xref: /linux/fs/xfs/libxfs/xfs_btree.c (revision bfb921b2a9d5d1123d1d10b196a39db629ddef87)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 #include "xfs_health.h"
31 #include "xfs_buf_mem.h"
32 #include "xfs_btree_mem.h"
33 
34 /*
35  * Btree magic numbers.
36  */
37 uint32_t
38 xfs_btree_magic(
39 	struct xfs_mount		*mp,
40 	const struct xfs_btree_ops	*ops)
41 {
42 	int				idx = xfs_has_crc(mp) ? 1 : 0;
43 	__be32				magic = ops->buf_ops->magic[idx];
44 
45 	/* Ensure we asked for crc for crc-only magics. */
46 	ASSERT(magic != 0);
47 	return be32_to_cpu(magic);
48 }
49 
50 /*
51  * These sibling pointer checks are optimised for null sibling pointers. This
52  * happens a lot, and we don't need to byte swap at runtime if the sibling
53  * pointer is NULL.
54  *
55  * These are explicitly marked at inline because the cost of calling them as
56  * functions instead of inlining them is about 36 bytes extra code per call site
57  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58  * two sibling check functions reduces the compiled code size by over 300
59  * bytes.
60  */
61 static inline xfs_failaddr_t
62 xfs_btree_check_fsblock_siblings(
63 	struct xfs_mount	*mp,
64 	xfs_fsblock_t		fsb,
65 	__be64			dsibling)
66 {
67 	xfs_fsblock_t		sibling;
68 
69 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 		return NULL;
71 
72 	sibling = be64_to_cpu(dsibling);
73 	if (sibling == fsb)
74 		return __this_address;
75 	if (!xfs_verify_fsbno(mp, sibling))
76 		return __this_address;
77 	return NULL;
78 }
79 
80 static inline xfs_failaddr_t
81 xfs_btree_check_memblock_siblings(
82 	struct xfs_buftarg	*btp,
83 	xfbno_t			bno,
84 	__be64			dsibling)
85 {
86 	xfbno_t			sibling;
87 
88 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 		return NULL;
90 
91 	sibling = be64_to_cpu(dsibling);
92 	if (sibling == bno)
93 		return __this_address;
94 	if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 		return __this_address;
96 	return NULL;
97 }
98 
99 static inline xfs_failaddr_t
100 xfs_btree_check_agblock_siblings(
101 	struct xfs_perag	*pag,
102 	xfs_agblock_t		agbno,
103 	__be32			dsibling)
104 {
105 	xfs_agblock_t		sibling;
106 
107 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 		return NULL;
109 
110 	sibling = be32_to_cpu(dsibling);
111 	if (sibling == agbno)
112 		return __this_address;
113 	if (!xfs_verify_agbno(pag, sibling))
114 		return __this_address;
115 	return NULL;
116 }
117 
118 static xfs_failaddr_t
119 __xfs_btree_check_lblock_hdr(
120 	struct xfs_btree_cur	*cur,
121 	struct xfs_btree_block	*block,
122 	int			level,
123 	struct xfs_buf		*bp)
124 {
125 	struct xfs_mount	*mp = cur->bc_mp;
126 
127 	if (xfs_has_crc(mp)) {
128 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 			return __this_address;
130 		if (block->bb_u.l.bb_blkno !=
131 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 			return __this_address;
133 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 			return __this_address;
135 	}
136 
137 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 		return __this_address;
139 	if (be16_to_cpu(block->bb_level) != level)
140 		return __this_address;
141 	if (be16_to_cpu(block->bb_numrecs) >
142 	    cur->bc_ops->get_maxrecs(cur, level))
143 		return __this_address;
144 
145 	return NULL;
146 }
147 
148 /*
149  * Check a long btree block header.  Return the address of the failing check,
150  * or NULL if everything is ok.
151  */
152 static xfs_failaddr_t
153 __xfs_btree_check_fsblock(
154 	struct xfs_btree_cur	*cur,
155 	struct xfs_btree_block	*block,
156 	int			level,
157 	struct xfs_buf		*bp)
158 {
159 	struct xfs_mount	*mp = cur->bc_mp;
160 	xfs_failaddr_t		fa;
161 	xfs_fsblock_t		fsb;
162 
163 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 	if (fa)
165 		return fa;
166 
167 	/*
168 	 * For inode-rooted btrees, the root block sits in the inode fork.  In
169 	 * that case bp is NULL, and the block must not have any siblings.
170 	 */
171 	if (!bp) {
172 		if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 			return __this_address;
174 		if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 			return __this_address;
176 		return NULL;
177 	}
178 
179 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 			block->bb_u.l.bb_leftsib);
182 	if (!fa)
183 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 				block->bb_u.l.bb_rightsib);
185 	return fa;
186 }
187 
188 /*
189  * Check an in-memory btree block header.  Return the address of the failing
190  * check, or NULL if everything is ok.
191  */
192 static xfs_failaddr_t
193 __xfs_btree_check_memblock(
194 	struct xfs_btree_cur	*cur,
195 	struct xfs_btree_block	*block,
196 	int			level,
197 	struct xfs_buf		*bp)
198 {
199 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
200 	xfs_failaddr_t		fa;
201 	xfbno_t			bno;
202 
203 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 	if (fa)
205 		return fa;
206 
207 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 	fa = xfs_btree_check_memblock_siblings(btp, bno,
209 			block->bb_u.l.bb_leftsib);
210 	if (!fa)
211 		fa = xfs_btree_check_memblock_siblings(btp, bno,
212 				block->bb_u.l.bb_rightsib);
213 	return fa;
214 }
215 
216 /*
217  * Check a short btree block header.  Return the address of the failing check,
218  * or NULL if everything is ok.
219  */
220 static xfs_failaddr_t
221 __xfs_btree_check_agblock(
222 	struct xfs_btree_cur	*cur,
223 	struct xfs_btree_block	*block,
224 	int			level,
225 	struct xfs_buf		*bp)
226 {
227 	struct xfs_mount	*mp = cur->bc_mp;
228 	struct xfs_perag	*pag = cur->bc_ag.pag;
229 	xfs_failaddr_t		fa;
230 	xfs_agblock_t		agbno;
231 
232 	if (xfs_has_crc(mp)) {
233 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 			return __this_address;
235 		if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 			return __this_address;
237 	}
238 
239 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 		return __this_address;
241 	if (be16_to_cpu(block->bb_level) != level)
242 		return __this_address;
243 	if (be16_to_cpu(block->bb_numrecs) >
244 	    cur->bc_ops->get_maxrecs(cur, level))
245 		return __this_address;
246 
247 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 	fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 			block->bb_u.s.bb_leftsib);
250 	if (!fa)
251 		fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 				block->bb_u.s.bb_rightsib);
253 	return fa;
254 }
255 
256 /*
257  * Internal btree block check.
258  *
259  * Return NULL if the block is ok or the address of the failed check otherwise.
260  */
261 xfs_failaddr_t
262 __xfs_btree_check_block(
263 	struct xfs_btree_cur	*cur,
264 	struct xfs_btree_block	*block,
265 	int			level,
266 	struct xfs_buf		*bp)
267 {
268 	switch (cur->bc_ops->type) {
269 	case XFS_BTREE_TYPE_MEM:
270 		return __xfs_btree_check_memblock(cur, block, level, bp);
271 	case XFS_BTREE_TYPE_AG:
272 		return __xfs_btree_check_agblock(cur, block, level, bp);
273 	case XFS_BTREE_TYPE_INODE:
274 		return __xfs_btree_check_fsblock(cur, block, level, bp);
275 	default:
276 		ASSERT(0);
277 		return __this_address;
278 	}
279 }
280 
281 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282 {
283 	if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 		return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 	return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286 }
287 
288 /*
289  * Debug routine: check that block header is ok.
290  */
291 int
292 xfs_btree_check_block(
293 	struct xfs_btree_cur	*cur,	/* btree cursor */
294 	struct xfs_btree_block	*block,	/* generic btree block pointer */
295 	int			level,	/* level of the btree block */
296 	struct xfs_buf		*bp)	/* buffer containing block, if any */
297 {
298 	struct xfs_mount	*mp = cur->bc_mp;
299 	xfs_failaddr_t		fa;
300 
301 	fa = __xfs_btree_check_block(cur, block, level, bp);
302 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 	    XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 		if (bp)
305 			trace_xfs_btree_corrupt(bp, _RET_IP_);
306 		xfs_btree_mark_sick(cur);
307 		return -EFSCORRUPTED;
308 	}
309 	return 0;
310 }
311 
312 int
313 __xfs_btree_check_ptr(
314 	struct xfs_btree_cur		*cur,
315 	const union xfs_btree_ptr	*ptr,
316 	int				index,
317 	int				level)
318 {
319 	if (level <= 0)
320 		return -EFSCORRUPTED;
321 
322 	switch (cur->bc_ops->type) {
323 	case XFS_BTREE_TYPE_MEM:
324 		if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 				be64_to_cpu((&ptr->l)[index])))
326 			return -EFSCORRUPTED;
327 		break;
328 	case XFS_BTREE_TYPE_INODE:
329 		if (!xfs_verify_fsbno(cur->bc_mp,
330 				be64_to_cpu((&ptr->l)[index])))
331 			return -EFSCORRUPTED;
332 		break;
333 	case XFS_BTREE_TYPE_AG:
334 		if (!xfs_verify_agbno(cur->bc_ag.pag,
335 				be32_to_cpu((&ptr->s)[index])))
336 			return -EFSCORRUPTED;
337 		break;
338 	}
339 
340 	return 0;
341 }
342 
343 /*
344  * Check that a given (indexed) btree pointer at a certain level of a
345  * btree is valid and doesn't point past where it should.
346  */
347 static int
348 xfs_btree_check_ptr(
349 	struct xfs_btree_cur		*cur,
350 	const union xfs_btree_ptr	*ptr,
351 	int				index,
352 	int				level)
353 {
354 	int				error;
355 
356 	error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 	if (error) {
358 		switch (cur->bc_ops->type) {
359 		case XFS_BTREE_TYPE_MEM:
360 			xfs_err(cur->bc_mp,
361 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 				cur->bc_ops->name, cur->bc_flags, level, index,
363 				__this_address);
364 			break;
365 		case XFS_BTREE_TYPE_INODE:
366 			xfs_err(cur->bc_mp,
367 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 				cur->bc_ino.ip->i_ino,
369 				cur->bc_ino.whichfork, cur->bc_ops->name,
370 				level, index);
371 			break;
372 		case XFS_BTREE_TYPE_AG:
373 			xfs_err(cur->bc_mp,
374 "AG %u: Corrupt %sbt pointer at level %d index %d.",
375 				cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
376 				level, index);
377 			break;
378 		}
379 		xfs_btree_mark_sick(cur);
380 	}
381 
382 	return error;
383 }
384 
385 #ifdef DEBUG
386 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
387 #else
388 # define xfs_btree_debug_check_ptr(...)	(0)
389 #endif
390 
391 /*
392  * Calculate CRC on the whole btree block and stuff it into the
393  * long-form btree header.
394  *
395  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396  * it into the buffer so recovery knows what the last modification was that made
397  * it to disk.
398  */
399 void
400 xfs_btree_fsblock_calc_crc(
401 	struct xfs_buf		*bp)
402 {
403 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
404 	struct xfs_buf_log_item	*bip = bp->b_log_item;
405 
406 	if (!xfs_has_crc(bp->b_mount))
407 		return;
408 	if (bip)
409 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411 }
412 
413 bool
414 xfs_btree_fsblock_verify_crc(
415 	struct xfs_buf		*bp)
416 {
417 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
418 	struct xfs_mount	*mp = bp->b_mount;
419 
420 	if (xfs_has_crc(mp)) {
421 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 			return false;
423 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 	}
425 
426 	return true;
427 }
428 
429 /*
430  * Calculate CRC on the whole btree block and stuff it into the
431  * short-form btree header.
432  *
433  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434  * it into the buffer so recovery knows what the last modification was that made
435  * it to disk.
436  */
437 void
438 xfs_btree_agblock_calc_crc(
439 	struct xfs_buf		*bp)
440 {
441 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
442 	struct xfs_buf_log_item	*bip = bp->b_log_item;
443 
444 	if (!xfs_has_crc(bp->b_mount))
445 		return;
446 	if (bip)
447 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449 }
450 
451 bool
452 xfs_btree_agblock_verify_crc(
453 	struct xfs_buf		*bp)
454 {
455 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
456 	struct xfs_mount	*mp = bp->b_mount;
457 
458 	if (xfs_has_crc(mp)) {
459 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 			return false;
461 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 	}
463 
464 	return true;
465 }
466 
467 static int
468 xfs_btree_free_block(
469 	struct xfs_btree_cur	*cur,
470 	struct xfs_buf		*bp)
471 {
472 	int			error;
473 
474 	trace_xfs_btree_free_block(cur, bp);
475 
476 	/*
477 	 * Don't allow block freeing for a staging cursor, because staging
478 	 * cursors do not support regular btree modifications.
479 	 */
480 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 		ASSERT(0);
482 		return -EFSCORRUPTED;
483 	}
484 
485 	error = cur->bc_ops->free_block(cur, bp);
486 	if (!error) {
487 		xfs_trans_binval(cur->bc_tp, bp);
488 		XFS_BTREE_STATS_INC(cur, free);
489 	}
490 	return error;
491 }
492 
493 /*
494  * Delete the btree cursor.
495  */
496 void
497 xfs_btree_del_cursor(
498 	struct xfs_btree_cur	*cur,		/* btree cursor */
499 	int			error)		/* del because of error */
500 {
501 	int			i;		/* btree level */
502 
503 	/*
504 	 * Clear the buffer pointers and release the buffers. If we're doing
505 	 * this because of an error, inspect all of the entries in the bc_bufs
506 	 * array for buffers to be unlocked. This is because some of the btree
507 	 * code works from level n down to 0, and if we get an error along the
508 	 * way we won't have initialized all the entries down to 0.
509 	 */
510 	for (i = 0; i < cur->bc_nlevels; i++) {
511 		if (cur->bc_levels[i].bp)
512 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 		else if (!error)
514 			break;
515 	}
516 
517 	/*
518 	 * If we are doing a BMBT update, the number of unaccounted blocks
519 	 * allocated during this cursor life time should be zero. If it's not
520 	 * zero, then we should be shut down or on our way to shutdown due to
521 	 * cancelling a dirty transaction on error.
522 	 */
523 	ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
525 
526 	switch (cur->bc_ops->type) {
527 	case XFS_BTREE_TYPE_AG:
528 		if (cur->bc_ag.pag)
529 			xfs_perag_put(cur->bc_ag.pag);
530 		break;
531 	case XFS_BTREE_TYPE_INODE:
532 		/* nothing to do */
533 		break;
534 	case XFS_BTREE_TYPE_MEM:
535 		if (cur->bc_mem.pag)
536 			xfs_perag_put(cur->bc_mem.pag);
537 		break;
538 	}
539 
540 	kmem_cache_free(cur->bc_cache, cur);
541 }
542 
543 /* Return the buffer target for this btree's buffer. */
544 static inline struct xfs_buftarg *
545 xfs_btree_buftarg(
546 	struct xfs_btree_cur	*cur)
547 {
548 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
549 		return cur->bc_mem.xfbtree->target;
550 	return cur->bc_mp->m_ddev_targp;
551 }
552 
553 /* Return the block size (in units of 512b sectors) for this btree. */
554 static inline unsigned int
555 xfs_btree_bbsize(
556 	struct xfs_btree_cur	*cur)
557 {
558 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
559 		return XFBNO_BBSIZE;
560 	return cur->bc_mp->m_bsize;
561 }
562 
563 /*
564  * Duplicate the btree cursor.
565  * Allocate a new one, copy the record, re-get the buffers.
566  */
567 int						/* error */
568 xfs_btree_dup_cursor(
569 	struct xfs_btree_cur	*cur,		/* input cursor */
570 	struct xfs_btree_cur	**ncur)		/* output cursor */
571 {
572 	struct xfs_mount	*mp = cur->bc_mp;
573 	struct xfs_trans	*tp = cur->bc_tp;
574 	struct xfs_buf		*bp;
575 	struct xfs_btree_cur	*new;
576 	int			error;
577 	int			i;
578 
579 	/*
580 	 * Don't allow staging cursors to be duplicated because they're supposed
581 	 * to be kept private to a single thread.
582 	 */
583 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
584 		ASSERT(0);
585 		return -EFSCORRUPTED;
586 	}
587 
588 	/*
589 	 * Allocate a new cursor like the old one.
590 	 */
591 	new = cur->bc_ops->dup_cursor(cur);
592 
593 	/*
594 	 * Copy the record currently in the cursor.
595 	 */
596 	new->bc_rec = cur->bc_rec;
597 
598 	/*
599 	 * For each level current, re-get the buffer and copy the ptr value.
600 	 */
601 	for (i = 0; i < new->bc_nlevels; i++) {
602 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
603 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
604 		bp = cur->bc_levels[i].bp;
605 		if (bp) {
606 			error = xfs_trans_read_buf(mp, tp,
607 					xfs_btree_buftarg(cur),
608 					xfs_buf_daddr(bp),
609 					xfs_btree_bbsize(cur), 0, &bp,
610 					cur->bc_ops->buf_ops);
611 			if (xfs_metadata_is_sick(error))
612 				xfs_btree_mark_sick(new);
613 			if (error) {
614 				xfs_btree_del_cursor(new, error);
615 				*ncur = NULL;
616 				return error;
617 			}
618 		}
619 		new->bc_levels[i].bp = bp;
620 	}
621 	*ncur = new;
622 	return 0;
623 }
624 
625 /*
626  * XFS btree block layout and addressing:
627  *
628  * There are two types of blocks in the btree: leaf and non-leaf blocks.
629  *
630  * The leaf record start with a header then followed by records containing
631  * the values.  A non-leaf block also starts with the same header, and
632  * then first contains lookup keys followed by an equal number of pointers
633  * to the btree blocks at the previous level.
634  *
635  *		+--------+-------+-------+-------+-------+-------+-------+
636  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
637  *		+--------+-------+-------+-------+-------+-------+-------+
638  *
639  *		+--------+-------+-------+-------+-------+-------+-------+
640  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
641  *		+--------+-------+-------+-------+-------+-------+-------+
642  *
643  * The header is called struct xfs_btree_block for reasons better left unknown
644  * and comes in different versions for short (32bit) and long (64bit) block
645  * pointers.  The record and key structures are defined by the btree instances
646  * and opaque to the btree core.  The block pointers are simple disk endian
647  * integers, available in a short (32bit) and long (64bit) variant.
648  *
649  * The helpers below calculate the offset of a given record, key or pointer
650  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
651  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
652  * inside the btree block is done using indices starting at one, not zero!
653  *
654  * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
655  * overlapping intervals.  In such a tree, records are still sorted lowest to
656  * highest and indexed by the smallest key value that refers to the record.
657  * However, nodes are different: each pointer has two associated keys -- one
658  * indexing the lowest key available in the block(s) below (the same behavior
659  * as the key in a regular btree) and another indexing the highest key
660  * available in the block(s) below.  Because records are /not/ sorted by the
661  * highest key, all leaf block updates require us to compute the highest key
662  * that matches any record in the leaf and to recursively update the high keys
663  * in the nodes going further up in the tree, if necessary.  Nodes look like
664  * this:
665  *
666  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
667  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
668  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
669  *
670  * To perform an interval query on an overlapped tree, perform the usual
671  * depth-first search and use the low and high keys to decide if we can skip
672  * that particular node.  If a leaf node is reached, return the records that
673  * intersect the interval.  Note that an interval query may return numerous
674  * entries.  For a non-overlapped tree, simply search for the record associated
675  * with the lowest key and iterate forward until a non-matching record is
676  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
677  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
678  * more detail.
679  *
680  * Why do we care about overlapping intervals?  Let's say you have a bunch of
681  * reverse mapping records on a reflink filesystem:
682  *
683  * 1: +- file A startblock B offset C length D -----------+
684  * 2:      +- file E startblock F offset G length H --------------+
685  * 3:      +- file I startblock F offset J length K --+
686  * 4:                                                        +- file L... --+
687  *
688  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
689  * we'd simply increment the length of record 1.  But how do we find the record
690  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
691  * record 3 because the keys are ordered first by startblock.  An interval
692  * query would return records 1 and 2 because they both overlap (B+D-1), and
693  * from that we can pick out record 1 as the appropriate left neighbor.
694  *
695  * In the non-overlapped case you can do a LE lookup and decrement the cursor
696  * because a record's interval must end before the next record.
697  */
698 
699 /*
700  * Return size of the btree block header for this btree instance.
701  */
702 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
703 {
704 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
705 		if (xfs_has_crc(cur->bc_mp))
706 			return XFS_BTREE_LBLOCK_CRC_LEN;
707 		return XFS_BTREE_LBLOCK_LEN;
708 	}
709 	if (xfs_has_crc(cur->bc_mp))
710 		return XFS_BTREE_SBLOCK_CRC_LEN;
711 	return XFS_BTREE_SBLOCK_LEN;
712 }
713 
714 /*
715  * Calculate offset of the n-th record in a btree block.
