1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_errortag.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_alloc.h" 22 #include "xfs_log.h" 23 #include "xfs_btree_staging.h" 24 #include "xfs_ag.h" 25 26 /* 27 * Cursor allocation zone. 28 */ 29 kmem_zone_t *xfs_btree_cur_zone; 30 31 /* 32 * Btree magic numbers. 33 */ 34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 36 XFS_FIBT_MAGIC, 0 }, 37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 39 XFS_REFC_CRC_MAGIC } 40 }; 41 42 uint32_t 43 xfs_btree_magic( 44 int crc, 45 xfs_btnum_t btnum) 46 { 47 uint32_t magic = xfs_magics[crc][btnum]; 48 49 /* Ensure we asked for crc for crc-only magics. */ 50 ASSERT(magic != 0); 51 return magic; 52 } 53 54 /* 55 * Check a long btree block header. Return the address of the failing check, 56 * or NULL if everything is ok. 57 */ 58 xfs_failaddr_t 59 __xfs_btree_check_lblock( 60 struct xfs_btree_cur *cur, 61 struct xfs_btree_block *block, 62 int level, 63 struct xfs_buf *bp) 64 { 65 struct xfs_mount *mp = cur->bc_mp; 66 xfs_btnum_t btnum = cur->bc_btnum; 67 int crc = xfs_sb_version_hascrc(&mp->m_sb); 68 69 if (crc) { 70 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 71 return __this_address; 72 if (block->bb_u.l.bb_blkno != 73 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 74 return __this_address; 75 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 76 return __this_address; 77 } 78 79 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 80 return __this_address; 81 if (be16_to_cpu(block->bb_level) != level) 82 return __this_address; 83 if (be16_to_cpu(block->bb_numrecs) > 84 cur->bc_ops->get_maxrecs(cur, level)) 85 return __this_address; 86 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 87 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib), 88 level + 1)) 89 return __this_address; 90 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 91 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib), 92 level + 1)) 93 return __this_address; 94 95 return NULL; 96 } 97 98 /* Check a long btree block header. */ 99 static int 100 xfs_btree_check_lblock( 101 struct xfs_btree_cur *cur, 102 struct xfs_btree_block *block, 103 int level, 104 struct xfs_buf *bp) 105 { 106 struct xfs_mount *mp = cur->bc_mp; 107 xfs_failaddr_t fa; 108 109 fa = __xfs_btree_check_lblock(cur, block, level, bp); 110 if (XFS_IS_CORRUPT(mp, fa != NULL) || 111 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 112 if (bp) 113 trace_xfs_btree_corrupt(bp, _RET_IP_); 114 return -EFSCORRUPTED; 115 } 116 return 0; 117 } 118 119 /* 120 * Check a short btree block header. Return the address of the failing check, 121 * or NULL if everything is ok. 122 */ 123 xfs_failaddr_t 124 __xfs_btree_check_sblock( 125 struct xfs_btree_cur *cur, 126 struct xfs_btree_block *block, 127 int level, 128 struct xfs_buf *bp) 129 { 130 struct xfs_mount *mp = cur->bc_mp; 131 xfs_btnum_t btnum = cur->bc_btnum; 132 int crc = xfs_sb_version_hascrc(&mp->m_sb); 133 134 if (crc) { 135 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 136 return __this_address; 137 if (block->bb_u.s.bb_blkno != 138 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 139 return __this_address; 140 } 141 142 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 143 return __this_address; 144 if (be16_to_cpu(block->bb_level) != level) 145 return __this_address; 146 if (be16_to_cpu(block->bb_numrecs) > 147 cur->bc_ops->get_maxrecs(cur, level)) 148 return __this_address; 149 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 150 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib), 151 level + 1)) 152 return __this_address; 153 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 154 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib), 155 level + 1)) 156 return __this_address; 157 158 return NULL; 159 } 160 161 /* Check a short btree block header. */ 162 STATIC int 163 xfs_btree_check_sblock( 164 struct xfs_btree_cur *cur, 165 struct xfs_btree_block *block, 166 int level, 167 struct xfs_buf *bp) 168 { 169 struct xfs_mount *mp = cur->bc_mp; 170 xfs_failaddr_t fa; 171 172 fa = __xfs_btree_check_sblock(cur, block, level, bp); 173 if (XFS_IS_CORRUPT(mp, fa != NULL) || 174 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 175 if (bp) 176 trace_xfs_btree_corrupt(bp, _RET_IP_); 177 return -EFSCORRUPTED; 178 } 179 return 0; 180 } 181 182 /* 183 * Debug routine: check that block header is ok. 184 */ 185 int 186 xfs_btree_check_block( 187 struct xfs_btree_cur *cur, /* btree cursor */ 188 struct xfs_btree_block *block, /* generic btree block pointer */ 189 int level, /* level of the btree block */ 190 struct xfs_buf *bp) /* buffer containing block, if any */ 191 { 192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 193 return xfs_btree_check_lblock(cur, block, level, bp); 194 else 195 return xfs_btree_check_sblock(cur, block, level, bp); 196 } 197 198 /* Check that this long pointer is valid and points within the fs. */ 199 bool 200 xfs_btree_check_lptr( 201 struct xfs_btree_cur *cur, 202 xfs_fsblock_t fsbno, 203 int level) 204 { 205 if (level <= 0) 206 return false; 207 return xfs_verify_fsbno(cur->bc_mp, fsbno); 208 } 209 210 /* Check that this short pointer is valid and points within the AG. */ 211 bool 212 xfs_btree_check_sptr( 213 struct xfs_btree_cur *cur, 214 xfs_agblock_t agbno, 215 int level) 216 { 217 if (level <= 0) 218 return false; 219 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno); 220 } 221 222 /* 223 * Check that a given (indexed) btree pointer at a certain level of a 224 * btree is valid and doesn't point past where it should. 225 */ 226 static int 227 xfs_btree_check_ptr( 228 struct xfs_btree_cur *cur, 229 union xfs_btree_ptr *ptr, 230 int index, 231 int level) 232 { 233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 235 level)) 236 return 0; 237 xfs_err(cur->bc_mp, 238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 239 cur->bc_ino.ip->i_ino, 240 cur->bc_ino.whichfork, cur->bc_btnum, 241 level, index); 242 } else { 243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 244 level)) 245 return 0; 246 xfs_err(cur->bc_mp, 247 "AG %u: Corrupt btree %d pointer at level %d index %d.", 248 cur->bc_ag.pag->pag_agno, cur->bc_btnum, 249 level, index); 250 } 251 252 return -EFSCORRUPTED; 253 } 254 255 #ifdef DEBUG 256 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr 257 #else 258 # define xfs_btree_debug_check_ptr(...) (0) 259 #endif 260 261 /* 262 * Calculate CRC on the whole btree block and stuff it into the 263 * long-form btree header. 264 * 265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 266 * it into the buffer so recovery knows what the last modification was that made 267 * it to disk. 268 */ 269 void 270 xfs_btree_lblock_calc_crc( 271 struct xfs_buf *bp) 272 { 273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 274 struct xfs_buf_log_item *bip = bp->b_log_item; 275 276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 277 return; 278 if (bip) 279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 281 } 282 283 bool 284 xfs_btree_lblock_verify_crc( 285 struct xfs_buf *bp) 286 { 287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 288 struct xfs_mount *mp = bp->b_mount; 289 290 if (xfs_sb_version_hascrc(&mp->m_sb)) { 291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 292 return false; 293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 294 } 295 296 return true; 297 } 298 299 /* 300 * Calculate CRC on the whole btree block and stuff it into the 301 * short-form btree header. 302 * 303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 304 * it into the buffer so recovery knows what the last modification was that made 305 * it to disk. 306 */ 307 void 308 xfs_btree_sblock_calc_crc( 309 struct xfs_buf *bp) 310 { 311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 312 struct xfs_buf_log_item *bip = bp->b_log_item; 313 314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 315 return; 316 if (bip) 317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 319 } 320 321 bool 322 xfs_btree_sblock_verify_crc( 323 struct xfs_buf *bp) 324 { 325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 326 struct xfs_mount *mp = bp->b_mount; 327 328 if (xfs_sb_version_hascrc(&mp->m_sb)) { 329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 330 return false; 331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 332 } 333 334 return true; 335 } 336 337 static int 338 xfs_btree_free_block( 339 struct xfs_btree_cur *cur, 340 struct xfs_buf *bp) 341 { 342 int error; 343 344 error = cur->bc_ops->free_block(cur, bp); 345 if (!error) { 346 xfs_trans_binval(cur->bc_tp, bp); 347 XFS_BTREE_STATS_INC(cur, free); 348 } 349 return error; 350 } 351 352 /* 353 * Delete the btree cursor. 354 */ 355 void 356 xfs_btree_del_cursor( 357 struct xfs_btree_cur *cur, /* btree cursor */ 358 int error) /* del because of error */ 359 { 360 int i; /* btree level */ 361 362 /* 363 * Clear the buffer pointers and release the buffers. If we're doing 364 * this because of an error, inspect all of the entries in the bc_bufs 365 * array for buffers to be unlocked. This is because some of the btree 366 * code works from level n down to 0, and if we get an error along the 367 * way we won't have initialized all the entries down to 0. 368 */ 369 for (i = 0; i < cur->bc_nlevels; i++) { 370 if (cur->bc_bufs[i]) 371 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 372 else if (!error) 373 break; 374 } 375 376 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || 377 XFS_FORCED_SHUTDOWN(cur->bc_mp)); 378 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) 379 kmem_free(cur->bc_ops); 380 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag) 381 xfs_perag_put(cur->bc_ag.pag); 382 kmem_cache_free(xfs_btree_cur_zone, cur); 383 } 384 385 /* 386 * Duplicate the btree cursor. 387 * Allocate a new one, copy the record, re-get the buffers. 388 */ 389 int /* error */ 390 xfs_btree_dup_cursor( 391 xfs_btree_cur_t *cur, /* input cursor */ 392 xfs_btree_cur_t **ncur) /* output cursor */ 393 { 394 struct xfs_buf *bp; /* btree block's buffer pointer */ 395 int error; /* error return value */ 396 int i; /* level number of btree block */ 397 xfs_mount_t *mp; /* mount structure for filesystem */ 398 xfs_btree_cur_t *new; /* new cursor value */ 399 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 400 401 tp = cur->bc_tp; 402 mp = cur->bc_mp; 403 404 /* 405 * Allocate a new cursor like the old one. 406 */ 407 new = cur->bc_ops->dup_cursor(cur); 408 409 /* 410 * Copy the record currently in the cursor. 411 */ 412 new->bc_rec = cur->bc_rec; 413 414 /* 415 * For each level current, re-get the buffer and copy the ptr value. 416 */ 417 for (i = 0; i < new->bc_nlevels; i++) { 418 new->bc_ptrs[i] = cur->bc_ptrs[i]; 419 new->bc_ra[i] = cur->bc_ra[i]; 420 bp = cur->bc_bufs[i]; 421 if (bp) { 422 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 423 XFS_BUF_ADDR(bp), mp->m_bsize, 424 0, &bp, 425 cur->bc_ops->buf_ops); 426 if (error) { 427 xfs_btree_del_cursor(new, error); 428 *ncur = NULL; 429 return error; 430 } 431 } 432 new->bc_bufs[i] = bp; 433 } 434 *ncur = new; 435 return 0; 436 } 437 438 /* 439 * XFS btree block layout and addressing: 440 * 441 * There are two types of blocks in the btree: leaf and non-leaf blocks. 442 * 443 * The leaf record start with a header then followed by records containing 444 * the values. A non-leaf block also starts with the same header, and 445 * then first contains lookup keys followed by an equal number of pointers 446 * to the btree blocks at the previous level. 447 * 448 * +--------+-------+-------+-------+-------+-------+-------+ 449 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 450 * +--------+-------+-------+-------+-------+-------+-------+ 451 * 452 * +--------+-------+-------+-------+-------+-------+-------+ 453 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 454 * +--------+-------+-------+-------+-------+-------+-------+ 455 * 456 * The header is called struct xfs_btree_block for reasons better left unknown 457 * and comes in different versions for short (32bit) and long (64bit) block 458 * pointers. The record and key structures are defined by the btree instances 459 * and opaque to the btree core. The block pointers are simple disk endian 460 * integers, available in a short (32bit) and long (64bit) variant. 461 * 462 * The helpers below calculate the offset of a given record, key or pointer 463 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 464 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 465 * inside the btree block is done using indices starting at one, not zero! 466 * 467 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 468 * overlapping intervals. In such a tree, records are still sorted lowest to 469 * highest and indexed by the smallest key value that refers to the record. 470 * However, nodes are different: each pointer has two associated keys -- one 471 * indexing the lowest key available in the block(s) below (the same behavior 472 * as the key in a regular btree) and another indexing the highest key 473 * available in the block(s) below. Because records are /not/ sorted by the 474 * highest key, all leaf block updates require us to compute the highest key 475 * that matches any record in the leaf and to recursively update the high keys 476 * in the nodes going further up in the tree, if necessary. Nodes look like 477 * this: 478 * 479 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 480 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 481 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 482 * 483 * To perform an interval query on an overlapped tree, perform the usual 484 * depth-first search and use the low and high keys to decide if we can skip 485 * that particular node. If a leaf node is reached, return the records that 486 * intersect the interval. Note that an interval query may return numerous 487 * entries. For a non-overlapped tree, simply search for the record associated 488 * with the lowest key and iterate forward until a non-matching record is 489 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 490 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 491 * more detail. 492 * 493 * Why do we care about overlapping intervals? Let's say you have a bunch of 494 * reverse mapping records on a reflink filesystem: 495 * 496 * 1: +- file A startblock B offset C length D -----------+ 497 * 2: +- file E startblock F offset G length H --------------+ 498 * 3: +- file I startblock F offset J length K --+ 499 * 4: +- file L... --+ 500 * 501 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 502 * we'd simply increment the length of record 1. But how do we find the record 503 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 504 * record 3 because the keys are ordered first by startblock. An interval 505 * query would return records 1 and 2 because they both overlap (B+D-1), and 506 * from that we can pick out record 1 as the appropriate left neighbor. 507 * 508 * In the non-overlapped case you can do a LE lookup and decrement the cursor 509 * because a record's interval must end before the next record. 510 */ 511 512 /* 513 * Return size of the btree block header for this btree instance. 514 */ 515 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 516 { 517 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 518 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 519 return XFS_BTREE_LBLOCK_CRC_LEN; 520 return XFS_BTREE_LBLOCK_LEN; 521 } 522 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 523 return XFS_BTREE_SBLOCK_CRC_LEN; 524 return XFS_BTREE_SBLOCK_LEN; 525 } 526 527 /* 528 * Return size of btree block pointers for this btree instance. 529 */ 530 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 531 { 532 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 533 sizeof(__be64) : sizeof(__be32); 534 } 535 536 /* 537 * Calculate offset of the n-th record in a btree block. 538 */ 539 STATIC size_t 540 xfs_btree_rec_offset( 541 struct xfs_btree_cur *cur, 542 int n) 543 { 544 return xfs_btree_block_len(cur) + 545 (n - 1) * cur->bc_ops->rec_len; 546 } 547 548 /* 549 * Calculate offset of the n-th key in a btree block. 550 */ 551 STATIC size_t 552 xfs_btree_key_offset( 553 struct xfs_btree_cur *cur, 554 int n) 555 { 556 return xfs_btree_block_len(cur) + 557 (n - 1) * cur->bc_ops->key_len; 558 } 559 560 /* 561 * Calculate offset of the n-th high key in a btree block. 562 */ 563 STATIC size_t 564 xfs_btree_high_key_offset( 565 struct xfs_btree_cur *cur, 566 int n) 567 { 568 return xfs_btree_block_len(cur) + 569 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 570 } 571 572 /* 573 * Calculate offset of the n-th block pointer in a btree block. 574 */ 575 STATIC size_t 576 xfs_btree_ptr_offset( 577 struct xfs_btree_cur *cur, 578 int n, 579 int level) 580 { 581 return xfs_btree_block_len(cur) + 582 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 583 (n - 1) * xfs_btree_ptr_len(cur); 584 } 585 586 /* 587 * Return a pointer to the n-th record in the btree block. 588 */ 589 union xfs_btree_rec * 590 xfs_btree_rec_addr( 591 struct xfs_btree_cur *cur, 592 int n, 593 struct xfs_btree_block *block) 594 { 595 return (union xfs_btree_rec *) 596 ((char *)block + xfs_btree_rec_offset(cur, n)); 597 } 598 599 /* 600 * Return a pointer to the n-th key in the btree block. 601 */ 602 union xfs_btree_key * 603 xfs_btree_key_addr( 604 struct xfs_btree_cur *cur, 605 int n, 606 struct xfs_btree_block *block) 607 { 608 return (union xfs_btree_key *) 609 ((char *)block + xfs_btree_key_offset(cur, n)); 610 } 611 612 /* 613 * Return a pointer to the n-th high key in the btree block. 614 */ 615 union xfs_btree_key * 616 xfs_btree_high_key_addr( 617 struct xfs_btree_cur *cur, 618 int n, 619 struct xfs_btree_block *block) 620 { 621 return (union xfs_btree_key *) 622 ((char *)block + xfs_btree_high_key_offset(cur, n)); 623 } 624 625 /* 626 * Return a pointer to the n-th block pointer in the btree block. 