xref: /linux/fs/xfs/libxfs/xfs_btree.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30 #include "xfs_health.h"
31 #include "xfs_buf_mem.h"
32 #include "xfs_btree_mem.h"
33 
34 /*
35  * Btree magic numbers.
36  */
37 uint32_t
38 xfs_btree_magic(
39 	struct xfs_mount		*mp,
40 	const struct xfs_btree_ops	*ops)
41 {
42 	int				idx = xfs_has_crc(mp) ? 1 : 0;
43 	__be32				magic = ops->buf_ops->magic[idx];
44 
45 	/* Ensure we asked for crc for crc-only magics. */
46 	ASSERT(magic != 0);
47 	return be32_to_cpu(magic);
48 }
49 
50 /*
51  * These sibling pointer checks are optimised for null sibling pointers. This
52  * happens a lot, and we don't need to byte swap at runtime if the sibling
53  * pointer is NULL.
54  *
55  * These are explicitly marked at inline because the cost of calling them as
56  * functions instead of inlining them is about 36 bytes extra code per call site
57  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58  * two sibling check functions reduces the compiled code size by over 300
59  * bytes.
60  */
61 static inline xfs_failaddr_t
62 xfs_btree_check_fsblock_siblings(
63 	struct xfs_mount	*mp,
64 	xfs_fsblock_t		fsb,
65 	__be64			dsibling)
66 {
67 	xfs_fsblock_t		sibling;
68 
69 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 		return NULL;
71 
72 	sibling = be64_to_cpu(dsibling);
73 	if (sibling == fsb)
74 		return __this_address;
75 	if (!xfs_verify_fsbno(mp, sibling))
76 		return __this_address;
77 	return NULL;
78 }
79 
80 static inline xfs_failaddr_t
81 xfs_btree_check_memblock_siblings(
82 	struct xfs_buftarg	*btp,
83 	xfbno_t			bno,
84 	__be64			dsibling)
85 {
86 	xfbno_t			sibling;
87 
88 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 		return NULL;
90 
91 	sibling = be64_to_cpu(dsibling);
92 	if (sibling == bno)
93 		return __this_address;
94 	if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 		return __this_address;
96 	return NULL;
97 }
98 
99 static inline xfs_failaddr_t
100 xfs_btree_check_agblock_siblings(
101 	struct xfs_perag	*pag,
102 	xfs_agblock_t		agbno,
103 	__be32			dsibling)
104 {
105 	xfs_agblock_t		sibling;
106 
107 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 		return NULL;
109 
110 	sibling = be32_to_cpu(dsibling);
111 	if (sibling == agbno)
112 		return __this_address;
113 	if (!xfs_verify_agbno(pag, sibling))
114 		return __this_address;
115 	return NULL;
116 }
117 
118 static xfs_failaddr_t
119 __xfs_btree_check_lblock_hdr(
120 	struct xfs_btree_cur	*cur,
121 	struct xfs_btree_block	*block,
122 	int			level,
123 	struct xfs_buf		*bp)
124 {
125 	struct xfs_mount	*mp = cur->bc_mp;
126 
127 	if (xfs_has_crc(mp)) {
128 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 			return __this_address;
130 		if (block->bb_u.l.bb_blkno !=
131 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 			return __this_address;
133 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 			return __this_address;
135 	}
136 
137 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 		return __this_address;
139 	if (be16_to_cpu(block->bb_level) != level)
140 		return __this_address;
141 	if (be16_to_cpu(block->bb_numrecs) >
142 	    cur->bc_ops->get_maxrecs(cur, level))
143 		return __this_address;
144 
145 	return NULL;
146 }
147 
148 /*
149  * Check a long btree block header.  Return the address of the failing check,
150  * or NULL if everything is ok.
151  */
152 static xfs_failaddr_t
153 __xfs_btree_check_fsblock(
154 	struct xfs_btree_cur	*cur,
155 	struct xfs_btree_block	*block,
156 	int			level,
157 	struct xfs_buf		*bp)
158 {
159 	struct xfs_mount	*mp = cur->bc_mp;
160 	xfs_failaddr_t		fa;
161 	xfs_fsblock_t		fsb;
162 
163 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 	if (fa)
165 		return fa;
166 
167 	/*
168 	 * For inode-rooted btrees, the root block sits in the inode fork.  In
169 	 * that case bp is NULL, and the block must not have any siblings.
170 	 */
171 	if (!bp) {
172 		if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 			return __this_address;
174 		if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 			return __this_address;
176 		return NULL;
177 	}
178 
179 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 			block->bb_u.l.bb_leftsib);
182 	if (!fa)
183 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 				block->bb_u.l.bb_rightsib);
185 	return fa;
186 }
187 
188 /*
189  * Check an in-memory btree block header.  Return the address of the failing
190  * check, or NULL if everything is ok.
