843 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3844 					  cur->bc_private.b.whichfork);
3845 
3846 			error = xfs_btree_kill_iroot(cur);
3847 			if (error)
3848 				goto error0;
3849 
3850 			error = xfs_btree_dec_cursor(cur, level, stat);
3851 			if (error)
3852 				goto error0;
3853 			*stat = 1;
3854 			return 0;
3855 		}
3856 
3857 		/*
3858 		 * If this is the root level, and there's only one entry left,
3859 		 * and it's NOT the leaf level, then we can get rid of this
3860 		 * level.
3861 		 */
3862 		if (numrecs == 1 && level > 0) {
3863 			union xfs_btree_ptr	*pp;
3864 			/*
3865 			 * pp is still set to the first pointer in the block.
3866 			 * Make it the new root of the btree.
3867 			 */
3868 			pp = xfs_btree_ptr_addr(cur, 1, block);
3869 			error = xfs_btree_kill_root(cur, bp, level, pp);
3870 			if (error)
3871 				goto error0;
3872 		} else if (level > 0) {
3873 			error = xfs_btree_dec_cursor(cur, level, stat);
3874 			if (error)
3875 				goto error0;
3876 		}
3877 		*stat = 1;
3878 		return 0;
3879 	}
3880 
3881 	/*
3882 	 * If we deleted the leftmost entry in the block, update the
3883 	 * key values above us in the tree.
3884 	 */
3885 	if (xfs_btree_needs_key_update(cur, ptr)) {
3886 		error = xfs_btree_update_keys(cur, level);
3887 		if (error)
3888 			goto error0;
3889 	}
3890 
3891 	/*
3892 	 * If the number of records remaining in the block is at least
3893 	 * the minimum, we're done.
3894 	 */
3895 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3896 		error = xfs_btree_dec_cursor(cur, level, stat);
3897 		if (error)
3898 			goto error0;
3899 		return 0;
3900 	}
3901 
3902 	/*
3903 	 * Otherwise, we have to move some records around to keep the
3904 	 * tree balanced.  Look at the left and right sibling blocks to
3905 	 * see if we can re-balance by moving only one record.
3906 	 */
3907 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3908 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3909 
3910 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3911 		/*
3912 		 * One child of root, need to get a chance to copy its contents
3913 		 * into the root and delete it. Can't go up to next level,
3914 		 * there's nothing to delete there.
3915 		 */
3916 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3917 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3918 		    level == cur->bc_nlevels - 2) {
3919 			error = xfs_btree_kill_iroot(cur);
3920 			if (!error)
3921 				error = xfs_btree_dec_cursor(cur, level, stat);
3922 			if (error)
3923 				goto error0;
3924 			return 0;
3925 		}
3926 	}
3927 
3928 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3929 	       !xfs_btree_ptr_is_null(cur, &lptr));
3930 
3931 	/*
3932 	 * Duplicate the cursor so our btree manipulations here won't
3933 	 * disrupt the next level up.
3934 	 */
3935 	error = xfs_btree_dup_cursor(cur, &tcur);
3936 	if (error)
3937 		goto error0;
3938 
3939 	/*
3940 	 * If there's a right sibling, see if it's ok to shift an entry
3941 	 * out of it.
3942 	 */
3943 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3944 		/*
3945 		 * Move the temp cursor to the last entry in the next block.
3946 		 * Actually any entry but the first would suffice.
3947 		 */
3948 		i = xfs_btree_lastrec(tcur, level);
3949 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3950 
3951 		error = xfs_btree_increment(tcur, level, &i);
3952 		if (error)
3953 			goto error0;
3954 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3955 
3956 		i = xfs_btree_lastrec(tcur, level);
3957 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3958 
3959 		/* Grab a pointer to the block. */
3960 		right = xfs_btree_get_block(tcur, level, &rbp);
3961 #ifdef DEBUG
3962 		error = xfs_btree_check_block(tcur, right, level, rbp);
3963 		if (error)
3964 			goto error0;
3965 #endif
3966 		/* Grab the current block number, for future use. */
3967 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3968 
3969 		/*
3970 		 * If right block is full enough so that removing one entry
3971 		 * won't make it too empty, and left-shifting an entry out
3972 		 * of right to us works, we're done.