627 */ 628 union xfs_btree_ptr * 629 xfs_btree_ptr_addr( 630 struct xfs_btree_cur *cur, 631 int n, 632 struct xfs_btree_block *block) 633 { 634 int level = xfs_btree_get_level(block); 635 636 ASSERT(block->bb_level != 0); 637 638 return (union xfs_btree_ptr *) 639 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 640 } 641 642 struct xfs_ifork * 643 xfs_btree_ifork_ptr( 644 struct xfs_btree_cur *cur) 645 { 646 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 647 648 if (cur->bc_flags & XFS_BTREE_STAGING) 649 return cur->bc_ino.ifake->if_fork; 650 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork); 651 } 652 653 /* 654 * Get the root block which is stored in the inode. 655 * 656 * For now this btree implementation assumes the btree root is always 657 * stored in the if_broot field of an inode fork. 658 */ 659 STATIC struct xfs_btree_block * 660 xfs_btree_get_iroot( 661 struct xfs_btree_cur *cur) 662 { 663 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 664 665 return (struct xfs_btree_block *)ifp->if_broot; 666 } 667 668 /* 669 * Retrieve the block pointer from the cursor at the given level. 670 * This may be an inode btree root or from a buffer. 671 */ 672 struct xfs_btree_block * /* generic btree block pointer */ 673 xfs_btree_get_block( 674 struct xfs_btree_cur *cur, /* btree cursor */ 675 int level, /* level in btree */ 676 struct xfs_buf **bpp) /* buffer containing the block */ 677 { 678 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 679 (level == cur->bc_nlevels - 1)) { 680 *bpp = NULL; 681 return xfs_btree_get_iroot(cur); 682 } 683 684 *bpp = cur->bc_bufs[level]; 685 return XFS_BUF_TO_BLOCK(*bpp); 686 } 687 688 /* 689 * Change the cursor to point to the first record at the given level. 690 * Other levels are unaffected. 691 */ 692 STATIC int /* success=1, failure=0 */ 693 xfs_btree_firstrec( 694 xfs_btree_cur_t *cur, /* btree cursor */ 695 int level) /* level to change */ 696 { 697 struct xfs_btree_block *block; /* generic btree block pointer */ 698 struct xfs_buf *bp; /* buffer containing block */ 699 700 /* 701 * Get the block pointer for this level. 702 */ 703 block = xfs_btree_get_block(cur, level, &bp); 704 if (xfs_btree_check_block(cur, block, level, bp)) 705 return 0; 706 /* 707 * It's empty, there is no such record. 708 */ 709 if (!block->bb_numrecs) 710 return 0; 711 /* 712 * Set the ptr value to 1, that's the first record/key. 713 */ 714 cur->bc_ptrs[level] = 1; 715 return 1; 716 } 717 718 /* 719 * Change the cursor to point to the last record in the current block 720 * at the given level. Other levels are unaffected. 721 */ 722 STATIC int /* success=1, failure=0 */ 723 xfs_btree_lastrec( 724 xfs_btree_cur_t *cur, /* btree cursor */ 725 int level) /* level to change */ 726 { 727 struct xfs_btree_block *block; /* generic btree block pointer */ 728 struct xfs_buf *bp; /* buffer containing block */ 729 730 /* 731 * Get the block pointer for this level. 732 */ 733 block = xfs_btree_get_block(cur, level, &bp); 734 if (xfs_btree_check_block(cur, block, level, bp)) 735 return 0; 736 /* 737 * It's empty, there is no such record. 738 */ 739 if (!block->bb_numrecs) 740 return 0; 741 /* 742 * Set the ptr value to numrecs, that's the last record/key. 743 */ 744 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs); 745 return 1; 746 } 747 748 /* 749 * Compute first and last byte offsets for the fields given. 750 * Interprets the offsets table, which contains struct field offsets. 751 */ 752 void 753 xfs_btree_offsets( 754 int64_t fields, /* bitmask of fields */ 755 const short *offsets, /* table of field offsets */ 756 int nbits, /* number of bits to inspect */ 757 int *first, /* output: first byte offset */ 758 int *last) /* output: last byte offset */ 759 { 760 int i; /* current bit number */ 761 int64_t imask; /* mask for current bit number */ 762 763 ASSERT(fields != 0); 764 /* 765 * Find the lowest bit, so the first byte offset. 766 */ 767 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 768 if (imask & fields) { 769 *first = offsets[i]; 770 break; 771 } 772 } 773 /* 774 * Find the highest bit, so the last byte offset. 775 */ 776 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 777 if (imask & fields) { 778 *last = offsets[i + 1] - 1; 779 break; 780 } 781 } 782 } 783 784 /* 785 * Get a buffer for the block, return it read in. 786 * Long-form addressing. 787 */ 788 int 789 xfs_btree_read_bufl( 790 struct xfs_mount *mp, /* file system mount point */ 791 struct xfs_trans *tp, /* transaction pointer */ 792 xfs_fsblock_t fsbno, /* file system block number */ 793 struct xfs_buf **bpp, /* buffer for fsbno */ 794 int refval, /* ref count value for buffer */ 795 const struct xfs_buf_ops *ops) 796 { 797 struct xfs_buf *bp; /* return value */ 798 xfs_daddr_t d; /* real disk block address */ 799 int error; 800 801 if (!xfs_verify_fsbno(mp, fsbno)) 802 return -EFSCORRUPTED; 803 d = XFS_FSB_TO_DADDR(mp, fsbno); 804 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 805 mp->m_bsize, 0, &bp, ops); 806 if (error) 807 return error; 808 if (bp) 809 xfs_buf_set_ref(bp, refval); 810 *bpp = bp; 811 return 0; 812 } 813 814 /* 815 * Read-ahead the block, don't wait for it, don't return a buffer. 816 * Long-form addressing. 817 */ 818 /* ARGSUSED */ 819 void 820 xfs_btree_reada_bufl( 821 struct xfs_mount *mp, /* file system mount point */ 822 xfs_fsblock_t fsbno, /* file system block number */ 823 xfs_extlen_t count, /* count of filesystem blocks */ 824 const struct xfs_buf_ops *ops) 825 { 826 xfs_daddr_t d; 827 828 ASSERT(fsbno != NULLFSBLOCK); 829 d = XFS_FSB_TO_DADDR(mp, fsbno); 830 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 831 } 832 833 /* 834 * Read-ahead the block, don't wait for it, don't return a buffer. 835 * Short-form addressing. 836 */ 837 /* ARGSUSED */ 838 void 839 xfs_btree_reada_bufs( 840 struct xfs_mount *mp, /* file system mount point */ 841 xfs_agnumber_t agno, /* allocation group number */ 842 xfs_agblock_t agbno, /* allocation group block number */ 843 xfs_extlen_t count, /* count of filesystem blocks */ 844 const struct xfs_buf_ops *ops) 845 { 846 xfs_daddr_t d; 847 848 ASSERT(agno != NULLAGNUMBER); 849 ASSERT(agbno != NULLAGBLOCK); 850 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 851 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 852 } 853 854 STATIC int 855 xfs_btree_readahead_lblock( 856 struct xfs_btree_cur *cur, 857 int lr, 858 struct xfs_btree_block *block) 859 { 860 int rval = 0; 861 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 862 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 863 864 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 865 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 866 cur->bc_ops->buf_ops); 867 rval++; 868 } 869 870 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 871 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 872 cur->bc_ops->buf_ops); 873 rval++; 874 } 875 876 return rval; 877 } 878 879 STATIC int 880 xfs_btree_readahead_sblock( 881 struct xfs_btree_cur *cur, 882 int lr, 883 struct xfs_btree_block *block) 884 { 885 int rval = 0; 886 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 887 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 888 889 890 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 891 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 892 left, 1, cur->bc_ops->buf_ops); 893 rval++; 894 } 895 896 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 898 right, 1, cur->bc_ops->buf_ops); 899 rval++; 900 } 901 902 return rval; 903 } 904 905 /* 906 * Read-ahead btree blocks, at the given level. 907 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 908 */ 909 STATIC int 910 xfs_btree_readahead( 911 struct xfs_btree_cur *cur, /* btree cursor */ 912 int lev, /* level in btree */ 913 int lr) /* left/right bits */ 914 { 915 struct xfs_btree_block *block; 916 917 /* 918 * No readahead needed if we are at the root level and the 919 * btree root is stored in the inode. 920 */ 921 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 922 (lev == cur->bc_nlevels - 1)) 923 return 0; 924 925 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev]) 926 return 0; 927 928 cur->bc_ra[lev] |= lr; 929 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]); 930 931 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 932 return xfs_btree_readahead_lblock(cur, lr, block); 933 return xfs_btree_readahead_sblock(cur, lr, block); 934 } 935 936 STATIC int 937 xfs_btree_ptr_to_daddr( 938 struct xfs_btree_cur *cur, 939 union xfs_btree_ptr *ptr, 940 xfs_daddr_t *daddr) 941 { 942 xfs_fsblock_t fsbno; 943 xfs_agblock_t agbno; 944 int error; 945 946 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 947 if (error) 948 return error; 949 950 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 951 fsbno = be64_to_cpu(ptr->l); 952 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 953 } else { 954 agbno = be32_to_cpu(ptr->s); 955 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno, 956 agbno); 957 } 958 959 return 0; 960 } 961 962 /* 963 * Readahead @count btree blocks at the given @ptr location. 964 * 965 * We don't need to care about long or short form btrees here as we have a 966 * method of converting the ptr directly to a daddr available to us. 967 */ 968 STATIC void 969 xfs_btree_readahead_ptr( 970 struct xfs_btree_cur *cur, 971 union xfs_btree_ptr *ptr, 972 xfs_extlen_t count) 973 { 974 xfs_daddr_t daddr; 975 976 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 977 return; 978 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 979 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 980 } 981 982 /* 983 * Set the buffer for level "lev" in the cursor to bp, releasing 984 * any previous buffer. 985 */ 986 STATIC void 987 xfs_btree_setbuf( 988 xfs_btree_cur_t *cur, /* btree cursor */ 989 int lev, /* level in btree */ 990 struct xfs_buf *bp) /* new buffer to set */ 991 { 992 struct xfs_btree_block *b; /* btree block */ 993 994 if (cur->bc_bufs[lev]) 995 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]); 996 cur->bc_bufs[lev] = bp; 997 cur->bc_ra[lev] = 0; 998 999 b = XFS_BUF_TO_BLOCK(bp); 1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1001 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1002 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1003 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1004 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1005 } else { 1006 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1007 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1008 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1009 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1010 } 1011 } 1012 1013 bool 1014 xfs_btree_ptr_is_null( 1015 struct xfs_btree_cur *cur, 1016 union xfs_btree_ptr *ptr) 1017 { 1018 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1019 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1020 else 1021 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1022 } 1023 1024 void 1025 xfs_btree_set_ptr_null( 1026 struct xfs_btree_cur *cur, 1027 union xfs_btree_ptr *ptr) 1028 { 1029 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1030 ptr->l = cpu_to_be64(NULLFSBLOCK); 1031 else 1032 ptr->s = cpu_to_be32(NULLAGBLOCK); 1033 } 1034 1035 /* 1036 * Get/set/init sibling pointers 1037 */ 1038 void 1039 xfs_btree_get_sibling( 1040 struct xfs_btree_cur *cur, 1041 struct xfs_btree_block *block, 1042 union xfs_btree_ptr *ptr, 1043 int lr) 1044 { 1045 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1046 1047 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1048 if (lr == XFS_BB_RIGHTSIB) 1049 ptr->l = block->bb_u.l.bb_rightsib; 1050 else 1051 ptr->l = block->bb_u.l.bb_leftsib; 1052 } else { 1053 if (lr == XFS_BB_RIGHTSIB) 1054 ptr->s = block->bb_u.s.bb_rightsib; 1055 else 1056 ptr->s = block->bb_u.s.bb_leftsib; 1057 } 1058 } 1059 1060 void 1061 xfs_btree_set_sibling( 1062 struct xfs_btree_cur *cur, 1063 struct xfs_btree_block *block, 1064 union xfs_btree_ptr *ptr, 1065 int lr) 1066 { 1067 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1068 1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1070 if (lr == XFS_BB_RIGHTSIB) 1071 block->bb_u.l.bb_rightsib = ptr->l; 1072 else 1073 block->bb_u.l.bb_leftsib = ptr->l; 1074 } else { 1075 if (lr == XFS_BB_RIGHTSIB) 1076 block->bb_u.s.bb_rightsib = ptr->s; 1077 else 1078 block->bb_u.s.bb_leftsib = ptr->s; 1079 } 1080 } 1081 1082 void 1083 xfs_btree_init_block_int( 1084 struct xfs_mount *mp, 1085 struct xfs_btree_block *buf, 1086 xfs_daddr_t blkno, 1087 xfs_btnum_t btnum, 1088 __u16 level, 1089 __u16 numrecs, 1090 __u64 owner, 1091 unsigned int flags) 1092 { 1093 int crc = xfs_sb_version_hascrc(&mp->m_sb); 1094 __u32 magic = xfs_btree_magic(crc, btnum); 1095 1096 buf->bb_magic = cpu_to_be32(magic); 1097 buf->bb_level = cpu_to_be16(level); 1098 buf->bb_numrecs = cpu_to_be16(numrecs); 1099 1100 if (flags & XFS_BTREE_LONG_PTRS) { 1101 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1102 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1103 if (crc) { 1104 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1105 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1106 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1107 buf->bb_u.l.bb_pad = 0; 1108 buf->bb_u.l.bb_lsn = 0; 1109 } 1110 } else { 1111 /* owner is a 32 bit value on short blocks */ 1112 __u32 __owner = (__u32)owner; 1113 1114 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1115 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1116 if (crc) { 1117 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1118 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1119 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1120 buf->bb_u.s.bb_lsn = 0; 1121 } 1122 } 1123 } 1124 1125 void 1126 xfs_btree_init_block( 1127 struct xfs_mount *mp, 1128 struct xfs_buf *bp, 1129 xfs_btnum_t btnum, 1130 __u16 level, 1131 __u16 numrecs, 1132 __u64 owner) 1133 { 1134 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1135 btnum, level, numrecs, owner, 0); 1136 } 1137 1138 void 1139 xfs_btree_init_block_cur( 1140 struct xfs_btree_cur *cur, 1141 struct xfs_buf *bp, 1142 int level, 1143 int numrecs) 1144 { 1145 __u64 owner; 1146 1147 /* 1148 * we can pull the owner from the cursor right now as the different 1149 * owners align directly with the pointer size of the btree. This may 1150 * change in future, but is safe for current users of the generic btree 1151 * code. 1152 */ 1153 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1154 owner = cur->bc_ino.ip->i_ino; 1155 else 1156 owner = cur->bc_ag.pag->pag_agno; 1157 1158 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1159 cur->bc_btnum, level, numrecs, 1160 owner, cur->bc_flags); 1161 } 1162 1163 /* 1164 * Return true if ptr is the last record in the btree and 1165 * we need to track updates to this record. The decision 1166 * will be further refined in the update_lastrec method. 1167 */ 1168 STATIC int 1169 xfs_btree_is_lastrec( 1170 struct xfs_btree_cur *cur, 1171 struct xfs_btree_block *block, 1172 int level) 1173 { 1174 union xfs_btree_ptr ptr; 1175 1176 if (level > 0) 1177 return 0; 1178 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1179 return 0; 1180 1181 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1182 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1183 return 0; 1184 return 1; 1185 } 1186 1187 STATIC void 1188 xfs_btree_buf_to_ptr( 1189 struct xfs_btree_cur *cur, 1190 struct xfs_buf *bp, 1191 union xfs_btree_ptr *ptr) 1192 { 1193 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1194 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1195 XFS_BUF_ADDR(bp))); 1196 else { 1197 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1198 XFS_BUF_ADDR(bp))); 1199 } 1200 } 1201 1202 STATIC void 1203 xfs_btree_set_refs( 1204 struct xfs_btree_cur *cur, 1205 struct xfs_buf *bp) 1206 { 1207 switch (cur->bc_btnum) { 1208 case XFS_BTNUM_BNO: 1209 case XFS_BTNUM_CNT: 1210 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1211 break; 1212 case XFS_BTNUM_INO: 1213 case XFS_BTNUM_FINO: 1214 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1215 break; 1216 case XFS_BTNUM_BMAP: 1217 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1218 break; 1219 case XFS_BTNUM_RMAP: 1220 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1221 break; 1222 case XFS_BTNUM_REFC: 1223 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1224 break; 1225 default: 1226 ASSERT(0); 1227 } 1228 } 1229 1230 int 1231 xfs_btree_get_buf_block( 1232 struct xfs_btree_cur *cur, 1233 union xfs_btree_ptr *ptr, 1234 struct xfs_btree_block **block, 1235 struct xfs_buf **bpp) 1236 { 1237 struct xfs_mount *mp = cur->bc_mp; 1238 xfs_daddr_t d; 1239 int error; 1240 1241 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1242 if (error) 1243 return error; 1244 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1245 0, bpp); 1246 if (error) 1247 return error; 1248 1249 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1250 *block = XFS_BUF_TO_BLOCK(*bpp); 1251 return 0; 1252 } 1253 1254 /* 1255 * Read in the buffer at the given ptr and return the buffer and 1256 * the block pointer within the buffer. 1257 */ 1258 STATIC int 1259 xfs_btree_read_buf_block( 1260 struct xfs_btree_cur *cur, 1261 union xfs_btree_ptr *ptr, 1262 int flags, 1263 struct xfs_btree_block **block, 1264 struct xfs_buf **bpp) 1265 { 1266 struct xfs_mount *mp = cur->bc_mp; 1267 xfs_daddr_t d; 1268 int error; 1269 1270 /* need to sort out how callers deal with failures first */ 1271 ASSERT(!(flags & XBF_TRYLOCK)); 1272 1273 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1274 if (error) 1275 return error; 1276 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1277 mp->m_bsize, flags, bpp, 1278 cur->bc_ops->buf_ops); 1279 if (error) 1280 return error; 1281 1282 xfs_btree_set_refs(cur, *bpp); 1283 *block = XFS_BUF_TO_BLOCK(*bpp); 1284 return 0; 1285 } 1286 1287 /* 1288 * Copy keys from one btree block to another. 