716  */
717 STATIC size_t
718 xfs_btree_rec_offset(
719 	struct xfs_btree_cur	*cur,
720 	int			n)
721 {
722 	return xfs_btree_block_len(cur) +
723 		(n - 1) * cur->bc_ops->rec_len;
724 }
725 
726 /*
727  * Calculate offset of the n-th key in a btree block.
728  */
729 STATIC size_t
730 xfs_btree_key_offset(
731 	struct xfs_btree_cur	*cur,
732 	int			n)
733 {
734 	return xfs_btree_block_len(cur) +
735 		(n - 1) * cur->bc_ops->key_len;
736 }
737 
738 /*
739  * Calculate offset of the n-th high key in a btree block.
740  */
741 STATIC size_t
742 xfs_btree_high_key_offset(
743 	struct xfs_btree_cur	*cur,
744 	int			n)
745 {
746 	return xfs_btree_block_len(cur) +
747 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
748 }
749 
750 /*
751  * Calculate offset of the n-th block pointer in a btree block.
752  */
753 STATIC size_t
754 xfs_btree_ptr_offset(
755 	struct xfs_btree_cur	*cur,
756 	int			n,
757 	int			level)
758 {
759 	return xfs_btree_block_len(cur) +
760 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
761 		(n - 1) * cur->bc_ops->ptr_len;
762 }
763 
764 /*
765  * Return a pointer to the n-th record in the btree block.
766  */
767 union xfs_btree_rec *
768 xfs_btree_rec_addr(
769 	struct xfs_btree_cur	*cur,
770 	int			n,
771 	struct xfs_btree_block	*block)
772 {
773 	return (union xfs_btree_rec *)
774 		((char *)block + xfs_btree_rec_offset(cur, n));
775 }
776 
777 /*
778  * Return a pointer to the n-th key in the btree block.
779  */
780 union xfs_btree_key *
781 xfs_btree_key_addr(
782 	struct xfs_btree_cur	*cur,
783 	int			n,
784 	struct xfs_btree_block	*block)
785 {
786 	return (union xfs_btree_key *)
787 		((char *)block + xfs_btree_key_offset(cur, n));
788 }
789 
790 /*
791  * Return a pointer to the n-th high key in the btree block.
792  */
793 union xfs_btree_key *
794 xfs_btree_high_key_addr(
795 	struct xfs_btree_cur	*cur,
796 	int			n,
797 	struct xfs_btree_block	*block)
798 {
799 	return (union xfs_btree_key *)
800 		((char *)block + xfs_btree_high_key_offset(cur, n));
801 }
802 
803 /*
804  * Return a pointer to the n-th block pointer in the btree block.
805  */
806 union xfs_btree_ptr *
807 xfs_btree_ptr_addr(
808 	struct xfs_btree_cur	*cur,
809 	int			n,
810 	struct xfs_btree_block	*block)
811 {
812 	int			level = xfs_btree_get_level(block);
813 
814 	ASSERT(block->bb_level != 0);
815 
816 	return (union xfs_btree_ptr *)
817 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
818 }
819 
820 struct xfs_ifork *
821 xfs_btree_ifork_ptr(
822 	struct xfs_btree_cur	*cur)
823 {
824 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
825 
826 	if (cur->bc_flags & XFS_BTREE_STAGING)
827 		return cur->bc_ino.ifake->if_fork;
828 	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
829 }
830 
831 /*
832  * Get the root block which is stored in the inode.
833  *
834  * For now this btree implementation assumes the btree root is always
835  * stored in the if_broot field of an inode fork.
836  */
837 STATIC struct xfs_btree_block *
838 xfs_btree_get_iroot(
839 	struct xfs_btree_cur	*cur)
840 {
841 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
842 
843 	return (struct xfs_btree_block *)ifp->if_broot;
844 }
845 
846 /*
847  * Retrieve the block pointer from the cursor at the given level.
848  * This may be an inode btree root or from a buffer.
849  */
850 struct xfs_btree_block *		/* generic btree block pointer */
851 xfs_btree_get_block(
852 	struct xfs_btree_cur	*cur,	/* btree cursor */
853 	int			level,	/* level in btree */
854 	struct xfs_buf		**bpp)	/* buffer containing the block */
855 {
856 	if (xfs_btree_at_iroot(cur, level)) {
857 		*bpp = NULL;
858 		return xfs_btree_get_iroot(cur);
859 	}
860 
861 	*bpp = cur->bc_levels[level].bp;
862 	return XFS_BUF_TO_BLOCK(*bpp);
863 }
864 
865 /*
866  * Change the cursor to point to the first record at the given level.
867  * Other levels are unaffected.
868  */
869 STATIC int				/* success=1, failure=0 */
870 xfs_btree_firstrec(
871 	struct xfs_btree_cur	*cur,	/* btree cursor */
872 	int			level)	/* level to change */
873 {
874 	struct xfs_btree_block	*block;	/* generic btree block pointer */
875 	struct xfs_buf		*bp;	/* buffer containing block */
876 
877 	/*
878 	 * Get the block pointer for this level.
879 	 */
880 	block = xfs_btree_get_block(cur, level, &bp);
881 	if (xfs_btree_check_block(cur, block, level, bp))
882 		return 0;
883 	/*
884 	 * It's empty, there is no such record.
885 	 */
886 	if (!block->bb_numrecs)
887 		return 0;
888 	/*
889 	 * Set the ptr value to 1, that's the first record/key.
890 	 */
891 	cur->bc_levels[level].ptr = 1;
892 	return 1;
893 }
894 
895 /*
896  * Change the cursor to point to the last record in the current block
897  * at the given level.  Other levels are unaffected.
898  */
899 STATIC int				/* success=1, failure=0 */
900 xfs_btree_lastrec(
901 	struct xfs_btree_cur	*cur,	/* btree cursor */
902 	int			level)	/* level to change */
903 {
904 	struct xfs_btree_block	*block;	/* generic btree block pointer */
905 	struct xfs_buf		*bp;	/* buffer containing block */
906 
907 	/*
908 	 * Get the block pointer for this level.
909 	 */
910 	block = xfs_btree_get_block(cur, level, &bp);
911 	if (xfs_btree_check_block(cur, block, level, bp))
912 		return 0;
913 	/*
914 	 * It's empty, there is no such record.
915 	 */
916 	if (!block->bb_numrecs)
917 		return 0;
918 	/*
919 	 * Set the ptr value to numrecs, that's the last record/key.
920 	 */
921 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
922 	return 1;
923 }
924 
925 /*
926  * Compute first and last byte offsets for the fields given.
927  * Interprets the offsets table, which contains struct field offsets.
928  */
929 void
930 xfs_btree_offsets(
931 	uint32_t	fields,		/* bitmask of fields */
932 	const short	*offsets,	/* table of field offsets */
933 	int		nbits,		/* number of bits to inspect */
934 	int		*first,		/* output: first byte offset */
935 	int		*last)		/* output: last byte offset */
936 {
937 	int		i;		/* current bit number */
938 	uint32_t	imask;		/* mask for current bit number */
939 
940 	ASSERT(fields != 0);
941 	/*
942 	 * Find the lowest bit, so the first byte offset.
943 	 */
944 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
945 		if (imask & fields) {
946 			*first = offsets[i];
947 			break;
948 		}
949 	}
950 	/*
951 	 * Find the highest bit, so the last byte offset.
952 	 */
953 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
954 		if (imask & fields) {
955 			*last = offsets[i + 1] - 1;
956 			break;
957 		}
958 	}
959 }
960 
961 STATIC int
962 xfs_btree_readahead_fsblock(
963 	struct xfs_btree_cur	*cur,
964 	int			lr,
965 	struct xfs_btree_block	*block)
966 {
967 	struct xfs_mount	*mp = cur->bc_mp;
968 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
969 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
970 	int			rval = 0;
971 
972 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
973 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
974 				mp->m_bsize, cur->bc_ops->buf_ops);
975 		rval++;
976 	}
977 
978 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
979 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
980 				mp->m_bsize, cur->bc_ops->buf_ops);
981 		rval++;
982 	}
983 
984 	return rval;
985 }
986 
987 STATIC int
988 xfs_btree_readahead_memblock(
989 	struct xfs_btree_cur	*cur,
990 	int			lr,
991 	struct xfs_btree_block	*block)
992 {
993 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
994 	xfbno_t			left = be64_to_cpu(block->bb_u.l.bb_leftsib);
995 	xfbno_t			right = be64_to_cpu(block->bb_u.l.bb_rightsib);
996 	int			rval = 0;
997 
998 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
999 		xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000 				cur->bc_ops->buf_ops);
1001 		rval++;
1002 	}
1003 
1004 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005 		xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006 				cur->bc_ops->buf_ops);
1007 		rval++;
1008 	}
1009 
1010 	return rval;
1011 }
1012 
1013 STATIC int
1014 xfs_btree_readahead_agblock(
1015 	struct xfs_btree_cur	*cur,
1016 	int			lr,
1017 	struct xfs_btree_block	*block)
1018 {
1019 	struct xfs_mount	*mp = cur->bc_mp;
1020 	xfs_agnumber_t		agno = cur->bc_ag.pag->pag_agno;
1021 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023 	int			rval = 0;
1024 
1025 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026 		xfs_buf_readahead(mp->m_ddev_targp,
1027 				XFS_AGB_TO_DADDR(mp, agno, left),
1028 				mp->m_bsize, cur->bc_ops->buf_ops);
1029 		rval++;
1030 	}
1031 
1032 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033 		xfs_buf_readahead(mp->m_ddev_targp,
1034 				XFS_AGB_TO_DADDR(mp, agno, right),
1035 				mp->m_bsize, cur->bc_ops->buf_ops);
1036 		rval++;
1037 	}
1038 
1039 	return rval;
1040 }
1041 
1042 /*
1043  * Read-ahead btree blocks, at the given level.
1044  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045  */
1046 STATIC int
1047 xfs_btree_readahead(
1048 	struct xfs_btree_cur	*cur,		/* btree cursor */
1049 	int			lev,		/* level in btree */
1050 	int			lr)		/* left/right bits */
1051 {
1052 	struct xfs_btree_block	*block;
1053 
1054 	/*
1055 	 * No readahead needed if we are at the root level and the
1056 	 * btree root is stored in the inode.
1057 	 */
1058 	if (xfs_btree_at_iroot(cur, lev))
1059 		return 0;
1060 
1061 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062 		return 0;
1063 
1064 	cur->bc_levels[lev].ra |= lr;
1065 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066 
1067 	switch (cur->bc_ops->type) {
1068 	case XFS_BTREE_TYPE_AG:
1069 		return xfs_btree_readahead_agblock(cur, lr, block);
1070 	case XFS_BTREE_TYPE_INODE:
1071 		return xfs_btree_readahead_fsblock(cur, lr, block);
1072 	case XFS_BTREE_TYPE_MEM:
1073 		return xfs_btree_readahead_memblock(cur, lr, block);
1074 	default:
1075 		ASSERT(0);
1076 		return 0;
1077 	}
1078 }
1079 
1080 STATIC int
1081 xfs_btree_ptr_to_daddr(
1082 	struct xfs_btree_cur		*cur,
1083 	const union xfs_btree_ptr	*ptr,
1084 	xfs_daddr_t			*daddr)
1085 {
1086 	int			error;
1087 
1088 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1089 	if (error)
1090 		return error;
1091 
1092 	switch (cur->bc_ops->type) {
1093 	case XFS_BTREE_TYPE_AG:
1094 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095 				be32_to_cpu(ptr->s));
1096 		break;
1097 	case XFS_BTREE_TYPE_INODE:
1098 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099 		break;
1100 	case XFS_BTREE_TYPE_MEM:
1101 		*daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102 		break;
1103 	}
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Readahead @count btree blocks at the given @ptr location.
1109  *
1110  * We don't need to care about long or short form btrees here as we have a
1111  * method of converting the ptr directly to a daddr available to us.
1112  */
1113 STATIC void
1114 xfs_btree_readahead_ptr(
1115 	struct xfs_btree_cur	*cur,
1116 	union xfs_btree_ptr	*ptr,
1117 	xfs_extlen_t		count)
1118 {
1119 	xfs_daddr_t		daddr;
1120 
1121 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122 		return;
1123 	xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124 			xfs_btree_bbsize(cur) * count,
1125 			cur->bc_ops->buf_ops);
1126 }
1127 
1128 /*
1129  * Set the buffer for level "lev" in the cursor to bp, releasing
1130  * any previous buffer.
1131  */
1132 STATIC void
1133 xfs_btree_setbuf(
1134 	struct xfs_btree_cur	*cur,	/* btree cursor */
1135 	int			lev,	/* level in btree */
1136 	struct xfs_buf		*bp)	/* new buffer to set */
1137 {
1138 	struct xfs_btree_block	*b;	/* btree block */
1139 
1140 	if (cur->bc_levels[lev].bp)
1141 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142 	cur->bc_levels[lev].bp = bp;
1143 	cur->bc_levels[lev].ra = 0;
1144 
1145 	b = XFS_BUF_TO_BLOCK(bp);
1146 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151 	} else {
1152 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156 	}
1157 }
1158 
1159 bool
1160 xfs_btree_ptr_is_null(
1161 	struct xfs_btree_cur		*cur,
1162 	const union xfs_btree_ptr	*ptr)
1163 {
1164 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166 	else
1167 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168 }
1169 
1170 void
1171 xfs_btree_set_ptr_null(
1172 	struct xfs_btree_cur	*cur,
1173 	union xfs_btree_ptr	*ptr)
1174 {
1175 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1177 	else
1178 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1179 }
1180 
1181 static inline bool
1182 xfs_btree_ptrs_equal(
1183 	struct xfs_btree_cur		*cur,
1184 	union xfs_btree_ptr		*ptr1,
1185 	union xfs_btree_ptr		*ptr2)
1186 {
1187 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188 		return ptr1->l == ptr2->l;
1189 	return ptr1->s == ptr2->s;
1190 }
1191 
1192 /*
1193  * Get/set/init sibling pointers
1194  */
1195 void
1196 xfs_btree_get_sibling(
1197 	struct xfs_btree_cur	*cur,
1198 	struct xfs_btree_block	*block,
1199 	union xfs_btree_ptr	*ptr,
1200 	int			lr)
1201 {
1202 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203 
1204 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205 		if (lr == XFS_BB_RIGHTSIB)
1206 			ptr->l = block->bb_u.l.bb_rightsib;
1207 		else
1208 			ptr->l = block->bb_u.l.bb_leftsib;
1209 	} else {
1210 		if (lr == XFS_BB_RIGHTSIB)
1211 			ptr->s = block->bb_u.s.bb_rightsib;
1212 		else
1213 			ptr->s = block->bb_u.s.bb_leftsib;
1214 	}
1215 }
1216 
1217 void
1218 xfs_btree_set_sibling(
1219 	struct xfs_btree_cur		*cur,
1220 	struct xfs_btree_block		*block,
1221 	const union xfs_btree_ptr	*ptr,
1222 	int				lr)
1223 {
1224 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225 
1226 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227 		if (lr == XFS_BB_RIGHTSIB)
1228 			block->bb_u.l.bb_rightsib = ptr->l;
1229 		else
1230 			block->bb_u.l.bb_leftsib = ptr->l;
1231 	} else {
1232 		if (lr == XFS_BB_RIGHTSIB)
1233 			block->bb_u.s.bb_rightsib = ptr->s;
1234 		else
1235 			block->bb_u.s.bb_leftsib = ptr->s;
1236 	}
1237 }
1238 
1239 static void
1240 __xfs_btree_init_block(
1241 	struct xfs_mount	*mp,
1242 	struct xfs_btree_block	*buf,
1243 	const struct xfs_btree_ops *ops,
1244 	xfs_daddr_t		blkno,
1245 	__u16			level,
1246 	__u16			numrecs,
1247 	__u64			owner)
1248 {
1249 	bool			crc = xfs_has_crc(mp);
1250 	__u32			magic = xfs_btree_magic(mp, ops);
1251 
1252 	buf->bb_magic = cpu_to_be32(magic);
1253 	buf->bb_level = cpu_to_be16(level);
1254 	buf->bb_numrecs = cpu_to_be16(numrecs);
1255 
1256 	if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259 		if (crc) {
1260 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263 			buf->bb_u.l.bb_pad = 0;
1264 			buf->bb_u.l.bb_lsn = 0;
1265 		}
1266 	} else {
1267 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269 		if (crc) {
1270 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271 			/* owner is a 32 bit value on short blocks */
1272 			buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274 			buf->bb_u.s.bb_lsn = 0;
1275 		}
1276 	}
1277 }
1278 
1279 void
1280 xfs_btree_init_block(
1281 	struct xfs_mount	*mp,
1282 	struct xfs_btree_block	*block,
1283 	const struct xfs_btree_ops *ops,
1284 	__u16			level,
1285 	__u16			numrecs,
1286 	__u64			owner)
1287 {
1288 	__xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289 			numrecs, owner);
1290 }
1291 
1292 void
1293 xfs_btree_init_buf(
1294 	struct xfs_mount		*mp,
1295 	struct xfs_buf			*bp,
1296 	const struct xfs_btree_ops	*ops,
1297 	__u16				level,
1298 	__u16				numrecs,
1299 	__u64				owner)
1300 {
1301 	__xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302 			xfs_buf_daddr(bp), level, numrecs, owner);
1303 	bp->b_ops = ops->buf_ops;
1304 }
1305 
1306 static inline __u64
1307 xfs_btree_owner(
1308 	struct xfs_btree_cur    *cur)
1309 {
1310 	switch (cur->bc_ops->type) {
1311 	case XFS_BTREE_TYPE_MEM:
1312 		return cur->bc_mem.xfbtree->owner;
1313 	case XFS_BTREE_TYPE_INODE:
1314 		return cur->bc_ino.ip->i_ino;
1315 	case XFS_BTREE_TYPE_AG:
1316 		return cur->bc_ag.pag->pag_agno;
1317 	default:
1318 		ASSERT(0);
1319 		return 0;
1320 	}
1321 }
1322 
1323 void
1324 xfs_btree_init_block_cur(
1325 	struct xfs_btree_cur	*cur,
1326 	struct xfs_buf		*bp,
1327 	int			level,
1328 	int			numrecs)
1329 {
1330 	xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331 			xfs_btree_owner(cur));
1332 }
1333 
1334 /*
1335  * Return true if ptr is the last record in the btree and
1336  * we need to track updates to this record.  The decision
1337  * will be further refined in the update_lastrec method.
1338  */
1339 STATIC int
1340 xfs_btree_is_lastrec(
1341 	struct xfs_btree_cur	*cur,
1342 	struct xfs_btree_block	*block,
1343 	int			level)
1344 {
1345 	union xfs_btree_ptr	ptr;
1346 
1347 	if (level > 0)
1348 		return 0;
1349 	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE))
1350 		return 0;
1351 
1352 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1353 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1354 		return 0;
1355 	return 1;
1356 }
1357 
1358 STATIC void
1359 xfs_btree_buf_to_ptr(
1360 	struct xfs_btree_cur	*cur,
1361 	struct xfs_buf		*bp,
1362 	union xfs_btree_ptr	*ptr)
1363 {
1364 	switch (cur->bc_ops->type) {
1365 	case XFS_BTREE_TYPE_AG:
1366 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1367 					xfs_buf_daddr(bp)));
1368 		break;
1369 	case XFS_BTREE_TYPE_INODE:
1370 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1371 					xfs_buf_daddr(bp)));
1372 		break;
1373 	case XFS_BTREE_TYPE_MEM:
1374 		ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1375 		break;
1376 	}
1377 }
1378 
1379 static inline void
1380 xfs_btree_set_refs(
1381 	struct xfs_btree_cur	*cur,
1382 	struct xfs_buf		*bp)
1383 {
1384 	xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1385 }
1386 
1387 int
1388 xfs_btree_get_buf_block(
1389 	struct xfs_btree_cur		*cur,
1390 	const union xfs_btree_ptr	*ptr,
1391 	struct xfs_btree_block		**block,
1392 	struct xfs_buf			**bpp)
1393 {
1394 	xfs_daddr_t			d;
1395 	int				error;
1396 
1397 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1398 	if (error)
1399 		return error;
1400 	error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1401 			xfs_btree_bbsize(cur), 0, bpp);
1402 	if (error)
1403 		return error;
1404 
1405 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1406 	*block = XFS_BUF_TO_BLOCK(*bpp);
1407 	return 0;
1408 }
1409 
1410 /*
1411  * Read in the buffer at the given ptr and return the buffer and
1412  * the block pointer within the buffer.