191  */
192 static xfs_failaddr_t
193 __xfs_btree_check_memblock(
194 	struct xfs_btree_cur	*cur,
195 	struct xfs_btree_block	*block,
196 	int			level,
197 	struct xfs_buf		*bp)
198 {
199 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
200 	xfs_failaddr_t		fa;
201 	xfbno_t			bno;
202 
203 	fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 	if (fa)
205 		return fa;
206 
207 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 	fa = xfs_btree_check_memblock_siblings(btp, bno,
209 			block->bb_u.l.bb_leftsib);
210 	if (!fa)
211 		fa = xfs_btree_check_memblock_siblings(btp, bno,
212 				block->bb_u.l.bb_rightsib);
213 	return fa;
214 }
215 
216 /*
217  * Check a short btree block header.  Return the address of the failing check,
218  * or NULL if everything is ok.
219  */
220 static xfs_failaddr_t
221 __xfs_btree_check_agblock(
222 	struct xfs_btree_cur	*cur,
223 	struct xfs_btree_block	*block,
224 	int			level,
225 	struct xfs_buf		*bp)
226 {
227 	struct xfs_mount	*mp = cur->bc_mp;
228 	struct xfs_perag	*pag = to_perag(cur->bc_group);
229 	xfs_failaddr_t		fa;
230 	xfs_agblock_t		agbno;
231 
232 	if (xfs_has_crc(mp)) {
233 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 			return __this_address;
235 		if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 			return __this_address;
237 	}
238 
239 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 		return __this_address;
241 	if (be16_to_cpu(block->bb_level) != level)
242 		return __this_address;
243 	if (be16_to_cpu(block->bb_numrecs) >
244 	    cur->bc_ops->get_maxrecs(cur, level))
245 		return __this_address;
246 
247 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 	fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 			block->bb_u.s.bb_leftsib);
250 	if (!fa)
251 		fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 				block->bb_u.s.bb_rightsib);
253 	return fa;
254 }
255 
256 /*
257  * Internal btree block check.
258  *
259  * Return NULL if the block is ok or the address of the failed check otherwise.
260  */
261 xfs_failaddr_t
262 __xfs_btree_check_block(
263 	struct xfs_btree_cur	*cur,
264 	struct xfs_btree_block	*block,
265 	int			level,
266 	struct xfs_buf		*bp)
267 {
268 	switch (cur->bc_ops->type) {
269 	case XFS_BTREE_TYPE_MEM:
270 		return __xfs_btree_check_memblock(cur, block, level, bp);
271 	case XFS_BTREE_TYPE_AG:
272 		return __xfs_btree_check_agblock(cur, block, level, bp);
273 	case XFS_BTREE_TYPE_INODE:
274 		return __xfs_btree_check_fsblock(cur, block, level, bp);
275 	default:
276 		ASSERT(0);
277 		return __this_address;
278 	}
279 }
280 
281 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282 {
283 	if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 		return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 	return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286 }
287 
288 /*
289  * Debug routine: check that block header is ok.
290  */
291 int
292 xfs_btree_check_block(
293 	struct xfs_btree_cur	*cur,	/* btree cursor */
294 	struct xfs_btree_block	*block,	/* generic btree block pointer */
295 	int			level,	/* level of the btree block */
296 	struct xfs_buf		*bp)	/* buffer containing block, if any */
297 {
298 	struct xfs_mount	*mp = cur->bc_mp;
299 	xfs_failaddr_t		fa;
300 
301 	fa = __xfs_btree_check_block(cur, block, level, bp);
302 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 	    XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 		if (bp)
305 			trace_xfs_btree_corrupt(bp, _RET_IP_);
306 		xfs_btree_mark_sick(cur);
307 		return -EFSCORRUPTED;
308 	}
309 	return 0;
310 }
311 
312 int
313 __xfs_btree_check_ptr(
314 	struct xfs_btree_cur		*cur,
315 	const union xfs_btree_ptr	*ptr,
316 	int				index,
317 	int				level)
318 {
319 	if (level <= 0)
320 		return -EFSCORRUPTED;
321 
322 	switch (cur->bc_ops->type) {
323 	case XFS_BTREE_TYPE_MEM:
324 		if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 				be64_to_cpu((&ptr->l)[index])))
326 			return -EFSCORRUPTED;
327 		break;
328 	case XFS_BTREE_TYPE_INODE:
329 		if (!xfs_verify_fsbno(cur->bc_mp,
330 				be64_to_cpu((&ptr->l)[index])))
331 			return -EFSCORRUPTED;
332 		break;
333 	case XFS_BTREE_TYPE_AG:
334 		if (!xfs_verify_agbno(to_perag(cur->bc_group),
335 				be32_to_cpu((&ptr->s)[index])))
336 			return -EFSCORRUPTED;
337 		break;
338 	}
339 
340 	return 0;
341 }
342 
343 /*
344  * Check that a given (indexed) btree pointer at a certain level of a
345  * btree is valid and doesn't point past where it should.