1289 */ 1290 void 1291 xfs_btree_copy_keys( 1292 struct xfs_btree_cur *cur, 1293 union xfs_btree_key *dst_key, 1294 union xfs_btree_key *src_key, 1295 int numkeys) 1296 { 1297 ASSERT(numkeys >= 0); 1298 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1299 } 1300 1301 /* 1302 * Copy records from one btree block to another. 1303 */ 1304 STATIC void 1305 xfs_btree_copy_recs( 1306 struct xfs_btree_cur *cur, 1307 union xfs_btree_rec *dst_rec, 1308 union xfs_btree_rec *src_rec, 1309 int numrecs) 1310 { 1311 ASSERT(numrecs >= 0); 1312 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1313 } 1314 1315 /* 1316 * Copy block pointers from one btree block to another. 1317 */ 1318 void 1319 xfs_btree_copy_ptrs( 1320 struct xfs_btree_cur *cur, 1321 union xfs_btree_ptr *dst_ptr, 1322 const union xfs_btree_ptr *src_ptr, 1323 int numptrs) 1324 { 1325 ASSERT(numptrs >= 0); 1326 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1327 } 1328 1329 /* 1330 * Shift keys one index left/right inside a single btree block. 1331 */ 1332 STATIC void 1333 xfs_btree_shift_keys( 1334 struct xfs_btree_cur *cur, 1335 union xfs_btree_key *key, 1336 int dir, 1337 int numkeys) 1338 { 1339 char *dst_key; 1340 1341 ASSERT(numkeys >= 0); 1342 ASSERT(dir == 1 || dir == -1); 1343 1344 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1345 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1346 } 1347 1348 /* 1349 * Shift records one index left/right inside a single btree block. 1350 */ 1351 STATIC void 1352 xfs_btree_shift_recs( 1353 struct xfs_btree_cur *cur, 1354 union xfs_btree_rec *rec, 1355 int dir, 1356 int numrecs) 1357 { 1358 char *dst_rec; 1359 1360 ASSERT(numrecs >= 0); 1361 ASSERT(dir == 1 || dir == -1); 1362 1363 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1364 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1365 } 1366 1367 /* 1368 * Shift block pointers one index left/right inside a single btree block. 1369 */ 1370 STATIC void 1371 xfs_btree_shift_ptrs( 1372 struct xfs_btree_cur *cur, 1373 union xfs_btree_ptr *ptr, 1374 int dir, 1375 int numptrs) 1376 { 1377 char *dst_ptr; 1378 1379 ASSERT(numptrs >= 0); 1380 ASSERT(dir == 1 || dir == -1); 1381 1382 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1383 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1384 } 1385 1386 /* 1387 * Log key values from the btree block. 1388 */ 1389 STATIC void 1390 xfs_btree_log_keys( 1391 struct xfs_btree_cur *cur, 1392 struct xfs_buf *bp, 1393 int first, 1394 int last) 1395 { 1396 1397 if (bp) { 1398 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1399 xfs_trans_log_buf(cur->bc_tp, bp, 1400 xfs_btree_key_offset(cur, first), 1401 xfs_btree_key_offset(cur, last + 1) - 1); 1402 } else { 1403 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1404 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1405 } 1406 } 1407 1408 /* 1409 * Log record values from the btree block. 1410 */ 1411 void 1412 xfs_btree_log_recs( 1413 struct xfs_btree_cur *cur, 1414 struct xfs_buf *bp, 1415 int first, 1416 int last) 1417 { 1418 1419 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1420 xfs_trans_log_buf(cur->bc_tp, bp, 1421 xfs_btree_rec_offset(cur, first), 1422 xfs_btree_rec_offset(cur, last + 1) - 1); 1423 1424 } 1425 1426 /* 1427 * Log block pointer fields from a btree block (nonleaf). 1428 */ 1429 STATIC void 1430 xfs_btree_log_ptrs( 1431 struct xfs_btree_cur *cur, /* btree cursor */ 1432 struct xfs_buf *bp, /* buffer containing btree block */ 1433 int first, /* index of first pointer to log */ 1434 int last) /* index of last pointer to log */ 1435 { 1436 1437 if (bp) { 1438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1439 int level = xfs_btree_get_level(block); 1440 1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1442 xfs_trans_log_buf(cur->bc_tp, bp, 1443 xfs_btree_ptr_offset(cur, first, level), 1444 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1445 } else { 1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1447 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1448 } 1449 1450 } 1451 1452 /* 1453 * Log fields from a btree block header. 1454 */ 1455 void 1456 xfs_btree_log_block( 1457 struct xfs_btree_cur *cur, /* btree cursor */ 1458 struct xfs_buf *bp, /* buffer containing btree block */ 1459 int fields) /* mask of fields: XFS_BB_... */ 1460 { 1461 int first; /* first byte offset logged */ 1462 int last; /* last byte offset logged */ 1463 static const short soffsets[] = { /* table of offsets (short) */ 1464 offsetof(struct xfs_btree_block, bb_magic), 1465 offsetof(struct xfs_btree_block, bb_level), 1466 offsetof(struct xfs_btree_block, bb_numrecs), 1467 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1468 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1469 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1470 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1471 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1472 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1473 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1474 XFS_BTREE_SBLOCK_CRC_LEN 1475 }; 1476 static const short loffsets[] = { /* table of offsets (long) */ 1477 offsetof(struct xfs_btree_block, bb_magic), 1478 offsetof(struct xfs_btree_block, bb_level), 1479 offsetof(struct xfs_btree_block, bb_numrecs), 1480 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1481 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1482 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1483 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1484 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1485 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1486 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1487 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1488 XFS_BTREE_LBLOCK_CRC_LEN 1489 }; 1490 1491 if (bp) { 1492 int nbits; 1493 1494 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1495 /* 1496 * We don't log the CRC when updating a btree 1497 * block but instead recreate it during log 1498 * recovery. As the log buffers have checksums 1499 * of their own this is safe and avoids logging a crc 1500 * update in a lot of places. 1501 */ 1502 if (fields == XFS_BB_ALL_BITS) 1503 fields = XFS_BB_ALL_BITS_CRC; 1504 nbits = XFS_BB_NUM_BITS_CRC; 1505 } else { 1506 nbits = XFS_BB_NUM_BITS; 1507 } 1508 xfs_btree_offsets(fields, 1509 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1510 loffsets : soffsets, 1511 nbits, &first, &last); 1512 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1513 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1514 } else { 1515 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1516 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1517 } 1518 } 1519 1520 /* 1521 * Increment cursor by one record at the level. 1522 * For nonzero levels the leaf-ward information is untouched. 1523 */ 1524 int /* error */ 1525 xfs_btree_increment( 1526 struct xfs_btree_cur *cur, 1527 int level, 1528 int *stat) /* success/failure */ 1529 { 1530 struct xfs_btree_block *block; 1531 union xfs_btree_ptr ptr; 1532 struct xfs_buf *bp; 1533 int error; /* error return value */ 1534 int lev; 1535 1536 ASSERT(level < cur->bc_nlevels); 1537 1538 /* Read-ahead to the right at this level. */ 1539 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1540 1541 /* Get a pointer to the btree block. */ 1542 block = xfs_btree_get_block(cur, level, &bp); 1543 1544 #ifdef DEBUG 1545 error = xfs_btree_check_block(cur, block, level, bp); 1546 if (error) 1547 goto error0; 1548 #endif 1549 1550 /* We're done if we remain in the block after the increment. */ 1551 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block)) 1552 goto out1; 1553 1554 /* Fail if we just went off the right edge of the tree. */ 1555 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1556 if (xfs_btree_ptr_is_null(cur, &ptr)) 1557 goto out0; 1558 1559 XFS_BTREE_STATS_INC(cur, increment); 1560 1561 /* 1562 * March up the tree incrementing pointers. 1563 * Stop when we don't go off the right edge of a block. 1564 */ 1565 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1566 block = xfs_btree_get_block(cur, lev, &bp); 1567 1568 #ifdef DEBUG 1569 error = xfs_btree_check_block(cur, block, lev, bp); 1570 if (error) 1571 goto error0; 1572 #endif 1573 1574 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block)) 1575 break; 1576 1577 /* Read-ahead the right block for the next loop. */ 1578 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1579 } 1580 1581 /* 1582 * If we went off the root then we are either seriously 1583 * confused or have the tree root in an inode. 1584 */ 1585 if (lev == cur->bc_nlevels) { 1586 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1587 goto out0; 1588 ASSERT(0); 1589 error = -EFSCORRUPTED; 1590 goto error0; 1591 } 1592 ASSERT(lev < cur->bc_nlevels); 1593 1594 /* 1595 * Now walk back down the tree, fixing up the cursor's buffer 1596 * pointers and key numbers. 1597 */ 1598 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1599 union xfs_btree_ptr *ptrp; 1600 1601 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1602 --lev; 1603 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1604 if (error) 1605 goto error0; 1606 1607 xfs_btree_setbuf(cur, lev, bp); 1608 cur->bc_ptrs[lev] = 1; 1609 } 1610 out1: 1611 *stat = 1; 1612 return 0; 1613 1614 out0: 1615 *stat = 0; 1616 return 0; 1617 1618 error0: 1619 return error; 1620 } 1621 1622 /* 1623 * Decrement cursor by one record at the level. 1624 * For nonzero levels the leaf-ward information is untouched. 1625 */ 1626 int /* error */ 1627 xfs_btree_decrement( 1628 struct xfs_btree_cur *cur, 1629 int level, 1630 int *stat) /* success/failure */ 1631 { 1632 struct xfs_btree_block *block; 1633 struct xfs_buf *bp; 1634 int error; /* error return value */ 1635 int lev; 1636 union xfs_btree_ptr ptr; 1637 1638 ASSERT(level < cur->bc_nlevels); 1639 1640 /* Read-ahead to the left at this level. */ 1641 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1642 1643 /* We're done if we remain in the block after the decrement. */ 1644 if (--cur->bc_ptrs[level] > 0) 1645 goto out1; 1646 1647 /* Get a pointer to the btree block. */ 1648 block = xfs_btree_get_block(cur, level, &bp); 1649 1650 #ifdef DEBUG 1651 error = xfs_btree_check_block(cur, block, level, bp); 1652 if (error) 1653 goto error0; 1654 #endif 1655 1656 /* Fail if we just went off the left edge of the tree. */ 1657 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1658 if (xfs_btree_ptr_is_null(cur, &ptr)) 1659 goto out0; 1660 1661 XFS_BTREE_STATS_INC(cur, decrement); 1662 1663 /* 1664 * March up the tree decrementing pointers. 1665 * Stop when we don't go off the left edge of a block. 1666 */ 1667 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1668 if (--cur->bc_ptrs[lev] > 0) 1669 break; 1670 /* Read-ahead the left block for the next loop. */ 1671 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1672 } 1673 1674 /* 1675 * If we went off the root then we are seriously confused. 1676 * or the root of the tree is in an inode. 1677 */ 1678 if (lev == cur->bc_nlevels) { 1679 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1680 goto out0; 1681 ASSERT(0); 1682 error = -EFSCORRUPTED; 1683 goto error0; 1684 } 1685 ASSERT(lev < cur->bc_nlevels); 1686 1687 /* 1688 * Now walk back down the tree, fixing up the cursor's buffer 1689 * pointers and key numbers. 1690 */ 1691 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1692 union xfs_btree_ptr *ptrp; 1693 1694 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1695 --lev; 1696 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1697 if (error) 1698 goto error0; 1699 xfs_btree_setbuf(cur, lev, bp); 1700 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block); 1701 } 1702 out1: 1703 *stat = 1; 1704 return 0; 1705 1706 out0: 1707 *stat = 0; 1708 return 0; 1709 1710 error0: 1711 return error; 1712 } 1713 1714 int 1715 xfs_btree_lookup_get_block( 1716 struct xfs_btree_cur *cur, /* btree cursor */ 1717 int level, /* level in the btree */ 1718 union xfs_btree_ptr *pp, /* ptr to btree block */ 1719 struct xfs_btree_block **blkp) /* return btree block */ 1720 { 1721 struct xfs_buf *bp; /* buffer pointer for btree block */ 1722 xfs_daddr_t daddr; 1723 int error = 0; 1724 1725 /* special case the root block if in an inode */ 1726 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1727 (level == cur->bc_nlevels - 1)) { 1728 *blkp = xfs_btree_get_iroot(cur); 1729 return 0; 1730 } 1731 1732 /* 1733 * If the old buffer at this level for the disk address we are 1734 * looking for re-use it. 1735 * 1736 * Otherwise throw it away and get a new one. 1737 */ 1738 bp = cur->bc_bufs[level]; 1739 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1740 if (error) 1741 return error; 1742 if (bp && XFS_BUF_ADDR(bp) == daddr) { 1743 *blkp = XFS_BUF_TO_BLOCK(bp); 1744 return 0; 1745 } 1746 1747 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1748 if (error) 1749 return error; 1750 1751 /* Check the inode owner since the verifiers don't. */ 1752 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) && 1753 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && 1754 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1755 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1756 cur->bc_ino.ip->i_ino) 1757 goto out_bad; 1758 1759 /* Did we get the level we were looking for? */ 1760 if (be16_to_cpu((*blkp)->bb_level) != level) 1761 goto out_bad; 1762 1763 /* Check that internal nodes have at least one record. */ 1764 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1765 goto out_bad; 1766 1767 xfs_btree_setbuf(cur, level, bp); 1768 return 0; 1769 1770 out_bad: 1771 *blkp = NULL; 1772 xfs_buf_mark_corrupt(bp); 1773 xfs_trans_brelse(cur->bc_tp, bp); 1774 return -EFSCORRUPTED; 1775 } 1776 1777 /* 1778 * Get current search key. For level 0 we don't actually have a key 1779 * structure so we make one up from the record. For all other levels 1780 * we just return the right key. 1781 */ 1782 STATIC union xfs_btree_key * 1783 xfs_lookup_get_search_key( 1784 struct xfs_btree_cur *cur, 1785 int level, 1786 int keyno, 1787 struct xfs_btree_block *block, 1788 union xfs_btree_key *kp) 1789 { 1790 if (level == 0) { 1791 cur->bc_ops->init_key_from_rec(kp, 1792 xfs_btree_rec_addr(cur, keyno, block)); 1793 return kp; 1794 } 1795 1796 return xfs_btree_key_addr(cur, keyno, block); 1797 } 1798 1799 /* 1800 * Lookup the record. The cursor is made to point to it, based on dir. 1801 * stat is set to 0 if can't find any such record, 1 for success. 1802 */ 1803 int /* error */ 1804 xfs_btree_lookup( 1805 struct xfs_btree_cur *cur, /* btree cursor */ 1806 xfs_lookup_t dir, /* <=, ==, or >= */ 1807 int *stat) /* success/failure */ 1808 { 1809 struct xfs_btree_block *block; /* current btree block */ 1810 int64_t diff; /* difference for the current key */ 1811 int error; /* error return value */ 1812 int keyno; /* current key number */ 1813 int level; /* level in the btree */ 1814 union xfs_btree_ptr *pp; /* ptr to btree block */ 1815 union xfs_btree_ptr ptr; /* ptr to btree block */ 1816 1817 XFS_BTREE_STATS_INC(cur, lookup); 1818 1819 /* No such thing as a zero-level tree. */ 1820 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1821 return -EFSCORRUPTED; 1822 1823 block = NULL; 1824 keyno = 0; 1825 1826 /* initialise start pointer from cursor */ 1827 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1828 pp = &ptr; 1829 1830 /* 1831 * Iterate over each level in the btree, starting at the root. 1832 * For each level above the leaves, find the key we need, based 1833 * on the lookup record, then follow the corresponding block 1834 * pointer down to the next level. 1835 */ 1836 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1837 /* Get the block we need to do the lookup on. */ 1838 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1839 if (error) 1840 goto error0; 1841 1842 if (diff == 0) { 1843 /* 1844 * If we already had a key match at a higher level, we 1845 * know we need to use the first entry in this block. 1846 */ 1847 keyno = 1; 1848 } else { 1849 /* Otherwise search this block. Do a binary search. */ 1850 1851 int high; /* high entry number */ 1852 int low; /* low entry number */ 1853 1854 /* Set low and high entry numbers, 1-based. */ 1855 low = 1; 1856 high = xfs_btree_get_numrecs(block); 1857 if (!high) { 1858 /* Block is empty, must be an empty leaf. */ 1859 if (level != 0 || cur->bc_nlevels != 1) { 1860 XFS_CORRUPTION_ERROR(__func__, 1861 XFS_ERRLEVEL_LOW, 1862 cur->bc_mp, block, 1863 sizeof(*block)); 1864 return -EFSCORRUPTED; 1865 } 1866 1867 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; 1868 *stat = 0; 1869 return 0; 1870 } 1871 1872 /* Binary search the block. */ 1873 while (low <= high) { 1874 union xfs_btree_key key; 1875 union xfs_btree_key *kp; 1876 1877 XFS_BTREE_STATS_INC(cur, compare); 1878 1879 /* keyno is average of low and high. */ 1880 keyno = (low + high) >> 1; 1881 1882 /* Get current search key */ 1883 kp = xfs_lookup_get_search_key(cur, level, 1884 keyno, block, &key); 1885 1886 /* 1887 * Compute difference to get next direction: 1888 * - less than, move right 1889 * - greater than, move left 1890 * - equal, we're done 1891 */ 1892 diff = cur->bc_ops->key_diff(cur, kp); 1893 if (diff < 0) 1894 low = keyno + 1; 1895 else if (diff > 0) 1896 high = keyno - 1; 1897 else 1898 break; 1899 } 1900 } 1901 1902 /* 1903 * If there are more levels, set up for the next level 1904 * by getting the block number and filling in the cursor. 1905 */ 1906 if (level > 0) { 1907 /* 1908 * If we moved left, need the previous key number, 1909 * unless there isn't one. 1910 */ 1911 if (diff > 0 && --keyno < 1) 1912 keyno = 1; 1913 pp = xfs_btree_ptr_addr(cur, keyno, block); 1914 1915 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1916 if (error) 1917 goto error0; 1918 1919 cur->bc_ptrs[level] = keyno; 1920 } 1921 } 1922 1923 /* Done with the search. See if we need to adjust the results. */ 1924 if (dir != XFS_LOOKUP_LE && diff < 0) { 1925 keyno++; 1926 /* 1927 * If ge search and we went off the end of the block, but it's 1928 * not the last block, we're in the wrong block. 