1413  */
1414 int
1415 xfs_btree_read_buf_block(
1416 	struct xfs_btree_cur		*cur,
1417 	const union xfs_btree_ptr	*ptr,
1418 	int				flags,
1419 	struct xfs_btree_block		**block,
1420 	struct xfs_buf			**bpp)
1421 {
1422 	struct xfs_mount	*mp = cur->bc_mp;
1423 	xfs_daddr_t		d;
1424 	int			error;
1425 
1426 	/* need to sort out how callers deal with failures first */
1427 	ASSERT(!(flags & XBF_TRYLOCK));
1428 
1429 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1430 	if (error)
1431 		return error;
1432 	error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1433 			xfs_btree_bbsize(cur), flags, bpp,
1434 			cur->bc_ops->buf_ops);
1435 	if (xfs_metadata_is_sick(error))
1436 		xfs_btree_mark_sick(cur);
1437 	if (error)
1438 		return error;
1439 
1440 	xfs_btree_set_refs(cur, *bpp);
1441 	*block = XFS_BUF_TO_BLOCK(*bpp);
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Copy keys from one btree block to another.
1447  */
1448 void
1449 xfs_btree_copy_keys(
1450 	struct xfs_btree_cur		*cur,
1451 	union xfs_btree_key		*dst_key,
1452 	const union xfs_btree_key	*src_key,
1453 	int				numkeys)
1454 {
1455 	ASSERT(numkeys >= 0);
1456 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1457 }
1458 
1459 /*
1460  * Copy records from one btree block to another.
1461  */
1462 STATIC void
1463 xfs_btree_copy_recs(
1464 	struct xfs_btree_cur	*cur,
1465 	union xfs_btree_rec	*dst_rec,
1466 	union xfs_btree_rec	*src_rec,
1467 	int			numrecs)
1468 {
1469 	ASSERT(numrecs >= 0);
1470 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1471 }
1472 
1473 /*
1474  * Copy block pointers from one btree block to another.
1475  */
1476 void
1477 xfs_btree_copy_ptrs(
1478 	struct xfs_btree_cur	*cur,
1479 	union xfs_btree_ptr	*dst_ptr,
1480 	const union xfs_btree_ptr *src_ptr,
1481 	int			numptrs)
1482 {
1483 	ASSERT(numptrs >= 0);
1484 	memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1485 }
1486 
1487 /*
1488  * Shift keys one index left/right inside a single btree block.
1489  */
1490 STATIC void
1491 xfs_btree_shift_keys(
1492 	struct xfs_btree_cur	*cur,
1493 	union xfs_btree_key	*key,
1494 	int			dir,
1495 	int			numkeys)
1496 {
1497 	char			*dst_key;
1498 
1499 	ASSERT(numkeys >= 0);
1500 	ASSERT(dir == 1 || dir == -1);
1501 
1502 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1503 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1504 }
1505 
1506 /*
1507  * Shift records one index left/right inside a single btree block.
1508  */
1509 STATIC void
1510 xfs_btree_shift_recs(
1511 	struct xfs_btree_cur	*cur,
1512 	union xfs_btree_rec	*rec,
1513 	int			dir,
1514 	int			numrecs)
1515 {
1516 	char			*dst_rec;
1517 
1518 	ASSERT(numrecs >= 0);
1519 	ASSERT(dir == 1 || dir == -1);
1520 
1521 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1522 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1523 }
1524 
1525 /*
1526  * Shift block pointers one index left/right inside a single btree block.
1527  */
1528 STATIC void
1529 xfs_btree_shift_ptrs(
1530 	struct xfs_btree_cur	*cur,
1531 	union xfs_btree_ptr	*ptr,
1532 	int			dir,
1533 	int			numptrs)
1534 {
1535 	char			*dst_ptr;
1536 
1537 	ASSERT(numptrs >= 0);
1538 	ASSERT(dir == 1 || dir == -1);
1539 
1540 	dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1541 	memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1542 }
1543 
1544 /*
1545  * Log key values from the btree block.
1546  */
1547 STATIC void
1548 xfs_btree_log_keys(
1549 	struct xfs_btree_cur	*cur,
1550 	struct xfs_buf		*bp,
1551 	int			first,
1552 	int			last)
1553 {
1554 
1555 	if (bp) {
1556 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1557 		xfs_trans_log_buf(cur->bc_tp, bp,
1558 				  xfs_btree_key_offset(cur, first),
1559 				  xfs_btree_key_offset(cur, last + 1) - 1);
1560 	} else {
1561 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1562 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1563 	}
1564 }
1565 
1566 /*
1567  * Log record values from the btree block.
1568  */
1569 void
1570 xfs_btree_log_recs(
1571 	struct xfs_btree_cur	*cur,
1572 	struct xfs_buf		*bp,
1573 	int			first,
1574 	int			last)
1575 {
1576 
1577 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1578 	xfs_trans_log_buf(cur->bc_tp, bp,
1579 			  xfs_btree_rec_offset(cur, first),
1580 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1581 
1582 }
1583 
1584 /*
1585  * Log block pointer fields from a btree block (nonleaf).
1586  */
1587 STATIC void
1588 xfs_btree_log_ptrs(
1589 	struct xfs_btree_cur	*cur,	/* btree cursor */
1590 	struct xfs_buf		*bp,	/* buffer containing btree block */
1591 	int			first,	/* index of first pointer to log */
1592 	int			last)	/* index of last pointer to log */
1593 {
1594 
1595 	if (bp) {
1596 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1597 		int			level = xfs_btree_get_level(block);
1598 
1599 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1600 		xfs_trans_log_buf(cur->bc_tp, bp,
1601 				xfs_btree_ptr_offset(cur, first, level),
1602 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1603 	} else {
1604 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1605 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1606 	}
1607 
1608 }
1609 
1610 /*
1611  * Log fields from a btree block header.
1612  */
1613 void
1614 xfs_btree_log_block(
1615 	struct xfs_btree_cur	*cur,	/* btree cursor */
1616 	struct xfs_buf		*bp,	/* buffer containing btree block */
1617 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1618 {
1619 	int			first;	/* first byte offset logged */
1620 	int			last;	/* last byte offset logged */
1621 	static const short	soffsets[] = {	/* table of offsets (short) */
1622 		offsetof(struct xfs_btree_block, bb_magic),
1623 		offsetof(struct xfs_btree_block, bb_level),
1624 		offsetof(struct xfs_btree_block, bb_numrecs),
1625 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1626 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1627 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1628 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1629 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1630 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1631 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1632 		XFS_BTREE_SBLOCK_CRC_LEN
1633 	};
1634 	static const short	loffsets[] = {	/* table of offsets (long) */
1635 		offsetof(struct xfs_btree_block, bb_magic),
1636 		offsetof(struct xfs_btree_block, bb_level),
1637 		offsetof(struct xfs_btree_block, bb_numrecs),
1638 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1639 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1640 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1641 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1642 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1643 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1644 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1645 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1646 		XFS_BTREE_LBLOCK_CRC_LEN
1647 	};
1648 
1649 	if (bp) {
1650 		int nbits;
1651 
1652 		if (xfs_has_crc(cur->bc_mp)) {
1653 			/*
1654 			 * We don't log the CRC when updating a btree
1655 			 * block but instead recreate it during log
1656 			 * recovery.  As the log buffers have checksums
1657 			 * of their own this is safe and avoids logging a crc
1658 			 * update in a lot of places.
1659 			 */
1660 			if (fields == XFS_BB_ALL_BITS)
1661 				fields = XFS_BB_ALL_BITS_CRC;
1662 			nbits = XFS_BB_NUM_BITS_CRC;
1663 		} else {
1664 			nbits = XFS_BB_NUM_BITS;
1665 		}
1666 		xfs_btree_offsets(fields,
1667 				  (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1668 					loffsets : soffsets,
1669 				  nbits, &first, &last);
1670 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1671 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1672 	} else {
1673 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1674 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1675 	}
1676 }
1677 
1678 /*
1679  * Increment cursor by one record at the level.
1680  * For nonzero levels the leaf-ward information is untouched.
1681  */
1682 int						/* error */
1683 xfs_btree_increment(
1684 	struct xfs_btree_cur	*cur,
1685 	int			level,
1686 	int			*stat)		/* success/failure */
1687 {
1688 	struct xfs_btree_block	*block;
1689 	union xfs_btree_ptr	ptr;
1690 	struct xfs_buf		*bp;
1691 	int			error;		/* error return value */
1692 	int			lev;
1693 
1694 	ASSERT(level < cur->bc_nlevels);
1695 
1696 	/* Read-ahead to the right at this level. */
1697 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1698 
1699 	/* Get a pointer to the btree block. */
1700 	block = xfs_btree_get_block(cur, level, &bp);
1701 
1702 #ifdef DEBUG
1703 	error = xfs_btree_check_block(cur, block, level, bp);
1704 	if (error)
1705 		goto error0;
1706 #endif
1707 
1708 	/* We're done if we remain in the block after the increment. */
1709 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1710 		goto out1;
1711 
1712 	/* Fail if we just went off the right edge of the tree. */
1713 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1714 	if (xfs_btree_ptr_is_null(cur, &ptr))
1715 		goto out0;
1716 
1717 	XFS_BTREE_STATS_INC(cur, increment);
1718 
1719 	/*
1720 	 * March up the tree incrementing pointers.
1721 	 * Stop when we don't go off the right edge of a block.
1722 	 */
1723 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1724 		block = xfs_btree_get_block(cur, lev, &bp);
1725 
1726 #ifdef DEBUG
1727 		error = xfs_btree_check_block(cur, block, lev, bp);
1728 		if (error)
1729 			goto error0;
1730 #endif
1731 
1732 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1733 			break;
1734 
1735 		/* Read-ahead the right block for the next loop. */
1736 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1737 	}
1738 
1739 	/*
1740 	 * If we went off the root then we are either seriously
1741 	 * confused or have the tree root in an inode.
1742 	 */
1743 	if (lev == cur->bc_nlevels) {
1744 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1745 			goto out0;
1746 		ASSERT(0);
1747 		xfs_btree_mark_sick(cur);
1748 		error = -EFSCORRUPTED;
1749 		goto error0;
1750 	}
1751 	ASSERT(lev < cur->bc_nlevels);
1752 
1753 	/*
1754 	 * Now walk back down the tree, fixing up the cursor's buffer
1755 	 * pointers and key numbers.
1756 	 */
1757 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1758 		union xfs_btree_ptr	*ptrp;
1759 
1760 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1761 		--lev;
1762 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1763 		if (error)
1764 			goto error0;
1765 
1766 		xfs_btree_setbuf(cur, lev, bp);
1767 		cur->bc_levels[lev].ptr = 1;
1768 	}
1769 out1:
1770 	*stat = 1;
1771 	return 0;
1772 
1773 out0:
1774 	*stat = 0;
1775 	return 0;
1776 
1777 error0:
1778 	return error;
1779 }
1780 
1781 /*
1782  * Decrement cursor by one record at the level.
1783  * For nonzero levels the leaf-ward information is untouched.
1784  */
1785 int						/* error */
1786 xfs_btree_decrement(
1787 	struct xfs_btree_cur	*cur,
1788 	int			level,
1789 	int			*stat)		/* success/failure */
1790 {
1791 	struct xfs_btree_block	*block;
1792 	struct xfs_buf		*bp;
1793 	int			error;		/* error return value */
1794 	int			lev;
1795 	union xfs_btree_ptr	ptr;
1796 
1797 	ASSERT(level < cur->bc_nlevels);
1798 
1799 	/* Read-ahead to the left at this level. */
1800 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1801 
1802 	/* We're done if we remain in the block after the decrement. */
1803 	if (--cur->bc_levels[level].ptr > 0)
1804 		goto out1;
1805 
1806 	/* Get a pointer to the btree block. */
1807 	block = xfs_btree_get_block(cur, level, &bp);
1808 
1809 #ifdef DEBUG
1810 	error = xfs_btree_check_block(cur, block, level, bp);
1811 	if (error)
1812 		goto error0;
1813 #endif
1814 
1815 	/* Fail if we just went off the left edge of the tree. */
1816 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1817 	if (xfs_btree_ptr_is_null(cur, &ptr))
1818 		goto out0;
1819 
1820 	XFS_BTREE_STATS_INC(cur, decrement);
1821 
1822 	/*
1823 	 * March up the tree decrementing pointers.
1824 	 * Stop when we don't go off the left edge of a block.
1825 	 */
1826 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1827 		if (--cur->bc_levels[lev].ptr > 0)
1828 			break;
1829 		/* Read-ahead the left block for the next loop. */
1830 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831 	}
1832 
1833 	/*
1834 	 * If we went off the root then we are seriously confused.
1835 	 * or the root of the tree is in an inode.
1836 	 */
1837 	if (lev == cur->bc_nlevels) {
1838 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1839 			goto out0;
1840 		ASSERT(0);
1841 		xfs_btree_mark_sick(cur);
1842 		error = -EFSCORRUPTED;
1843 		goto error0;
1844 	}
1845 	ASSERT(lev < cur->bc_nlevels);
1846 
1847 	/*
1848 	 * Now walk back down the tree, fixing up the cursor's buffer
1849 	 * pointers and key numbers.
1850 	 */
1851 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1852 		union xfs_btree_ptr	*ptrp;
1853 
1854 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1855 		--lev;
1856 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1857 		if (error)
1858 			goto error0;
1859 		xfs_btree_setbuf(cur, lev, bp);
1860 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1861 	}
1862 out1:
1863 	*stat = 1;
1864 	return 0;
1865 
1866 out0:
1867 	*stat = 0;
1868 	return 0;
1869 
1870 error0:
1871 	return error;
1872 }
1873 
1874 /*
1875  * Check the btree block owner now that we have the context to know who the
1876  * real owner is.
1877  */
1878 static inline xfs_failaddr_t
1879 xfs_btree_check_block_owner(
1880 	struct xfs_btree_cur	*cur,
1881 	struct xfs_btree_block	*block)
1882 {
1883 	__u64			owner;
1884 
1885 	if (!xfs_has_crc(cur->bc_mp) ||
1886 	    (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1887 		return NULL;
1888 
1889 	owner = xfs_btree_owner(cur);
1890 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1891 		if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1892 			return __this_address;
1893 	} else {
1894 		if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1895 			return __this_address;
1896 	}
1897 
1898 	return NULL;
1899 }
1900 
1901 int
1902 xfs_btree_lookup_get_block(
1903 	struct xfs_btree_cur		*cur,	/* btree cursor */
1904 	int				level,	/* level in the btree */
1905 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1906 	struct xfs_btree_block		**blkp) /* return btree block */
1907 {
1908 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1909 	xfs_daddr_t		daddr;
1910 	int			error = 0;
1911 
1912 	/* special case the root block if in an inode */
1913 	if (xfs_btree_at_iroot(cur, level)) {
1914 		*blkp = xfs_btree_get_iroot(cur);
1915 		return 0;
1916 	}
1917 
1918 	/*
1919 	 * If the old buffer at this level for the disk address we are
1920 	 * looking for re-use it.
1921 	 *
1922 	 * Otherwise throw it away and get a new one.
1923 	 */
1924 	bp = cur->bc_levels[level].bp;
1925 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1926 	if (error)
1927 		return error;
1928 	if (bp && xfs_buf_daddr(bp) == daddr) {
1929 		*blkp = XFS_BUF_TO_BLOCK(bp);
1930 		return 0;
1931 	}
1932 
1933 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1934 	if (error)
1935 		return error;
1936 
1937 	/* Check the inode owner since the verifiers don't. */
1938 	if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1939 		goto out_bad;
1940 
1941 	/* Did we get the level we were looking for? */
1942 	if (be16_to_cpu((*blkp)->bb_level) != level)
1943 		goto out_bad;
1944 
1945 	/* Check that internal nodes have at least one record. */
1946 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1947 		goto out_bad;
1948 
1949 	xfs_btree_setbuf(cur, level, bp);
1950 	return 0;
1951 
1952 out_bad:
1953 	*blkp = NULL;
1954 	xfs_buf_mark_corrupt(bp);
1955 	xfs_trans_brelse(cur->bc_tp, bp);
1956 	xfs_btree_mark_sick(cur);
1957 	return -EFSCORRUPTED;
1958 }
1959 
1960 /*
1961  * Get current search key.  For level 0 we don't actually have a key
1962  * structure so we make one up from the record.  For all other levels
1963  * we just return the right key.
1964  */
1965 STATIC union xfs_btree_key *
1966 xfs_lookup_get_search_key(
1967 	struct xfs_btree_cur	*cur,
1968 	int			level,
1969 	int			keyno,
1970 	struct xfs_btree_block	*block,
1971 	union xfs_btree_key	*kp)
1972 {
1973 	if (level == 0) {
1974 		cur->bc_ops->init_key_from_rec(kp,
1975 				xfs_btree_rec_addr(cur, keyno, block));
1976 		return kp;
1977 	}
1978 
1979 	return xfs_btree_key_addr(cur, keyno, block);
1980 }
1981 
1982 /*
1983  * Initialize a pointer to the root block.
1984  */
1985 void
1986 xfs_btree_init_ptr_from_cur(
1987 	struct xfs_btree_cur	*cur,
1988 	union xfs_btree_ptr	*ptr)
1989 {
1990 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1991 		/*
1992 		 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1993 		 * in xfs_btree_lookup_get_block and don't need a pointer here.
1994 		 */
1995 		ptr->l = 0;
1996 	} else if (cur->bc_flags & XFS_BTREE_STAGING) {
1997 		ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1998 	} else {
1999 		cur->bc_ops->init_ptr_from_cur(cur, ptr);
2000 	}
2001 }
2002 
2003 /*
2004  * Lookup the record.  The cursor is made to point to it, based on dir.
2005  * stat is set to 0 if can't find any such record, 1 for success.
2006  */
2007 int					/* error */
2008 xfs_btree_lookup(
2009 	struct xfs_btree_cur	*cur,	/* btree cursor */
2010 	xfs_lookup_t		dir,	/* <=, ==, or >= */
2011 	int			*stat)	/* success/failure */
2012 {
2013 	struct xfs_btree_block	*block;	/* current btree block */
2014 	int64_t			diff;	/* difference for the current key */
2015 	int			error;	/* error return value */
2016 	int			keyno;	/* current key number */
2017 	int			level;	/* level in the btree */
2018 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
2019 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
2020 
2021 	XFS_BTREE_STATS_INC(cur, lookup);
2022 
2023 	/* No such thing as a zero-level tree. */
2024 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2025 		xfs_btree_mark_sick(cur);
2026 		return -EFSCORRUPTED;
2027 	}
2028 
2029 	block = NULL;
2030 	keyno = 0;
2031 
2032 	/* initialise start pointer from cursor */
2033 	xfs_btree_init_ptr_from_cur(cur, &ptr);
2034 	pp = &ptr;
2035 
2036 	/*
2037 	 * Iterate over each level in the btree, starting at the root.
2038 	 * For each level above the leaves, find the key we need, based
2039 	 * on the lookup record, then follow the corresponding block
2040 	 * pointer down to the next level.
2041 	 */
2042 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2043 		/* Get the block we need to do the lookup on. */
2044 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2045 		if (error)
2046 			goto error0;
2047 
2048 		if (diff == 0) {
2049 			/*
2050 			 * If we already had a key match at a higher level, we
2051 			 * know we need to use the first entry in this block.
2052 			 */
2053 			keyno = 1;
2054 		} else {
2055 			/* Otherwise search this block. Do a binary search. */
2056 
2057 			int	high;	/* high entry number */
2058 			int	low;	/* low entry number */
2059 
2060 			/* Set low and high entry numbers, 1-based. */
2061 			low = 1;
2062 			high = xfs_btree_get_numrecs(block);
2063 			if (!high) {
2064 				/* Block is empty, must be an empty leaf. */
2065 				if (level != 0 || cur->bc_nlevels != 1) {
2066 					XFS_CORRUPTION_ERROR(__func__,
2067 							XFS_ERRLEVEL_LOW,
2068 							cur->bc_mp, block,
2069 							sizeof(*block));
2070 					xfs_btree_mark_sick(cur);
2071 					return -EFSCORRUPTED;
2072 				}
2073 
2074 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2075 				*stat = 0;
2076 				return 0;
2077 			}
2078 
2079 			/* Binary search the block. */
2080 			while (low <= high) {
2081 				union xfs_btree_key	key;
2082 				union xfs_btree_key	*kp;
2083 
2084 				XFS_BTREE_STATS_INC(cur, compare);
2085 
2086 				/* keyno is average of low and high. */
2087 				keyno = (low + high) >> 1;
2088 
2089 				/* Get current search key */
2090 				kp = xfs_lookup_get_search_key(cur, level,
2091 						keyno, block, &key);
2092 
2093 				/*
2094 				 * Compute difference to get next direction:
2095 				 *  - less than, move right
2096 				 *  - greater than, move left
2097 				 *  - equal, we're done
2098 				 */
2099 				diff = cur->bc_ops->key_diff(cur, kp);
2100 				if (diff < 0)
2101 					low = keyno + 1;
2102 				else if (diff > 0)
2103 					high = keyno - 1;
2104 				else
2105 					break;
2106 			}
2107 		}
2108 
2109 		/*
2110 		 * If there are more levels, set up for the next level
2111 		 * by getting the block number and filling in the cursor.