346  */
347 static int
348 xfs_btree_check_ptr(
349 	struct xfs_btree_cur		*cur,
350 	const union xfs_btree_ptr	*ptr,
351 	int				index,
352 	int				level)
353 {
354 	int				error;
355 
356 	error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 	if (error) {
358 		switch (cur->bc_ops->type) {
359 		case XFS_BTREE_TYPE_MEM:
360 			xfs_err(cur->bc_mp,
361 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 				cur->bc_ops->name, cur->bc_flags, level, index,
363 				__this_address);
364 			break;
365 		case XFS_BTREE_TYPE_INODE:
366 			xfs_err(cur->bc_mp,
367 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 				cur->bc_ino.ip->i_ino,
369 				cur->bc_ino.whichfork, cur->bc_ops->name,
370 				level, index);
371 			break;
372 		case XFS_BTREE_TYPE_AG:
373 			xfs_err(cur->bc_mp,
374 "AG %u: Corrupt %sbt pointer at level %d index %d.",
375 				cur->bc_group->xg_gno, cur->bc_ops->name,
376 				level, index);
377 			break;
378 		}
379 		xfs_btree_mark_sick(cur);
380 	}
381 
382 	return error;
383 }
384 
385 #ifdef DEBUG
386 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
387 #else
388 # define xfs_btree_debug_check_ptr(...)	(0)
389 #endif
390 
391 /*
392  * Calculate CRC on the whole btree block and stuff it into the
393  * long-form btree header.
394  *
395  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396  * it into the buffer so recovery knows what the last modification was that made
397  * it to disk.
398  */
399 void
400 xfs_btree_fsblock_calc_crc(
401 	struct xfs_buf		*bp)
402 {
403 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
404 	struct xfs_buf_log_item	*bip = bp->b_log_item;
405 
406 	if (!xfs_has_crc(bp->b_mount))
407 		return;
408 	if (bip)
409 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411 }
412 
413 bool
414 xfs_btree_fsblock_verify_crc(
415 	struct xfs_buf		*bp)
416 {
417 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
418 	struct xfs_mount	*mp = bp->b_mount;
419 
420 	if (xfs_has_crc(mp)) {
421 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 			return false;
423 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 	}
425 
426 	return true;
427 }
428 
429 /*
430  * Calculate CRC on the whole btree block and stuff it into the
431  * short-form btree header.
432  *
433  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434  * it into the buffer so recovery knows what the last modification was that made
435  * it to disk.
436  */
437 void
438 xfs_btree_agblock_calc_crc(
439 	struct xfs_buf		*bp)
440 {
441 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
442 	struct xfs_buf_log_item	*bip = bp->b_log_item;
443 
444 	if (!xfs_has_crc(bp->b_mount))
445 		return;
446 	if (bip)
447 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449 }
450 
451 bool
452 xfs_btree_agblock_verify_crc(
453 	struct xfs_buf		*bp)
454 {
455 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
456 	struct xfs_mount	*mp = bp->b_mount;
457 
458 	if (xfs_has_crc(mp)) {
459 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 			return false;
461 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 	}
463 
464 	return true;
465 }
466 
467 static int
468 xfs_btree_free_block(
469 	struct xfs_btree_cur	*cur,
470 	struct xfs_buf		*bp)
471 {
472 	int			error;
473 
474 	trace_xfs_btree_free_block(cur, bp);
475 
476 	/*
477 	 * Don't allow block freeing for a staging cursor, because staging
478 	 * cursors do not support regular btree modifications.
479 	 */
480 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 		ASSERT(0);
482 		return -EFSCORRUPTED;
483 	}
484 
485 	error = cur->bc_ops->free_block(cur, bp);
486 	if (!error) {
487 		xfs_trans_binval(cur->bc_tp, bp);
488 		XFS_BTREE_STATS_INC(cur, free);
489 	}
490 	return error;
491 }
492 
493 /*
494  * Delete the btree cursor.
495  */
496 void
497 xfs_btree_del_cursor(
498 	struct xfs_btree_cur	*cur,		/* btree cursor */
499 	int			error)		/* del because of error */
500 {
501 	int			i;		/* btree level */
502 
503 	/*
504 	 * Clear the buffer pointers and release the buffers. If we're doing
505 	 * this because of an error, inspect all of the entries in the bc_bufs
506 	 * array for buffers to be unlocked. This is because some of the btree
507 	 * code works from level n down to 0, and if we get an error along the
508 	 * way we won't have initialized all the entries down to 0.
509 	 */
510 	for (i = 0; i < cur->bc_nlevels; i++) {
511 		if (cur->bc_levels[i].bp)
512 			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 		else if (!error)
514 			break;
515 	}
516 
517 	/*
518 	 * If we are doing a BMBT update, the number of unaccounted blocks
519 	 * allocated during this cursor life time should be zero. If it's not
520 	 * zero, then we should be shut down or on our way to shutdown due to
521 	 * cancelling a dirty transaction on error.