1929 */ 1930 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1931 if (dir == XFS_LOOKUP_GE && 1932 keyno > xfs_btree_get_numrecs(block) && 1933 !xfs_btree_ptr_is_null(cur, &ptr)) { 1934 int i; 1935 1936 cur->bc_ptrs[0] = keyno; 1937 error = xfs_btree_increment(cur, 0, &i); 1938 if (error) 1939 goto error0; 1940 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1941 return -EFSCORRUPTED; 1942 *stat = 1; 1943 return 0; 1944 } 1945 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1946 keyno--; 1947 cur->bc_ptrs[0] = keyno; 1948 1949 /* Return if we succeeded or not. */ 1950 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1951 *stat = 0; 1952 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1953 *stat = 1; 1954 else 1955 *stat = 0; 1956 return 0; 1957 1958 error0: 1959 return error; 1960 } 1961 1962 /* Find the high key storage area from a regular key. */ 1963 union xfs_btree_key * 1964 xfs_btree_high_key_from_key( 1965 struct xfs_btree_cur *cur, 1966 union xfs_btree_key *key) 1967 { 1968 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 1969 return (union xfs_btree_key *)((char *)key + 1970 (cur->bc_ops->key_len / 2)); 1971 } 1972 1973 /* Determine the low (and high if overlapped) keys of a leaf block */ 1974 STATIC void 1975 xfs_btree_get_leaf_keys( 1976 struct xfs_btree_cur *cur, 1977 struct xfs_btree_block *block, 1978 union xfs_btree_key *key) 1979 { 1980 union xfs_btree_key max_hkey; 1981 union xfs_btree_key hkey; 1982 union xfs_btree_rec *rec; 1983 union xfs_btree_key *high; 1984 int n; 1985 1986 rec = xfs_btree_rec_addr(cur, 1, block); 1987 cur->bc_ops->init_key_from_rec(key, rec); 1988 1989 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 1990 1991 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 1992 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 1993 rec = xfs_btree_rec_addr(cur, n, block); 1994 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 1995 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 1996 > 0) 1997 max_hkey = hkey; 1998 } 1999 2000 high = xfs_btree_high_key_from_key(cur, key); 2001 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2002 } 2003 } 2004 2005 /* Determine the low (and high if overlapped) keys of a node block */ 2006 STATIC void 2007 xfs_btree_get_node_keys( 2008 struct xfs_btree_cur *cur, 2009 struct xfs_btree_block *block, 2010 union xfs_btree_key *key) 2011 { 2012 union xfs_btree_key *hkey; 2013 union xfs_btree_key *max_hkey; 2014 union xfs_btree_key *high; 2015 int n; 2016 2017 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2018 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2019 cur->bc_ops->key_len / 2); 2020 2021 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2023 hkey = xfs_btree_high_key_addr(cur, n, block); 2024 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2025 max_hkey = hkey; 2026 } 2027 2028 high = xfs_btree_high_key_from_key(cur, key); 2029 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2030 } else { 2031 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2032 cur->bc_ops->key_len); 2033 } 2034 } 2035 2036 /* Derive the keys for any btree block. */ 2037 void 2038 xfs_btree_get_keys( 2039 struct xfs_btree_cur *cur, 2040 struct xfs_btree_block *block, 2041 union xfs_btree_key *key) 2042 { 2043 if (be16_to_cpu(block->bb_level) == 0) 2044 xfs_btree_get_leaf_keys(cur, block, key); 2045 else 2046 xfs_btree_get_node_keys(cur, block, key); 2047 } 2048 2049 /* 2050 * Decide if we need to update the parent keys of a btree block. For 2051 * a standard btree this is only necessary if we're updating the first 2052 * record/key. For an overlapping btree, we must always update the 2053 * keys because the highest key can be in any of the records or keys 2054 * in the block. 2055 */ 2056 static inline bool 2057 xfs_btree_needs_key_update( 2058 struct xfs_btree_cur *cur, 2059 int ptr) 2060 { 2061 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2062 } 2063 2064 /* 2065 * Update the low and high parent keys of the given level, progressing 2066 * towards the root. If force_all is false, stop if the keys for a given 2067 * level do not need updating. 2068 */ 2069 STATIC int 2070 __xfs_btree_updkeys( 2071 struct xfs_btree_cur *cur, 2072 int level, 2073 struct xfs_btree_block *block, 2074 struct xfs_buf *bp0, 2075 bool force_all) 2076 { 2077 union xfs_btree_key key; /* keys from current level */ 2078 union xfs_btree_key *lkey; /* keys from the next level up */ 2079 union xfs_btree_key *hkey; 2080 union xfs_btree_key *nlkey; /* keys from the next level up */ 2081 union xfs_btree_key *nhkey; 2082 struct xfs_buf *bp; 2083 int ptr; 2084 2085 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2086 2087 /* Exit if there aren't any parent levels to update. */ 2088 if (level + 1 >= cur->bc_nlevels) 2089 return 0; 2090 2091 trace_xfs_btree_updkeys(cur, level, bp0); 2092 2093 lkey = &key; 2094 hkey = xfs_btree_high_key_from_key(cur, lkey); 2095 xfs_btree_get_keys(cur, block, lkey); 2096 for (level++; level < cur->bc_nlevels; level++) { 2097 #ifdef DEBUG 2098 int error; 2099 #endif 2100 block = xfs_btree_get_block(cur, level, &bp); 2101 trace_xfs_btree_updkeys(cur, level, bp); 2102 #ifdef DEBUG 2103 error = xfs_btree_check_block(cur, block, level, bp); 2104 if (error) 2105 return error; 2106 #endif 2107 ptr = cur->bc_ptrs[level]; 2108 nlkey = xfs_btree_key_addr(cur, ptr, block); 2109 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2110 if (!force_all && 2111 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2112 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2113 break; 2114 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2115 xfs_btree_log_keys(cur, bp, ptr, ptr); 2116 if (level + 1 >= cur->bc_nlevels) 2117 break; 2118 xfs_btree_get_node_keys(cur, block, lkey); 2119 } 2120 2121 return 0; 2122 } 2123 2124 /* Update all the keys from some level in cursor back to the root. */ 2125 STATIC int 2126 xfs_btree_updkeys_force( 2127 struct xfs_btree_cur *cur, 2128 int level) 2129 { 2130 struct xfs_buf *bp; 2131 struct xfs_btree_block *block; 2132 2133 block = xfs_btree_get_block(cur, level, &bp); 2134 return __xfs_btree_updkeys(cur, level, block, bp, true); 2135 } 2136 2137 /* 2138 * Update the parent keys of the given level, progressing towards the root. 2139 */ 2140 STATIC int 2141 xfs_btree_update_keys( 2142 struct xfs_btree_cur *cur, 2143 int level) 2144 { 2145 struct xfs_btree_block *block; 2146 struct xfs_buf *bp; 2147 union xfs_btree_key *kp; 2148 union xfs_btree_key key; 2149 int ptr; 2150 2151 ASSERT(level >= 0); 2152 2153 block = xfs_btree_get_block(cur, level, &bp); 2154 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2155 return __xfs_btree_updkeys(cur, level, block, bp, false); 2156 2157 /* 2158 * Go up the tree from this level toward the root. 2159 * At each level, update the key value to the value input. 2160 * Stop when we reach a level where the cursor isn't pointing 2161 * at the first entry in the block. 2162 */ 2163 xfs_btree_get_keys(cur, block, &key); 2164 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2165 #ifdef DEBUG 2166 int error; 2167 #endif 2168 block = xfs_btree_get_block(cur, level, &bp); 2169 #ifdef DEBUG 2170 error = xfs_btree_check_block(cur, block, level, bp); 2171 if (error) 2172 return error; 2173 #endif 2174 ptr = cur->bc_ptrs[level]; 2175 kp = xfs_btree_key_addr(cur, ptr, block); 2176 xfs_btree_copy_keys(cur, kp, &key, 1); 2177 xfs_btree_log_keys(cur, bp, ptr, ptr); 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 2184 * Update the record referred to by cur to the value in the 2185 * given record. This either works (return 0) or gets an 2186 * EFSCORRUPTED error. 2187 */ 2188 int 2189 xfs_btree_update( 2190 struct xfs_btree_cur *cur, 2191 union xfs_btree_rec *rec) 2192 { 2193 struct xfs_btree_block *block; 2194 struct xfs_buf *bp; 2195 int error; 2196 int ptr; 2197 union xfs_btree_rec *rp; 2198 2199 /* Pick up the current block. */ 2200 block = xfs_btree_get_block(cur, 0, &bp); 2201 2202 #ifdef DEBUG 2203 error = xfs_btree_check_block(cur, block, 0, bp); 2204 if (error) 2205 goto error0; 2206 #endif 2207 /* Get the address of the rec to be updated. */ 2208 ptr = cur->bc_ptrs[0]; 2209 rp = xfs_btree_rec_addr(cur, ptr, block); 2210 2211 /* Fill in the new contents and log them. */ 2212 xfs_btree_copy_recs(cur, rp, rec, 1); 2213 xfs_btree_log_recs(cur, bp, ptr, ptr); 2214 2215 /* 2216 * If we are tracking the last record in the tree and 2217 * we are at the far right edge of the tree, update it. 2218 */ 2219 if (xfs_btree_is_lastrec(cur, block, 0)) { 2220 cur->bc_ops->update_lastrec(cur, block, rec, 2221 ptr, LASTREC_UPDATE); 2222 } 2223 2224 /* Pass new key value up to our parent. */ 2225 if (xfs_btree_needs_key_update(cur, ptr)) { 2226 error = xfs_btree_update_keys(cur, 0); 2227 if (error) 2228 goto error0; 2229 } 2230 2231 return 0; 2232 2233 error0: 2234 return error; 2235 } 2236 2237 /* 2238 * Move 1 record left from cur/level if possible. 2239 * Update cur to reflect the new path. 2240 */ 2241 STATIC int /* error */ 2242 xfs_btree_lshift( 2243 struct xfs_btree_cur *cur, 2244 int level, 2245 int *stat) /* success/failure */ 2246 { 2247 struct xfs_buf *lbp; /* left buffer pointer */ 2248 struct xfs_btree_block *left; /* left btree block */ 2249 int lrecs; /* left record count */ 2250 struct xfs_buf *rbp; /* right buffer pointer */ 2251 struct xfs_btree_block *right; /* right btree block */ 2252 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2253 int rrecs; /* right record count */ 2254 union xfs_btree_ptr lptr; /* left btree pointer */ 2255 union xfs_btree_key *rkp = NULL; /* right btree key */ 2256 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2257 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2258 int error; /* error return value */ 2259 int i; 2260 2261 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2262 level == cur->bc_nlevels - 1) 2263 goto out0; 2264 2265 /* Set up variables for this block as "right". */ 2266 right = xfs_btree_get_block(cur, level, &rbp); 2267 2268 #ifdef DEBUG 2269 error = xfs_btree_check_block(cur, right, level, rbp); 2270 if (error) 2271 goto error0; 2272 #endif 2273 2274 /* If we've got no left sibling then we can't shift an entry left. */ 2275 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2276 if (xfs_btree_ptr_is_null(cur, &lptr)) 2277 goto out0; 2278 2279 /* 2280 * If the cursor entry is the one that would be moved, don't 2281 * do it... it's too complicated. 2282 */ 2283 if (cur->bc_ptrs[level] <= 1) 2284 goto out0; 2285 2286 /* Set up the left neighbor as "left". */ 2287 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2288 if (error) 2289 goto error0; 2290 2291 /* If it's full, it can't take another entry. */ 2292 lrecs = xfs_btree_get_numrecs(left); 2293 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2294 goto out0; 2295 2296 rrecs = xfs_btree_get_numrecs(right); 2297 2298 /* 2299 * We add one entry to the left side and remove one for the right side. 2300 * Account for it here, the changes will be updated on disk and logged 2301 * later. 2302 */ 2303 lrecs++; 2304 rrecs--; 2305 2306 XFS_BTREE_STATS_INC(cur, lshift); 2307 XFS_BTREE_STATS_ADD(cur, moves, 1); 2308 2309 /* 2310 * If non-leaf, copy a key and a ptr to the left block. 2311 * Log the changes to the left block. 2312 */ 2313 if (level > 0) { 2314 /* It's a non-leaf. Move keys and pointers. */ 2315 union xfs_btree_key *lkp; /* left btree key */ 2316 union xfs_btree_ptr *lpp; /* left address pointer */ 2317 2318 lkp = xfs_btree_key_addr(cur, lrecs, left); 2319 rkp = xfs_btree_key_addr(cur, 1, right); 2320 2321 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2322 rpp = xfs_btree_ptr_addr(cur, 1, right); 2323 2324 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2325 if (error) 2326 goto error0; 2327 2328 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2329 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2330 2331 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2332 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2333 2334 ASSERT(cur->bc_ops->keys_inorder(cur, 2335 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2336 } else { 2337 /* It's a leaf. Move records. */ 2338 union xfs_btree_rec *lrp; /* left record pointer */ 2339 2340 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2341 rrp = xfs_btree_rec_addr(cur, 1, right); 2342 2343 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2344 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2345 2346 ASSERT(cur->bc_ops->recs_inorder(cur, 2347 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2348 } 2349 2350 xfs_btree_set_numrecs(left, lrecs); 2351 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2352 2353 xfs_btree_set_numrecs(right, rrecs); 2354 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2355 2356 /* 2357 * Slide the contents of right down one entry. 2358 */ 2359 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2360 if (level > 0) { 2361 /* It's a nonleaf. operate on keys and ptrs */ 2362 for (i = 0; i < rrecs; i++) { 2363 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2364 if (error) 2365 goto error0; 2366 } 2367 2368 xfs_btree_shift_keys(cur, 2369 xfs_btree_key_addr(cur, 2, right), 2370 -1, rrecs); 2371 xfs_btree_shift_ptrs(cur, 2372 xfs_btree_ptr_addr(cur, 2, right), 2373 -1, rrecs); 2374 2375 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2376 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2377 } else { 2378 /* It's a leaf. operate on records */ 2379 xfs_btree_shift_recs(cur, 2380 xfs_btree_rec_addr(cur, 2, right), 2381 -1, rrecs); 2382 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2383 } 2384 2385 /* 2386 * Using a temporary cursor, update the parent key values of the 2387 * block on the left. 2388 */ 2389 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2390 error = xfs_btree_dup_cursor(cur, &tcur); 2391 if (error) 2392 goto error0; 2393 i = xfs_btree_firstrec(tcur, level); 2394 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2395 error = -EFSCORRUPTED; 2396 goto error0; 2397 } 2398 2399 error = xfs_btree_decrement(tcur, level, &i); 2400 if (error) 2401 goto error1; 2402 2403 /* Update the parent high keys of the left block, if needed. */ 2404 error = xfs_btree_update_keys(tcur, level); 2405 if (error) 2406 goto error1; 2407 2408 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2409 } 2410 2411 /* Update the parent keys of the right block. */ 2412 error = xfs_btree_update_keys(cur, level); 2413 if (error) 2414 goto error0; 2415 2416 /* Slide the cursor value left one. */ 2417 cur->bc_ptrs[level]--; 2418 2419 *stat = 1; 2420 return 0; 2421 2422 out0: 2423 *stat = 0; 2424 return 0; 2425 2426 error0: 2427 return error; 2428 2429 error1: 2430 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2431 return error; 2432 } 2433 2434 /* 2435 * Move 1 record right from cur/level if possible. 2436 * Update cur to reflect the new path. 2437 */ 2438 STATIC int /* error */ 2439 xfs_btree_rshift( 2440 struct xfs_btree_cur *cur, 2441 int level, 2442 int *stat) /* success/failure */ 2443 { 2444 struct xfs_buf *lbp; /* left buffer pointer */ 2445 struct xfs_btree_block *left; /* left btree block */ 2446 struct xfs_buf *rbp; /* right buffer pointer */ 2447 struct xfs_btree_block *right; /* right btree block */ 2448 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2449 union xfs_btree_ptr rptr; /* right block pointer */ 2450 union xfs_btree_key *rkp; /* right btree key */ 2451 int rrecs; /* right record count */ 2452 int lrecs; /* left record count */ 2453 int error; /* error return value */ 2454 int i; /* loop counter */ 2455 2456 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2457 (level == cur->bc_nlevels - 1)) 2458 goto out0; 2459 2460 /* Set up variables for this block as "left". */ 2461 left = xfs_btree_get_block(cur, level, &lbp); 2462 2463 #ifdef DEBUG 2464 error = xfs_btree_check_block(cur, left, level, lbp); 2465 if (error) 2466 goto error0; 2467 #endif 2468 2469 /* If we've got no right sibling then we can't shift an entry right. */ 2470 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2471 if (xfs_btree_ptr_is_null(cur, &rptr)) 2472 goto out0; 2473 2474 /* 2475 * If the cursor entry is the one that would be moved, don't 2476 * do it... it's too complicated. 2477 */ 2478 lrecs = xfs_btree_get_numrecs(left); 2479 if (cur->bc_ptrs[level] >= lrecs) 2480 goto out0; 2481 2482 /* Set up the right neighbor as "right". */ 2483 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2484 if (error) 2485 goto error0; 2486 2487 /* If it's full, it can't take another entry. */ 2488 rrecs = xfs_btree_get_numrecs(right); 2489 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2490 goto out0; 2491 2492 XFS_BTREE_STATS_INC(cur, rshift); 2493 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2494 2495 /* 2496 * Make a hole at the start of the right neighbor block, then 2497 * copy the last left block entry to the hole. 2498 */ 2499 if (level > 0) { 2500 /* It's a nonleaf. make a hole in the keys and ptrs */ 2501 union xfs_btree_key *lkp; 2502 union xfs_btree_ptr *lpp; 2503 union xfs_btree_ptr *rpp; 2504 2505 lkp = xfs_btree_key_addr(cur, lrecs, left); 2506 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2507 rkp = xfs_btree_key_addr(cur, 1, right); 2508 rpp = xfs_btree_ptr_addr(cur, 1, right); 2509 2510 for (i = rrecs - 1; i >= 0; i--) { 2511 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2512 if (error) 2513 goto error0; 2514 } 2515 2516 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2517 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2518 2519 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2520 if (error) 2521 goto error0; 2522 2523 /* Now put the new data in, and log it. */ 2524 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2525 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2526 2527 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2528 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2529 2530 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2531 xfs_btree_key_addr(cur, 2, right))); 2532 } else { 2533 /* It's a leaf. make a hole in the records */ 2534 union xfs_btree_rec *lrp; 2535 union xfs_btree_rec *rrp; 2536 2537 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2538 rrp = xfs_btree_rec_addr(cur, 1, right); 2539 2540 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2541 2542 /* Now put the new data in, and log it. */ 2543 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2544 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2545 } 2546 2547 /* 2548 * Decrement and log left's numrecs, bump and log right's numrecs. 