2112 		 */
2113 		if (level > 0) {
2114 			/*
2115 			 * If we moved left, need the previous key number,
2116 			 * unless there isn't one.
2117 			 */
2118 			if (diff > 0 && --keyno < 1)
2119 				keyno = 1;
2120 			pp = xfs_btree_ptr_addr(cur, keyno, block);
2121 
2122 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2123 			if (error)
2124 				goto error0;
2125 
2126 			cur->bc_levels[level].ptr = keyno;
2127 		}
2128 	}
2129 
2130 	/* Done with the search. See if we need to adjust the results. */
2131 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2132 		keyno++;
2133 		/*
2134 		 * If ge search and we went off the end of the block, but it's
2135 		 * not the last block, we're in the wrong block.
2136 		 */
2137 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2138 		if (dir == XFS_LOOKUP_GE &&
2139 		    keyno > xfs_btree_get_numrecs(block) &&
2140 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2141 			int	i;
2142 
2143 			cur->bc_levels[0].ptr = keyno;
2144 			error = xfs_btree_increment(cur, 0, &i);
2145 			if (error)
2146 				goto error0;
2147 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2148 				xfs_btree_mark_sick(cur);
2149 				return -EFSCORRUPTED;
2150 			}
2151 			*stat = 1;
2152 			return 0;
2153 		}
2154 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2155 		keyno--;
2156 	cur->bc_levels[0].ptr = keyno;
2157 
2158 	/* Return if we succeeded or not. */
2159 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2160 		*stat = 0;
2161 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2162 		*stat = 1;
2163 	else
2164 		*stat = 0;
2165 	return 0;
2166 
2167 error0:
2168 	return error;
2169 }
2170 
2171 /* Find the high key storage area from a regular key. */
2172 union xfs_btree_key *
2173 xfs_btree_high_key_from_key(
2174 	struct xfs_btree_cur	*cur,
2175 	union xfs_btree_key	*key)
2176 {
2177 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2178 	return (union xfs_btree_key *)((char *)key +
2179 			(cur->bc_ops->key_len / 2));
2180 }
2181 
2182 /* Determine the low (and high if overlapped) keys of a leaf block */
2183 STATIC void
2184 xfs_btree_get_leaf_keys(
2185 	struct xfs_btree_cur	*cur,
2186 	struct xfs_btree_block	*block,
2187 	union xfs_btree_key	*key)
2188 {
2189 	union xfs_btree_key	max_hkey;
2190 	union xfs_btree_key	hkey;
2191 	union xfs_btree_rec	*rec;
2192 	union xfs_btree_key	*high;
2193 	int			n;
2194 
2195 	rec = xfs_btree_rec_addr(cur, 1, block);
2196 	cur->bc_ops->init_key_from_rec(key, rec);
2197 
2198 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2199 
2200 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2201 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2202 			rec = xfs_btree_rec_addr(cur, n, block);
2203 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2204 			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2205 				max_hkey = hkey;
2206 		}
2207 
2208 		high = xfs_btree_high_key_from_key(cur, key);
2209 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2210 	}
2211 }
2212 
2213 /* Determine the low (and high if overlapped) keys of a node block */
2214 STATIC void
2215 xfs_btree_get_node_keys(
2216 	struct xfs_btree_cur	*cur,
2217 	struct xfs_btree_block	*block,
2218 	union xfs_btree_key	*key)
2219 {
2220 	union xfs_btree_key	*hkey;
2221 	union xfs_btree_key	*max_hkey;
2222 	union xfs_btree_key	*high;
2223 	int			n;
2224 
2225 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2226 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2227 				cur->bc_ops->key_len / 2);
2228 
2229 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2230 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2231 			hkey = xfs_btree_high_key_addr(cur, n, block);
2232 			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2233 				max_hkey = hkey;
2234 		}
2235 
2236 		high = xfs_btree_high_key_from_key(cur, key);
2237 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2238 	} else {
2239 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2240 				cur->bc_ops->key_len);
2241 	}
2242 }
2243 
2244 /* Derive the keys for any btree block. */
2245 void
2246 xfs_btree_get_keys(
2247 	struct xfs_btree_cur	*cur,
2248 	struct xfs_btree_block	*block,
2249 	union xfs_btree_key	*key)
2250 {
2251 	if (be16_to_cpu(block->bb_level) == 0)
2252 		xfs_btree_get_leaf_keys(cur, block, key);
2253 	else
2254 		xfs_btree_get_node_keys(cur, block, key);
2255 }
2256 
2257 /*
2258  * Decide if we need to update the parent keys of a btree block.  For
2259  * a standard btree this is only necessary if we're updating the first
2260  * record/key.  For an overlapping btree, we must always update the
2261  * keys because the highest key can be in any of the records or keys
2262  * in the block.
2263  */
2264 static inline bool
2265 xfs_btree_needs_key_update(
2266 	struct xfs_btree_cur	*cur,
2267 	int			ptr)
2268 {
2269 	return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2270 }
2271 
2272 /*
2273  * Update the low and high parent keys of the given level, progressing
2274  * towards the root.  If force_all is false, stop if the keys for a given
2275  * level do not need updating.
2276  */
2277 STATIC int
2278 __xfs_btree_updkeys(
2279 	struct xfs_btree_cur	*cur,
2280 	int			level,
2281 	struct xfs_btree_block	*block,
2282 	struct xfs_buf		*bp0,
2283 	bool			force_all)
2284 {
2285 	union xfs_btree_key	key;	/* keys from current level */
2286 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2287 	union xfs_btree_key	*hkey;
2288 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2289 	union xfs_btree_key	*nhkey;
2290 	struct xfs_buf		*bp;
2291 	int			ptr;
2292 
2293 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2294 
2295 	/* Exit if there aren't any parent levels to update. */
2296 	if (level + 1 >= cur->bc_nlevels)
2297 		return 0;
2298 
2299 	trace_xfs_btree_updkeys(cur, level, bp0);
2300 
2301 	lkey = &key;
2302 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2303 	xfs_btree_get_keys(cur, block, lkey);
2304 	for (level++; level < cur->bc_nlevels; level++) {
2305 #ifdef DEBUG
2306 		int		error;
2307 #endif
2308 		block = xfs_btree_get_block(cur, level, &bp);
2309 		trace_xfs_btree_updkeys(cur, level, bp);
2310 #ifdef DEBUG
2311 		error = xfs_btree_check_block(cur, block, level, bp);
2312 		if (error)
2313 			return error;
2314 #endif
2315 		ptr = cur->bc_levels[level].ptr;
2316 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2317 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2318 		if (!force_all &&
2319 		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2320 		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2321 			break;
2322 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2323 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2324 		if (level + 1 >= cur->bc_nlevels)
2325 			break;
2326 		xfs_btree_get_node_keys(cur, block, lkey);
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 /* Update all the keys from some level in cursor back to the root. */
2333 STATIC int
2334 xfs_btree_updkeys_force(
2335 	struct xfs_btree_cur	*cur,
2336 	int			level)
2337 {
2338 	struct xfs_buf		*bp;
2339 	struct xfs_btree_block	*block;
2340 
2341 	block = xfs_btree_get_block(cur, level, &bp);
2342 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2343 }
2344 
2345 /*
2346  * Update the parent keys of the given level, progressing towards the root.
2347  */
2348 STATIC int
2349 xfs_btree_update_keys(
2350 	struct xfs_btree_cur	*cur,
2351 	int			level)
2352 {
2353 	struct xfs_btree_block	*block;
2354 	struct xfs_buf		*bp;
2355 	union xfs_btree_key	*kp;
2356 	union xfs_btree_key	key;
2357 	int			ptr;
2358 
2359 	ASSERT(level >= 0);
2360 
2361 	block = xfs_btree_get_block(cur, level, &bp);
2362 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2363 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2364 
2365 	/*
2366 	 * Go up the tree from this level toward the root.
2367 	 * At each level, update the key value to the value input.
2368 	 * Stop when we reach a level where the cursor isn't pointing
2369 	 * at the first entry in the block.
2370 	 */
2371 	xfs_btree_get_keys(cur, block, &key);
2372 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2373 #ifdef DEBUG
2374 		int		error;
2375 #endif
2376 		block = xfs_btree_get_block(cur, level, &bp);
2377 #ifdef DEBUG
2378 		error = xfs_btree_check_block(cur, block, level, bp);
2379 		if (error)
2380 			return error;
2381 #endif
2382 		ptr = cur->bc_levels[level].ptr;
2383 		kp = xfs_btree_key_addr(cur, ptr, block);
2384 		xfs_btree_copy_keys(cur, kp, &key, 1);
2385 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Update the record referred to by cur to the value in the
2393  * given record. This either works (return 0) or gets an
2394  * EFSCORRUPTED error.
2395  */
2396 int
2397 xfs_btree_update(
2398 	struct xfs_btree_cur	*cur,
2399 	union xfs_btree_rec	*rec)
2400 {
2401 	struct xfs_btree_block	*block;
2402 	struct xfs_buf		*bp;
2403 	int			error;
2404 	int			ptr;
2405 	union xfs_btree_rec	*rp;
2406 
2407 	/* Pick up the current block. */
2408 	block = xfs_btree_get_block(cur, 0, &bp);
2409 
2410 #ifdef DEBUG
2411 	error = xfs_btree_check_block(cur, block, 0, bp);
2412 	if (error)
2413 		goto error0;
2414 #endif
2415 	/* Get the address of the rec to be updated. */
2416 	ptr = cur->bc_levels[0].ptr;
2417 	rp = xfs_btree_rec_addr(cur, ptr, block);
2418 
2419 	/* Fill in the new contents and log them. */
2420 	xfs_btree_copy_recs(cur, rp, rec, 1);
2421 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2422 
2423 	/*
2424 	 * If we are tracking the last record in the tree and
2425 	 * we are at the far right edge of the tree, update it.
2426 	 */
2427 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2428 		cur->bc_ops->update_lastrec(cur, block, rec,
2429 					    ptr, LASTREC_UPDATE);
2430 	}
2431 
2432 	/* Pass new key value up to our parent. */
2433 	if (xfs_btree_needs_key_update(cur, ptr)) {
2434 		error = xfs_btree_update_keys(cur, 0);
2435 		if (error)
2436 			goto error0;
2437 	}
2438 
2439 	return 0;
2440 
2441 error0:
2442 	return error;
2443 }
2444 
2445 /*
2446  * Move 1 record left from cur/level if possible.
2447  * Update cur to reflect the new path.
2448  */
2449 STATIC int					/* error */
2450 xfs_btree_lshift(
2451 	struct xfs_btree_cur	*cur,
2452 	int			level,
2453 	int			*stat)		/* success/failure */
2454 {
2455 	struct xfs_buf		*lbp;		/* left buffer pointer */
2456 	struct xfs_btree_block	*left;		/* left btree block */
2457 	int			lrecs;		/* left record count */
2458 	struct xfs_buf		*rbp;		/* right buffer pointer */
2459 	struct xfs_btree_block	*right;		/* right btree block */
2460 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2461 	int			rrecs;		/* right record count */
2462 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2463 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2464 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2465 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2466 	int			error;		/* error return value */
2467 	int			i;
2468 
2469 	if (xfs_btree_at_iroot(cur, level))
2470 		goto out0;
2471 
2472 	/* Set up variables for this block as "right". */
2473 	right = xfs_btree_get_block(cur, level, &rbp);
2474 
2475 #ifdef DEBUG
2476 	error = xfs_btree_check_block(cur, right, level, rbp);
2477 	if (error)
2478 		goto error0;
2479 #endif
2480 
2481 	/* If we've got no left sibling then we can't shift an entry left. */
2482 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2483 	if (xfs_btree_ptr_is_null(cur, &lptr))
2484 		goto out0;
2485 
2486 	/*
2487 	 * If the cursor entry is the one that would be moved, don't
2488 	 * do it... it's too complicated.
2489 	 */
2490 	if (cur->bc_levels[level].ptr <= 1)
2491 		goto out0;
2492 
2493 	/* Set up the left neighbor as "left". */
2494 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2495 	if (error)
2496 		goto error0;
2497 
2498 	/* If it's full, it can't take another entry. */
2499 	lrecs = xfs_btree_get_numrecs(left);
2500 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2501 		goto out0;
2502 
2503 	rrecs = xfs_btree_get_numrecs(right);
2504 
2505 	/*
2506 	 * We add one entry to the left side and remove one for the right side.
2507 	 * Account for it here, the changes will be updated on disk and logged
2508 	 * later.
2509 	 */
2510 	lrecs++;
2511 	rrecs--;
2512 
2513 	XFS_BTREE_STATS_INC(cur, lshift);
2514 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2515 
2516 	/*
2517 	 * If non-leaf, copy a key and a ptr to the left block.
2518 	 * Log the changes to the left block.
2519 	 */
2520 	if (level > 0) {
2521 		/* It's a non-leaf.  Move keys and pointers. */
2522 		union xfs_btree_key	*lkp;	/* left btree key */
2523 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2524 
2525 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2526 		rkp = xfs_btree_key_addr(cur, 1, right);
2527 
2528 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2529 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2530 
2531 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2532 		if (error)
2533 			goto error0;
2534 
2535 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2536 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2537 
2538 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2539 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2540 
2541 		ASSERT(cur->bc_ops->keys_inorder(cur,
2542 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2543 	} else {
2544 		/* It's a leaf.  Move records.  */
2545 		union xfs_btree_rec	*lrp;	/* left record pointer */
2546 
2547 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2548 		rrp = xfs_btree_rec_addr(cur, 1, right);
2549 
2550 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2551 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2552 
2553 		ASSERT(cur->bc_ops->recs_inorder(cur,
2554 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2555 	}
2556 
2557 	xfs_btree_set_numrecs(left, lrecs);
2558 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2559 
2560 	xfs_btree_set_numrecs(right, rrecs);
2561 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2562 
2563 	/*
2564 	 * Slide the contents of right down one entry.
2565 	 */
2566 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2567 	if (level > 0) {
2568 		/* It's a nonleaf. operate on keys and ptrs */
2569 		for (i = 0; i < rrecs; i++) {
2570 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2571 			if (error)
2572 				goto error0;
2573 		}
2574 
2575 		xfs_btree_shift_keys(cur,
2576 				xfs_btree_key_addr(cur, 2, right),
2577 				-1, rrecs);
2578 		xfs_btree_shift_ptrs(cur,
2579 				xfs_btree_ptr_addr(cur, 2, right),
2580 				-1, rrecs);
2581 
2582 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2583 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2584 	} else {
2585 		/* It's a leaf. operate on records */
2586 		xfs_btree_shift_recs(cur,
2587 			xfs_btree_rec_addr(cur, 2, right),
2588 			-1, rrecs);
2589 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2590 	}
2591 
2592 	/*
2593 	 * Using a temporary cursor, update the parent key values of the
2594 	 * block on the left.
2595 	 */
2596 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2597 		error = xfs_btree_dup_cursor(cur, &tcur);
2598 		if (error)
2599 			goto error0;
2600 		i = xfs_btree_firstrec(tcur, level);
2601 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2602 			xfs_btree_mark_sick(cur);
2603 			error = -EFSCORRUPTED;
2604 			goto error0;
2605 		}
2606 
2607 		error = xfs_btree_decrement(tcur, level, &i);
2608 		if (error)
2609 			goto error1;
2610 
2611 		/* Update the parent high keys of the left block, if needed. */
2612 		error = xfs_btree_update_keys(tcur, level);
2613 		if (error)
2614 			goto error1;
2615 
2616 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2617 	}
2618 
2619 	/* Update the parent keys of the right block. */
2620 	error = xfs_btree_update_keys(cur, level);
2621 	if (error)
2622 		goto error0;
2623 
2624 	/* Slide the cursor value left one. */
2625 	cur->bc_levels[level].ptr--;
2626 
2627 	*stat = 1;
2628 	return 0;
2629 
2630 out0:
2631 	*stat = 0;
2632 	return 0;
2633 
2634 error0:
2635 	return error;
2636 
2637 error1:
2638 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2639 	return error;
2640 }
2641 
2642 /*
2643  * Move 1 record right from cur/level if possible.
2644  * Update cur to reflect the new path.
2645  */
2646 STATIC int					/* error */
2647 xfs_btree_rshift(
2648 	struct xfs_btree_cur	*cur,
2649 	int			level,
2650 	int			*stat)		/* success/failure */
2651 {
2652 	struct xfs_buf		*lbp;		/* left buffer pointer */
2653 	struct xfs_btree_block	*left;		/* left btree block */
2654 	struct xfs_buf		*rbp;		/* right buffer pointer */
2655 	struct xfs_btree_block	*right;		/* right btree block */
2656 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2657 	union xfs_btree_ptr	rptr;		/* right block pointer */
2658 	union xfs_btree_key	*rkp;		/* right btree key */
2659 	int			rrecs;		/* right record count */
2660 	int			lrecs;		/* left record count */
2661 	int			error;		/* error return value */
2662 	int			i;		/* loop counter */
2663 
2664 	if (xfs_btree_at_iroot(cur, level))
2665 		goto out0;
2666 
2667 	/* Set up variables for this block as "left". */
2668 	left = xfs_btree_get_block(cur, level, &lbp);
2669 
2670 #ifdef DEBUG
2671 	error = xfs_btree_check_block(cur, left, level, lbp);
2672 	if (error)
2673 		goto error0;
2674 #endif
2675 
2676 	/* If we've got no right sibling then we can't shift an entry right. */
2677 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2678 	if (xfs_btree_ptr_is_null(cur, &rptr))
2679 		goto out0;
2680 
2681 	/*
2682 	 * If the cursor entry is the one that would be moved, don't
2683 	 * do it... it's too complicated.
2684 	 */
2685 	lrecs = xfs_btree_get_numrecs(left);
2686 	if (cur->bc_levels[level].ptr >= lrecs)
2687 		goto out0;
2688 
2689 	/* Set up the right neighbor as "right". */
2690 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2691 	if (error)
2692 		goto error0;
2693 
2694 	/* If it's full, it can't take another entry. */
2695 	rrecs = xfs_btree_get_numrecs(right);
2696 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2697 		goto out0;
2698 
2699 	XFS_BTREE_STATS_INC(cur, rshift);
2700 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701 
2702 	/*
2703 	 * Make a hole at the start of the right neighbor block, then
2704 	 * copy the last left block entry to the hole.
2705 	 */
2706 	if (level > 0) {
2707 		/* It's a nonleaf. make a hole in the keys and ptrs */
2708 		union xfs_btree_key	*lkp;
2709 		union xfs_btree_ptr	*lpp;
2710 		union xfs_btree_ptr	*rpp;
2711 
2712 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2713 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2714 		rkp = xfs_btree_key_addr(cur, 1, right);
2715 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2716 
2717 		for (i = rrecs - 1; i >= 0; i--) {
2718 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2719 			if (error)
2720 				goto error0;
2721 		}
2722 
2723 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2724 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2725 
2726 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2727 		if (error)
2728 			goto error0;
2729 
2730 		/* Now put the new data in, and log it. */
2731 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2732 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2733 
2734 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2735 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2736 
2737 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2738 			xfs_btree_key_addr(cur, 2, right)));
2739 	} else {
2740 		/* It's a leaf. make a hole in the records */
2741 		union xfs_btree_rec	*lrp;
2742 		union xfs_btree_rec	*rrp;
2743 
2744 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2745 		rrp = xfs_btree_rec_addr(cur, 1, right);
2746 
2747 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2748 
2749 		/* Now put the new data in, and log it. */
2750 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2751 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2752 	}
2753 
2754 	/*
2755 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2756 	 */
2757 	xfs_btree_set_numrecs(left, --lrecs);
2758 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2759 
2760 	xfs_btree_set_numrecs(right, ++rrecs);
2761 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2762 
2763 	/*
2764 	 * Using a temporary cursor, update the parent key values of the
2765 	 * block on the right.
2766 	 */
2767 	error = xfs_btree_dup_cursor(cur, &tcur);
2768 	if (error)
2769 		goto error0;
2770 	i = xfs_btree_lastrec(tcur, level);
2771 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2772 		xfs_btree_mark_sick(cur);
2773 		error = -EFSCORRUPTED;
2774 		goto error0;
2775 	}
2776 
2777 	error = xfs_btree_increment(tcur, level, &i);
2778 	if (error)
2779 		goto error1;
2780 
2781 	/* Update the parent high keys of the left block, if needed. */
2782 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2783 		error = xfs_btree_update_keys(cur, level);
2784 		if (error)
2785 			goto error1;
2786 	}
2787 
2788 	/* Update the parent keys of the right block. */
2789 	error = xfs_btree_update_keys(tcur, level);
2790 	if (error)
2791 		goto error1;
2792 
2793 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2794 
2795 	*stat = 1;
2796 	return 0;
2797 
2798 out0:
2799 	*stat = 0;
2800 	return 0;
2801 
2802 error0:
2803 	return error;
2804 
2805 error1:
2806 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2807 	return error;
2808 }
2809 
2810 static inline int
2811 xfs_btree_alloc_block(
2812 	struct xfs_btree_cur		*cur,
2813 	const union xfs_btree_ptr	*hint_block,
2814 	union xfs_btree_ptr		*new_block,
2815 	int				*stat)
2816 {
2817 	int				error;
2818 
2819 	/*
2820 	 * Don't allow block allocation for a staging cursor, because staging
2821 	 * cursors do not support regular btree modifications.