522 	 */
523 	ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
525 
526 	if (cur->bc_group)
527 		xfs_group_put(cur->bc_group);
528 	kmem_cache_free(cur->bc_cache, cur);
529 }
530 
531 /* Return the buffer target for this btree's buffer. */
532 static inline struct xfs_buftarg *
533 xfs_btree_buftarg(
534 	struct xfs_btree_cur	*cur)
535 {
536 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
537 		return cur->bc_mem.xfbtree->target;
538 	return cur->bc_mp->m_ddev_targp;
539 }
540 
541 /* Return the block size (in units of 512b sectors) for this btree. */
542 static inline unsigned int
543 xfs_btree_bbsize(
544 	struct xfs_btree_cur	*cur)
545 {
546 	if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
547 		return XFBNO_BBSIZE;
548 	return cur->bc_mp->m_bsize;
549 }
550 
551 /*
552  * Duplicate the btree cursor.
553  * Allocate a new one, copy the record, re-get the buffers.
554  */
555 int						/* error */
556 xfs_btree_dup_cursor(
557 	struct xfs_btree_cur	*cur,		/* input cursor */
558 	struct xfs_btree_cur	**ncur)		/* output cursor */
559 {
560 	struct xfs_mount	*mp = cur->bc_mp;
561 	struct xfs_trans	*tp = cur->bc_tp;
562 	struct xfs_buf		*bp;
563 	struct xfs_btree_cur	*new;
564 	int			error;
565 	int			i;
566 
567 	/*
568 	 * Don't allow staging cursors to be duplicated because they're supposed
569 	 * to be kept private to a single thread.
570 	 */
571 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
572 		ASSERT(0);
573 		return -EFSCORRUPTED;
574 	}
575 
576 	/*
577 	 * Allocate a new cursor like the old one.
578 	 */
579 	new = cur->bc_ops->dup_cursor(cur);
580 
581 	/*
582 	 * Copy the record currently in the cursor.
583 	 */
584 	new->bc_rec = cur->bc_rec;
585 
586 	/*
587 	 * For each level current, re-get the buffer and copy the ptr value.
588 	 */
589 	for (i = 0; i < new->bc_nlevels; i++) {
590 		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
591 		new->bc_levels[i].ra = cur->bc_levels[i].ra;
592 		bp = cur->bc_levels[i].bp;
593 		if (bp) {
594 			error = xfs_trans_read_buf(mp, tp,
595 					xfs_btree_buftarg(cur),
596 					xfs_buf_daddr(bp),
597 					xfs_btree_bbsize(cur), 0, &bp,
598 					cur->bc_ops->buf_ops);
599 			if (xfs_metadata_is_sick(error))
600 				xfs_btree_mark_sick(new);
601 			if (error) {
602 				xfs_btree_del_cursor(new, error);
603 				*ncur = NULL;
604 				return error;
605 			}
606 		}
607 		new->bc_levels[i].bp = bp;
608 	}
609 	*ncur = new;
610 	return 0;
611 }
612 
613 /*
614  * XFS btree block layout and addressing:
615  *
616  * There are two types of blocks in the btree: leaf and non-leaf blocks.
617  *
618  * The leaf record start with a header then followed by records containing
619  * the values.  A non-leaf block also starts with the same header, and
620  * then first contains lookup keys followed by an equal number of pointers
621  * to the btree blocks at the previous level.
622  *
623  *		+--------+-------+-------+-------+-------+-------+-------+
624  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
625  *		+--------+-------+-------+-------+-------+-------+-------+
626  *
627  *		+--------+-------+-------+-------+-------+-------+-------+
628  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
629  *		+--------+-------+-------+-------+-------+-------+-------+
630  *
631  * The header is called struct xfs_btree_block for reasons better left unknown
632  * and comes in different versions for short (32bit) and long (64bit) block
633  * pointers.  The record and key structures are defined by the btree instances
634  * and opaque to the btree core.  The block pointers are simple disk endian
635  * integers, available in a short (32bit) and long (64bit) variant.
636  *
637  * The helpers below calculate the offset of a given record, key or pointer
638  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
639  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
640  * inside the btree block is done using indices starting at one, not zero!
641  *
642  * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
643  * overlapping intervals.  In such a tree, records are still sorted lowest to
644  * highest and indexed by the smallest key value that refers to the record.
645  * However, nodes are different: each pointer has two associated keys -- one
646  * indexing the lowest key available in the block(s) below (the same behavior
647  * as the key in a regular btree) and another indexing the highest key
648  * available in the block(s) below.  Because records are /not/ sorted by the
649  * highest key, all leaf block updates require us to compute the highest key
650  * that matches any record in the leaf and to recursively update the high keys
651  * in the nodes going further up in the tree, if necessary.  Nodes look like
652  * this:
653  *
654  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
655  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
656  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
657  *
658  * To perform an interval query on an overlapped tree, perform the usual
659  * depth-first search and use the low and high keys to decide if we can skip
660  * that particular node.  If a leaf node is reached, return the records that
661  * intersect the interval.  Note that an interval query may return numerous
662  * entries.  For a non-overlapped tree, simply search for the record associated
663  * with the lowest key and iterate forward until a non-matching record is
664  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
665  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
666  * more detail.