3973 		 */
3974 		if (xfs_btree_get_numrecs(right) - 1 >=
3975 		    cur->bc_ops->get_minrecs(tcur, level)) {
3976 			error = xfs_btree_lshift(tcur, level, &i);
3977 			if (error)
3978 				goto error0;
3979 			if (i) {
3980 				ASSERT(xfs_btree_get_numrecs(block) >=
3981 				       cur->bc_ops->get_minrecs(tcur, level));
3982 
3983 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3984 				tcur = NULL;
3985 
3986 				error = xfs_btree_dec_cursor(cur, level, stat);
3987 				if (error)
3988 					goto error0;
3989 				return 0;
3990 			}
3991 		}
3992 
3993 		/*
3994 		 * Otherwise, grab the number of records in right for
3995 		 * future reference, and fix up the temp cursor to point
3996 		 * to our block again (last record).
3997 		 */
3998 		rrecs = xfs_btree_get_numrecs(right);
3999 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4000 			i = xfs_btree_firstrec(tcur, level);
4001 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4002 
4003 			error = xfs_btree_decrement(tcur, level, &i);
4004 			if (error)
4005 				goto error0;
4006 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4007 		}
4008 	}
4009 
4010 	/*
4011 	 * If there's a left sibling, see if it's ok to shift an entry
4012 	 * out of it.
4013 	 */
4014 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4015 		/*
4016 		 * Move the temp cursor to the first entry in the
4017 		 * previous block.
4018 		 */
4019 		i = xfs_btree_firstrec(tcur, level);
4020 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4021 
4022 		error = xfs_btree_decrement(tcur, level, &i);
4023 		if (error)
4024 			goto error0;
4025 		i = xfs_btree_firstrec(tcur, level);
4026 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4027 
4028 		/* Grab a pointer to the block. */
4029 		left = xfs_btree_get_block(tcur, level, &lbp);
4030 #ifdef DEBUG
4031 		error = xfs_btree_check_block(cur, left, level, lbp);
4032 		if (error)
4033 			goto error0;
4034 #endif
4035 		/* Grab the current block number, for future use. */
4036 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4037 
4038 		/*
4039 		 * If left block is full enough so that removing one entry
4040 		 * won't make it too empty, and right-shifting an entry out
4041 		 * of left to us works, we're done.
4042 		 */
4043 		if (xfs_btree_get_numrecs(left) - 1 >=
4044 		    cur->bc_ops->get_minrecs(tcur, level)) {
4045 			error = xfs_btree_rshift(tcur, level, &i);
4046 			if (error)
4047 				goto error0;
4048 			if (i) {
4049 				ASSERT(xfs_btree_get_numrecs(block) >=
4050 				       cur->bc_ops->get_minrecs(tcur, level));
4051 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4052 				tcur = NULL;
4053 				if (level == 0)
4054 					cur->bc_ptrs[0]++;
4055 				XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4056 				*stat = 1;
4057 				return 0;
4058 			}
4059 		}
4060 
4061 		/*
4062 		 * Otherwise, grab the number of records in right for
4063 		 * future reference.
4064 		 */
4065 		lrecs = xfs_btree_get_numrecs(left);
4066 	}
4067 
4068 	/* Delete the temp cursor, we're done with it. */
4069 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4070 	tcur = NULL;
4071 
4072 	/* If here, we need to do a join to keep the tree balanced. */
4073 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4074 
4075 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4076 	    lrecs + xfs_btree_get_numrecs(block) <=
4077 			cur->bc_ops->get_maxrecs(cur, level)) {
4078 		/*
4079 		 * Set "right" to be the starting block,
4080 		 * "left" to be the left neighbor.
4081 		 */
4082 		rptr = cptr;
4083 		right = block;
4084 		rbp = bp;
4085 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4086 		if (error)
4087 			goto error0;
4088 
4089 	/*
4090 	 * If that won't work, see if we can join with the right neighbor block.
4091 	 */
4092 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4093 		   rrecs + xfs_btree_get_numrecs(block) <=
4094 			cur->bc_ops->get_maxrecs(cur, level)) {
4095 		/*
4096 		 * Set "left" to be the starting block,
4097 		 * "right" to be the right neighbor.