2822 	 *
2823 	 * Bulk loading uses a separate callback to obtain new blocks from a
2824 	 * preallocated list, which prevents ENOSPC failures during loading.
2825 	 */
2826 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2827 		ASSERT(0);
2828 		return -EFSCORRUPTED;
2829 	}
2830 
2831 	error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2832 	trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2833 	return error;
2834 }
2835 
2836 /*
2837  * Split cur/level block in half.
2838  * Return new block number and the key to its first
2839  * record (to be inserted into parent).
2840  */
2841 STATIC int					/* error */
2842 __xfs_btree_split(
2843 	struct xfs_btree_cur	*cur,
2844 	int			level,
2845 	union xfs_btree_ptr	*ptrp,
2846 	union xfs_btree_key	*key,
2847 	struct xfs_btree_cur	**curp,
2848 	int			*stat)		/* success/failure */
2849 {
2850 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2851 	struct xfs_buf		*lbp;		/* left buffer pointer */
2852 	struct xfs_btree_block	*left;		/* left btree block */
2853 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2854 	struct xfs_buf		*rbp;		/* right buffer pointer */
2855 	struct xfs_btree_block	*right;		/* right btree block */
2856 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2857 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2858 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2859 	int			lrecs;
2860 	int			rrecs;
2861 	int			src_index;
2862 	int			error;		/* error return value */
2863 	int			i;
2864 
2865 	XFS_BTREE_STATS_INC(cur, split);
2866 
2867 	/* Set up left block (current one). */
2868 	left = xfs_btree_get_block(cur, level, &lbp);
2869 
2870 #ifdef DEBUG
2871 	error = xfs_btree_check_block(cur, left, level, lbp);
2872 	if (error)
2873 		goto error0;
2874 #endif
2875 
2876 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2877 
2878 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2879 	error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2880 	if (error)
2881 		goto error0;
2882 	if (*stat == 0)
2883 		goto out0;
2884 	XFS_BTREE_STATS_INC(cur, alloc);
2885 
2886 	/* Set up the new block as "right". */
2887 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2888 	if (error)
2889 		goto error0;
2890 
2891 	/* Fill in the btree header for the new right block. */
2892 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2893 
2894 	/*
2895 	 * Split the entries between the old and the new block evenly.
2896 	 * Make sure that if there's an odd number of entries now, that
2897 	 * each new block will have the same number of entries.
2898 	 */
2899 	lrecs = xfs_btree_get_numrecs(left);
2900 	rrecs = lrecs / 2;
2901 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2902 		rrecs++;
2903 	src_index = (lrecs - rrecs + 1);
2904 
2905 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2906 
2907 	/* Adjust numrecs for the later get_*_keys() calls. */
2908 	lrecs -= rrecs;
2909 	xfs_btree_set_numrecs(left, lrecs);
2910 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2911 
2912 	/*
2913 	 * Copy btree block entries from the left block over to the
2914 	 * new block, the right. Update the right block and log the
2915 	 * changes.
2916 	 */
2917 	if (level > 0) {
2918 		/* It's a non-leaf.  Move keys and pointers. */
2919 		union xfs_btree_key	*lkp;	/* left btree key */
2920 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2921 		union xfs_btree_key	*rkp;	/* right btree key */
2922 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2923 
2924 		lkp = xfs_btree_key_addr(cur, src_index, left);
2925 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2926 		rkp = xfs_btree_key_addr(cur, 1, right);
2927 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2928 
2929 		for (i = src_index; i < rrecs; i++) {
2930 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2931 			if (error)
2932 				goto error0;
2933 		}
2934 
2935 		/* Copy the keys & pointers to the new block. */
2936 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2937 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2938 
2939 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2940 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2941 
2942 		/* Stash the keys of the new block for later insertion. */
2943 		xfs_btree_get_node_keys(cur, right, key);
2944 	} else {
2945 		/* It's a leaf.  Move records.  */
2946 		union xfs_btree_rec	*lrp;	/* left record pointer */
2947 		union xfs_btree_rec	*rrp;	/* right record pointer */
2948 
2949 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2950 		rrp = xfs_btree_rec_addr(cur, 1, right);
2951 
2952 		/* Copy records to the new block. */
2953 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2954 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2955 
2956 		/* Stash the keys of the new block for later insertion. */
2957 		xfs_btree_get_leaf_keys(cur, right, key);
2958 	}
2959 
2960 	/*
2961 	 * Find the left block number by looking in the buffer.
2962 	 * Adjust sibling pointers.
2963 	 */
2964 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2965 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2966 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2967 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2968 
2969 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2970 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2971 
2972 	/*
2973 	 * If there's a block to the new block's right, make that block
2974 	 * point back to right instead of to left.
2975 	 */
2976 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2977 		error = xfs_btree_read_buf_block(cur, &rrptr,
2978 							0, &rrblock, &rrbp);
2979 		if (error)
2980 			goto error0;
2981 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2982 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2983 	}
2984 
2985 	/* Update the parent high keys of the left block, if needed. */
2986 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2987 		error = xfs_btree_update_keys(cur, level);
2988 		if (error)
2989 			goto error0;
2990 	}
2991 
2992 	/*
2993 	 * If the cursor is really in the right block, move it there.
2994 	 * If it's just pointing past the last entry in left, then we'll
2995 	 * insert there, so don't change anything in that case.
2996 	 */
2997 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2998 		xfs_btree_setbuf(cur, level, rbp);
2999 		cur->bc_levels[level].ptr -= lrecs;
3000 	}
3001 	/*
3002 	 * If there are more levels, we'll need another cursor which refers
3003 	 * the right block, no matter where this cursor was.
3004 	 */
3005 	if (level + 1 < cur->bc_nlevels) {
3006 		error = xfs_btree_dup_cursor(cur, curp);
3007 		if (error)
3008 			goto error0;
3009 		(*curp)->bc_levels[level + 1].ptr++;
3010 	}
3011 	*ptrp = rptr;
3012 	*stat = 1;
3013 	return 0;
3014 out0:
3015 	*stat = 0;
3016 	return 0;
3017 
3018 error0:
3019 	return error;
3020 }
3021 
3022 #ifdef __KERNEL__
3023 struct xfs_btree_split_args {
3024 	struct xfs_btree_cur	*cur;
3025 	int			level;
3026 	union xfs_btree_ptr	*ptrp;
3027 	union xfs_btree_key	*key;
3028 	struct xfs_btree_cur	**curp;
3029 	int			*stat;		/* success/failure */
3030 	int			result;
3031 	bool			kswapd;	/* allocation in kswapd context */
3032 	struct completion	*done;
3033 	struct work_struct	work;
3034 };
3035 
3036 /*
3037  * Stack switching interfaces for allocation
3038  */
3039 static void
3040 xfs_btree_split_worker(
3041 	struct work_struct	*work)
3042 {
3043 	struct xfs_btree_split_args	*args = container_of(work,
3044 						struct xfs_btree_split_args, work);
3045 	unsigned long		pflags;
3046 	unsigned long		new_pflags = 0;
3047 
3048 	/*
3049 	 * we are in a transaction context here, but may also be doing work
3050 	 * in kswapd context, and hence we may need to inherit that state
3051 	 * temporarily to ensure that we don't block waiting for memory reclaim
3052 	 * in any way.
3053 	 */
3054 	if (args->kswapd)
3055 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3056 
3057 	current_set_flags_nested(&pflags, new_pflags);
3058 	xfs_trans_set_context(args->cur->bc_tp);
3059 
3060 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3061 					 args->key, args->curp, args->stat);
3062 
3063 	xfs_trans_clear_context(args->cur->bc_tp);
3064 	current_restore_flags_nested(&pflags, new_pflags);
3065 
3066 	/*
3067 	 * Do not access args after complete() has run here. We don't own args
3068 	 * and the owner may run and free args before we return here.
3069 	 */
3070 	complete(args->done);
3071 
3072 }
3073 
3074 /*
3075  * BMBT split requests often come in with little stack to work on so we push
3076  * them off to a worker thread so there is lots of stack to use. For the other
3077  * btree types, just call directly to avoid the context switch overhead here.
3078  *
3079  * Care must be taken here - the work queue rescuer thread introduces potential
3080  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3081  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3082  * lock an AGF that is already locked by a task queued to run by the rescuer,
3083  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3084  * release it until the current thread it is running gains the lock.
3085  *
3086  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3087  * already locked to allocate from. The only place that doesn't hold an AGF
3088  * locked is unwritten extent conversion at IO completion, but that has already
3089  * been offloaded to a worker thread and hence has no stack consumption issues
3090  * we have to worry about.
3091  */
3092 STATIC int					/* error */
3093 xfs_btree_split(
3094 	struct xfs_btree_cur	*cur,
3095 	int			level,
3096 	union xfs_btree_ptr	*ptrp,
3097 	union xfs_btree_key	*key,
3098 	struct xfs_btree_cur	**curp,
3099 	int			*stat)		/* success/failure */
3100 {
3101 	struct xfs_btree_split_args	args;
3102 	DECLARE_COMPLETION_ONSTACK(done);
3103 
3104 	if (!xfs_btree_is_bmap(cur->bc_ops) ||
3105 	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3106 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3107 
3108 	args.cur = cur;
3109 	args.level = level;
3110 	args.ptrp = ptrp;
3111 	args.key = key;
3112 	args.curp = curp;
3113 	args.stat = stat;
3114 	args.done = &done;
3115 	args.kswapd = current_is_kswapd();
3116 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3117 	queue_work(xfs_alloc_wq, &args.work);
3118 	wait_for_completion(&done);
3119 	destroy_work_on_stack(&args.work);
3120 	return args.result;
3121 }
3122 #else
3123 #define xfs_btree_split	__xfs_btree_split
3124 #endif /* __KERNEL__ */
3125 
3126 /*
3127  * Copy the old inode root contents into a real block and make the
3128  * broot point to it.
3129  */
3130 int						/* error */
3131 xfs_btree_new_iroot(
3132 	struct xfs_btree_cur	*cur,		/* btree cursor */
3133 	int			*logflags,	/* logging flags for inode */
3134 	int			*stat)		/* return status - 0 fail */
3135 {
3136 	struct xfs_buf		*cbp;		/* buffer for cblock */
3137 	struct xfs_btree_block	*block;		/* btree block */
3138 	struct xfs_btree_block	*cblock;	/* child btree block */
3139 	union xfs_btree_key	*ckp;		/* child key pointer */
3140 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
3141 	union xfs_btree_key	*kp;		/* pointer to btree key */
3142 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
3143 	union xfs_btree_ptr	nptr;		/* new block addr */
3144 	int			level;		/* btree level */
3145 	int			error;		/* error return code */
3146 	int			i;		/* loop counter */
3147 
3148 	XFS_BTREE_STATS_INC(cur, newroot);
3149 
3150 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3151 
3152 	level = cur->bc_nlevels - 1;
3153 
3154 	block = xfs_btree_get_iroot(cur);
3155 	pp = xfs_btree_ptr_addr(cur, 1, block);
3156 
3157 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3158 	error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3159 	if (error)
3160 		goto error0;
3161 	if (*stat == 0)
3162 		return 0;
3163 
3164 	XFS_BTREE_STATS_INC(cur, alloc);
3165 
3166 	/* Copy the root into a real block. */
3167 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3168 	if (error)
3169 		goto error0;
3170 
3171 	/*
3172 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3173 	 * In that case have to also ensure the blkno remains correct
3174 	 */
3175 	memcpy(cblock, block, xfs_btree_block_len(cur));
3176 	if (xfs_has_crc(cur->bc_mp)) {
3177 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3178 		if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3179 			cblock->bb_u.l.bb_blkno = bno;
3180 		else
3181 			cblock->bb_u.s.bb_blkno = bno;
3182 	}
3183 
3184 	be16_add_cpu(&block->bb_level, 1);
3185 	xfs_btree_set_numrecs(block, 1);
3186 	cur->bc_nlevels++;
3187 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3188 	cur->bc_levels[level + 1].ptr = 1;
3189 
3190 	kp = xfs_btree_key_addr(cur, 1, block);
3191 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3192 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3193 
3194 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3195 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3196 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3197 		if (error)
3198 			goto error0;
3199 	}
3200 
3201 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3202 
3203 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3204 	if (error)
3205 		goto error0;
3206 
3207 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3208 
3209 	xfs_iroot_realloc(cur->bc_ino.ip,
3210 			  1 - xfs_btree_get_numrecs(cblock),
3211 			  cur->bc_ino.whichfork);
3212 
3213 	xfs_btree_setbuf(cur, level, cbp);
3214 
3215 	/*
3216 	 * Do all this logging at the end so that
3217 	 * the root is at the right level.
3218 	 */
3219 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3220 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3221 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3222 
3223 	*logflags |=
3224 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3225 	*stat = 1;
3226 	return 0;
3227 error0:
3228 	return error;
3229 }
3230 
3231 static void
3232 xfs_btree_set_root(
3233 	struct xfs_btree_cur		*cur,
3234 	const union xfs_btree_ptr	*ptr,
3235 	int				inc)
3236 {
3237 	if (cur->bc_flags & XFS_BTREE_STAGING) {
3238 		/* Update the btree root information for a per-AG fake root. */
3239 		cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3240 		cur->bc_ag.afake->af_levels += inc;
3241 	} else {
3242 		cur->bc_ops->set_root(cur, ptr, inc);
3243 	}
3244 }
3245 
3246 /*
3247  * Allocate a new root block, fill it in.
3248  */
3249 STATIC int				/* error */
3250 xfs_btree_new_root(
3251 	struct xfs_btree_cur	*cur,	/* btree cursor */
3252 	int			*stat)	/* success/failure */
3253 {
3254 	struct xfs_btree_block	*block;	/* one half of the old root block */
3255 	struct xfs_buf		*bp;	/* buffer containing block */
3256 	int			error;	/* error return value */
3257 	struct xfs_buf		*lbp;	/* left buffer pointer */
3258 	struct xfs_btree_block	*left;	/* left btree block */
3259 	struct xfs_buf		*nbp;	/* new (root) buffer */
3260 	struct xfs_btree_block	*new;	/* new (root) btree block */
3261 	int			nptr;	/* new value for key index, 1 or 2 */
3262 	struct xfs_buf		*rbp;	/* right buffer pointer */
3263 	struct xfs_btree_block	*right;	/* right btree block */
3264 	union xfs_btree_ptr	rptr;
3265 	union xfs_btree_ptr	lptr;
3266 
3267 	XFS_BTREE_STATS_INC(cur, newroot);
3268 
3269 	/* initialise our start point from the cursor */
3270 	xfs_btree_init_ptr_from_cur(cur, &rptr);
3271 
3272 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3273 	error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3274 	if (error)
3275 		goto error0;
3276 	if (*stat == 0)
3277 		goto out0;
3278 	XFS_BTREE_STATS_INC(cur, alloc);
3279 
3280 	/* Set up the new block. */
3281 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3282 	if (error)
3283 		goto error0;
3284 
3285 	/* Set the root in the holding structure  increasing the level by 1. */
3286 	xfs_btree_set_root(cur, &lptr, 1);
3287 
3288 	/*
3289 	 * At the previous root level there are now two blocks: the old root,
3290 	 * and the new block generated when it was split.  We don't know which
3291 	 * one the cursor is pointing at, so we set up variables "left" and
3292 	 * "right" for each case.
3293 	 */
3294 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3295 
3296 #ifdef DEBUG
3297 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3298 	if (error)
3299 		goto error0;
3300 #endif
3301 
3302 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3303 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3304 		/* Our block is left, pick up the right block. */
3305 		lbp = bp;
3306 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3307 		left = block;
3308 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3309 		if (error)
3310 			goto error0;
3311 		bp = rbp;
3312 		nptr = 1;
3313 	} else {
3314 		/* Our block is right, pick up the left block. */
3315 		rbp = bp;
3316 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3317 		right = block;
3318 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3319 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3320 		if (error)
3321 			goto error0;
3322 		bp = lbp;
3323 		nptr = 2;
3324 	}
3325 
3326 	/* Fill in the new block's btree header and log it. */
3327 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3328 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3329 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3330 			!xfs_btree_ptr_is_null(cur, &rptr));
3331 
3332 	/* Fill in the key data in the new root. */
3333 	if (xfs_btree_get_level(left) > 0) {
3334 		/*
3335 		 * Get the keys for the left block's keys and put them directly
3336 		 * in the parent block.  Do the same for the right block.
3337 		 */
3338 		xfs_btree_get_node_keys(cur, left,
3339 				xfs_btree_key_addr(cur, 1, new));
3340 		xfs_btree_get_node_keys(cur, right,
3341 				xfs_btree_key_addr(cur, 2, new));
3342 	} else {
3343 		/*
3344 		 * Get the keys for the left block's records and put them
3345 		 * directly in the parent block.  Do the same for the right
3346 		 * block.
3347 		 */
3348 		xfs_btree_get_leaf_keys(cur, left,
3349 			xfs_btree_key_addr(cur, 1, new));
3350 		xfs_btree_get_leaf_keys(cur, right,
3351 			xfs_btree_key_addr(cur, 2, new));
3352 	}
3353 	xfs_btree_log_keys(cur, nbp, 1, 2);
3354 
3355 	/* Fill in the pointer data in the new root. */
3356 	xfs_btree_copy_ptrs(cur,
3357 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3358 	xfs_btree_copy_ptrs(cur,
3359 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3360 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3361 
3362 	/* Fix up the cursor. */
3363 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3364 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3365 	cur->bc_nlevels++;
3366 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3367 	*stat = 1;
3368 	return 0;
3369 error0:
3370 	return error;
3371 out0:
3372 	*stat = 0;
3373 	return 0;
3374 }
3375 
3376 STATIC int
3377 xfs_btree_make_block_unfull(
3378 	struct xfs_btree_cur	*cur,	/* btree cursor */
3379 	int			level,	/* btree level */
3380 	int			numrecs,/* # of recs in block */
3381 	int			*oindex,/* old tree index */
3382 	int			*index,	/* new tree index */
3383 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3384 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3385 	union xfs_btree_key	*key,	/* key of new block */
3386 	int			*stat)
3387 {
3388 	int			error = 0;
3389 
3390 	if (xfs_btree_at_iroot(cur, level)) {
3391 		struct xfs_inode *ip = cur->bc_ino.ip;
3392 
3393 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3394 			/* A root block that can be made bigger. */
3395 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3396 			*stat = 1;
3397 		} else {
3398 			/* A root block that needs replacing */
3399 			int	logflags = 0;
3400 
3401 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3402 			if (error || *stat == 0)
3403 				return error;
3404 
3405 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3406 		}
3407 
3408 		return 0;
3409 	}
3410 
3411 	/* First, try shifting an entry to the right neighbor. */
3412 	error = xfs_btree_rshift(cur, level, stat);
3413 	if (error || *stat)
3414 		return error;
3415 
3416 	/* Next, try shifting an entry to the left neighbor. */
3417 	error = xfs_btree_lshift(cur, level, stat);
3418 	if (error)
3419 		return error;
3420 
3421 	if (*stat) {
3422 		*oindex = *index = cur->bc_levels[level].ptr;
3423 		return 0;
3424 	}
3425 
3426 	/*
3427 	 * Next, try splitting the current block in half.
3428 	 *
3429 	 * If this works we have to re-set our variables because we
3430 	 * could be in a different block now.
3431 	 */
3432 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3433 	if (error || *stat == 0)
3434 		return error;
3435 
3436 
3437 	*index = cur->bc_levels[level].ptr;
3438 	return 0;
3439 }
3440 
3441 /*
3442  * Insert one record/level.  Return information to the caller
3443  * allowing the next level up to proceed if necessary.