667  *
668  * Why do we care about overlapping intervals?  Let's say you have a bunch of
669  * reverse mapping records on a reflink filesystem:
670  *
671  * 1: +- file A startblock B offset C length D -----------+
672  * 2:      +- file E startblock F offset G length H --------------+
673  * 3:      +- file I startblock F offset J length K --+
674  * 4:                                                        +- file L... --+
675  *
676  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
677  * we'd simply increment the length of record 1.  But how do we find the record
678  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
679  * record 3 because the keys are ordered first by startblock.  An interval
680  * query would return records 1 and 2 because they both overlap (B+D-1), and
681  * from that we can pick out record 1 as the appropriate left neighbor.
682  *
683  * In the non-overlapped case you can do a LE lookup and decrement the cursor
684  * because a record's interval must end before the next record.
685  */
686 
687 /*
688  * Return size of the btree block header for this btree instance.
689  */
690 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
691 {
692 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
693 		if (xfs_has_crc(cur->bc_mp))
694 			return XFS_BTREE_LBLOCK_CRC_LEN;
695 		return XFS_BTREE_LBLOCK_LEN;
696 	}
697 	if (xfs_has_crc(cur->bc_mp))
698 		return XFS_BTREE_SBLOCK_CRC_LEN;
699 	return XFS_BTREE_SBLOCK_LEN;
700 }
701 
702 /*
703  * Calculate offset of the n-th record in a btree block.
704  */
705 STATIC size_t
706 xfs_btree_rec_offset(
707 	struct xfs_btree_cur	*cur,
708 	int			n)
709 {
710 	return xfs_btree_block_len(cur) +
711 		(n - 1) * cur->bc_ops->rec_len;
712 }
713 
714 /*
715  * Calculate offset of the n-th key in a btree block.
716  */
717 STATIC size_t
718 xfs_btree_key_offset(
719 	struct xfs_btree_cur	*cur,
720 	int			n)
721 {
722 	return xfs_btree_block_len(cur) +
723 		(n - 1) * cur->bc_ops->key_len;
724 }
725 
726 /*
727  * Calculate offset of the n-th high key in a btree block.
728  */
729 STATIC size_t
730 xfs_btree_high_key_offset(
731 	struct xfs_btree_cur	*cur,
732 	int			n)
733 {
734 	return xfs_btree_block_len(cur) +
735 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
736 }
737 
738 /*
739  * Calculate offset of the n-th block pointer in a btree block.
740  */
741 STATIC size_t
742 xfs_btree_ptr_offset(
743 	struct xfs_btree_cur	*cur,
744 	int			n,
745 	int			level)
746 {
747 	return xfs_btree_block_len(cur) +
748 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
749 		(n - 1) * cur->bc_ops->ptr_len;
750 }
751 
752 /*
753  * Return a pointer to the n-th record in the btree block.
754  */
755 union xfs_btree_rec *
756 xfs_btree_rec_addr(
757 	struct xfs_btree_cur	*cur,
758 	int			n,
759 	struct xfs_btree_block	*block)
760 {
761 	return (union xfs_btree_rec *)
762 		((char *)block + xfs_btree_rec_offset(cur, n));
763 }
764 
765 /*
766  * Return a pointer to the n-th key in the btree block.
767  */
768 union xfs_btree_key *
769 xfs_btree_key_addr(
770 	struct xfs_btree_cur	*cur,
771 	int			n,
772 	struct xfs_btree_block	*block)
773 {
774 	return (union xfs_btree_key *)
775 		((char *)block + xfs_btree_key_offset(cur, n));
776 }
777 
778 /*
779  * Return a pointer to the n-th high key in the btree block.
780  */
781 union xfs_btree_key *
782 xfs_btree_high_key_addr(
783 	struct xfs_btree_cur	*cur,
784 	int			n,
785 	struct xfs_btree_block	*block)
786 {
787 	return (union xfs_btree_key *)
788 		((char *)block + xfs_btree_high_key_offset(cur, n));
789 }
790 
791 /*
792  * Return a pointer to the n-th block pointer in the btree block.
793  */
794 union xfs_btree_ptr *
795 xfs_btree_ptr_addr(
796 	struct xfs_btree_cur	*cur,
797 	int			n,
798 	struct xfs_btree_block	*block)
799 {
800 	int			level = xfs_btree_get_level(block);
801 
802 	ASSERT(block->bb_level != 0);
803 
804 	return (union xfs_btree_ptr *)
805 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
806 }
807 
808 struct xfs_ifork *
809 xfs_btree_ifork_ptr(
810 	struct xfs_btree_cur	*cur)
811 {
812 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
813 
814 	if (cur->bc_flags & XFS_BTREE_STAGING)
815 		return cur->bc_ino.ifake->if_fork;
816 	return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
817 }
818 
819 /*
820  * Get the root block which is stored in the inode.