2549 */ 2550 xfs_btree_set_numrecs(left, --lrecs); 2551 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2552 2553 xfs_btree_set_numrecs(right, ++rrecs); 2554 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2555 2556 /* 2557 * Using a temporary cursor, update the parent key values of the 2558 * block on the right. 2559 */ 2560 error = xfs_btree_dup_cursor(cur, &tcur); 2561 if (error) 2562 goto error0; 2563 i = xfs_btree_lastrec(tcur, level); 2564 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2565 error = -EFSCORRUPTED; 2566 goto error0; 2567 } 2568 2569 error = xfs_btree_increment(tcur, level, &i); 2570 if (error) 2571 goto error1; 2572 2573 /* Update the parent high keys of the left block, if needed. */ 2574 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2575 error = xfs_btree_update_keys(cur, level); 2576 if (error) 2577 goto error1; 2578 } 2579 2580 /* Update the parent keys of the right block. */ 2581 error = xfs_btree_update_keys(tcur, level); 2582 if (error) 2583 goto error1; 2584 2585 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2586 2587 *stat = 1; 2588 return 0; 2589 2590 out0: 2591 *stat = 0; 2592 return 0; 2593 2594 error0: 2595 return error; 2596 2597 error1: 2598 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2599 return error; 2600 } 2601 2602 /* 2603 * Split cur/level block in half. 2604 * Return new block number and the key to its first 2605 * record (to be inserted into parent). 2606 */ 2607 STATIC int /* error */ 2608 __xfs_btree_split( 2609 struct xfs_btree_cur *cur, 2610 int level, 2611 union xfs_btree_ptr *ptrp, 2612 union xfs_btree_key *key, 2613 struct xfs_btree_cur **curp, 2614 int *stat) /* success/failure */ 2615 { 2616 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2617 struct xfs_buf *lbp; /* left buffer pointer */ 2618 struct xfs_btree_block *left; /* left btree block */ 2619 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2620 struct xfs_buf *rbp; /* right buffer pointer */ 2621 struct xfs_btree_block *right; /* right btree block */ 2622 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2623 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2624 struct xfs_btree_block *rrblock; /* right-right btree block */ 2625 int lrecs; 2626 int rrecs; 2627 int src_index; 2628 int error; /* error return value */ 2629 int i; 2630 2631 XFS_BTREE_STATS_INC(cur, split); 2632 2633 /* Set up left block (current one). */ 2634 left = xfs_btree_get_block(cur, level, &lbp); 2635 2636 #ifdef DEBUG 2637 error = xfs_btree_check_block(cur, left, level, lbp); 2638 if (error) 2639 goto error0; 2640 #endif 2641 2642 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2643 2644 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2645 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2646 if (error) 2647 goto error0; 2648 if (*stat == 0) 2649 goto out0; 2650 XFS_BTREE_STATS_INC(cur, alloc); 2651 2652 /* Set up the new block as "right". */ 2653 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2654 if (error) 2655 goto error0; 2656 2657 /* Fill in the btree header for the new right block. */ 2658 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2659 2660 /* 2661 * Split the entries between the old and the new block evenly. 2662 * Make sure that if there's an odd number of entries now, that 2663 * each new block will have the same number of entries. 2664 */ 2665 lrecs = xfs_btree_get_numrecs(left); 2666 rrecs = lrecs / 2; 2667 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1) 2668 rrecs++; 2669 src_index = (lrecs - rrecs + 1); 2670 2671 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2672 2673 /* Adjust numrecs for the later get_*_keys() calls. */ 2674 lrecs -= rrecs; 2675 xfs_btree_set_numrecs(left, lrecs); 2676 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2677 2678 /* 2679 * Copy btree block entries from the left block over to the 2680 * new block, the right. Update the right block and log the 2681 * changes. 2682 */ 2683 if (level > 0) { 2684 /* It's a non-leaf. Move keys and pointers. */ 2685 union xfs_btree_key *lkp; /* left btree key */ 2686 union xfs_btree_ptr *lpp; /* left address pointer */ 2687 union xfs_btree_key *rkp; /* right btree key */ 2688 union xfs_btree_ptr *rpp; /* right address pointer */ 2689 2690 lkp = xfs_btree_key_addr(cur, src_index, left); 2691 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2692 rkp = xfs_btree_key_addr(cur, 1, right); 2693 rpp = xfs_btree_ptr_addr(cur, 1, right); 2694 2695 for (i = src_index; i < rrecs; i++) { 2696 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2697 if (error) 2698 goto error0; 2699 } 2700 2701 /* Copy the keys & pointers to the new block. */ 2702 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2703 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2704 2705 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2706 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2707 2708 /* Stash the keys of the new block for later insertion. */ 2709 xfs_btree_get_node_keys(cur, right, key); 2710 } else { 2711 /* It's a leaf. Move records. */ 2712 union xfs_btree_rec *lrp; /* left record pointer */ 2713 union xfs_btree_rec *rrp; /* right record pointer */ 2714 2715 lrp = xfs_btree_rec_addr(cur, src_index, left); 2716 rrp = xfs_btree_rec_addr(cur, 1, right); 2717 2718 /* Copy records to the new block. */ 2719 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2720 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2721 2722 /* Stash the keys of the new block for later insertion. */ 2723 xfs_btree_get_leaf_keys(cur, right, key); 2724 } 2725 2726 /* 2727 * Find the left block number by looking in the buffer. 2728 * Adjust sibling pointers. 2729 */ 2730 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2731 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2732 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2733 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2734 2735 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2736 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2737 2738 /* 2739 * If there's a block to the new block's right, make that block 2740 * point back to right instead of to left. 2741 */ 2742 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2743 error = xfs_btree_read_buf_block(cur, &rrptr, 2744 0, &rrblock, &rrbp); 2745 if (error) 2746 goto error0; 2747 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2748 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2749 } 2750 2751 /* Update the parent high keys of the left block, if needed. */ 2752 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2753 error = xfs_btree_update_keys(cur, level); 2754 if (error) 2755 goto error0; 2756 } 2757 2758 /* 2759 * If the cursor is really in the right block, move it there. 2760 * If it's just pointing past the last entry in left, then we'll 2761 * insert there, so don't change anything in that case. 2762 */ 2763 if (cur->bc_ptrs[level] > lrecs + 1) { 2764 xfs_btree_setbuf(cur, level, rbp); 2765 cur->bc_ptrs[level] -= lrecs; 2766 } 2767 /* 2768 * If there are more levels, we'll need another cursor which refers 2769 * the right block, no matter where this cursor was. 2770 */ 2771 if (level + 1 < cur->bc_nlevels) { 2772 error = xfs_btree_dup_cursor(cur, curp); 2773 if (error) 2774 goto error0; 2775 (*curp)->bc_ptrs[level + 1]++; 2776 } 2777 *ptrp = rptr; 2778 *stat = 1; 2779 return 0; 2780 out0: 2781 *stat = 0; 2782 return 0; 2783 2784 error0: 2785 return error; 2786 } 2787 2788 struct xfs_btree_split_args { 2789 struct xfs_btree_cur *cur; 2790 int level; 2791 union xfs_btree_ptr *ptrp; 2792 union xfs_btree_key *key; 2793 struct xfs_btree_cur **curp; 2794 int *stat; /* success/failure */ 2795 int result; 2796 bool kswapd; /* allocation in kswapd context */ 2797 struct completion *done; 2798 struct work_struct work; 2799 }; 2800 2801 /* 2802 * Stack switching interfaces for allocation 2803 */ 2804 static void 2805 xfs_btree_split_worker( 2806 struct work_struct *work) 2807 { 2808 struct xfs_btree_split_args *args = container_of(work, 2809 struct xfs_btree_split_args, work); 2810 unsigned long pflags; 2811 unsigned long new_pflags = 0; 2812 2813 /* 2814 * we are in a transaction context here, but may also be doing work 2815 * in kswapd context, and hence we may need to inherit that state 2816 * temporarily to ensure that we don't block waiting for memory reclaim 2817 * in any way. 2818 */ 2819 if (args->kswapd) 2820 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2821 2822 current_set_flags_nested(&pflags, new_pflags); 2823 xfs_trans_set_context(args->cur->bc_tp); 2824 2825 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2826 args->key, args->curp, args->stat); 2827 2828 xfs_trans_clear_context(args->cur->bc_tp); 2829 current_restore_flags_nested(&pflags, new_pflags); 2830 2831 /* 2832 * Do not access args after complete() has run here. We don't own args 2833 * and the owner may run and free args before we return here. 2834 */ 2835 complete(args->done); 2836 2837 } 2838 2839 /* 2840 * BMBT split requests often come in with little stack to work on. Push 2841 * them off to a worker thread so there is lots of stack to use. For the other 2842 * btree types, just call directly to avoid the context switch overhead here. 2843 */ 2844 STATIC int /* error */ 2845 xfs_btree_split( 2846 struct xfs_btree_cur *cur, 2847 int level, 2848 union xfs_btree_ptr *ptrp, 2849 union xfs_btree_key *key, 2850 struct xfs_btree_cur **curp, 2851 int *stat) /* success/failure */ 2852 { 2853 struct xfs_btree_split_args args; 2854 DECLARE_COMPLETION_ONSTACK(done); 2855 2856 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2857 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2858 2859 args.cur = cur; 2860 args.level = level; 2861 args.ptrp = ptrp; 2862 args.key = key; 2863 args.curp = curp; 2864 args.stat = stat; 2865 args.done = &done; 2866 args.kswapd = current_is_kswapd(); 2867 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2868 queue_work(xfs_alloc_wq, &args.work); 2869 wait_for_completion(&done); 2870 destroy_work_on_stack(&args.work); 2871 return args.result; 2872 } 2873 2874 2875 /* 2876 * Copy the old inode root contents into a real block and make the 2877 * broot point to it. 2878 */ 2879 int /* error */ 2880 xfs_btree_new_iroot( 2881 struct xfs_btree_cur *cur, /* btree cursor */ 2882 int *logflags, /* logging flags for inode */ 2883 int *stat) /* return status - 0 fail */ 2884 { 2885 struct xfs_buf *cbp; /* buffer for cblock */ 2886 struct xfs_btree_block *block; /* btree block */ 2887 struct xfs_btree_block *cblock; /* child btree block */ 2888 union xfs_btree_key *ckp; /* child key pointer */ 2889 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2890 union xfs_btree_key *kp; /* pointer to btree key */ 2891 union xfs_btree_ptr *pp; /* pointer to block addr */ 2892 union xfs_btree_ptr nptr; /* new block addr */ 2893 int level; /* btree level */ 2894 int error; /* error return code */ 2895 int i; /* loop counter */ 2896 2897 XFS_BTREE_STATS_INC(cur, newroot); 2898 2899 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2900 2901 level = cur->bc_nlevels - 1; 2902 2903 block = xfs_btree_get_iroot(cur); 2904 pp = xfs_btree_ptr_addr(cur, 1, block); 2905 2906 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2907 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2908 if (error) 2909 goto error0; 2910 if (*stat == 0) 2911 return 0; 2912 2913 XFS_BTREE_STATS_INC(cur, alloc); 2914 2915 /* Copy the root into a real block. */ 2916 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2917 if (error) 2918 goto error0; 2919 2920 /* 2921 * we can't just memcpy() the root in for CRC enabled btree blocks. 2922 * In that case have to also ensure the blkno remains correct 2923 */ 2924 memcpy(cblock, block, xfs_btree_block_len(cur)); 2925 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 2926 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 2927 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn); 2928 else 2929 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn); 2930 } 2931 2932 be16_add_cpu(&block->bb_level, 1); 2933 xfs_btree_set_numrecs(block, 1); 2934 cur->bc_nlevels++; 2935 cur->bc_ptrs[level + 1] = 1; 2936 2937 kp = xfs_btree_key_addr(cur, 1, block); 2938 ckp = xfs_btree_key_addr(cur, 1, cblock); 2939 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 2940 2941 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 2942 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 2943 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 2944 if (error) 2945 goto error0; 2946 } 2947 2948 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 2949 2950 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 2951 if (error) 2952 goto error0; 2953 2954 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 2955 2956 xfs_iroot_realloc(cur->bc_ino.ip, 2957 1 - xfs_btree_get_numrecs(cblock), 2958 cur->bc_ino.whichfork); 2959 2960 xfs_btree_setbuf(cur, level, cbp); 2961 2962 /* 2963 * Do all this logging at the end so that 2964 * the root is at the right level. 2965 */ 2966 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 2967 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2968 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2969 2970 *logflags |= 2971 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 2972 *stat = 1; 2973 return 0; 2974 error0: 2975 return error; 2976 } 2977 2978 /* 2979 * Allocate a new root block, fill it in. 2980 */ 2981 STATIC int /* error */ 2982 xfs_btree_new_root( 2983 struct xfs_btree_cur *cur, /* btree cursor */ 2984 int *stat) /* success/failure */ 2985 { 2986 struct xfs_btree_block *block; /* one half of the old root block */ 2987 struct xfs_buf *bp; /* buffer containing block */ 2988 int error; /* error return value */ 2989 struct xfs_buf *lbp; /* left buffer pointer */ 2990 struct xfs_btree_block *left; /* left btree block */ 2991 struct xfs_buf *nbp; /* new (root) buffer */ 2992 struct xfs_btree_block *new; /* new (root) btree block */ 2993 int nptr; /* new value for key index, 1 or 2 */ 2994 struct xfs_buf *rbp; /* right buffer pointer */ 2995 struct xfs_btree_block *right; /* right btree block */ 2996 union xfs_btree_ptr rptr; 2997 union xfs_btree_ptr lptr; 2998 2999 XFS_BTREE_STATS_INC(cur, newroot); 3000 3001 /* initialise our start point from the cursor */ 3002 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3003 3004 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3005 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3006 if (error) 3007 goto error0; 3008 if (*stat == 0) 3009 goto out0; 3010 XFS_BTREE_STATS_INC(cur, alloc); 3011 3012 /* Set up the new block. */ 3013 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3014 if (error) 3015 goto error0; 3016 3017 /* Set the root in the holding structure increasing the level by 1. */ 3018 cur->bc_ops->set_root(cur, &lptr, 1); 3019 3020 /* 3021 * At the previous root level there are now two blocks: the old root, 3022 * and the new block generated when it was split. We don't know which 3023 * one the cursor is pointing at, so we set up variables "left" and 3024 * "right" for each case. 3025 */ 3026 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3027 3028 #ifdef DEBUG 3029 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3030 if (error) 3031 goto error0; 3032 #endif 3033 3034 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3035 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3036 /* Our block is left, pick up the right block. */ 3037 lbp = bp; 3038 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3039 left = block; 3040 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3041 if (error) 3042 goto error0; 3043 bp = rbp; 3044 nptr = 1; 3045 } else { 3046 /* Our block is right, pick up the left block. */ 3047 rbp = bp; 3048 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3049 right = block; 3050 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3051 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3052 if (error) 3053 goto error0; 3054 bp = lbp; 3055 nptr = 2; 3056 } 3057 3058 /* Fill in the new block's btree header and log it. */ 3059 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3060 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3061 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3062 !xfs_btree_ptr_is_null(cur, &rptr)); 3063 3064 /* Fill in the key data in the new root. */ 3065 if (xfs_btree_get_level(left) > 0) { 3066 /* 3067 * Get the keys for the left block's keys and put them directly 3068 * in the parent block. Do the same for the right block. 3069 */ 3070 xfs_btree_get_node_keys(cur, left, 3071 xfs_btree_key_addr(cur, 1, new)); 3072 xfs_btree_get_node_keys(cur, right, 3073 xfs_btree_key_addr(cur, 2, new)); 3074 } else { 3075 /* 3076 * Get the keys for the left block's records and put them 3077 * directly in the parent block. Do the same for the right 3078 * block. 