3444  */
3445 STATIC int
3446 xfs_btree_insrec(
3447 	struct xfs_btree_cur	*cur,	/* btree cursor */
3448 	int			level,	/* level to insert record at */
3449 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3450 	union xfs_btree_rec	*rec,	/* record to insert */
3451 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3452 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3453 	int			*stat)	/* success/failure */
3454 {
3455 	struct xfs_btree_block	*block;	/* btree block */
3456 	struct xfs_buf		*bp;	/* buffer for block */
3457 	union xfs_btree_ptr	nptr;	/* new block ptr */
3458 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3459 	union xfs_btree_key	nkey;	/* new block key */
3460 	union xfs_btree_key	*lkey;
3461 	int			optr;	/* old key/record index */
3462 	int			ptr;	/* key/record index */
3463 	int			numrecs;/* number of records */
3464 	int			error;	/* error return value */
3465 	int			i;
3466 	xfs_daddr_t		old_bn;
3467 
3468 	ncur = NULL;
3469 	lkey = &nkey;
3470 
3471 	/*
3472 	 * If we have an external root pointer, and we've made it to the
3473 	 * root level, allocate a new root block and we're done.
3474 	 */
3475 	if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3476 	    level >= cur->bc_nlevels) {
3477 		error = xfs_btree_new_root(cur, stat);
3478 		xfs_btree_set_ptr_null(cur, ptrp);
3479 
3480 		return error;
3481 	}
3482 
3483 	/* If we're off the left edge, return failure. */
3484 	ptr = cur->bc_levels[level].ptr;
3485 	if (ptr == 0) {
3486 		*stat = 0;
3487 		return 0;
3488 	}
3489 
3490 	optr = ptr;
3491 
3492 	XFS_BTREE_STATS_INC(cur, insrec);
3493 
3494 	/* Get pointers to the btree buffer and block. */
3495 	block = xfs_btree_get_block(cur, level, &bp);
3496 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3497 	numrecs = xfs_btree_get_numrecs(block);
3498 
3499 #ifdef DEBUG
3500 	error = xfs_btree_check_block(cur, block, level, bp);
3501 	if (error)
3502 		goto error0;
3503 
3504 	/* Check that the new entry is being inserted in the right place. */
3505 	if (ptr <= numrecs) {
3506 		if (level == 0) {
3507 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3508 				xfs_btree_rec_addr(cur, ptr, block)));
3509 		} else {
3510 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3511 				xfs_btree_key_addr(cur, ptr, block)));
3512 		}
3513 	}
3514 #endif
3515 
3516 	/*
3517 	 * If the block is full, we can't insert the new entry until we
3518 	 * make the block un-full.
3519 	 */
3520 	xfs_btree_set_ptr_null(cur, &nptr);
3521 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3522 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3523 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3524 		if (error || *stat == 0)
3525 			goto error0;
3526 	}
3527 
3528 	/*
3529 	 * The current block may have changed if the block was
3530 	 * previously full and we have just made space in it.
3531 	 */
3532 	block = xfs_btree_get_block(cur, level, &bp);
3533 	numrecs = xfs_btree_get_numrecs(block);
3534 
3535 #ifdef DEBUG
3536 	error = xfs_btree_check_block(cur, block, level, bp);
3537 	if (error)
3538 		goto error0;
3539 #endif
3540 
3541 	/*
3542 	 * At this point we know there's room for our new entry in the block
3543 	 * we're pointing at.
3544 	 */
3545 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3546 
3547 	if (level > 0) {
3548 		/* It's a nonleaf. make a hole in the keys and ptrs */
3549 		union xfs_btree_key	*kp;
3550 		union xfs_btree_ptr	*pp;
3551 
3552 		kp = xfs_btree_key_addr(cur, ptr, block);
3553 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3554 
3555 		for (i = numrecs - ptr; i >= 0; i--) {
3556 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3557 			if (error)
3558 				goto error0;
3559 		}
3560 
3561 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3562 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3563 
3564 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3565 		if (error)
3566 			goto error0;
3567 
3568 		/* Now put the new data in, bump numrecs and log it. */
3569 		xfs_btree_copy_keys(cur, kp, key, 1);
3570 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3571 		numrecs++;
3572 		xfs_btree_set_numrecs(block, numrecs);
3573 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3574 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3575 #ifdef DEBUG
3576 		if (ptr < numrecs) {
3577 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3578 				xfs_btree_key_addr(cur, ptr + 1, block)));
3579 		}
3580 #endif
3581 	} else {
3582 		/* It's a leaf. make a hole in the records */
3583 		union xfs_btree_rec             *rp;
3584 
3585 		rp = xfs_btree_rec_addr(cur, ptr, block);
3586 
3587 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3588 
3589 		/* Now put the new data in, bump numrecs and log it. */
3590 		xfs_btree_copy_recs(cur, rp, rec, 1);
3591 		xfs_btree_set_numrecs(block, ++numrecs);
3592 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3593 #ifdef DEBUG
3594 		if (ptr < numrecs) {
3595 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3596 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3597 		}
3598 #endif
3599 	}
3600 
3601 	/* Log the new number of records in the btree header. */
3602 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3603 
3604 	/*
3605 	 * If we just inserted into a new tree block, we have to
3606 	 * recalculate nkey here because nkey is out of date.
3607 	 *
3608 	 * Otherwise we're just updating an existing block (having shoved
3609 	 * some records into the new tree block), so use the regular key
3610 	 * update mechanism.
3611 	 */
3612 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3613 		xfs_btree_get_keys(cur, block, lkey);
3614 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3615 		error = xfs_btree_update_keys(cur, level);
3616 		if (error)
3617 			goto error0;
3618 	}
3619 
3620 	/*
3621 	 * If we are tracking the last record in the tree and
3622 	 * we are at the far right edge of the tree, update it.
3623 	 */
3624 	if (xfs_btree_is_lastrec(cur, block, level)) {
3625 		cur->bc_ops->update_lastrec(cur, block, rec,
3626 					    ptr, LASTREC_INSREC);
3627 	}
3628 
3629 	/*
3630 	 * Return the new block number, if any.
3631 	 * If there is one, give back a record value and a cursor too.
3632 	 */
3633 	*ptrp = nptr;
3634 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3635 		xfs_btree_copy_keys(cur, key, lkey, 1);
3636 		*curp = ncur;
3637 	}
3638 
3639 	*stat = 1;
3640 	return 0;
3641 
3642 error0:
3643 	if (ncur)
3644 		xfs_btree_del_cursor(ncur, error);
3645 	return error;
3646 }
3647 
3648 /*
3649  * Insert the record at the point referenced by cur.
3650  *
3651  * A multi-level split of the tree on insert will invalidate the original
3652  * cursor.  All callers of this function should assume that the cursor is
3653  * no longer valid and revalidate it.
3654  */
3655 int
3656 xfs_btree_insert(
3657 	struct xfs_btree_cur	*cur,
3658 	int			*stat)
3659 {
3660 	int			error;	/* error return value */
3661 	int			i;	/* result value, 0 for failure */
3662 	int			level;	/* current level number in btree */
3663 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3664 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3665 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3666 	union xfs_btree_key	bkey;	/* key of block to insert */
3667 	union xfs_btree_key	*key;
3668 	union xfs_btree_rec	rec;	/* record to insert */
3669 
3670 	level = 0;
3671 	ncur = NULL;
3672 	pcur = cur;
3673 	key = &bkey;
3674 
3675 	xfs_btree_set_ptr_null(cur, &nptr);
3676 
3677 	/* Make a key out of the record data to be inserted, and save it. */
3678 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3679 	cur->bc_ops->init_key_from_rec(key, &rec);
3680 
3681 	/*
3682 	 * Loop going up the tree, starting at the leaf level.
3683 	 * Stop when we don't get a split block, that must mean that
3684 	 * the insert is finished with this level.
3685 	 */
3686 	do {
3687 		/*
3688 		 * Insert nrec/nptr into this level of the tree.
3689 		 * Note if we fail, nptr will be null.
3690 		 */
3691 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3692 				&ncur, &i);
3693 		if (error) {
3694 			if (pcur != cur)
3695 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3696 			goto error0;
3697 		}
3698 
3699 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3700 			xfs_btree_mark_sick(cur);
3701 			error = -EFSCORRUPTED;
3702 			goto error0;
3703 		}
3704 		level++;
3705 
3706 		/*
3707 		 * See if the cursor we just used is trash.
3708 		 * Can't trash the caller's cursor, but otherwise we should
3709 		 * if ncur is a new cursor or we're about to be done.
3710 		 */
3711 		if (pcur != cur &&
3712 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3713 			/* Save the state from the cursor before we trash it */
3714 			if (cur->bc_ops->update_cursor &&
3715 			    !(cur->bc_flags & XFS_BTREE_STAGING))
3716 				cur->bc_ops->update_cursor(pcur, cur);
3717 			cur->bc_nlevels = pcur->bc_nlevels;
3718 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3719 		}
3720 		/* If we got a new cursor, switch to it. */
3721 		if (ncur) {
3722 			pcur = ncur;
3723 			ncur = NULL;
3724 		}
3725 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3726 
3727 	*stat = i;
3728 	return 0;
3729 error0:
3730 	return error;
3731 }
3732 
3733 /*
3734  * Try to merge a non-leaf block back into the inode root.
3735  *
3736  * Note: the killroot names comes from the fact that we're effectively
3737  * killing the old root block.  But because we can't just delete the
3738  * inode we have to copy the single block it was pointing to into the
3739  * inode.
3740  */
3741 STATIC int
3742 xfs_btree_kill_iroot(
3743 	struct xfs_btree_cur	*cur)
3744 {
3745 	int			whichfork = cur->bc_ino.whichfork;
3746 	struct xfs_inode	*ip = cur->bc_ino.ip;
3747 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3748 	struct xfs_btree_block	*block;
3749 	struct xfs_btree_block	*cblock;
3750 	union xfs_btree_key	*kp;
3751 	union xfs_btree_key	*ckp;
3752 	union xfs_btree_ptr	*pp;
3753 	union xfs_btree_ptr	*cpp;
3754 	struct xfs_buf		*cbp;
3755 	int			level;
3756 	int			index;
3757 	int			numrecs;
3758 	int			error;
3759 #ifdef DEBUG
3760 	union xfs_btree_ptr	ptr;
3761 #endif
3762 	int			i;
3763 
3764 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3765 	ASSERT(cur->bc_nlevels > 1);
3766 
3767 	/*
3768 	 * Don't deal with the root block needs to be a leaf case.
3769 	 * We're just going to turn the thing back into extents anyway.
3770 	 */
3771 	level = cur->bc_nlevels - 1;
3772 	if (level == 1)
3773 		goto out0;
3774 
3775 	/*
3776 	 * Give up if the root has multiple children.
3777 	 */
3778 	block = xfs_btree_get_iroot(cur);
3779 	if (xfs_btree_get_numrecs(block) != 1)
3780 		goto out0;
3781 
3782 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3783 	numrecs = xfs_btree_get_numrecs(cblock);
3784 
3785 	/*
3786 	 * Only do this if the next level will fit.
3787 	 * Then the data must be copied up to the inode,
3788 	 * instead of freeing the root you free the next level.
3789 	 */
3790 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3791 		goto out0;
3792 
3793 	XFS_BTREE_STATS_INC(cur, killroot);
3794 
3795 #ifdef DEBUG
3796 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3797 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3798 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3799 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3800 #endif
3801 
3802 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3803 	if (index) {
3804 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3805 				  cur->bc_ino.whichfork);
3806 		block = ifp->if_broot;
3807 	}
3808 
3809 	be16_add_cpu(&block->bb_numrecs, index);
3810 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3811 
3812 	kp = xfs_btree_key_addr(cur, 1, block);
3813 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3814 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3815 
3816 	pp = xfs_btree_ptr_addr(cur, 1, block);
3817 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3818 
3819 	for (i = 0; i < numrecs; i++) {
3820 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3821 		if (error)
3822 			return error;
3823 	}
3824 
3825 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3826 
3827 	error = xfs_btree_free_block(cur, cbp);
3828 	if (error)
3829 		return error;
3830 
3831 	cur->bc_levels[level - 1].bp = NULL;
3832 	be16_add_cpu(&block->bb_level, -1);
3833 	xfs_trans_log_inode(cur->bc_tp, ip,
3834 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3835 	cur->bc_nlevels--;
3836 out0:
3837 	return 0;
3838 }
3839 
3840 /*
3841  * Kill the current root node, and replace it with it's only child node.
3842  */
3843 STATIC int
3844 xfs_btree_kill_root(
3845 	struct xfs_btree_cur	*cur,
3846 	struct xfs_buf		*bp,
3847 	int			level,
3848 	union xfs_btree_ptr	*newroot)
3849 {
3850 	int			error;
3851 
3852 	XFS_BTREE_STATS_INC(cur, killroot);
3853 
3854 	/*
3855 	 * Update the root pointer, decreasing the level by 1 and then
3856 	 * free the old root.
3857 	 */
3858 	xfs_btree_set_root(cur, newroot, -1);
3859 
3860 	error = xfs_btree_free_block(cur, bp);
3861 	if (error)
3862 		return error;
3863 
3864 	cur->bc_levels[level].bp = NULL;
3865 	cur->bc_levels[level].ra = 0;
3866 	cur->bc_nlevels--;
3867 
3868 	return 0;
3869 }
3870 
3871 STATIC int
3872 xfs_btree_dec_cursor(
3873 	struct xfs_btree_cur	*cur,
3874 	int			level,
3875 	int			*stat)
3876 {
3877 	int			error;
3878 	int			i;
3879 
3880 	if (level > 0) {
3881 		error = xfs_btree_decrement(cur, level, &i);
3882 		if (error)
3883 			return error;
3884 	}
3885 
3886 	*stat = 1;
3887 	return 0;
3888 }
3889 
3890 /*
3891  * Single level of the btree record deletion routine.
3892  * Delete record pointed to by cur/level.
3893  * Remove the record from its block then rebalance the tree.
3894  * Return 0 for error, 1 for done, 2 to go on to the next level.
3895  */
3896 STATIC int					/* error */
3897 xfs_btree_delrec(
3898 	struct xfs_btree_cur	*cur,		/* btree cursor */
3899 	int			level,		/* level removing record from */
3900 	int			*stat)		/* fail/done/go-on */
3901 {
3902 	struct xfs_btree_block	*block;		/* btree block */
3903 	union xfs_btree_ptr	cptr;		/* current block ptr */
3904 	struct xfs_buf		*bp;		/* buffer for block */
3905 	int			error;		/* error return value */
3906 	int			i;		/* loop counter */
3907 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3908 	struct xfs_buf		*lbp;		/* left buffer pointer */
3909 	struct xfs_btree_block	*left;		/* left btree block */
3910 	int			lrecs = 0;	/* left record count */
3911 	int			ptr;		/* key/record index */
3912 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3913 	struct xfs_buf		*rbp;		/* right buffer pointer */
3914 	struct xfs_btree_block	*right;		/* right btree block */
3915 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3916 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3917 	int			rrecs = 0;	/* right record count */
3918 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3919 	int			numrecs;	/* temporary numrec count */
3920 
3921 	tcur = NULL;
3922 
3923 	/* Get the index of the entry being deleted, check for nothing there. */
3924 	ptr = cur->bc_levels[level].ptr;
3925 	if (ptr == 0) {
3926 		*stat = 0;
3927 		return 0;
3928 	}
3929 
3930 	/* Get the buffer & block containing the record or key/ptr. */
3931 	block = xfs_btree_get_block(cur, level, &bp);
3932 	numrecs = xfs_btree_get_numrecs(block);
3933 
3934 #ifdef DEBUG
3935 	error = xfs_btree_check_block(cur, block, level, bp);
3936 	if (error)
3937 		goto error0;
3938 #endif
3939 
3940 	/* Fail if we're off the end of the block. */
3941 	if (ptr > numrecs) {
3942 		*stat = 0;
3943 		return 0;
3944 	}
3945 
3946 	XFS_BTREE_STATS_INC(cur, delrec);
3947 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3948 
3949 	/* Excise the entries being deleted. */
3950 	if (level > 0) {
3951 		/* It's a nonleaf. operate on keys and ptrs */
3952 		union xfs_btree_key	*lkp;
3953 		union xfs_btree_ptr	*lpp;
3954 
3955 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3956 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3957 
3958 		for (i = 0; i < numrecs - ptr; i++) {
3959 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3960 			if (error)
3961 				goto error0;
3962 		}
3963 
3964 		if (ptr < numrecs) {
3965 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3966 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3967 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3968 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3969 		}
3970 	} else {
3971 		/* It's a leaf. operate on records */
3972 		if (ptr < numrecs) {
3973 			xfs_btree_shift_recs(cur,
3974 				xfs_btree_rec_addr(cur, ptr + 1, block),
3975 				-1, numrecs - ptr);
3976 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3977 		}
3978 	}
3979 
3980 	/*
3981 	 * Decrement and log the number of entries in the block.
3982 	 */
3983 	xfs_btree_set_numrecs(block, --numrecs);
3984 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3985 
3986 	/*
3987 	 * If we are tracking the last record in the tree and
3988 	 * we are at the far right edge of the tree, update it.
3989 	 */
3990 	if (xfs_btree_is_lastrec(cur, block, level)) {
3991 		cur->bc_ops->update_lastrec(cur, block, NULL,
3992 					    ptr, LASTREC_DELREC);
3993 	}
3994 
3995 	/*
3996 	 * We're at the root level.  First, shrink the root block in-memory.
3997 	 * Try to get rid of the next level down.  If we can't then there's
3998 	 * nothing left to do.
3999 	 */
4000 	if (xfs_btree_at_iroot(cur, level)) {
4001 		xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
4002 
4003 		error = xfs_btree_kill_iroot(cur);
4004 		if (error)
4005 			goto error0;
4006 
4007 		error = xfs_btree_dec_cursor(cur, level, stat);
4008 		if (error)
4009 			goto error0;
4010 		*stat = 1;
4011 		return 0;
4012 	}
4013 
4014 	/*
4015 	 * If this is the root level, and there's only one entry left, and it's
4016 	 * NOT the leaf level, then we can get rid of this level.
4017 	 */
4018 	if (level == cur->bc_nlevels - 1) {
4019 		if (numrecs == 1 && level > 0) {
4020 			union xfs_btree_ptr	*pp;
4021 			/*
4022 			 * pp is still set to the first pointer in the block.
4023 			 * Make it the new root of the btree.
4024 			 */
4025 			pp = xfs_btree_ptr_addr(cur, 1, block);
4026 			error = xfs_btree_kill_root(cur, bp, level, pp);
4027 			if (error)
4028 				goto error0;
4029 		} else if (level > 0) {
4030 			error = xfs_btree_dec_cursor(cur, level, stat);
4031 			if (error)
4032 				goto error0;
4033 		}
4034 		*stat = 1;
4035 		return 0;
4036 	}
4037 
4038 	/*
4039 	 * If we deleted the leftmost entry in the block, update the
4040 	 * key values above us in the tree.
4041 	 */
4042 	if (xfs_btree_needs_key_update(cur, ptr)) {
4043 		error = xfs_btree_update_keys(cur, level);
4044 		if (error)
4045 			goto error0;
4046 	}
4047 
4048 	/*
4049 	 * If the number of records remaining in the block is at least
4050 	 * the minimum, we're done.
4051 	 */
4052 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4053 		error = xfs_btree_dec_cursor(cur, level, stat);
4054 		if (error)
4055 			goto error0;
4056 		return 0;
4057 	}
4058 
4059 	/*
4060 	 * Otherwise, we have to move some records around to keep the
4061 	 * tree balanced.  Look at the left and right sibling blocks to
4062 	 * see if we can re-balance by moving only one record.
4063 	 */
4064 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4065 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4066 
4067 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4068 		/*
4069 		 * One child of root, need to get a chance to copy its contents
4070 		 * into the root and delete it. Can't go up to next level,
4071 		 * there's nothing to delete there.
4072 		 */
4073 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
4074 		    xfs_btree_ptr_is_null(cur, &lptr) &&
4075 		    level == cur->bc_nlevels - 2) {
4076 			error = xfs_btree_kill_iroot(cur);
4077 			if (!error)
4078 				error = xfs_btree_dec_cursor(cur, level, stat);
4079 			if (error)
4080 				goto error0;
4081 			return 0;
4082 		}
4083 	}
4084 
4085 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4086 	       !xfs_btree_ptr_is_null(cur, &lptr));
4087 
4088 	/*
4089 	 * Duplicate the cursor so our btree manipulations here won't
4090 	 * disrupt the next level up.
4091 	 */
4092 	error = xfs_btree_dup_cursor(cur, &tcur);
4093 	if (error)
4094 		goto error0;
4095 
4096 	/*
4097 	 * If there's a right sibling, see if it's ok to shift an entry
4098 	 * out of it.
4099 	 */
4100 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4101 		/*
4102 		 * Move the temp cursor to the last entry in the next block.
4103 		 * Actually any entry but the first would suffice.