821  *
822  * For now this btree implementation assumes the btree root is always
823  * stored in the if_broot field of an inode fork.
824  */
825 STATIC struct xfs_btree_block *
826 xfs_btree_get_iroot(
827 	struct xfs_btree_cur	*cur)
828 {
829 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
830 
831 	return (struct xfs_btree_block *)ifp->if_broot;
832 }
833 
834 /*
835  * Retrieve the block pointer from the cursor at the given level.
836  * This may be an inode btree root or from a buffer.
837  */
838 struct xfs_btree_block *		/* generic btree block pointer */
839 xfs_btree_get_block(
840 	struct xfs_btree_cur	*cur,	/* btree cursor */
841 	int			level,	/* level in btree */
842 	struct xfs_buf		**bpp)	/* buffer containing the block */
843 {
844 	if (xfs_btree_at_iroot(cur, level)) {
845 		*bpp = NULL;
846 		return xfs_btree_get_iroot(cur);
847 	}
848 
849 	*bpp = cur->bc_levels[level].bp;
850 	return XFS_BUF_TO_BLOCK(*bpp);
851 }
852 
853 /*
854  * Change the cursor to point to the first record at the given level.
855  * Other levels are unaffected.
856  */
857 STATIC int				/* success=1, failure=0 */
858 xfs_btree_firstrec(
859 	struct xfs_btree_cur	*cur,	/* btree cursor */
860 	int			level)	/* level to change */
861 {
862 	struct xfs_btree_block	*block;	/* generic btree block pointer */
863 	struct xfs_buf		*bp;	/* buffer containing block */
864 
865 	/*
866 	 * Get the block pointer for this level.
867 	 */
868 	block = xfs_btree_get_block(cur, level, &bp);
869 	if (xfs_btree_check_block(cur, block, level, bp))
870 		return 0;
871 	/*
872 	 * It's empty, there is no such record.
873 	 */
874 	if (!block->bb_numrecs)
875 		return 0;
876 	/*
877 	 * Set the ptr value to 1, that's the first record/key.
878 	 */
879 	cur->bc_levels[level].ptr = 1;
880 	return 1;
881 }
882 
883 /*
884  * Change the cursor to point to the last record in the current block
885  * at the given level.  Other levels are unaffected.
886  */
887 STATIC int				/* success=1, failure=0 */
888 xfs_btree_lastrec(
889 	struct xfs_btree_cur	*cur,	/* btree cursor */
890 	int			level)	/* level to change */
891 {
892 	struct xfs_btree_block	*block;	/* generic btree block pointer */
893 	struct xfs_buf		*bp;	/* buffer containing block */
894 
895 	/*
896 	 * Get the block pointer for this level.
897 	 */
898 	block = xfs_btree_get_block(cur, level, &bp);
899 	if (xfs_btree_check_block(cur, block, level, bp))
900 		return 0;
901 	/*
902 	 * It's empty, there is no such record.
903 	 */
904 	if (!block->bb_numrecs)
905 		return 0;
906 	/*
907 	 * Set the ptr value to numrecs, that's the last record/key.
908 	 */
909 	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
910 	return 1;
911 }
912 
913 /*
914  * Compute first and last byte offsets for the fields given.
915  * Interprets the offsets table, which contains struct field offsets.
916  */
917 void
918 xfs_btree_offsets(
919 	uint32_t	fields,		/* bitmask of fields */
920 	const short	*offsets,	/* table of field offsets */
921 	int		nbits,		/* number of bits to inspect */
922 	int		*first,		/* output: first byte offset */
923 	int		*last)		/* output: last byte offset */
924 {
925 	int		i;		/* current bit number */
926 	uint32_t	imask;		/* mask for current bit number */
927 
928 	ASSERT(fields != 0);
929 	/*
930 	 * Find the lowest bit, so the first byte offset.
931 	 */
932 	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
933 		if (imask & fields) {
934 			*first = offsets[i];
935 			break;
936 		}
937 	}
938 	/*
939 	 * Find the highest bit, so the last byte offset.