4098 		 */
4099 		lptr = cptr;
4100 		left = block;
4101 		lbp = bp;
4102 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4103 		if (error)
4104 			goto error0;
4105 
4106 	/*
4107 	 * Otherwise, we can't fix the imbalance.
4108 	 * Just return.  This is probably a logic error, but it's not fatal.
4109 	 */
4110 	} else {
4111 		error = xfs_btree_dec_cursor(cur, level, stat);
4112 		if (error)
4113 			goto error0;
4114 		return 0;
4115 	}
4116 
4117 	rrecs = xfs_btree_get_numrecs(right);
4118 	lrecs = xfs_btree_get_numrecs(left);
4119 
4120 	/*
4121 	 * We're now going to join "left" and "right" by moving all the stuff
4122 	 * in "right" to "left" and deleting "right".
4123 	 */
4124 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4125 	if (level > 0) {
4126 		/* It's a non-leaf.  Move keys and pointers. */
4127 		union xfs_btree_key	*lkp;	/* left btree key */
4128 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4129 		union xfs_btree_key	*rkp;	/* right btree key */
4130 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4131 
4132 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4133 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4134 		rkp = xfs_btree_key_addr(cur, 1, right);
4135 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4136 #ifdef DEBUG
4137 		for (i = 1; i < rrecs; i++) {
4138 			error = xfs_btree_check_ptr(cur, rpp, i, level);
4139 			if (error)
4140 				goto error0;
4141 		}
4142 #endif
4143 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4144 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4145 
4146 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4147 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4148 	} else {
4149 		/* It's a leaf.  Move records.  */
4150 		union xfs_btree_rec	*lrp;	/* left record pointer */
4151 		union xfs_btree_rec	*rrp;	/* right record pointer */
4152 
4153 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4154 		rrp = xfs_btree_rec_addr(cur, 1, right);
4155 
4156 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4157 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4158 	}
4159 
4160 	XFS_BTREE_STATS_INC(cur, join);
4161 
4162 	/*
4163 	 * Fix up the number of records and right block pointer in the
4164 	 * surviving block, and log it.
4165 	 */
4166 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4167 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4168 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4169 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4170 
4171 	/* If there is a right sibling, point it to the remaining block. */
4172 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4173 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4174 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4175 		if (error)
4176 			goto error0;
4177 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4178 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4179 	}
4180 
4181 	/* Free the deleted block. */
4182 	error = xfs_btree_free_block(cur, rbp);
4183 	if (error)
4184 		goto error0;
4185 
4186 	/*
4187 	 * If we joined with the left neighbor, set the buffer in the
4188 	 * cursor to the left block, and fix up the index.
4189 	 */
4190 	if (bp != lbp) {
4191 		cur->bc_bufs[level] = lbp;
4192 		cur->bc_ptrs[level] += lrecs;
4193 		cur->bc_ra[level] = 0;
4194 	}
4195 	/*
4196 	 * If we joined with the right neighbor and there's a level above
4197 	 * us, increment the cursor at that level.
4198 	 */
4199 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4200 		   (level + 1 < cur->bc_nlevels)) {
4201 		error = xfs_btree_increment(cur, level + 1, &i);
4202 		if (error)
4203 			goto error0;
4204 	}
4205 
4206 	/*
4207 	 * Readjust the ptr at this level if it's not a leaf, since it's
4208 	 * still pointing at the deletion point, which makes the cursor
4209 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4210 	 * We can't use decrement because it would change the next level up.
4211 	 */
4212 	if (level > 0)
4213 		cur->bc_ptrs[level]--;
4214 
4215 	/*
4216 	 * We combined blocks, so we have to update the parent keys if the
4217 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4218 	 * points to the old block so that the caller knows which record to
4219 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4220 	 * for us if we return stat == 2.  The other exit points from this
4221 	 * function don't require deletions further up the tree, so they can
4222 	 * call updkeys directly.
4223 	 */
4224 
4225 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4226 	/* Return value means the next level up has something to do. */
4227 	*stat = 2;
4228 	return 0;
4229 
4230 error0:
4231 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4232 	if (tcur)
4233 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4234 	return error;
4235 }
4236 
4237 /*
4238  * Delete the record pointed to by cur.