3079 */ 3080 xfs_btree_get_leaf_keys(cur, left, 3081 xfs_btree_key_addr(cur, 1, new)); 3082 xfs_btree_get_leaf_keys(cur, right, 3083 xfs_btree_key_addr(cur, 2, new)); 3084 } 3085 xfs_btree_log_keys(cur, nbp, 1, 2); 3086 3087 /* Fill in the pointer data in the new root. */ 3088 xfs_btree_copy_ptrs(cur, 3089 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3090 xfs_btree_copy_ptrs(cur, 3091 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3092 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3093 3094 /* Fix up the cursor. */ 3095 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3096 cur->bc_ptrs[cur->bc_nlevels] = nptr; 3097 cur->bc_nlevels++; 3098 *stat = 1; 3099 return 0; 3100 error0: 3101 return error; 3102 out0: 3103 *stat = 0; 3104 return 0; 3105 } 3106 3107 STATIC int 3108 xfs_btree_make_block_unfull( 3109 struct xfs_btree_cur *cur, /* btree cursor */ 3110 int level, /* btree level */ 3111 int numrecs,/* # of recs in block */ 3112 int *oindex,/* old tree index */ 3113 int *index, /* new tree index */ 3114 union xfs_btree_ptr *nptr, /* new btree ptr */ 3115 struct xfs_btree_cur **ncur, /* new btree cursor */ 3116 union xfs_btree_key *key, /* key of new block */ 3117 int *stat) 3118 { 3119 int error = 0; 3120 3121 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3122 level == cur->bc_nlevels - 1) { 3123 struct xfs_inode *ip = cur->bc_ino.ip; 3124 3125 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3126 /* A root block that can be made bigger. */ 3127 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3128 *stat = 1; 3129 } else { 3130 /* A root block that needs replacing */ 3131 int logflags = 0; 3132 3133 error = xfs_btree_new_iroot(cur, &logflags, stat); 3134 if (error || *stat == 0) 3135 return error; 3136 3137 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3138 } 3139 3140 return 0; 3141 } 3142 3143 /* First, try shifting an entry to the right neighbor. */ 3144 error = xfs_btree_rshift(cur, level, stat); 3145 if (error || *stat) 3146 return error; 3147 3148 /* Next, try shifting an entry to the left neighbor. */ 3149 error = xfs_btree_lshift(cur, level, stat); 3150 if (error) 3151 return error; 3152 3153 if (*stat) { 3154 *oindex = *index = cur->bc_ptrs[level]; 3155 return 0; 3156 } 3157 3158 /* 3159 * Next, try splitting the current block in half. 3160 * 3161 * If this works we have to re-set our variables because we 3162 * could be in a different block now. 3163 */ 3164 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3165 if (error || *stat == 0) 3166 return error; 3167 3168 3169 *index = cur->bc_ptrs[level]; 3170 return 0; 3171 } 3172 3173 /* 3174 * Insert one record/level. Return information to the caller 3175 * allowing the next level up to proceed if necessary. 3176 */ 3177 STATIC int 3178 xfs_btree_insrec( 3179 struct xfs_btree_cur *cur, /* btree cursor */ 3180 int level, /* level to insert record at */ 3181 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3182 union xfs_btree_rec *rec, /* record to insert */ 3183 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3184 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3185 int *stat) /* success/failure */ 3186 { 3187 struct xfs_btree_block *block; /* btree block */ 3188 struct xfs_buf *bp; /* buffer for block */ 3189 union xfs_btree_ptr nptr; /* new block ptr */ 3190 struct xfs_btree_cur *ncur; /* new btree cursor */ 3191 union xfs_btree_key nkey; /* new block key */ 3192 union xfs_btree_key *lkey; 3193 int optr; /* old key/record index */ 3194 int ptr; /* key/record index */ 3195 int numrecs;/* number of records */ 3196 int error; /* error return value */ 3197 int i; 3198 xfs_daddr_t old_bn; 3199 3200 ncur = NULL; 3201 lkey = &nkey; 3202 3203 /* 3204 * If we have an external root pointer, and we've made it to the 3205 * root level, allocate a new root block and we're done. 3206 */ 3207 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3208 (level >= cur->bc_nlevels)) { 3209 error = xfs_btree_new_root(cur, stat); 3210 xfs_btree_set_ptr_null(cur, ptrp); 3211 3212 return error; 3213 } 3214 3215 /* If we're off the left edge, return failure. */ 3216 ptr = cur->bc_ptrs[level]; 3217 if (ptr == 0) { 3218 *stat = 0; 3219 return 0; 3220 } 3221 3222 optr = ptr; 3223 3224 XFS_BTREE_STATS_INC(cur, insrec); 3225 3226 /* Get pointers to the btree buffer and block. */ 3227 block = xfs_btree_get_block(cur, level, &bp); 3228 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL; 3229 numrecs = xfs_btree_get_numrecs(block); 3230 3231 #ifdef DEBUG 3232 error = xfs_btree_check_block(cur, block, level, bp); 3233 if (error) 3234 goto error0; 3235 3236 /* Check that the new entry is being inserted in the right place. */ 3237 if (ptr <= numrecs) { 3238 if (level == 0) { 3239 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3240 xfs_btree_rec_addr(cur, ptr, block))); 3241 } else { 3242 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3243 xfs_btree_key_addr(cur, ptr, block))); 3244 } 3245 } 3246 #endif 3247 3248 /* 3249 * If the block is full, we can't insert the new entry until we 3250 * make the block un-full. 3251 */ 3252 xfs_btree_set_ptr_null(cur, &nptr); 3253 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3254 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3255 &optr, &ptr, &nptr, &ncur, lkey, stat); 3256 if (error || *stat == 0) 3257 goto error0; 3258 } 3259 3260 /* 3261 * The current block may have changed if the block was 3262 * previously full and we have just made space in it. 3263 */ 3264 block = xfs_btree_get_block(cur, level, &bp); 3265 numrecs = xfs_btree_get_numrecs(block); 3266 3267 #ifdef DEBUG 3268 error = xfs_btree_check_block(cur, block, level, bp); 3269 if (error) 3270 return error; 3271 #endif 3272 3273 /* 3274 * At this point we know there's room for our new entry in the block 3275 * we're pointing at. 3276 */ 3277 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3278 3279 if (level > 0) { 3280 /* It's a nonleaf. make a hole in the keys and ptrs */ 3281 union xfs_btree_key *kp; 3282 union xfs_btree_ptr *pp; 3283 3284 kp = xfs_btree_key_addr(cur, ptr, block); 3285 pp = xfs_btree_ptr_addr(cur, ptr, block); 3286 3287 for (i = numrecs - ptr; i >= 0; i--) { 3288 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3289 if (error) 3290 return error; 3291 } 3292 3293 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3294 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3295 3296 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3297 if (error) 3298 goto error0; 3299 3300 /* Now put the new data in, bump numrecs and log it. */ 3301 xfs_btree_copy_keys(cur, kp, key, 1); 3302 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3303 numrecs++; 3304 xfs_btree_set_numrecs(block, numrecs); 3305 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3306 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3307 #ifdef DEBUG 3308 if (ptr < numrecs) { 3309 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3310 xfs_btree_key_addr(cur, ptr + 1, block))); 3311 } 3312 #endif 3313 } else { 3314 /* It's a leaf. make a hole in the records */ 3315 union xfs_btree_rec *rp; 3316 3317 rp = xfs_btree_rec_addr(cur, ptr, block); 3318 3319 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3320 3321 /* Now put the new data in, bump numrecs and log it. */ 3322 xfs_btree_copy_recs(cur, rp, rec, 1); 3323 xfs_btree_set_numrecs(block, ++numrecs); 3324 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3325 #ifdef DEBUG 3326 if (ptr < numrecs) { 3327 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3328 xfs_btree_rec_addr(cur, ptr + 1, block))); 3329 } 3330 #endif 3331 } 3332 3333 /* Log the new number of records in the btree header. */ 3334 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3335 3336 /* 3337 * If we just inserted into a new tree block, we have to 3338 * recalculate nkey here because nkey is out of date. 3339 * 3340 * Otherwise we're just updating an existing block (having shoved 3341 * some records into the new tree block), so use the regular key 3342 * update mechanism. 3343 */ 3344 if (bp && bp->b_bn != old_bn) { 3345 xfs_btree_get_keys(cur, block, lkey); 3346 } else if (xfs_btree_needs_key_update(cur, optr)) { 3347 error = xfs_btree_update_keys(cur, level); 3348 if (error) 3349 goto error0; 3350 } 3351 3352 /* 3353 * If we are tracking the last record in the tree and 3354 * we are at the far right edge of the tree, update it. 3355 */ 3356 if (xfs_btree_is_lastrec(cur, block, level)) { 3357 cur->bc_ops->update_lastrec(cur, block, rec, 3358 ptr, LASTREC_INSREC); 3359 } 3360 3361 /* 3362 * Return the new block number, if any. 3363 * If there is one, give back a record value and a cursor too. 3364 */ 3365 *ptrp = nptr; 3366 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3367 xfs_btree_copy_keys(cur, key, lkey, 1); 3368 *curp = ncur; 3369 } 3370 3371 *stat = 1; 3372 return 0; 3373 3374 error0: 3375 return error; 3376 } 3377 3378 /* 3379 * Insert the record at the point referenced by cur. 3380 * 3381 * A multi-level split of the tree on insert will invalidate the original 3382 * cursor. All callers of this function should assume that the cursor is 3383 * no longer valid and revalidate it. 3384 */ 3385 int 3386 xfs_btree_insert( 3387 struct xfs_btree_cur *cur, 3388 int *stat) 3389 { 3390 int error; /* error return value */ 3391 int i; /* result value, 0 for failure */ 3392 int level; /* current level number in btree */ 3393 union xfs_btree_ptr nptr; /* new block number (split result) */ 3394 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3395 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3396 union xfs_btree_key bkey; /* key of block to insert */ 3397 union xfs_btree_key *key; 3398 union xfs_btree_rec rec; /* record to insert */ 3399 3400 level = 0; 3401 ncur = NULL; 3402 pcur = cur; 3403 key = &bkey; 3404 3405 xfs_btree_set_ptr_null(cur, &nptr); 3406 3407 /* Make a key out of the record data to be inserted, and save it. */ 3408 cur->bc_ops->init_rec_from_cur(cur, &rec); 3409 cur->bc_ops->init_key_from_rec(key, &rec); 3410 3411 /* 3412 * Loop going up the tree, starting at the leaf level. 3413 * Stop when we don't get a split block, that must mean that 3414 * the insert is finished with this level. 3415 */ 3416 do { 3417 /* 3418 * Insert nrec/nptr into this level of the tree. 3419 * Note if we fail, nptr will be null. 3420 */ 3421 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3422 &ncur, &i); 3423 if (error) { 3424 if (pcur != cur) 3425 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3426 goto error0; 3427 } 3428 3429 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3430 error = -EFSCORRUPTED; 3431 goto error0; 3432 } 3433 level++; 3434 3435 /* 3436 * See if the cursor we just used is trash. 3437 * Can't trash the caller's cursor, but otherwise we should 3438 * if ncur is a new cursor or we're about to be done. 3439 */ 3440 if (pcur != cur && 3441 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3442 /* Save the state from the cursor before we trash it */ 3443 if (cur->bc_ops->update_cursor) 3444 cur->bc_ops->update_cursor(pcur, cur); 3445 cur->bc_nlevels = pcur->bc_nlevels; 3446 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3447 } 3448 /* If we got a new cursor, switch to it. */ 3449 if (ncur) { 3450 pcur = ncur; 3451 ncur = NULL; 3452 } 3453 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3454 3455 *stat = i; 3456 return 0; 3457 error0: 3458 return error; 3459 } 3460 3461 /* 3462 * Try to merge a non-leaf block back into the inode root. 3463 * 3464 * Note: the killroot names comes from the fact that we're effectively 3465 * killing the old root block. But because we can't just delete the 3466 * inode we have to copy the single block it was pointing to into the 3467 * inode. 3468 */ 3469 STATIC int 3470 xfs_btree_kill_iroot( 3471 struct xfs_btree_cur *cur) 3472 { 3473 int whichfork = cur->bc_ino.whichfork; 3474 struct xfs_inode *ip = cur->bc_ino.ip; 3475 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3476 struct xfs_btree_block *block; 3477 struct xfs_btree_block *cblock; 3478 union xfs_btree_key *kp; 3479 union xfs_btree_key *ckp; 3480 union xfs_btree_ptr *pp; 3481 union xfs_btree_ptr *cpp; 3482 struct xfs_buf *cbp; 3483 int level; 3484 int index; 3485 int numrecs; 3486 int error; 3487 #ifdef DEBUG 3488 union xfs_btree_ptr ptr; 3489 #endif 3490 int i; 3491 3492 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3493 ASSERT(cur->bc_nlevels > 1); 3494 3495 /* 3496 * Don't deal with the root block needs to be a leaf case. 3497 * We're just going to turn the thing back into extents anyway. 3498 */ 3499 level = cur->bc_nlevels - 1; 3500 if (level == 1) 3501 goto out0; 3502 3503 /* 3504 * Give up if the root has multiple children. 3505 */ 3506 block = xfs_btree_get_iroot(cur); 3507 if (xfs_btree_get_numrecs(block) != 1) 3508 goto out0; 3509 3510 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3511 numrecs = xfs_btree_get_numrecs(cblock); 3512 3513 /* 3514 * Only do this if the next level will fit. 3515 * Then the data must be copied up to the inode, 3516 * instead of freeing the root you free the next level. 3517 */ 3518 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3519 goto out0; 3520 3521 XFS_BTREE_STATS_INC(cur, killroot); 3522 3523 #ifdef DEBUG 3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3526 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3527 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3528 #endif 3529 3530 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3531 if (index) { 3532 xfs_iroot_realloc(cur->bc_ino.ip, index, 3533 cur->bc_ino.whichfork); 3534 block = ifp->if_broot; 3535 } 3536 3537 be16_add_cpu(&block->bb_numrecs, index); 3538 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3539 3540 kp = xfs_btree_key_addr(cur, 1, block); 3541 ckp = xfs_btree_key_addr(cur, 1, cblock); 3542 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3543 3544 pp = xfs_btree_ptr_addr(cur, 1, block); 3545 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3546 3547 for (i = 0; i < numrecs; i++) { 3548 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3549 if (error) 3550 return error; 3551 } 3552 3553 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3554 3555 error = xfs_btree_free_block(cur, cbp); 3556 if (error) 3557 return error; 3558 3559 cur->bc_bufs[level - 1] = NULL; 3560 be16_add_cpu(&block->bb_level, -1); 3561 xfs_trans_log_inode(cur->bc_tp, ip, 3562 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3563 cur->bc_nlevels--; 3564 out0: 3565 return 0; 3566 } 3567 3568 /* 3569 * Kill the current root node, and replace it with it's only child node. 3570 */ 3571 STATIC int 3572 xfs_btree_kill_root( 3573 struct xfs_btree_cur *cur, 3574 struct xfs_buf *bp, 3575 int level, 3576 union xfs_btree_ptr *newroot) 3577 { 3578 int error; 3579 3580 XFS_BTREE_STATS_INC(cur, killroot); 3581 3582 /* 3583 * Update the root pointer, decreasing the level by 1 and then 3584 * free the old root. 3585 */ 3586 cur->bc_ops->set_root(cur, newroot, -1); 3587 3588 error = xfs_btree_free_block(cur, bp); 3589 if (error) 3590 return error; 3591 3592 cur->bc_bufs[level] = NULL; 3593 cur->bc_ra[level] = 0; 3594 cur->bc_nlevels--; 3595 3596 return 0; 3597 } 3598 3599 STATIC int 3600 xfs_btree_dec_cursor( 3601 struct xfs_btree_cur *cur, 3602 int level, 3603 int *stat) 3604 { 3605 int error; 3606 int i; 3607 3608 if (level > 0) { 3609 error = xfs_btree_decrement(cur, level, &i); 3610 if (error) 3611 return error; 3612 } 3613 3614 *stat = 1; 3615 return 0; 3616 } 3617 3618 /* 3619 * Single level of the btree record deletion routine. 3620 * Delete record pointed to by cur/level. 3621 * Remove the record from its block then rebalance the tree. 3622 * Return 0 for error, 1 for done, 2 to go on to the next level. 3623 */ 3624 STATIC int /* error */ 3625 xfs_btree_delrec( 3626 struct xfs_btree_cur *cur, /* btree cursor */ 3627 int level, /* level removing record from */ 3628 int *stat) /* fail/done/go-on */ 3629 { 3630 struct xfs_btree_block *block; /* btree block */ 3631 union xfs_btree_ptr cptr; /* current block ptr */ 3632 struct xfs_buf *bp; /* buffer for block */ 3633 int error; /* error return value */ 3634 int i; /* loop counter */ 3635 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3636 struct xfs_buf *lbp; /* left buffer pointer */ 3637 struct xfs_btree_block *left; /* left btree block */ 3638 int lrecs = 0; /* left record count */ 3639 int ptr; /* key/record index */ 3640 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3641 struct xfs_buf *rbp; /* right buffer pointer */ 3642 struct xfs_btree_block *right; /* right btree block */ 3643 struct xfs_btree_block *rrblock; /* right-right btree block */ 3644 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3645 int rrecs = 0; /* right record count */ 3646 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3647 int numrecs; /* temporary numrec count */ 3648 3649 tcur = NULL; 3650 3651 /* Get the index of the entry being deleted, check for nothing there. */ 3652 ptr = cur->bc_ptrs[level]; 3653 if (ptr == 0) { 3654 *stat = 0; 3655 return 0; 3656 } 3657 3658 /* Get the buffer & block containing the record or key/ptr. */ 3659 block = xfs_btree_get_block(cur, level, &bp); 3660 numrecs = xfs_btree_get_numrecs(block); 3661 3662 #ifdef DEBUG 3663 error = xfs_btree_check_block(cur, block, level, bp); 3664 if (error) 3665 goto error0; 3666 #endif 3667 3668 /* Fail if we're off the end of the block. */ 3669 if (ptr > numrecs) { 3670 *stat = 0; 3671 return 0; 3672 } 3673 3674 XFS_BTREE_STATS_INC(cur, delrec); 3675 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3676 3677 /* Excise the entries being deleted. */ 3678 if (level > 0) { 3679 /* It's a nonleaf. operate on keys and ptrs */ 3680 union xfs_btree_key *lkp; 3681 union xfs_btree_ptr *lpp; 3682 3683 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3684 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3685 3686 for (i = 0; i < numrecs - ptr; i++) { 3687 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3688 if (error) 3689 goto error0; 3690 } 3691 3692 if (ptr < numrecs) { 3693 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3694 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3695 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3696 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3697 } 3698 } else { 3699 /* It's a leaf. operate on records */ 3700 if (ptr < numrecs) { 3701 xfs_btree_shift_recs(cur, 3702 xfs_btree_rec_addr(cur, ptr + 1, block), 3703 -1, numrecs - ptr); 3704 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3705 } 3706 } 3707 3708 /* 3709 * Decrement and log the number of entries in the block. 