940 	 */
941 	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
942 		if (imask & fields) {
943 			*last = offsets[i + 1] - 1;
944 			break;
945 		}
946 	}
947 }
948 
949 STATIC int
950 xfs_btree_readahead_fsblock(
951 	struct xfs_btree_cur	*cur,
952 	int			lr,
953 	struct xfs_btree_block	*block)
954 {
955 	struct xfs_mount	*mp = cur->bc_mp;
956 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
957 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
958 	int			rval = 0;
959 
960 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
961 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
962 				mp->m_bsize, cur->bc_ops->buf_ops);
963 		rval++;
964 	}
965 
966 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
967 		xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
968 				mp->m_bsize, cur->bc_ops->buf_ops);
969 		rval++;
970 	}
971 
972 	return rval;
973 }
974 
975 STATIC int
976 xfs_btree_readahead_memblock(
977 	struct xfs_btree_cur	*cur,
978 	int			lr,
979 	struct xfs_btree_block	*block)
980 {
981 	struct xfs_buftarg	*btp = cur->bc_mem.xfbtree->target;
982 	xfbno_t			left = be64_to_cpu(block->bb_u.l.bb_leftsib);
983 	xfbno_t			right = be64_to_cpu(block->bb_u.l.bb_rightsib);
984 	int			rval = 0;
985 
986 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
987 		xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
988 				cur->bc_ops->buf_ops);
989 		rval++;
990 	}
991 
992 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
993 		xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
994 				cur->bc_ops->buf_ops);
995 		rval++;
996 	}
997 
998 	return rval;
999 }
1000 
1001 STATIC int
1002 xfs_btree_readahead_agblock(
1003 	struct xfs_btree_cur	*cur,
1004 	int			lr,
1005 	struct xfs_btree_block	*block)
1006 {
1007 	struct xfs_mount	*mp = cur->bc_mp;
1008 	struct xfs_perag	*pag = to_perag(cur->bc_group);
1009 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1010 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1011 	int			rval = 0;
1012 
1013 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1014 		xfs_buf_readahead(mp->m_ddev_targp,
1015 				xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1016 				cur->bc_ops->buf_ops);
1017 		rval++;
1018 	}
1019 
1020 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1021 		xfs_buf_readahead(mp->m_ddev_targp,
1022 				xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1023 				cur->bc_ops->buf_ops);
1024 		rval++;
1025 	}
1026 
1027 	return rval;
1028 }
1029 
1030 /*
1031  * Read-ahead btree blocks, at the given level.
1032  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1033  */
1034 STATIC int
1035 xfs_btree_readahead(
1036 	struct xfs_btree_cur	*cur,		/* btree cursor */
1037 	int			lev,		/* level in btree */
1038 	int			lr)		/* left/right bits */
1039 {
1040 	struct xfs_btree_block	*block;
1041 
1042 	/*
1043 	 * No readahead needed if we are at the root level and the
1044 	 * btree root is stored in the inode.
1045 	 */
1046 	if (xfs_btree_at_iroot(cur, lev))
1047 		return 0;
1048 
1049 	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1050 		return 0;
1051 
1052 	cur->bc_levels[lev].ra |= lr;
1053 	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1054 
1055 	switch (cur->bc_ops->type) {
1056 	case XFS_BTREE_TYPE_AG:
1057 		return xfs_btree_readahead_agblock(cur, lr, block);
1058 	case XFS_BTREE_TYPE_INODE:
1059 		return xfs_btree_readahead_fsblock(cur, lr, block);
1060 	case XFS_BTREE_TYPE_MEM:
1061 		return xfs_btree_readahead_memblock(cur, lr, block);
1062 	default:
1063 		ASSERT(0);
1064 		return 0;
1065 	}
1066 }
1067 
1068 STATIC int
1069 xfs_btree_ptr_to_daddr(
1070 	struct xfs_btree_cur		*cur,
1071 	const union xfs_btree_ptr	*ptr,
1072 	xfs_daddr_t			*daddr)
1073 {
1074 	int			error;
1075 
1076 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1077 	if (error)
1078 		return error;
1079 
1080 	switch (cur->bc_ops->type) {
1081 	case XFS_BTREE_TYPE_AG:
1082 		*daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1083 				be32_to_cpu(ptr->s));
1084 		break;
1085 	case XFS_BTREE_TYPE_INODE:
1086 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1087 		break;
1088 	case XFS_BTREE_TYPE_MEM:
1089 		*daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1090 		break;
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Readahead @count btree blocks at the given @ptr location.
1097  *
1098  * We don't need to care about long or short form btrees here as we have a
1099  * method of converting the ptr directly to a daddr available to us.
1100  */
1101 STATIC void
1102 xfs_btree_readahead_ptr(
1103 	struct xfs_btree_cur	*cur,
1104 	union xfs_btree_ptr	*ptr,
1105 	xfs_extlen_t		count)
1106 {
1107 	xfs_daddr_t		daddr;
1108 
1109 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1110 		return;
1111 	xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1112 			xfs_btree_bbsize(cur) * count,
1113 			cur->bc_ops->buf_ops);
1114 }
1115 
1116 /*
1117  * Set the buffer for level "lev" in the cursor to bp, releasing
1118  * any previous buffer.