4239  * The cursor refers to the place where the record was (could be inserted)
4240  * when the operation returns.
4241  */
4242 int					/* error */
4243 xfs_btree_delete(
4244 	struct xfs_btree_cur	*cur,
4245 	int			*stat)	/* success/failure */
4246 {
4247 	int			error;	/* error return value */
4248 	int			level;
4249 	int			i;
4250 	bool			joined = false;
4251 
4252 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4253 
4254 	/*
4255 	 * Go up the tree, starting at leaf level.
4256 	 *
4257 	 * If 2 is returned then a join was done; go to the next level.
4258 	 * Otherwise we are done.
4259 	 */
4260 	for (level = 0, i = 2; i == 2; level++) {
4261 		error = xfs_btree_delrec(cur, level, &i);
4262 		if (error)
4263 			goto error0;
4264 		if (i == 2)
4265 			joined = true;
4266 	}
4267 
4268 	/*
4269 	 * If we combined blocks as part of deleting the record, delrec won't
4270 	 * have updated the parent high keys so we have to do that here.
4271 	 */
4272 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4273 		error = xfs_btree_updkeys_force(cur, 0);
4274 		if (error)
4275 			goto error0;
4276 	}
4277 
4278 	if (i == 0) {
4279 		for (level = 1; level < cur->bc_nlevels; level++) {
4280 			if (cur->bc_ptrs[level] == 0) {
4281 				error = xfs_btree_decrement(cur, level, &i);
4282 				if (error)
4283 					goto error0;
4284 				break;
4285 			}
4286 		}
4287 	}
4288 
4289 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4290 	*stat = i;
4291 	return 0;
4292 error0:
4293 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4294 	return error;
4295 }
4296 
4297 /*
4298  * Get the data from the pointed-to record.
4299  */
4300 int					/* error */
4301 xfs_btree_get_rec(
4302 	struct xfs_btree_cur	*cur,	/* btree cursor */
4303 	union xfs_btree_rec	**recp,	/* output: btree record */
4304 	int			*stat)	/* output: success/failure */
4305 {
4306 	struct xfs_btree_block	*block;	/* btree block */
4307 	struct xfs_buf		*bp;	/* buffer pointer */
4308 	int			ptr;	/* record number */
4309 #ifdef DEBUG
4310 	int			error;	/* error return value */
4311 #endif
4312 
4313 	ptr = cur->bc_ptrs[0];
4314 	block = xfs_btree_get_block(cur, 0, &bp);
4315 
4316 #ifdef DEBUG
4317 	error = xfs_btree_check_block(cur, block, 0, bp);
4318 	if (error)
4319 		return error;
4320 #endif
4321 
4322 	/*
4323 	 * Off the right end or left end, return failure.
4324 	 */
4325 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4326 		*stat = 0;
4327 		return 0;
4328 	}
4329 
4330 	/*
4331 	 * Point to the record and extract its data.
4332 	 */
4333 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4334 	*stat = 1;
4335 	return 0;
4336 }
4337 
4338 /* Visit a block in a btree. */
4339 STATIC int
4340 xfs_btree_visit_block(
4341 	struct xfs_btree_cur		*cur,
4342 	int				level,
4343 	xfs_btree_visit_blocks_fn	fn,
4344 	void				*data)
4345 {
4346 	struct xfs_btree_block		*block;
4347 	struct xfs_buf			*bp;
4348 	union xfs_btree_ptr		rptr;
4349 	int				error;
4350 
4351 	/* do right sibling readahead */
4352 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4353 	block = xfs_btree_get_block(cur, level, &bp);
4354 
4355 	/* process the block */
4356 	error = fn(cur, level, data);
4357 	if (error)
4358 		return error;
4359 
4360 	/* now read rh sibling block for next iteration */
4361 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4362 	if (xfs_btree_ptr_is_null(cur, &rptr))
4363 		return -ENOENT;
4364 
4365 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4366 }
4367 
4368 
4369 /* Visit every block in a btree. */
4370 int
4371 xfs_btree_visit_blocks(
4372 	struct xfs_btree_cur		*cur,
4373 	xfs_btree_visit_blocks_fn	fn,
4374 	void				*data)
4375 {
4376 	union xfs_btree_ptr		lptr;
4377 	int				level;
4378 	struct xfs_btree_block		*block = NULL;
4379 	int				error = 0;
4380 
4381 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4382 
4383 	/* for each level */
4384 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4385 		/* grab the left hand block */
4386 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4387 		if (error)
4388 			return error;
4389 
4390 		/* readahead the left most block for the next level down */
4391 		if (level > 0) {
4392 			union xfs_btree_ptr     *ptr;
4393 
4394 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4395 			xfs_btree_readahead_ptr(cur, ptr, 1);
4396 
4397 			/* save for the next iteration of the loop */
4398 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4399 		}
4400 
4401 		/* for each buffer in the level */
4402 		do {
4403 			error = xfs_btree_visit_block(cur, level, fn, data);
4404 		} while (!error);
4405 
4406 		if (error != -ENOENT)
4407 			return error;
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 /*
4414  * Change the owner of a btree.