3710 */ 3711 xfs_btree_set_numrecs(block, --numrecs); 3712 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3713 3714 /* 3715 * If we are tracking the last record in the tree and 3716 * we are at the far right edge of the tree, update it. 3717 */ 3718 if (xfs_btree_is_lastrec(cur, block, level)) { 3719 cur->bc_ops->update_lastrec(cur, block, NULL, 3720 ptr, LASTREC_DELREC); 3721 } 3722 3723 /* 3724 * We're at the root level. First, shrink the root block in-memory. 3725 * Try to get rid of the next level down. If we can't then there's 3726 * nothing left to do. 3727 */ 3728 if (level == cur->bc_nlevels - 1) { 3729 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3730 xfs_iroot_realloc(cur->bc_ino.ip, -1, 3731 cur->bc_ino.whichfork); 3732 3733 error = xfs_btree_kill_iroot(cur); 3734 if (error) 3735 goto error0; 3736 3737 error = xfs_btree_dec_cursor(cur, level, stat); 3738 if (error) 3739 goto error0; 3740 *stat = 1; 3741 return 0; 3742 } 3743 3744 /* 3745 * If this is the root level, and there's only one entry left, 3746 * and it's NOT the leaf level, then we can get rid of this 3747 * level. 3748 */ 3749 if (numrecs == 1 && level > 0) { 3750 union xfs_btree_ptr *pp; 3751 /* 3752 * pp is still set to the first pointer in the block. 3753 * Make it the new root of the btree. 3754 */ 3755 pp = xfs_btree_ptr_addr(cur, 1, block); 3756 error = xfs_btree_kill_root(cur, bp, level, pp); 3757 if (error) 3758 goto error0; 3759 } else if (level > 0) { 3760 error = xfs_btree_dec_cursor(cur, level, stat); 3761 if (error) 3762 goto error0; 3763 } 3764 *stat = 1; 3765 return 0; 3766 } 3767 3768 /* 3769 * If we deleted the leftmost entry in the block, update the 3770 * key values above us in the tree. 3771 */ 3772 if (xfs_btree_needs_key_update(cur, ptr)) { 3773 error = xfs_btree_update_keys(cur, level); 3774 if (error) 3775 goto error0; 3776 } 3777 3778 /* 3779 * If the number of records remaining in the block is at least 3780 * the minimum, we're done. 3781 */ 3782 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3783 error = xfs_btree_dec_cursor(cur, level, stat); 3784 if (error) 3785 goto error0; 3786 return 0; 3787 } 3788 3789 /* 3790 * Otherwise, we have to move some records around to keep the 3791 * tree balanced. Look at the left and right sibling blocks to 3792 * see if we can re-balance by moving only one record. 3793 */ 3794 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3795 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3796 3797 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3798 /* 3799 * One child of root, need to get a chance to copy its contents 3800 * into the root and delete it. Can't go up to next level, 3801 * there's nothing to delete there. 3802 */ 3803 if (xfs_btree_ptr_is_null(cur, &rptr) && 3804 xfs_btree_ptr_is_null(cur, &lptr) && 3805 level == cur->bc_nlevels - 2) { 3806 error = xfs_btree_kill_iroot(cur); 3807 if (!error) 3808 error = xfs_btree_dec_cursor(cur, level, stat); 3809 if (error) 3810 goto error0; 3811 return 0; 3812 } 3813 } 3814 3815 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3816 !xfs_btree_ptr_is_null(cur, &lptr)); 3817 3818 /* 3819 * Duplicate the cursor so our btree manipulations here won't 3820 * disrupt the next level up. 3821 */ 3822 error = xfs_btree_dup_cursor(cur, &tcur); 3823 if (error) 3824 goto error0; 3825 3826 /* 3827 * If there's a right sibling, see if it's ok to shift an entry 3828 * out of it. 3829 */ 3830 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3831 /* 3832 * Move the temp cursor to the last entry in the next block. 3833 * Actually any entry but the first would suffice. 3834 */ 3835 i = xfs_btree_lastrec(tcur, level); 3836 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3837 error = -EFSCORRUPTED; 3838 goto error0; 3839 } 3840 3841 error = xfs_btree_increment(tcur, level, &i); 3842 if (error) 3843 goto error0; 3844 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3845 error = -EFSCORRUPTED; 3846 goto error0; 3847 } 3848 3849 i = xfs_btree_lastrec(tcur, level); 3850 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3851 error = -EFSCORRUPTED; 3852 goto error0; 3853 } 3854 3855 /* Grab a pointer to the block. */ 3856 right = xfs_btree_get_block(tcur, level, &rbp); 3857 #ifdef DEBUG 3858 error = xfs_btree_check_block(tcur, right, level, rbp); 3859 if (error) 3860 goto error0; 3861 #endif 3862 /* Grab the current block number, for future use. */ 3863 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3864 3865 /* 3866 * If right block is full enough so that removing one entry 3867 * won't make it too empty, and left-shifting an entry out 3868 * of right to us works, we're done. 3869 */ 3870 if (xfs_btree_get_numrecs(right) - 1 >= 3871 cur->bc_ops->get_minrecs(tcur, level)) { 3872 error = xfs_btree_lshift(tcur, level, &i); 3873 if (error) 3874 goto error0; 3875 if (i) { 3876 ASSERT(xfs_btree_get_numrecs(block) >= 3877 cur->bc_ops->get_minrecs(tcur, level)); 3878 3879 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3880 tcur = NULL; 3881 3882 error = xfs_btree_dec_cursor(cur, level, stat); 3883 if (error) 3884 goto error0; 3885 return 0; 3886 } 3887 } 3888 3889 /* 3890 * Otherwise, grab the number of records in right for 3891 * future reference, and fix up the temp cursor to point 3892 * to our block again (last record). 3893 */ 3894 rrecs = xfs_btree_get_numrecs(right); 3895 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3896 i = xfs_btree_firstrec(tcur, level); 3897 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3898 error = -EFSCORRUPTED; 3899 goto error0; 3900 } 3901 3902 error = xfs_btree_decrement(tcur, level, &i); 3903 if (error) 3904 goto error0; 3905 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3906 error = -EFSCORRUPTED; 3907 goto error0; 3908 } 3909 } 3910 } 3911 3912 /* 3913 * If there's a left sibling, see if it's ok to shift an entry 3914 * out of it. 3915 */ 3916 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3917 /* 3918 * Move the temp cursor to the first entry in the 3919 * previous block. 3920 */ 3921 i = xfs_btree_firstrec(tcur, level); 3922 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3923 error = -EFSCORRUPTED; 3924 goto error0; 3925 } 3926 3927 error = xfs_btree_decrement(tcur, level, &i); 3928 if (error) 3929 goto error0; 3930 i = xfs_btree_firstrec(tcur, level); 3931 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3932 error = -EFSCORRUPTED; 3933 goto error0; 3934 } 3935 3936 /* Grab a pointer to the block. */ 3937 left = xfs_btree_get_block(tcur, level, &lbp); 3938 #ifdef DEBUG 3939 error = xfs_btree_check_block(cur, left, level, lbp); 3940 if (error) 3941 goto error0; 3942 #endif 3943 /* Grab the current block number, for future use. */ 3944 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 3945 3946 /* 3947 * If left block is full enough so that removing one entry 3948 * won't make it too empty, and right-shifting an entry out 3949 * of left to us works, we're done. 3950 */ 3951 if (xfs_btree_get_numrecs(left) - 1 >= 3952 cur->bc_ops->get_minrecs(tcur, level)) { 3953 error = xfs_btree_rshift(tcur, level, &i); 3954 if (error) 3955 goto error0; 3956 if (i) { 3957 ASSERT(xfs_btree_get_numrecs(block) >= 3958 cur->bc_ops->get_minrecs(tcur, level)); 3959 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3960 tcur = NULL; 3961 if (level == 0) 3962 cur->bc_ptrs[0]++; 3963 3964 *stat = 1; 3965 return 0; 3966 } 3967 } 3968 3969 /* 3970 * Otherwise, grab the number of records in right for 3971 * future reference. 3972 */ 3973 lrecs = xfs_btree_get_numrecs(left); 3974 } 3975 3976 /* Delete the temp cursor, we're done with it. */ 3977 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3978 tcur = NULL; 3979 3980 /* If here, we need to do a join to keep the tree balanced. */ 3981 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 3982 3983 if (!xfs_btree_ptr_is_null(cur, &lptr) && 3984 lrecs + xfs_btree_get_numrecs(block) <= 3985 cur->bc_ops->get_maxrecs(cur, level)) { 3986 /* 3987 * Set "right" to be the starting block, 3988 * "left" to be the left neighbor. 3989 */ 3990 rptr = cptr; 3991 right = block; 3992 rbp = bp; 3993 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3994 if (error) 3995 goto error0; 3996 3997 /* 3998 * If that won't work, see if we can join with the right neighbor block. 3999 */ 4000 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4001 rrecs + xfs_btree_get_numrecs(block) <= 4002 cur->bc_ops->get_maxrecs(cur, level)) { 4003 /* 4004 * Set "left" to be the starting block, 4005 * "right" to be the right neighbor. 4006 */ 4007 lptr = cptr; 4008 left = block; 4009 lbp = bp; 4010 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4011 if (error) 4012 goto error0; 4013 4014 /* 4015 * Otherwise, we can't fix the imbalance. 4016 * Just return. This is probably a logic error, but it's not fatal. 4017 */ 4018 } else { 4019 error = xfs_btree_dec_cursor(cur, level, stat); 4020 if (error) 4021 goto error0; 4022 return 0; 4023 } 4024 4025 rrecs = xfs_btree_get_numrecs(right); 4026 lrecs = xfs_btree_get_numrecs(left); 4027 4028 /* 4029 * We're now going to join "left" and "right" by moving all the stuff 4030 * in "right" to "left" and deleting "right". 4031 */ 4032 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4033 if (level > 0) { 4034 /* It's a non-leaf. Move keys and pointers. */ 4035 union xfs_btree_key *lkp; /* left btree key */ 4036 union xfs_btree_ptr *lpp; /* left address pointer */ 4037 union xfs_btree_key *rkp; /* right btree key */ 4038 union xfs_btree_ptr *rpp; /* right address pointer */ 4039 4040 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4041 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4042 rkp = xfs_btree_key_addr(cur, 1, right); 4043 rpp = xfs_btree_ptr_addr(cur, 1, right); 4044 4045 for (i = 1; i < rrecs; i++) { 4046 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4047 if (error) 4048 goto error0; 4049 } 4050 4051 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4052 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4053 4054 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4055 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4056 } else { 4057 /* It's a leaf. Move records. */ 4058 union xfs_btree_rec *lrp; /* left record pointer */ 4059 union xfs_btree_rec *rrp; /* right record pointer */ 4060 4061 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4062 rrp = xfs_btree_rec_addr(cur, 1, right); 4063 4064 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4065 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4066 } 4067 4068 XFS_BTREE_STATS_INC(cur, join); 4069 4070 /* 4071 * Fix up the number of records and right block pointer in the 4072 * surviving block, and log it. 4073 */ 4074 xfs_btree_set_numrecs(left, lrecs + rrecs); 4075 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); 4076 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4077 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4078 4079 /* If there is a right sibling, point it to the remaining block. */ 4080 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4081 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4082 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4083 if (error) 4084 goto error0; 4085 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4086 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4087 } 4088 4089 /* Free the deleted block. */ 4090 error = xfs_btree_free_block(cur, rbp); 4091 if (error) 4092 goto error0; 4093 4094 /* 4095 * If we joined with the left neighbor, set the buffer in the 4096 * cursor to the left block, and fix up the index. 4097 */ 4098 if (bp != lbp) { 4099 cur->bc_bufs[level] = lbp; 4100 cur->bc_ptrs[level] += lrecs; 4101 cur->bc_ra[level] = 0; 4102 } 4103 /* 4104 * If we joined with the right neighbor and there's a level above 4105 * us, increment the cursor at that level. 4106 */ 4107 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4108 (level + 1 < cur->bc_nlevels)) { 4109 error = xfs_btree_increment(cur, level + 1, &i); 4110 if (error) 4111 goto error0; 4112 } 4113 4114 /* 4115 * Readjust the ptr at this level if it's not a leaf, since it's 4116 * still pointing at the deletion point, which makes the cursor 4117 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4118 * We can't use decrement because it would change the next level up. 4119 */ 4120 if (level > 0) 4121 cur->bc_ptrs[level]--; 4122 4123 /* 4124 * We combined blocks, so we have to update the parent keys if the 4125 * btree supports overlapped intervals. However, bc_ptrs[level + 1] 4126 * points to the old block so that the caller knows which record to 4127 * delete. Therefore, the caller must be savvy enough to call updkeys 4128 * for us if we return stat == 2. The other exit points from this 4129 * function don't require deletions further up the tree, so they can 4130 * call updkeys directly. 4131 */ 4132 4133 /* Return value means the next level up has something to do. */ 4134 *stat = 2; 4135 return 0; 4136 4137 error0: 4138 if (tcur) 4139 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4140 return error; 4141 } 4142 4143 /* 4144 * Delete the record pointed to by cur. 4145 * The cursor refers to the place where the record was (could be inserted) 4146 * when the operation returns. 4147 */ 4148 int /* error */ 4149 xfs_btree_delete( 4150 struct xfs_btree_cur *cur, 4151 int *stat) /* success/failure */ 4152 { 4153 int error; /* error return value */ 4154 int level; 4155 int i; 4156 bool joined = false; 4157 4158 /* 4159 * Go up the tree, starting at leaf level. 4160 * 4161 * If 2 is returned then a join was done; go to the next level. 4162 * Otherwise we are done. 4163 */ 4164 for (level = 0, i = 2; i == 2; level++) { 4165 error = xfs_btree_delrec(cur, level, &i); 4166 if (error) 4167 goto error0; 4168 if (i == 2) 4169 joined = true; 4170 } 4171 4172 /* 4173 * If we combined blocks as part of deleting the record, delrec won't 4174 * have updated the parent high keys so we have to do that here. 4175 */ 4176 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4177 error = xfs_btree_updkeys_force(cur, 0); 4178 if (error) 4179 goto error0; 4180 } 4181 4182 if (i == 0) { 4183 for (level = 1; level < cur->bc_nlevels; level++) { 4184 if (cur->bc_ptrs[level] == 0) { 4185 error = xfs_btree_decrement(cur, level, &i); 4186 if (error) 4187 goto error0; 4188 break; 4189 } 4190 } 4191 } 4192 4193 *stat = i; 4194 return 0; 4195 error0: 4196 return error; 4197 } 4198 4199 /* 4200 * Get the data from the pointed-to record. 4201 */ 4202 int /* error */ 4203 xfs_btree_get_rec( 4204 struct xfs_btree_cur *cur, /* btree cursor */ 4205 union xfs_btree_rec **recp, /* output: btree record */ 4206 int *stat) /* output: success/failure */ 4207 { 4208 struct xfs_btree_block *block; /* btree block */ 4209 struct xfs_buf *bp; /* buffer pointer */ 4210 int ptr; /* record number */ 4211 #ifdef DEBUG 4212 int error; /* error return value */ 4213 #endif 4214 4215 ptr = cur->bc_ptrs[0]; 4216 block = xfs_btree_get_block(cur, 0, &bp); 4217 4218 #ifdef DEBUG 4219 error = xfs_btree_check_block(cur, block, 0, bp); 4220 if (error) 4221 return error; 4222 #endif 4223 4224 /* 4225 * Off the right end or left end, return failure. 4226 */ 4227 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4228 *stat = 0; 4229 return 0; 4230 } 4231 4232 /* 4233 * Point to the record and extract its data. 4234 */ 4235 *recp = xfs_btree_rec_addr(cur, ptr, block); 4236 *stat = 1; 4237 return 0; 4238 } 4239 4240 /* Visit a block in a btree. */ 4241 STATIC int 4242 xfs_btree_visit_block( 4243 struct xfs_btree_cur *cur, 4244 int level, 4245 xfs_btree_visit_blocks_fn fn, 4246 void *data) 4247 { 4248 struct xfs_btree_block *block; 4249 struct xfs_buf *bp; 4250 union xfs_btree_ptr rptr; 4251 int error; 4252 4253 /* do right sibling readahead */ 4254 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4255 block = xfs_btree_get_block(cur, level, &bp); 4256 4257 /* process the block */ 4258 error = fn(cur, level, data); 4259 if (error) 4260 return error; 4261 4262 /* now read rh sibling block for next iteration */ 4263 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4264 if (xfs_btree_ptr_is_null(cur, &rptr)) 4265 return -ENOENT; 4266 4267 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4268 } 4269 4270 4271 /* Visit every block in a btree. */ 4272 int 4273 xfs_btree_visit_blocks( 4274 struct xfs_btree_cur *cur, 4275 xfs_btree_visit_blocks_fn fn, 4276 unsigned int flags, 4277 void *data) 4278 { 4279 union xfs_btree_ptr lptr; 4280 int level; 4281 struct xfs_btree_block *block = NULL; 4282 int error = 0; 4283 4284 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4285 4286 /* for each level */ 4287 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4288 /* grab the left hand block */ 4289 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4290 if (error) 4291 return error; 4292 4293 /* readahead the left most block for the next level down */ 4294 if (level > 0) { 4295 union xfs_btree_ptr *ptr; 4296 4297 ptr = xfs_btree_ptr_addr(cur, 1, block); 4298 xfs_btree_readahead_ptr(cur, ptr, 1); 4299 4300 /* save for the next iteration of the loop */ 4301 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4302 4303 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4304 continue; 4305 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4306 continue; 4307 } 4308 4309 /* for each buffer in the level */ 4310 do { 4311 error = xfs_btree_visit_block(cur, level, fn, data); 4312 } while (!error); 4313 4314 if (error != -ENOENT) 4315 return error; 4316 } 4317 4318 return 0; 4319 } 4320 4321 /* 4322 * Change the owner of a btree. 