4104 		 */
4105 		i = xfs_btree_lastrec(tcur, level);
4106 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4107 			xfs_btree_mark_sick(cur);
4108 			error = -EFSCORRUPTED;
4109 			goto error0;
4110 		}
4111 
4112 		error = xfs_btree_increment(tcur, level, &i);
4113 		if (error)
4114 			goto error0;
4115 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4116 			xfs_btree_mark_sick(cur);
4117 			error = -EFSCORRUPTED;
4118 			goto error0;
4119 		}
4120 
4121 		i = xfs_btree_lastrec(tcur, level);
4122 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4123 			xfs_btree_mark_sick(cur);
4124 			error = -EFSCORRUPTED;
4125 			goto error0;
4126 		}
4127 
4128 		/* Grab a pointer to the block. */
4129 		right = xfs_btree_get_block(tcur, level, &rbp);
4130 #ifdef DEBUG
4131 		error = xfs_btree_check_block(tcur, right, level, rbp);
4132 		if (error)
4133 			goto error0;
4134 #endif
4135 		/* Grab the current block number, for future use. */
4136 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4137 
4138 		/*
4139 		 * If right block is full enough so that removing one entry
4140 		 * won't make it too empty, and left-shifting an entry out
4141 		 * of right to us works, we're done.
4142 		 */
4143 		if (xfs_btree_get_numrecs(right) - 1 >=
4144 		    cur->bc_ops->get_minrecs(tcur, level)) {
4145 			error = xfs_btree_lshift(tcur, level, &i);
4146 			if (error)
4147 				goto error0;
4148 			if (i) {
4149 				ASSERT(xfs_btree_get_numrecs(block) >=
4150 				       cur->bc_ops->get_minrecs(tcur, level));
4151 
4152 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4153 				tcur = NULL;
4154 
4155 				error = xfs_btree_dec_cursor(cur, level, stat);
4156 				if (error)
4157 					goto error0;
4158 				return 0;
4159 			}
4160 		}
4161 
4162 		/*
4163 		 * Otherwise, grab the number of records in right for
4164 		 * future reference, and fix up the temp cursor to point
4165 		 * to our block again (last record).
4166 		 */
4167 		rrecs = xfs_btree_get_numrecs(right);
4168 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4169 			i = xfs_btree_firstrec(tcur, level);
4170 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4171 				xfs_btree_mark_sick(cur);
4172 				error = -EFSCORRUPTED;
4173 				goto error0;
4174 			}
4175 
4176 			error = xfs_btree_decrement(tcur, level, &i);
4177 			if (error)
4178 				goto error0;
4179 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4180 				xfs_btree_mark_sick(cur);
4181 				error = -EFSCORRUPTED;
4182 				goto error0;
4183 			}
4184 		}
4185 	}
4186 
4187 	/*
4188 	 * If there's a left sibling, see if it's ok to shift an entry
4189 	 * out of it.
4190 	 */
4191 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4192 		/*
4193 		 * Move the temp cursor to the first entry in the
4194 		 * previous block.
4195 		 */
4196 		i = xfs_btree_firstrec(tcur, level);
4197 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4198 			xfs_btree_mark_sick(cur);
4199 			error = -EFSCORRUPTED;
4200 			goto error0;
4201 		}
4202 
4203 		error = xfs_btree_decrement(tcur, level, &i);
4204 		if (error)
4205 			goto error0;
4206 		i = xfs_btree_firstrec(tcur, level);
4207 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4208 			xfs_btree_mark_sick(cur);
4209 			error = -EFSCORRUPTED;
4210 			goto error0;
4211 		}
4212 
4213 		/* Grab a pointer to the block. */
4214 		left = xfs_btree_get_block(tcur, level, &lbp);
4215 #ifdef DEBUG
4216 		error = xfs_btree_check_block(cur, left, level, lbp);
4217 		if (error)
4218 			goto error0;
4219 #endif
4220 		/* Grab the current block number, for future use. */
4221 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4222 
4223 		/*
4224 		 * If left block is full enough so that removing one entry
4225 		 * won't make it too empty, and right-shifting an entry out
4226 		 * of left to us works, we're done.
4227 		 */
4228 		if (xfs_btree_get_numrecs(left) - 1 >=
4229 		    cur->bc_ops->get_minrecs(tcur, level)) {
4230 			error = xfs_btree_rshift(tcur, level, &i);
4231 			if (error)
4232 				goto error0;
4233 			if (i) {
4234 				ASSERT(xfs_btree_get_numrecs(block) >=
4235 				       cur->bc_ops->get_minrecs(tcur, level));
4236 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4237 				tcur = NULL;
4238 				if (level == 0)
4239 					cur->bc_levels[0].ptr++;
4240 
4241 				*stat = 1;
4242 				return 0;
4243 			}
4244 		}
4245 
4246 		/*
4247 		 * Otherwise, grab the number of records in right for
4248 		 * future reference.
4249 		 */
4250 		lrecs = xfs_btree_get_numrecs(left);
4251 	}
4252 
4253 	/* Delete the temp cursor, we're done with it. */
4254 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4255 	tcur = NULL;
4256 
4257 	/* If here, we need to do a join to keep the tree balanced. */
4258 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4259 
4260 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4261 	    lrecs + xfs_btree_get_numrecs(block) <=
4262 			cur->bc_ops->get_maxrecs(cur, level)) {
4263 		/*
4264 		 * Set "right" to be the starting block,
4265 		 * "left" to be the left neighbor.
4266 		 */
4267 		rptr = cptr;
4268 		right = block;
4269 		rbp = bp;
4270 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4271 		if (error)
4272 			goto error0;
4273 
4274 	/*
4275 	 * If that won't work, see if we can join with the right neighbor block.
4276 	 */
4277 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4278 		   rrecs + xfs_btree_get_numrecs(block) <=
4279 			cur->bc_ops->get_maxrecs(cur, level)) {
4280 		/*
4281 		 * Set "left" to be the starting block,
4282 		 * "right" to be the right neighbor.
4283 		 */
4284 		lptr = cptr;
4285 		left = block;
4286 		lbp = bp;
4287 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4288 		if (error)
4289 			goto error0;
4290 
4291 	/*
4292 	 * Otherwise, we can't fix the imbalance.
4293 	 * Just return.  This is probably a logic error, but it's not fatal.
4294 	 */
4295 	} else {
4296 		error = xfs_btree_dec_cursor(cur, level, stat);
4297 		if (error)
4298 			goto error0;
4299 		return 0;
4300 	}
4301 
4302 	rrecs = xfs_btree_get_numrecs(right);
4303 	lrecs = xfs_btree_get_numrecs(left);
4304 
4305 	/*
4306 	 * We're now going to join "left" and "right" by moving all the stuff
4307 	 * in "right" to "left" and deleting "right".
4308 	 */
4309 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4310 	if (level > 0) {
4311 		/* It's a non-leaf.  Move keys and pointers. */
4312 		union xfs_btree_key	*lkp;	/* left btree key */
4313 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4314 		union xfs_btree_key	*rkp;	/* right btree key */
4315 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4316 
4317 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4318 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4319 		rkp = xfs_btree_key_addr(cur, 1, right);
4320 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4321 
4322 		for (i = 1; i < rrecs; i++) {
4323 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4324 			if (error)
4325 				goto error0;
4326 		}
4327 
4328 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4329 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4330 
4331 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4332 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4333 	} else {
4334 		/* It's a leaf.  Move records.  */
4335 		union xfs_btree_rec	*lrp;	/* left record pointer */
4336 		union xfs_btree_rec	*rrp;	/* right record pointer */
4337 
4338 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4339 		rrp = xfs_btree_rec_addr(cur, 1, right);
4340 
4341 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4342 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4343 	}
4344 
4345 	XFS_BTREE_STATS_INC(cur, join);
4346 
4347 	/*
4348 	 * Fix up the number of records and right block pointer in the
4349 	 * surviving block, and log it.
4350 	 */
4351 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4352 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4353 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4354 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4355 
4356 	/* If there is a right sibling, point it to the remaining block. */
4357 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4358 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4359 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4360 		if (error)
4361 			goto error0;
4362 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4363 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4364 	}
4365 
4366 	/* Free the deleted block. */
4367 	error = xfs_btree_free_block(cur, rbp);
4368 	if (error)
4369 		goto error0;
4370 
4371 	/*
4372 	 * If we joined with the left neighbor, set the buffer in the
4373 	 * cursor to the left block, and fix up the index.
4374 	 */
4375 	if (bp != lbp) {
4376 		cur->bc_levels[level].bp = lbp;
4377 		cur->bc_levels[level].ptr += lrecs;
4378 		cur->bc_levels[level].ra = 0;
4379 	}
4380 	/*
4381 	 * If we joined with the right neighbor and there's a level above
4382 	 * us, increment the cursor at that level.
4383 	 */
4384 	else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4385 		 level + 1 < cur->bc_nlevels) {
4386 		error = xfs_btree_increment(cur, level + 1, &i);
4387 		if (error)
4388 			goto error0;
4389 	}
4390 
4391 	/*
4392 	 * Readjust the ptr at this level if it's not a leaf, since it's
4393 	 * still pointing at the deletion point, which makes the cursor
4394 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4395 	 * We can't use decrement because it would change the next level up.
4396 	 */
4397 	if (level > 0)
4398 		cur->bc_levels[level].ptr--;
4399 
4400 	/*
4401 	 * We combined blocks, so we have to update the parent keys if the
4402 	 * btree supports overlapped intervals.  However,
4403 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4404 	 * knows which record to delete.  Therefore, the caller must be savvy
4405 	 * enough to call updkeys for us if we return stat == 2.  The other
4406 	 * exit points from this function don't require deletions further up
4407 	 * the tree, so they can call updkeys directly.
4408 	 */
4409 
4410 	/* Return value means the next level up has something to do. */
4411 	*stat = 2;
4412 	return 0;
4413 
4414 error0:
4415 	if (tcur)
4416 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4417 	return error;
4418 }
4419 
4420 /*
4421  * Delete the record pointed to by cur.
4422  * The cursor refers to the place where the record was (could be inserted)
4423  * when the operation returns.
4424  */
4425 int					/* error */
4426 xfs_btree_delete(
4427 	struct xfs_btree_cur	*cur,
4428 	int			*stat)	/* success/failure */
4429 {
4430 	int			error;	/* error return value */
4431 	int			level;
4432 	int			i;
4433 	bool			joined = false;
4434 
4435 	/*
4436 	 * Go up the tree, starting at leaf level.
4437 	 *
4438 	 * If 2 is returned then a join was done; go to the next level.
4439 	 * Otherwise we are done.
4440 	 */
4441 	for (level = 0, i = 2; i == 2; level++) {
4442 		error = xfs_btree_delrec(cur, level, &i);
4443 		if (error)
4444 			goto error0;
4445 		if (i == 2)
4446 			joined = true;
4447 	}
4448 
4449 	/*
4450 	 * If we combined blocks as part of deleting the record, delrec won't
4451 	 * have updated the parent high keys so we have to do that here.
4452 	 */
4453 	if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4454 		error = xfs_btree_updkeys_force(cur, 0);
4455 		if (error)
4456 			goto error0;
4457 	}
4458 
4459 	if (i == 0) {
4460 		for (level = 1; level < cur->bc_nlevels; level++) {
4461 			if (cur->bc_levels[level].ptr == 0) {
4462 				error = xfs_btree_decrement(cur, level, &i);
4463 				if (error)
4464 					goto error0;
4465 				break;
4466 			}
4467 		}
4468 	}
4469 
4470 	*stat = i;
4471 	return 0;
4472 error0:
4473 	return error;
4474 }
4475 
4476 /*
4477  * Get the data from the pointed-to record.
4478  */
4479 int					/* error */
4480 xfs_btree_get_rec(
4481 	struct xfs_btree_cur	*cur,	/* btree cursor */
4482 	union xfs_btree_rec	**recp,	/* output: btree record */
4483 	int			*stat)	/* output: success/failure */
4484 {
4485 	struct xfs_btree_block	*block;	/* btree block */
4486 	struct xfs_buf		*bp;	/* buffer pointer */
4487 	int			ptr;	/* record number */
4488 #ifdef DEBUG
4489 	int			error;	/* error return value */
4490 #endif
4491 
4492 	ptr = cur->bc_levels[0].ptr;
4493 	block = xfs_btree_get_block(cur, 0, &bp);
4494 
4495 #ifdef DEBUG
4496 	error = xfs_btree_check_block(cur, block, 0, bp);
4497 	if (error)
4498 		return error;
4499 #endif
4500 
4501 	/*
4502 	 * Off the right end or left end, return failure.
4503 	 */
4504 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4505 		*stat = 0;
4506 		return 0;
4507 	}
4508 
4509 	/*
4510 	 * Point to the record and extract its data.
4511 	 */
4512 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4513 	*stat = 1;
4514 	return 0;
4515 }
4516 
4517 /* Visit a block in a btree. */
4518 STATIC int
4519 xfs_btree_visit_block(
4520 	struct xfs_btree_cur		*cur,
4521 	int				level,
4522 	xfs_btree_visit_blocks_fn	fn,
4523 	void				*data)
4524 {
4525 	struct xfs_btree_block		*block;
4526 	struct xfs_buf			*bp;
4527 	union xfs_btree_ptr		rptr, bufptr;
4528 	int				error;
4529 
4530 	/* do right sibling readahead */
4531 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4532 	block = xfs_btree_get_block(cur, level, &bp);
4533 
4534 	/* process the block */
4535 	error = fn(cur, level, data);
4536 	if (error)
4537 		return error;
4538 
4539 	/* now read rh sibling block for next iteration */
4540 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4541 	if (xfs_btree_ptr_is_null(cur, &rptr))
4542 		return -ENOENT;
4543 
4544 	/*
4545 	 * We only visit blocks once in this walk, so we have to avoid the
4546 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4547 	 * return the same block without checking if the right sibling points
4548 	 * back to us and creates a cyclic reference in the btree.
4549 	 */
4550 	xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4551 	if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4552 		xfs_btree_mark_sick(cur);
4553 		return -EFSCORRUPTED;
4554 	}
4555 
4556 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4557 }
4558 
4559 
4560 /* Visit every block in a btree. */
4561 int
4562 xfs_btree_visit_blocks(
4563 	struct xfs_btree_cur		*cur,
4564 	xfs_btree_visit_blocks_fn	fn,
4565 	unsigned int			flags,
4566 	void				*data)
4567 {
4568 	union xfs_btree_ptr		lptr;
4569 	int				level;
4570 	struct xfs_btree_block		*block = NULL;
4571 	int				error = 0;
4572 
4573 	xfs_btree_init_ptr_from_cur(cur, &lptr);
4574 
4575 	/* for each level */
4576 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4577 		/* grab the left hand block */
4578 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4579 		if (error)
4580 			return error;
4581 
4582 		/* readahead the left most block for the next level down */
4583 		if (level > 0) {
4584 			union xfs_btree_ptr     *ptr;
4585 
4586 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4587 			xfs_btree_readahead_ptr(cur, ptr, 1);
4588 
4589 			/* save for the next iteration of the loop */
4590 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4591 
4592 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4593 				continue;
4594 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4595 			continue;
4596 		}
4597 
4598 		/* for each buffer in the level */
4599 		do {
4600 			error = xfs_btree_visit_block(cur, level, fn, data);
4601 		} while (!error);
4602 
4603 		if (error != -ENOENT)
4604 			return error;
4605 	}
4606 
4607 	return 0;
4608 }
4609 
4610 /*
4611  * Change the owner of a btree.
4612  *
4613  * The mechanism we use here is ordered buffer logging. Because we don't know
4614  * how many buffers were are going to need to modify, we don't really want to
4615  * have to make transaction reservations for the worst case of every buffer in a
4616  * full size btree as that may be more space that we can fit in the log....
4617  *
4618  * We do the btree walk in the most optimal manner possible - we have sibling
4619  * pointers so we can just walk all the blocks on each level from left to right
4620  * in a single pass, and then move to the next level and do the same. We can
4621  * also do readahead on the sibling pointers to get IO moving more quickly,
4622  * though for slow disks this is unlikely to make much difference to performance
4623  * as the amount of CPU work we have to do before moving to the next block is
4624  * relatively small.
4625  *
4626  * For each btree block that we load, modify the owner appropriately, set the
4627  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4628  * we mark the region we change dirty so that if the buffer is relogged in
4629  * a subsequent transaction the changes we make here as an ordered buffer are
4630  * correctly relogged in that transaction.  If we are in recovery context, then
4631  * just queue the modified buffer as delayed write buffer so the transaction
4632  * recovery completion writes the changes to disk.
4633  */
4634 struct xfs_btree_block_change_owner_info {
4635 	uint64_t		new_owner;
4636 	struct list_head	*buffer_list;
4637 };
4638 
4639 static int
4640 xfs_btree_block_change_owner(
4641 	struct xfs_btree_cur	*cur,
4642 	int			level,
4643 	void			*data)
4644 {
4645 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4646 	struct xfs_btree_block	*block;
4647 	struct xfs_buf		*bp;
4648 
4649 	/* modify the owner */
4650 	block = xfs_btree_get_block(cur, level, &bp);
4651 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4652 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4653 			return 0;
4654 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4655 	} else {
4656 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4657 			return 0;
4658 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4659 	}
4660 
4661 	/*
4662 	 * If the block is a root block hosted in an inode, we might not have a
4663 	 * buffer pointer here and we shouldn't attempt to log the change as the
4664 	 * information is already held in the inode and discarded when the root
4665 	 * block is formatted into the on-disk inode fork. We still change it,
4666 	 * though, so everything is consistent in memory.
4667 	 */
4668 	if (!bp) {
4669 		ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4670 		ASSERT(level == cur->bc_nlevels - 1);
4671 		return 0;
4672 	}
4673 
4674 	if (cur->bc_tp) {
4675 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4676 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4677 			return -EAGAIN;
4678 		}
4679 	} else {
4680 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4681 	}
4682 
4683 	return 0;
4684 }
4685 
4686 int
4687 xfs_btree_change_owner(
4688 	struct xfs_btree_cur	*cur,
4689 	uint64_t		new_owner,
4690 	struct list_head	*buffer_list)
4691 {
4692 	struct xfs_btree_block_change_owner_info	bbcoi;
4693 
4694 	bbcoi.new_owner = new_owner;
4695 	bbcoi.buffer_list = buffer_list;
4696 
4697 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4698 			XFS_BTREE_VISIT_ALL, &bbcoi);
4699 }
4700 
4701 /* Verify the v5 fields of a long-format btree block. */
4702 xfs_failaddr_t
4703 xfs_btree_fsblock_v5hdr_verify(
4704 	struct xfs_buf		*bp,
4705 	uint64_t		owner)
4706 {
4707 	struct xfs_mount	*mp = bp->b_mount;
4708 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4709 
4710 	if (!xfs_has_crc(mp))
4711 		return __this_address;
4712 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4713 		return __this_address;
4714 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4715 		return __this_address;
4716 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4717 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4718 		return __this_address;
4719 	return NULL;
4720 }
4721 
4722 /* Verify a long-format btree block. */
4723 xfs_failaddr_t
4724 xfs_btree_fsblock_verify(
4725 	struct xfs_buf		*bp,
4726 	unsigned int		max_recs)
4727 {
4728 	struct xfs_mount	*mp = bp->b_mount;
4729 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4730 	xfs_fsblock_t		fsb;
4731 	xfs_failaddr_t		fa;
4732 
4733 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4734 
4735 	/* numrecs verification */
4736 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4737 		return __this_address;
4738 
4739 	/* sibling pointer verification */
4740 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4741 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4742 			block->bb_u.l.bb_leftsib);
4743 	if (!fa)
4744 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4745 				block->bb_u.l.bb_rightsib);
4746 	return fa;
4747 }
4748 
4749 /* Verify an in-memory btree block. */
4750 xfs_failaddr_t
4751 xfs_btree_memblock_verify(
4752 	struct xfs_buf		*bp,
4753 	unsigned int		max_recs)
4754 {
4755 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4756 	struct xfs_buftarg	*btp = bp->b_target;
4757 	xfs_failaddr_t		fa;
4758 	xfbno_t			bno;
4759 
4760 	ASSERT(xfs_buftarg_is_mem(bp->b_target));
4761 
4762 	/* numrecs verification */
4763 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4764 		return __this_address;
4765 
4766 	/* sibling pointer verification */
4767 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4768 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4769 			block->bb_u.l.bb_leftsib);
4770 	if (fa)
4771 		return fa;
4772 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4773 			block->bb_u.l.bb_rightsib);
4774 	if (fa)
4775 		return fa;
4776 
4777 	return NULL;
4778 }
4779 /**
4780  * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4781  *				      btree block
4782  *
4783  * @bp: buffer containing the btree block
4784  */
4785 xfs_failaddr_t
4786 xfs_btree_agblock_v5hdr_verify(
4787 	struct xfs_buf		*bp)
4788 {
4789 	struct xfs_mount	*mp = bp->b_mount;
4790 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4791 	struct xfs_perag	*pag = bp->b_pag;
4792 
4793 	if (!xfs_has_crc(mp))
4794 		return __this_address;
4795 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4796 		return __this_address;
4797 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4798 		return __this_address;
4799 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4800 		return __this_address;
4801 	return NULL;
4802 }
4803 
4804 /**
4805  * xfs_btree_agblock_verify() -- verify a short-format btree block
4806  *
4807  * @bp: buffer containing the btree block
4808  * @max_recs: maximum records allowed in this btree node
4809  */
4810 xfs_failaddr_t
4811 xfs_btree_agblock_verify(
4812 	struct xfs_buf		*bp,
4813 	unsigned int		max_recs)
4814 {
4815 	struct xfs_mount	*mp = bp->b_mount;
4816 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4817 	xfs_agblock_t		agbno;
4818 	xfs_failaddr_t		fa;
4819 
4820 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4821 
4822 	/* numrecs verification */
4823 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4824 		return __this_address;
4825 
4826 	/* sibling pointer verification */
4827 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4828 	fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4829 			block->bb_u.s.bb_leftsib);
4830 	if (!fa)
4831 		fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4832 				block->bb_u.s.bb_rightsib);
4833 	return fa;
4834 }
4835 
4836 /*
4837  * For the given limits on leaf and keyptr records per block, calculate the
4838  * height of the tree needed to index the number of leaf records.