4415  *
4416  * The mechanism we use here is ordered buffer logging. Because we don't know
4417  * how many buffers were are going to need to modify, we don't really want to
4418  * have to make transaction reservations for the worst case of every buffer in a
4419  * full size btree as that may be more space that we can fit in the log....
4420  *
4421  * We do the btree walk in the most optimal manner possible - we have sibling
4422  * pointers so we can just walk all the blocks on each level from left to right
4423  * in a single pass, and then move to the next level and do the same. We can
4424  * also do readahead on the sibling pointers to get IO moving more quickly,
4425  * though for slow disks this is unlikely to make much difference to performance
4426  * as the amount of CPU work we have to do before moving to the next block is
4427  * relatively small.
4428  *
4429  * For each btree block that we load, modify the owner appropriately, set the
4430  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4431  * we mark the region we change dirty so that if the buffer is relogged in
4432  * a subsequent transaction the changes we make here as an ordered buffer are
4433  * correctly relogged in that transaction.  If we are in recovery context, then
4434  * just queue the modified buffer as delayed write buffer so the transaction
4435  * recovery completion writes the changes to disk.
4436  */
4437 struct xfs_btree_block_change_owner_info {
4438 	__uint64_t		new_owner;
4439 	struct list_head	*buffer_list;
4440 };
4441 
4442 static int
4443 xfs_btree_block_change_owner(
4444 	struct xfs_btree_cur	*cur,
4445 	int			level,
4446 	void			*data)
4447 {
4448 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4449 	struct xfs_btree_block	*block;
4450 	struct xfs_buf		*bp;
4451 
4452 	/* modify the owner */
4453 	block = xfs_btree_get_block(cur, level, &bp);
4454 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4455 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4456 	else
4457 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4458 
4459 	/*
4460 	 * If the block is a root block hosted in an inode, we might not have a
4461 	 * buffer pointer here and we shouldn't attempt to log the change as the
4462 	 * information is already held in the inode and discarded when the root
4463 	 * block is formatted into the on-disk inode fork. We still change it,
4464 	 * though, so everything is consistent in memory.