4323 * 4324 * The mechanism we use here is ordered buffer logging. Because we don't know 4325 * how many buffers were are going to need to modify, we don't really want to 4326 * have to make transaction reservations for the worst case of every buffer in a 4327 * full size btree as that may be more space that we can fit in the log.... 4328 * 4329 * We do the btree walk in the most optimal manner possible - we have sibling 4330 * pointers so we can just walk all the blocks on each level from left to right 4331 * in a single pass, and then move to the next level and do the same. We can 4332 * also do readahead on the sibling pointers to get IO moving more quickly, 4333 * though for slow disks this is unlikely to make much difference to performance 4334 * as the amount of CPU work we have to do before moving to the next block is 4335 * relatively small. 4336 * 4337 * For each btree block that we load, modify the owner appropriately, set the 4338 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4339 * we mark the region we change dirty so that if the buffer is relogged in 4340 * a subsequent transaction the changes we make here as an ordered buffer are 4341 * correctly relogged in that transaction. If we are in recovery context, then 4342 * just queue the modified buffer as delayed write buffer so the transaction 4343 * recovery completion writes the changes to disk. 4344 */ 4345 struct xfs_btree_block_change_owner_info { 4346 uint64_t new_owner; 4347 struct list_head *buffer_list; 4348 }; 4349 4350 static int 4351 xfs_btree_block_change_owner( 4352 struct xfs_btree_cur *cur, 4353 int level, 4354 void *data) 4355 { 4356 struct xfs_btree_block_change_owner_info *bbcoi = data; 4357 struct xfs_btree_block *block; 4358 struct xfs_buf *bp; 4359 4360 /* modify the owner */ 4361 block = xfs_btree_get_block(cur, level, &bp); 4362 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4363 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4364 return 0; 4365 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4366 } else { 4367 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4368 return 0; 4369 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4370 } 4371 4372 /* 4373 * If the block is a root block hosted in an inode, we might not have a 4374 * buffer pointer here and we shouldn't attempt to log the change as the 4375 * information is already held in the inode and discarded when the root 4376 * block is formatted into the on-disk inode fork. We still change it, 4377 * though, so everything is consistent in memory. 4378 */ 4379 if (!bp) { 4380 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4381 ASSERT(level == cur->bc_nlevels - 1); 4382 return 0; 4383 } 4384 4385 if (cur->bc_tp) { 4386 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4387 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4388 return -EAGAIN; 4389 } 4390 } else { 4391 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4392 } 4393 4394 return 0; 4395 } 4396 4397 int 4398 xfs_btree_change_owner( 4399 struct xfs_btree_cur *cur, 4400 uint64_t new_owner, 4401 struct list_head *buffer_list) 4402 { 4403 struct xfs_btree_block_change_owner_info bbcoi; 4404 4405 bbcoi.new_owner = new_owner; 4406 bbcoi.buffer_list = buffer_list; 4407 4408 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4409 XFS_BTREE_VISIT_ALL, &bbcoi); 4410 } 4411 4412 /* Verify the v5 fields of a long-format btree block. */ 4413 xfs_failaddr_t 4414 xfs_btree_lblock_v5hdr_verify( 4415 struct xfs_buf *bp, 4416 uint64_t owner) 4417 { 4418 struct xfs_mount *mp = bp->b_mount; 4419 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4420 4421 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4422 return __this_address; 4423 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4424 return __this_address; 4425 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn)) 4426 return __this_address; 4427 if (owner != XFS_RMAP_OWN_UNKNOWN && 4428 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4429 return __this_address; 4430 return NULL; 4431 } 4432 4433 /* Verify a long-format btree block. */ 4434 xfs_failaddr_t 4435 xfs_btree_lblock_verify( 4436 struct xfs_buf *bp, 4437 unsigned int max_recs) 4438 { 4439 struct xfs_mount *mp = bp->b_mount; 4440 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4441 4442 /* numrecs verification */ 4443 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4444 return __this_address; 4445 4446 /* sibling pointer verification */ 4447 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 4448 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))) 4449 return __this_address; 4450 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 4451 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))) 4452 return __this_address; 4453 4454 return NULL; 4455 } 4456 4457 /** 4458 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4459 * btree block 4460 * 4461 * @bp: buffer containing the btree block 4462 */ 4463 xfs_failaddr_t 4464 xfs_btree_sblock_v5hdr_verify( 4465 struct xfs_buf *bp) 4466 { 4467 struct xfs_mount *mp = bp->b_mount; 4468 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4469 struct xfs_perag *pag = bp->b_pag; 4470 4471 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4472 return __this_address; 4473 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4474 return __this_address; 4475 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn)) 4476 return __this_address; 4477 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4478 return __this_address; 4479 return NULL; 4480 } 4481 4482 /** 4483 * xfs_btree_sblock_verify() -- verify a short-format btree block 4484 * 4485 * @bp: buffer containing the btree block 4486 * @max_recs: maximum records allowed in this btree node 4487 */ 4488 xfs_failaddr_t 4489 xfs_btree_sblock_verify( 4490 struct xfs_buf *bp, 4491 unsigned int max_recs) 4492 { 4493 struct xfs_mount *mp = bp->b_mount; 4494 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4495 xfs_agblock_t agno; 4496 4497 /* numrecs verification */ 4498 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4499 return __this_address; 4500 4501 /* sibling pointer verification */ 4502 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp)); 4503 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 4504 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib))) 4505 return __this_address; 4506 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 4507 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib))) 4508 return __this_address; 4509 4510 return NULL; 4511 } 4512 4513 /* 4514 * Calculate the number of btree levels needed to store a given number of 4515 * records in a short-format btree. 4516 */ 4517 uint 4518 xfs_btree_compute_maxlevels( 4519 uint *limits, 4520 unsigned long len) 4521 { 4522 uint level; 4523 unsigned long maxblocks; 4524 4525 maxblocks = (len + limits[0] - 1) / limits[0]; 4526 for (level = 1; maxblocks > 1; level++) 4527 maxblocks = (maxblocks + limits[1] - 1) / limits[1]; 4528 return level; 4529 } 4530 4531 /* 4532 * Query a regular btree for all records overlapping a given interval. 4533 * Start with a LE lookup of the key of low_rec and return all records 4534 * until we find a record with a key greater than the key of high_rec. 4535 */ 4536 STATIC int 4537 xfs_btree_simple_query_range( 4538 struct xfs_btree_cur *cur, 4539 union xfs_btree_key *low_key, 4540 union xfs_btree_key *high_key, 4541 xfs_btree_query_range_fn fn, 4542 void *priv) 4543 { 4544 union xfs_btree_rec *recp; 4545 union xfs_btree_key rec_key; 4546 int64_t diff; 4547 int stat; 4548 bool firstrec = true; 4549 int error; 4550 4551 ASSERT(cur->bc_ops->init_high_key_from_rec); 4552 ASSERT(cur->bc_ops->diff_two_keys); 4553 4554 /* 4555 * Find the leftmost record. The btree cursor must be set 4556 * to the low record used to generate low_key. 4557 */ 4558 stat = 0; 4559 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4560 if (error) 4561 goto out; 4562 4563 /* Nothing? See if there's anything to the right. */ 4564 if (!stat) { 4565 error = xfs_btree_increment(cur, 0, &stat); 4566 if (error) 4567 goto out; 4568 } 4569 4570 while (stat) { 4571 /* Find the record. */ 4572 error = xfs_btree_get_rec(cur, &recp, &stat); 4573 if (error || !stat) 4574 break; 4575 4576 /* Skip if high_key(rec) < low_key. */ 4577 if (firstrec) { 4578 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4579 firstrec = false; 4580 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4581 &rec_key); 4582 if (diff > 0) 4583 goto advloop; 4584 } 4585 4586 /* Stop if high_key < low_key(rec). */ 4587 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4588 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4589 if (diff > 0) 4590 break; 4591 4592 /* Callback */ 4593 error = fn(cur, recp, priv); 4594 if (error) 4595 break; 4596 4597 advloop: 4598 /* Move on to the next record. */ 4599 error = xfs_btree_increment(cur, 0, &stat); 4600 if (error) 4601 break; 4602 } 4603 4604 out: 4605 return error; 4606 } 4607 4608 /* 4609 * Query an overlapped interval btree for all records overlapping a given 4610 * interval. This function roughly follows the algorithm given in 4611 * "Interval Trees" of _Introduction to Algorithms_, which is section 4612 * 14.3 in the 2nd and 3rd editions. 4613 * 4614 * First, generate keys for the low and high records passed in. 4615 * 4616 * For any leaf node, generate the high and low keys for the record. 4617 * If the record keys overlap with the query low/high keys, pass the 4618 * record to the function iterator. 4619 * 4620 * For any internal node, compare the low and high keys of each 4621 * pointer against the query low/high keys. If there's an overlap, 4622 * follow the pointer. 4623 * 4624 * As an optimization, we stop scanning a block when we find a low key 4625 * that is greater than the query's high key. 4626 */ 4627 STATIC int 4628 xfs_btree_overlapped_query_range( 4629 struct xfs_btree_cur *cur, 4630 union xfs_btree_key *low_key, 4631 union xfs_btree_key *high_key, 4632 xfs_btree_query_range_fn fn, 4633 void *priv) 4634 { 4635 union xfs_btree_ptr ptr; 4636 union xfs_btree_ptr *pp; 4637 union xfs_btree_key rec_key; 4638 union xfs_btree_key rec_hkey; 4639 union xfs_btree_key *lkp; 4640 union xfs_btree_key *hkp; 4641 union xfs_btree_rec *recp; 4642 struct xfs_btree_block *block; 4643 int64_t ldiff; 4644 int64_t hdiff; 4645 int level; 4646 struct xfs_buf *bp; 4647 int i; 4648 int error; 4649 4650 /* Load the root of the btree. */ 4651 level = cur->bc_nlevels - 1; 4652 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4653 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4654 if (error) 4655 return error; 4656 xfs_btree_get_block(cur, level, &bp); 4657 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4658 #ifdef DEBUG 4659 error = xfs_btree_check_block(cur, block, level, bp); 4660 if (error) 4661 goto out; 4662 #endif 4663 cur->bc_ptrs[level] = 1; 4664 4665 while (level < cur->bc_nlevels) { 4666 block = xfs_btree_get_block(cur, level, &bp); 4667 4668 /* End of node, pop back towards the root. */ 4669 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) { 4670 pop_up: 4671 if (level < cur->bc_nlevels - 1) 4672 cur->bc_ptrs[level + 1]++; 4673 level++; 4674 continue; 4675 } 4676 4677 if (level == 0) { 4678 /* Handle a leaf node. */ 4679 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block); 4680 4681 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4682 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4683 low_key); 4684 4685 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4686 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4687 &rec_key); 4688 4689 /* 4690 * If (record's high key >= query's low key) and 4691 * (query's high key >= record's low key), then 4692 * this record overlaps the query range; callback. 4693 */ 4694 if (ldiff >= 0 && hdiff >= 0) { 4695 error = fn(cur, recp, priv); 4696 if (error) 4697 break; 4698 } else if (hdiff < 0) { 4699 /* Record is larger than high key; pop. */ 4700 goto pop_up; 4701 } 4702 cur->bc_ptrs[level]++; 4703 continue; 4704 } 4705 4706 /* Handle an internal node. */ 4707 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block); 4708 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block); 4709 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block); 4710 4711 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4712 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4713 4714 /* 4715 * If (pointer's high key >= query's low key) and 4716 * (query's high key >= pointer's low key), then 4717 * this record overlaps the query range; follow pointer. 4718 */ 4719 if (ldiff >= 0 && hdiff >= 0) { 4720 level--; 4721 error = xfs_btree_lookup_get_block(cur, level, pp, 4722 &block); 4723 if (error) 4724 goto out; 4725 xfs_btree_get_block(cur, level, &bp); 4726 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4727 #ifdef DEBUG 4728 error = xfs_btree_check_block(cur, block, level, bp); 4729 if (error) 4730 goto out; 4731 #endif 4732 cur->bc_ptrs[level] = 1; 4733 continue; 4734 } else if (hdiff < 0) { 4735 /* The low key is larger than the upper range; pop. */ 4736 goto pop_up; 4737 } 4738 cur->bc_ptrs[level]++; 4739 } 4740 4741 out: 4742 /* 4743 * If we don't end this function with the cursor pointing at a record 4744 * block, a subsequent non-error cursor deletion will not release 4745 * node-level buffers, causing a buffer leak. This is quite possible 4746 * with a zero-results range query, so release the buffers if we 4747 * failed to return any results. 4748 */ 4749 if (cur->bc_bufs[0] == NULL) { 4750 for (i = 0; i < cur->bc_nlevels; i++) { 4751 if (cur->bc_bufs[i]) { 4752 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 4753 cur->bc_bufs[i] = NULL; 4754 cur->bc_ptrs[i] = 0; 4755 cur->bc_ra[i] = 0; 4756 } 4757 } 4758 } 4759 4760 return error; 4761 } 4762 4763 /* 4764 * Query a btree for all records overlapping a given interval of keys. The 4765 * supplied function will be called with each record found; return one of the 4766 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4767 * code. This function returns -ECANCELED, zero, or a negative error code. 4768 */ 4769 int 4770 xfs_btree_query_range( 4771 struct xfs_btree_cur *cur, 4772 union xfs_btree_irec *low_rec, 4773 union xfs_btree_irec *high_rec, 4774 xfs_btree_query_range_fn fn, 4775 void *priv) 4776 { 4777 union xfs_btree_rec rec; 4778 union xfs_btree_key low_key; 4779 union xfs_btree_key high_key; 4780 4781 /* Find the keys of both ends of the interval. */ 4782 cur->bc_rec = *high_rec; 4783 cur->bc_ops->init_rec_from_cur(cur, &rec); 4784 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4785 4786 cur->bc_rec = *low_rec; 4787 cur->bc_ops->init_rec_from_cur(cur, &rec); 4788 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4789 4790 /* Enforce low key < high key. */ 4791 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4792 return -EINVAL; 4793 4794 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4795 return xfs_btree_simple_query_range(cur, &low_key, 4796 &high_key, fn, priv); 4797 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4798 fn, priv); 4799 } 4800 4801 /* Query a btree for all records. */ 4802 int 4803 xfs_btree_query_all( 4804 struct xfs_btree_cur *cur, 4805 xfs_btree_query_range_fn fn, 4806 void *priv) 4807 { 4808 union xfs_btree_key low_key; 4809 union xfs_btree_key high_key; 4810 4811 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4812 memset(&low_key, 0, sizeof(low_key)); 4813 memset(&high_key, 0xFF, sizeof(high_key)); 4814 4815 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4816 } 4817 4818 /* 4819 * Calculate the number of blocks needed to store a given number of records 4820 * in a short-format (per-AG metadata) btree. 4821 */ 4822 unsigned long long 4823 xfs_btree_calc_size( 4824 uint *limits, 4825 unsigned long long len) 4826 { 4827 int level; 4828 int maxrecs; 4829 unsigned long long rval; 4830 4831 maxrecs = limits[0]; 4832 for (level = 0, rval = 0; len > 1; level++) { 4833 len += maxrecs - 1; 4834 do_div(len, maxrecs); 4835 maxrecs = limits[1]; 4836 rval += len; 4837 } 4838 return rval; 4839 } 4840 4841 static int 4842 xfs_btree_count_blocks_helper( 4843 struct xfs_btree_cur *cur, 4844 int level, 4845 void *data) 4846 { 4847 xfs_extlen_t *blocks = data; 4848 (*blocks)++; 4849 4850 return 0; 4851 } 4852 4853 /* Count the blocks in a btree and return the result in *blocks. */ 4854 int 4855 xfs_btree_count_blocks( 4856 struct xfs_btree_cur *cur, 4857 xfs_extlen_t *blocks) 4858 { 4859 *blocks = 0; 4860 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4861 XFS_BTREE_VISIT_ALL, blocks); 4862 } 4863 4864 /* Compare two btree pointers. */ 4865 int64_t 4866 xfs_btree_diff_two_ptrs( 4867 struct xfs_btree_cur *cur, 4868 const union xfs_btree_ptr *a, 4869 const union xfs_btree_ptr *b) 4870 { 4871 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4872 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 4873 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 4874 } 4875 4876 /* If there's an extent, we're done. */ 4877 STATIC int 4878 xfs_btree_has_record_helper( 4879 struct xfs_btree_cur *cur, 4880 union xfs_btree_rec *rec, 4881 void *priv) 4882 { 4883 return -ECANCELED; 4884 } 4885 4886 /* Is there a record covering a given range of keys? */ 4887 int 4888 xfs_btree_has_record( 4889 struct xfs_btree_cur *cur, 4890 union xfs_btree_irec *low, 4891 union xfs_btree_irec *high, 4892 bool *exists) 4893 { 4894 int error; 4895 4896 error = xfs_btree_query_range(cur, low, high, 4897 &xfs_btree_has_record_helper, NULL); 4898 if (error == -ECANCELED) { 4899 *exists = true; 4900 return 0; 4901 } 4902 *exists = false; 4903 return error; 4904 } 4905 4906 /* Are there more records in this btree? */ 4907 bool 4908 xfs_btree_has_more_records( 4909 struct xfs_btree_cur *cur) 4910 { 4911 struct xfs_btree_block *block; 4912 struct xfs_buf *bp; 4913 4914 block = xfs_btree_get_block(cur, 0, &bp); 4915 4916 /* There are still records in this block. */ 4917 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block)) 4918 return true; 4919 4920 /* There are more record blocks. */ 4921 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4922 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 4923 else 4924 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 4925 } 4926