4839  */
4840 unsigned int
4841 xfs_btree_compute_maxlevels(
4842 	const unsigned int	*limits,
4843 	unsigned long long	records)
4844 {
4845 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4846 	unsigned int		height = 1;
4847 
4848 	while (level_blocks > 1) {
4849 		level_blocks = howmany_64(level_blocks, limits[1]);
4850 		height++;
4851 	}
4852 
4853 	return height;
4854 }
4855 
4856 /*
4857  * For the given limits on leaf and keyptr records per block, calculate the
4858  * number of blocks needed to index the given number of leaf records.
4859  */
4860 unsigned long long
4861 xfs_btree_calc_size(
4862 	const unsigned int	*limits,
4863 	unsigned long long	records)
4864 {
4865 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4866 	unsigned long long	blocks = level_blocks;
4867 
4868 	while (level_blocks > 1) {
4869 		level_blocks = howmany_64(level_blocks, limits[1]);
4870 		blocks += level_blocks;
4871 	}
4872 
4873 	return blocks;
4874 }
4875 
4876 /*
4877  * Given a number of available blocks for the btree to consume with records and
4878  * pointers, calculate the height of the tree needed to index all the records
4879  * that space can hold based on the number of pointers each interior node
4880  * holds.
4881  *
4882  * We start by assuming a single level tree consumes a single block, then track
4883  * the number of blocks each node level consumes until we no longer have space
4884  * to store the next node level. At this point, we are indexing all the leaf
4885  * blocks in the space, and there's no more free space to split the tree any
4886  * further. That's our maximum btree height.
4887  */
4888 unsigned int
4889 xfs_btree_space_to_height(
4890 	const unsigned int	*limits,
4891 	unsigned long long	leaf_blocks)
4892 {
4893 	/*
4894 	 * The root btree block can have fewer than minrecs pointers in it
4895 	 * because the tree might not be big enough to require that amount of
4896 	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4897 	 */
4898 	unsigned long long	node_blocks = 2;
4899 	unsigned long long	blocks_left = leaf_blocks - 1;
4900 	unsigned int		height = 1;
4901 
4902 	if (leaf_blocks < 1)
4903 		return 0;
4904 
4905 	while (node_blocks < blocks_left) {
4906 		blocks_left -= node_blocks;
4907 		node_blocks *= limits[1];
4908 		height++;
4909 	}
4910 
4911 	return height;
4912 }
4913 
4914 /*
4915  * Query a regular btree for all records overlapping a given interval.
4916  * Start with a LE lookup of the key of low_rec and return all records
4917  * until we find a record with a key greater than the key of high_rec.
4918  */
4919 STATIC int
4920 xfs_btree_simple_query_range(
4921 	struct xfs_btree_cur		*cur,
4922 	const union xfs_btree_key	*low_key,
4923 	const union xfs_btree_key	*high_key,
4924 	xfs_btree_query_range_fn	fn,
4925 	void				*priv)
4926 {
4927 	union xfs_btree_rec		*recp;
4928 	union xfs_btree_key		rec_key;
4929 	int				stat;
4930 	bool				firstrec = true;
4931 	int				error;
4932 
4933 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4934 	ASSERT(cur->bc_ops->diff_two_keys);
4935 
4936 	/*
4937 	 * Find the leftmost record.  The btree cursor must be set
4938 	 * to the low record used to generate low_key.
4939 	 */
4940 	stat = 0;
4941 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4942 	if (error)
4943 		goto out;
4944 
4945 	/* Nothing?  See if there's anything to the right. */
4946 	if (!stat) {
4947 		error = xfs_btree_increment(cur, 0, &stat);
4948 		if (error)
4949 			goto out;
4950 	}
4951 
4952 	while (stat) {
4953 		/* Find the record. */
4954 		error = xfs_btree_get_rec(cur, &recp, &stat);
4955 		if (error || !stat)
4956 			break;
4957 
4958 		/* Skip if low_key > high_key(rec). */
4959 		if (firstrec) {
4960 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4961 			firstrec = false;
4962 			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4963 				goto advloop;
4964 		}
4965 
4966 		/* Stop if low_key(rec) > high_key. */
4967 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4968 		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4969 			break;
4970 
4971 		/* Callback */
4972 		error = fn(cur, recp, priv);
4973 		if (error)
4974 			break;
4975 
4976 advloop:
4977 		/* Move on to the next record. */
4978 		error = xfs_btree_increment(cur, 0, &stat);
4979 		if (error)
4980 			break;
4981 	}
4982 
4983 out:
4984 	return error;
4985 }
4986 
4987 /*
4988  * Query an overlapped interval btree for all records overlapping a given
4989  * interval.  This function roughly follows the algorithm given in
4990  * "Interval Trees" of _Introduction to Algorithms_, which is section
4991  * 14.3 in the 2nd and 3rd editions.
4992  *
4993  * First, generate keys for the low and high records passed in.
4994  *
4995  * For any leaf node, generate the high and low keys for the record.
4996  * If the record keys overlap with the query low/high keys, pass the
4997  * record to the function iterator.
4998  *
4999  * For any internal node, compare the low and high keys of each
5000  * pointer against the query low/high keys.  If there's an overlap,
5001  * follow the pointer.
5002  *
5003  * As an optimization, we stop scanning a block when we find a low key
5004  * that is greater than the query's high key.
5005  */
5006 STATIC int
5007 xfs_btree_overlapped_query_range(
5008 	struct xfs_btree_cur		*cur,
5009 	const union xfs_btree_key	*low_key,
5010 	const union xfs_btree_key	*high_key,
5011 	xfs_btree_query_range_fn	fn,
5012 	void				*priv)
5013 {
5014 	union xfs_btree_ptr		ptr;
5015 	union xfs_btree_ptr		*pp;
5016 	union xfs_btree_key		rec_key;
5017 	union xfs_btree_key		rec_hkey;
5018 	union xfs_btree_key		*lkp;
5019 	union xfs_btree_key		*hkp;
5020 	union xfs_btree_rec		*recp;
5021 	struct xfs_btree_block		*block;
5022 	int				level;
5023 	struct xfs_buf			*bp;
5024 	int				i;
5025 	int				error;
5026 
5027 	/* Load the root of the btree. */
5028 	level = cur->bc_nlevels - 1;
5029 	xfs_btree_init_ptr_from_cur(cur, &ptr);
5030 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
5031 	if (error)
5032 		return error;
5033 	xfs_btree_get_block(cur, level, &bp);
5034 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
5035 #ifdef DEBUG
5036 	error = xfs_btree_check_block(cur, block, level, bp);
5037 	if (error)
5038 		goto out;
5039 #endif
5040 	cur->bc_levels[level].ptr = 1;
5041 
5042 	while (level < cur->bc_nlevels) {
5043 		block = xfs_btree_get_block(cur, level, &bp);
5044 
5045 		/* End of node, pop back towards the root. */
5046 		if (cur->bc_levels[level].ptr >
5047 					be16_to_cpu(block->bb_numrecs)) {
5048 pop_up:
5049 			if (level < cur->bc_nlevels - 1)
5050 				cur->bc_levels[level + 1].ptr++;
5051 			level++;
5052 			continue;
5053 		}
5054 
5055 		if (level == 0) {
5056 			/* Handle a leaf node. */
5057 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5058 					block);
5059 
5060 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5061 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
5062 
5063 			/*
5064 			 * If (query's high key < record's low key), then there
5065 			 * are no more interesting records in this block.  Pop
5066 			 * up to the leaf level to find more record blocks.
5067 			 *
5068 			 * If (record's high key >= query's low key) and
5069 			 *    (query's high key >= record's low key), then
5070 			 * this record overlaps the query range; callback.
5071 			 */
5072 			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5073 				goto pop_up;
5074 			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5075 				error = fn(cur, recp, priv);
5076 				if (error)
5077 					break;
5078 			}
5079 			cur->bc_levels[level].ptr++;
5080 			continue;
5081 		}
5082 
5083 		/* Handle an internal node. */
5084 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5085 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5086 				block);
5087 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5088 
5089 		/*
5090 		 * If (query's high key < pointer's low key), then there are no
5091 		 * more interesting keys in this block.  Pop up one leaf level
5092 		 * to continue looking for records.
5093 		 *
5094 		 * If (pointer's high key >= query's low key) and
5095 		 *    (query's high key >= pointer's low key), then
5096 		 * this record overlaps the query range; follow pointer.
5097 		 */
5098 		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5099 			goto pop_up;
5100 		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5101 			level--;
5102 			error = xfs_btree_lookup_get_block(cur, level, pp,
5103 					&block);
5104 			if (error)
5105 				goto out;
5106 			xfs_btree_get_block(cur, level, &bp);
5107 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
5108 #ifdef DEBUG
5109 			error = xfs_btree_check_block(cur, block, level, bp);
5110 			if (error)
5111 				goto out;
5112 #endif
5113 			cur->bc_levels[level].ptr = 1;
5114 			continue;
5115 		}
5116 		cur->bc_levels[level].ptr++;
5117 	}
5118 
5119 out:
5120 	/*
5121 	 * If we don't end this function with the cursor pointing at a record
5122 	 * block, a subsequent non-error cursor deletion will not release
5123 	 * node-level buffers, causing a buffer leak.  This is quite possible
5124 	 * with a zero-results range query, so release the buffers if we
5125 	 * failed to return any results.
5126 	 */
5127 	if (cur->bc_levels[0].bp == NULL) {
5128 		for (i = 0; i < cur->bc_nlevels; i++) {
5129 			if (cur->bc_levels[i].bp) {
5130 				xfs_trans_brelse(cur->bc_tp,
5131 						cur->bc_levels[i].bp);
5132 				cur->bc_levels[i].bp = NULL;
5133 				cur->bc_levels[i].ptr = 0;
5134 				cur->bc_levels[i].ra = 0;
5135 			}
5136 		}
5137 	}
5138 
5139 	return error;
5140 }
5141 
5142 static inline void
5143 xfs_btree_key_from_irec(
5144 	struct xfs_btree_cur		*cur,
5145 	union xfs_btree_key		*key,
5146 	const union xfs_btree_irec	*irec)
5147 {
5148 	union xfs_btree_rec		rec;
5149 
5150 	cur->bc_rec = *irec;
5151 	cur->bc_ops->init_rec_from_cur(cur, &rec);
5152 	cur->bc_ops->init_key_from_rec(key, &rec);
5153 }
5154 
5155 /*
5156  * Query a btree for all records overlapping a given interval of keys.  The
5157  * supplied function will be called with each record found; return one of the
5158  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5159  * code.  This function returns -ECANCELED, zero, or a negative error code.
5160  */
5161 int
5162 xfs_btree_query_range(
5163 	struct xfs_btree_cur		*cur,
5164 	const union xfs_btree_irec	*low_rec,
5165 	const union xfs_btree_irec	*high_rec,
5166 	xfs_btree_query_range_fn	fn,
5167 	void				*priv)
5168 {
5169 	union xfs_btree_key		low_key;
5170 	union xfs_btree_key		high_key;
5171 
5172 	/* Find the keys of both ends of the interval. */
5173 	xfs_btree_key_from_irec(cur, &high_key, high_rec);
5174 	xfs_btree_key_from_irec(cur, &low_key, low_rec);
5175 
5176 	/* Enforce low key <= high key. */
5177 	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5178 		return -EINVAL;
5179 
5180 	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5181 		return xfs_btree_simple_query_range(cur, &low_key,
5182 				&high_key, fn, priv);
5183 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5184 			fn, priv);
5185 }
5186 
5187 /* Query a btree for all records. */
5188 int
5189 xfs_btree_query_all(
5190 	struct xfs_btree_cur		*cur,
5191 	xfs_btree_query_range_fn	fn,
5192 	void				*priv)
5193 {
5194 	union xfs_btree_key		low_key;
5195 	union xfs_btree_key		high_key;
5196 
5197 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5198 	memset(&low_key, 0, sizeof(low_key));
5199 	memset(&high_key, 0xFF, sizeof(high_key));
5200 
5201 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5202 }
5203 
5204 static int
5205 xfs_btree_count_blocks_helper(
5206 	struct xfs_btree_cur	*cur,
5207 	int			level,
5208 	void			*data)
5209 {
5210 	xfs_extlen_t		*blocks = data;
5211 	(*blocks)++;
5212 
5213 	return 0;
5214 }
5215 
5216 /* Count the blocks in a btree and return the result in *blocks. */
5217 int
5218 xfs_btree_count_blocks(
5219 	struct xfs_btree_cur	*cur,
5220 	xfs_extlen_t		*blocks)
5221 {
5222 	*blocks = 0;
5223 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5224 			XFS_BTREE_VISIT_ALL, blocks);
5225 }
5226 
5227 /* Compare two btree pointers. */
5228 int64_t
5229 xfs_btree_diff_two_ptrs(
5230 	struct xfs_btree_cur		*cur,
5231 	const union xfs_btree_ptr	*a,
5232 	const union xfs_btree_ptr	*b)
5233 {
5234 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5235 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5236 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5237 }
5238 
5239 struct xfs_btree_has_records {
5240 	/* Keys for the start and end of the range we want to know about. */
5241 	union xfs_btree_key		start_key;
5242 	union xfs_btree_key		end_key;
5243 
5244 	/* Mask for key comparisons, if desired. */
5245 	const union xfs_btree_key	*key_mask;
5246 
5247 	/* Highest record key we've seen so far. */
5248 	union xfs_btree_key		high_key;
5249 
5250 	enum xbtree_recpacking		outcome;
5251 };
5252 
5253 STATIC int
5254 xfs_btree_has_records_helper(
5255 	struct xfs_btree_cur		*cur,
5256 	const union xfs_btree_rec	*rec,
5257 	void				*priv)
5258 {
5259 	union xfs_btree_key		rec_key;
5260 	union xfs_btree_key		rec_high_key;
5261 	struct xfs_btree_has_records	*info = priv;
5262 	enum xbtree_key_contig		key_contig;
5263 
5264 	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5265 
5266 	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5267 		info->outcome = XBTREE_RECPACKING_SPARSE;
5268 
5269 		/*
5270 		 * If the first record we find does not overlap the start key,
5271 		 * then there is a hole at the start of the search range.
5272 		 * Classify this as sparse and stop immediately.
5273 		 */
5274 		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5275 					info->key_mask))
5276 			return -ECANCELED;
5277 	} else {
5278 		/*
5279 		 * If a subsequent record does not overlap with the any record
5280 		 * we've seen so far, there is a hole in the middle of the
5281 		 * search range.  Classify this as sparse and stop.
5282 		 * If the keys overlap and this btree does not allow overlap,
5283 		 * signal corruption.
5284 		 */
5285 		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5286 					&rec_key, info->key_mask);
5287 		if (key_contig == XBTREE_KEY_OVERLAP &&
5288 				!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5289 			return -EFSCORRUPTED;
5290 		if (key_contig == XBTREE_KEY_GAP)
5291 			return -ECANCELED;
5292 	}
5293 
5294 	/*
5295 	 * If high_key(rec) is larger than any other high key we've seen,
5296 	 * remember it for later.
5297 	 */
5298 	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5299 	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5300 				info->key_mask))
5301 		info->high_key = rec_high_key; /* struct copy */
5302 
5303 	return 0;
5304 }
5305 
5306 /*
5307  * Scan part of the keyspace of a btree and tell us if that keyspace does not
5308  * map to any records; is fully mapped to records; or is partially mapped to
5309  * records.  This is the btree record equivalent to determining if a file is
5310  * sparse.
5311  *
5312  * For most btree types, the record scan should use all available btree key
5313  * fields to compare the keys encountered.  These callers should pass NULL for
5314  * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5315  * want to ignore some part of the btree record keyspace when performing the
5316  * comparison.  These callers should pass in a union xfs_btree_key object with
5317  * the fields that *should* be a part of the comparison set to any nonzero
5318  * value, and the rest zeroed.
5319  */
5320 int
5321 xfs_btree_has_records(
5322 	struct xfs_btree_cur		*cur,
5323 	const union xfs_btree_irec	*low,
5324 	const union xfs_btree_irec	*high,
5325 	const union xfs_btree_key	*mask,
5326 	enum xbtree_recpacking		*outcome)
5327 {
5328 	struct xfs_btree_has_records	info = {
5329 		.outcome		= XBTREE_RECPACKING_EMPTY,
5330 		.key_mask		= mask,
5331 	};
5332 	int				error;
5333 
5334 	/* Not all btrees support this operation. */
5335 	if (!cur->bc_ops->keys_contiguous) {
5336 		ASSERT(0);
5337 		return -EOPNOTSUPP;
5338 	}
5339 
5340 	xfs_btree_key_from_irec(cur, &info.start_key, low);
5341 	xfs_btree_key_from_irec(cur, &info.end_key, high);
5342 
5343 	error = xfs_btree_query_range(cur, low, high,
5344 			xfs_btree_has_records_helper, &info);
5345 	if (error == -ECANCELED)
5346 		goto out;
5347 	if (error)
5348 		return error;
5349 
5350 	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5351 		goto out;
5352 
5353 	/*
5354 	 * If the largest high_key(rec) we saw during the walk is greater than
5355 	 * the end of the search range, classify this as full.  Otherwise,
5356 	 * there is a hole at the end of the search range.
5357 	 */
5358 	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5359 				mask))
5360 		info.outcome = XBTREE_RECPACKING_FULL;
5361 
5362 out:
5363 	*outcome = info.outcome;
5364 	return 0;
5365 }
5366 
5367 /* Are there more records in this btree? */
5368 bool
5369 xfs_btree_has_more_records(
5370 	struct xfs_btree_cur	*cur)
5371 {
5372 	struct xfs_btree_block	*block;
5373 	struct xfs_buf		*bp;
5374 
5375 	block = xfs_btree_get_block(cur, 0, &bp);
5376 
5377 	/* There are still records in this block. */
5378 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5379 		return true;
5380 
5381 	/* There are more record blocks. */
5382 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5383 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5384 	else
5385 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5386 }
5387 
5388 /* Set up all the btree cursor caches. */
5389 int __init
5390 xfs_btree_init_cur_caches(void)
5391 {
5392 	int		error;
5393 
5394 	error = xfs_allocbt_init_cur_cache();
5395 	if (error)
5396 		return error;
5397 	error = xfs_inobt_init_cur_cache();
5398 	if (error)
5399 		goto err;
5400 	error = xfs_bmbt_init_cur_cache();
5401 	if (error)
5402 		goto err;
5403 	error = xfs_rmapbt_init_cur_cache();
5404 	if (error)
5405 		goto err;
5406 	error = xfs_refcountbt_init_cur_cache();
5407 	if (error)
5408 		goto err;
5409 
5410 	return 0;
5411 err:
5412 	xfs_btree_destroy_cur_caches();
5413 	return error;
5414 }
5415 
5416 /* Destroy all the btree cursor caches, if they've been allocated. */
5417 void
5418 xfs_btree_destroy_cur_caches(void)
5419 {
5420 	xfs_allocbt_destroy_cur_cache();
5421 	xfs_inobt_destroy_cur_cache();
5422 	xfs_bmbt_destroy_cur_cache();
5423 	xfs_rmapbt_destroy_cur_cache();
5424 	xfs_refcountbt_destroy_cur_cache();
5425 }
5426 
5427 /* Move the btree cursor before the first record. */
5428 int
5429 xfs_btree_goto_left_edge(
5430 	struct xfs_btree_cur	*cur)
5431 {
5432 	int			stat = 0;
5433 	int			error;
5434 
5435 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5436 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5437 	if (error)
5438 		return error;
5439 	if (!stat)
5440 		return 0;
5441 
5442 	error = xfs_btree_decrement(cur, 0, &stat);
5443 	if (error)
5444 		return error;
5445 	if (stat != 0) {
5446 		ASSERT(0);
5447 		xfs_btree_mark_sick(cur);
5448 		return -EFSCORRUPTED;
5449 	}
5450 
5451 	return 0;
5452 }
5453