4465 	 */
4466 	if (bp) {
4467 		if (cur->bc_tp) {
4468 			xfs_trans_ordered_buf(cur->bc_tp, bp);
4469 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4470 		} else {
4471 			xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4472 		}
4473 	} else {
4474 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4475 		ASSERT(level == cur->bc_nlevels - 1);
4476 	}
4477 
4478 	return 0;
4479 }
4480 
4481 int
4482 xfs_btree_change_owner(
4483 	struct xfs_btree_cur	*cur,
4484 	__uint64_t		new_owner,
4485 	struct list_head	*buffer_list)
4486 {
4487 	struct xfs_btree_block_change_owner_info	bbcoi;
4488 
4489 	bbcoi.new_owner = new_owner;
4490 	bbcoi.buffer_list = buffer_list;
4491 
4492 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4493 			&bbcoi);
4494 }
4495 
4496 /**
4497  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4498  *				      btree block
4499  *
4500  * @bp: buffer containing the btree block
4501  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4502  * @pag_max_level: pointer to the per-ag max level field
4503  */
4504 bool
4505 xfs_btree_sblock_v5hdr_verify(
4506 	struct xfs_buf		*bp)
4507 {
4508 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4509 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4510 	struct xfs_perag	*pag = bp->b_pag;
4511 
4512 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4513 		return false;
4514 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4515 		return false;
4516 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4517 		return false;
4518 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4519 		return false;
4520 	return true;
4521 }
4522 
4523 /**
4524  * xfs_btree_sblock_verify() -- verify a short-format btree block
4525  *
4526  * @bp: buffer containing the btree block
4527  * @max_recs: maximum records allowed in this btree node
4528  */
4529 bool
4530 xfs_btree_sblock_verify(
4531 	struct xfs_buf		*bp,
4532 	unsigned int		max_recs)
4533 {
4534 	struct xfs_mount	*mp = bp->b_target->bt_mount;
4535 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4536 
4537 	/* numrecs verification */
4538 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4539 		return false;
4540 
4541 	/* sibling pointer verification */
4542 	if (!block->bb_u.s.bb_leftsib ||
4543 	    (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4544 	     block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4545 		return false;
4546 	if (!block->bb_u.s.bb_rightsib ||
4547 	    (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4548 	     block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4549 		return false;
4550 
4551 	return true;
4552 }
4553 
4554 /*
4555  * Calculate the number of btree levels needed to store a given number of
4556  * records in a short-format btree.
4557  */
4558 uint
4559 xfs_btree_compute_maxlevels(
4560 	struct xfs_mount	*mp,
4561 	uint			*limits,
4562 	unsigned long		len)
4563 {
4564 	uint			level;
4565 	unsigned long		maxblocks;
4566 
4567 	maxblocks = (len + limits[0] - 1) / limits[0];
4568 	for (level = 1; maxblocks > 1; level++)
4569 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4570 	return level;
4571 }
4572 
4573 /*
4574  * Query a regular btree for all records overlapping a given interval.
4575  * Start with a LE lookup of the key of low_rec and return all records
4576  * until we find a record with a key greater than the key of high_rec.
4577  */
4578 STATIC int
4579 xfs_btree_simple_query_range(
4580 	struct xfs_btree_cur		*cur,
4581 	union xfs_btree_key		*low_key,
4582 	union xfs_btree_key		*high_key,
4583 	xfs_btree_query_range_fn	fn,
4584 	void				*priv)
4585 {
4586 	union xfs_btree_rec		*recp;
4587 	union xfs_btree_key		rec_key;
4588 	__int64_t			diff;
4589 	int				stat;
4590 	bool				firstrec = true;
4591 	int				error;
4592 
4593 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4594 	ASSERT(cur->bc_ops->diff_two_keys);
4595 
4596 	/*
4597 	 * Find the leftmost record.  The btree cursor must be set
4598 	 * to the low record used to generate low_key.
4599 	 */
4600 	stat = 0;
4601 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4602 	if (error)
4603 		goto out;
4604 
4605 	/* Nothing?  See if there's anything to the right. */
4606 	if (!stat) {
4607 		error = xfs_btree_increment(cur, 0, &stat);
4608 		if (error)
4609 			goto out;
4610 	}
4611 
4612 	while (stat) {
4613 		/* Find the record. */
4614 		error = xfs_btree_get_rec(cur, &recp, &stat);
4615 		if (error || !stat)
4616 			break;
4617 
4618 		/* Skip if high_key(rec) < low_key. */
4619 		if (firstrec) {
4620 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4621 			firstrec = false;
4622 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4623 					&rec_key);
4624 			if (diff > 0)
4625 				goto advloop;
4626 		}
4627 
4628 		/* Stop if high_key < low_key(rec). */
4629 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4630 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4631 		if (diff > 0)
4632 			break;
4633 
4634 		/* Callback */
4635 		error = fn(cur, recp, priv);
4636 		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4637 			break;
4638 
4639 advloop:
4640 		/* Move on to the next record. */
4641 		error = xfs_btree_increment(cur, 0, &stat);
4642 		if (error)
4643 			break;
4644 	}
4645 
4646 out:
4647 	return error;
4648 }
4649 
4650 /*
4651  * Query an overlapped interval btree for all records overlapping a given
4652  * interval.  This function roughly follows the algorithm given in
4653  * "Interval Trees" of _Introduction to Algorithms_, which is section
4654  * 14.3 in the 2nd and 3rd editions.
4655  *
4656  * First, generate keys for the low and high records passed in.
4657  *
4658  * For any leaf node, generate the high and low keys for the record.
4659  * If the record keys overlap with the query low/high keys, pass the
4660  * record to the function iterator.
4661  *
4662  * For any internal node, compare the low and high keys of each
4663  * pointer against the query low/high keys.  If there's an overlap,
4664  * follow the pointer.
4665  *
4666  * As an optimization, we stop scanning a block when we find a low key
4667  * that is greater than the query's high key.
4668  */
4669 STATIC int
4670 xfs_btree_overlapped_query_range(
4671 	struct xfs_btree_cur		*cur,
4672 	union xfs_btree_key		*low_key,
4673 	union xfs_btree_key		*high_key,
4674 	xfs_btree_query_range_fn	fn,
4675 	void				*priv)
4676 {
4677 	union xfs_btree_ptr		ptr;
4678 	union xfs_btree_ptr		*pp;
4679 	union xfs_btree_key		rec_key;
4680 	union xfs_btree_key		rec_hkey;
4681 	union xfs_btree_key		*lkp;
4682 	union xfs_btree_key		*hkp;
4683 	union xfs_btree_rec		*recp;
4684 	struct xfs_btree_block		*block;
4685 	__int64_t			ldiff;
4686 	__int64_t			hdiff;
4687 	int				level;
4688 	struct xfs_buf			*bp;
4689 	int				i;
4690 	int				error;
4691 
4692 	/* Load the root of the btree. */
4693 	level = cur->bc_nlevels - 1;
4694 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4695 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4696 	if (error)
4697 		return error;
4698 	xfs_btree_get_block(cur, level, &bp);
4699 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4700 #ifdef DEBUG
4701 	error = xfs_btree_check_block(cur, block, level, bp);
4702 	if (error)
4703 		goto out;
4704 #endif
4705 	cur->bc_ptrs[level] = 1;
4706 
4707 	while (level < cur->bc_nlevels) {
4708 		block = xfs_btree_get_block(cur, level, &bp);
4709 
4710 		/* End of node, pop back towards the root. */
4711 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4712 pop_up:
4713 			if (level < cur->bc_nlevels - 1)
4714 				cur->bc_ptrs[level + 1]++;
4715 			level++;
4716 			continue;
4717 		}
4718 
4719 		if (level == 0) {
4720 			/* Handle a leaf node. */
4721 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4722 
4723 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4724 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4725 					low_key);
4726 
4727 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4728 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4729 					&rec_key);
4730 
4731 			/*
4732 			 * If (record's high key >= query's low key) and
4733 			 *    (query's high key >= record's low key), then
4734 			 * this record overlaps the query range; callback.
4735 			 */
4736 			if (ldiff >= 0 && hdiff >= 0) {
4737 				error = fn(cur, recp, priv);
4738 				if (error < 0 ||
4739 				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4740 					break;
4741 			} else if (hdiff < 0) {
4742 				/* Record is larger than high key; pop. */
4743 				goto pop_up;
4744 			}
4745 			cur->bc_ptrs[level]++;
4746 			continue;
4747 		}
4748 
4749 		/* Handle an internal node. */
4750 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4751 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4752 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4753 
4754 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4755 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4756 
4757 		/*
4758 		 * If (pointer's high key >= query's low key) and
4759 		 *    (query's high key >= pointer's low key), then
4760 		 * this record overlaps the query range; follow pointer.
4761 		 */
4762 		if (ldiff >= 0 && hdiff >= 0) {
4763 			level--;
4764 			error = xfs_btree_lookup_get_block(cur, level, pp,
4765 					&block);
4766 			if (error)
4767 				goto out;
4768 			xfs_btree_get_block(cur, level, &bp);
4769 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4770 #ifdef DEBUG
4771 			error = xfs_btree_check_block(cur, block, level, bp);
4772 			if (error)
4773 				goto out;
4774 #endif
4775 			cur->bc_ptrs[level] = 1;
4776 			continue;
4777 		} else if (hdiff < 0) {
4778 			/* The low key is larger than the upper range; pop. */
4779 			goto pop_up;
4780 		}
4781 		cur->bc_ptrs[level]++;
4782 	}
4783 
4784 out:
4785 	/*
4786 	 * If we don't end this function with the cursor pointing at a record
4787 	 * block, a subsequent non-error cursor deletion will not release
4788 	 * node-level buffers, causing a buffer leak.  This is quite possible
4789 	 * with a zero-results range query, so release the buffers if we
4790 	 * failed to return any results.
4791 	 */
4792 	if (cur->bc_bufs[0] == NULL) {
4793 		for (i = 0; i < cur->bc_nlevels; i++) {
4794 			if (cur->bc_bufs[i]) {
4795 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4796 				cur->bc_bufs[i] = NULL;
4797 				cur->bc_ptrs[i] = 0;
4798 				cur->bc_ra[i] = 0;
4799 			}
4800 		}
4801 	}
4802 
4803 	return error;
4804 }
4805 
4806 /*
4807  * Query a btree for all records overlapping a given interval of keys.  The
4808  * supplied function will be called with each record found; return one of the
4809  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4810  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4811  * negative error code.
4812  */
4813 int
4814 xfs_btree_query_range(
4815 	struct xfs_btree_cur		*cur,
4816 	union xfs_btree_irec		*low_rec,
4817 	union xfs_btree_irec		*high_rec,
4818 	xfs_btree_query_range_fn	fn,
4819 	void				*priv)
4820 {
4821 	union xfs_btree_rec		rec;
4822 	union xfs_btree_key		low_key;
4823 	union xfs_btree_key		high_key;
4824 
4825 	/* Find the keys of both ends of the interval. */
4826 	cur->bc_rec = *high_rec;
4827 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4828 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4829 
4830 	cur->bc_rec = *low_rec;
4831 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4832 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4833 
4834 	/* Enforce low key < high key. */
4835 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4836 		return -EINVAL;
4837 
4838 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4839 		return xfs_btree_simple_query_range(cur, &low_key,
4840 				&high_key, fn, priv);
4841 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4842 			fn, priv);
4843 }
4844 
4845 /* Query a btree for all records. */
4846 int
4847 xfs_btree_query_all(
4848 	struct xfs_btree_cur		*cur,
4849 	xfs_btree_query_range_fn	fn,
4850 	void				*priv)
4851 {
4852 	union xfs_btree_irec		low_rec;
4853 	union xfs_btree_irec		high_rec;
4854 
4855 	memset(&low_rec, 0, sizeof(low_rec));
4856 	memset(&high_rec, 0xFF, sizeof(high_rec));
4857 	return xfs_btree_query_range(cur, &low_rec, &high_rec, fn, priv);
4858 }
4859 
4860 /*
4861  * Calculate the number of blocks needed to store a given number of records
4862  * in a short-format (per-AG metadata) btree.
4863  */
4864 xfs_extlen_t
4865 xfs_btree_calc_size(
4866 	struct xfs_mount	*mp,
4867 	uint			*limits,
4868 	unsigned long long	len)
4869 {
4870 	int			level;
4871 	int			maxrecs;
4872 	xfs_extlen_t		rval;
4873 
4874 	maxrecs = limits[0];
4875 	for (level = 0, rval = 0; len > 1; level++) {
4876 		len += maxrecs - 1;
4877 		do_div(len, maxrecs);
4878 		maxrecs = limits[1];
4879 		rval += len;
4880 	}
4881 	return rval;
4882 }
4883 
4884 static int
4885 xfs_btree_count_blocks_helper(
4886 	struct xfs_btree_cur	*cur,
4887 	int			level,
4888 	void			*data)
4889 {
4890 	xfs_extlen_t		*blocks = data;
4891 	(*blocks)++;
4892 
4893 	return 0;
4894 }
4895 
4896 /* Count the blocks in a btree and return the result in *blocks. */
4897 int
4898 xfs_btree_count_blocks(
4899 	struct xfs_btree_cur	*cur,
4900 	xfs_extlen_t		*blocks)
4901 {
4902 	*blocks = 0;
4903 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4904 			blocks);
4905 }
4906