1119  */
1120 STATIC void
1121 xfs_btree_setbuf(
1122 	struct xfs_btree_cur	*cur,	/* btree cursor */
1123 	int			lev,	/* level in btree */
1124 	struct xfs_buf		*bp)	/* new buffer to set */
1125 {
1126 	struct xfs_btree_block	*b;	/* btree block */
1127 
1128 	if (cur->bc_levels[lev].bp)
1129 		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1130 	cur->bc_levels[lev].bp = bp;
1131 	cur->bc_levels[lev].ra = 0;
1132 
1133 	b = XFS_BUF_TO_BLOCK(bp);
1134 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1135 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1136 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1137 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1138 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1139 	} else {
1140 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1141 			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1142 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1143 			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1144 	}
1145 }
1146 
1147 bool
1148 xfs_btree_ptr_is_null(
1149 	struct xfs_btree_cur		*cur,
1150 	const union xfs_btree_ptr	*ptr)
1151 {
1152 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1153 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1154 	else
1155 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1156 }
1157 
1158 void
1159 xfs_btree_set_ptr_null(
1160 	struct xfs_btree_cur	*cur,
1161 	union xfs_btree_ptr	*ptr)
1162 {
1163 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1164 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1165 	else
1166 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1167 }
1168 
1169 static inline bool
1170 xfs_btree_ptrs_equal(
1171 	struct xfs_btree_cur		*cur,
1172 	union xfs_btree_ptr		*ptr1,
1173 	union xfs_btree_ptr		*ptr2)
1174 {
1175 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 		return ptr1->l == ptr2->l;
1177 	return ptr1->s == ptr2->s;
1178 }
1179 
1180 /*
1181  * Get/set/init sibling pointers
1182  */
1183 void
1184 xfs_btree_get_sibling(
1185 	struct xfs_btree_cur	*cur,
1186 	struct xfs_btree_block	*block,
1187 	union xfs_btree_ptr	*ptr,
1188 	int			lr)
1189 {
1190 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1191 
1192 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1193 		if (lr == XFS_BB_RIGHTSIB)
1194 			ptr->l = block->bb_u.l.bb_rightsib;
1195 		else
1196 			ptr->l = block->bb_u.l.bb_leftsib;
1197 	} else {
1198 		if (lr == XFS_BB_RIGHTSIB)
1199 			ptr->s = block->bb_u.s.bb_rightsib;
1200 		else
1201 			ptr->s = block->bb_u.s.bb_leftsib;
1202 	}
1203 }
1204 
1205 void
1206 xfs_btree_set_sibling(
1207 	struct xfs_btree_cur		*cur,
1208 	struct xfs_btree_block		*block,
1209 	const union xfs_btree_ptr	*ptr,
1210 	int				lr)
1211 {
1212 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1213 
1214 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1215 		if (lr == XFS_BB_RIGHTSIB)
1216 			block->bb_u.l.bb_rightsib = ptr->l;
1217 		else
1218 			block->bb_u.l.bb_leftsib = ptr->l;
1219 	} else {
1220 		if (lr == XFS_BB_RIGHTSIB)
1221 			block->bb_u.s.bb_rightsib = ptr->s;
1222 		else
1223 			block->bb_u.s.bb_leftsib = ptr->s;
1224 	}
1225 }
1226 
1227 static void
1228 __xfs_btree_init_block(
1229 	struct xfs_mount	*mp,
1230 	struct xfs_btree_block	*buf,
1231 	const struct xfs_btree_ops *ops,
1232 	xfs_daddr_t		blkno,
1233 	__u16			level,
1234 	__u16			numrecs,
1235 	__u64			owner)
1236 {
1237 	bool			crc = xfs_has_crc(mp);
1238 	__u32			magic = xfs_btree_magic(mp, ops);
1239 
1240 	buf->bb_magic = cpu_to_be32(magic);
1241 	buf->bb_level = cpu_to_be16(level);
1242 	buf->bb_numrecs = cpu_to_be16(numrecs);
1243 
1244 	if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1245 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1246 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1247 		if (crc) {
1248 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1249 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1250 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1251 			buf->bb_u.l.bb_pad = 0;
1252 			buf->bb_u.l.bb_lsn = 0;
1253 		}
1254 	} else {
1255 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1256 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1257 		if (crc) {
1258 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1259 			/* owner is a 32 bit value on short blocks */
1260 			buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1261 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1262 			buf->bb_u.s.bb_lsn = 0;
1263 		}
1264 	}
1265 }
1266 
1267 void
1268 xfs_btree_init_block(
1269 	struct xfs_mount	*mp,
1270 	struct xfs_btree_block	*block,
1271 	const struct xfs_btree_ops *ops,
1272 	__u16			level,
1273 	__u16			numrecs,
1274 	__u64			owner)
1275 {
1276 	__xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1277 			numrecs, owner);
1278 }
1279 
1280 void
1281 xfs_btree_init_buf(
1282 	struct xfs_mount		*mp,
1283 	struct xfs_buf			*bp,
1284 	const struct xfs_btree_ops	*ops,
1285 	__u16				level,
1286 	__u16				numrecs,
1287 	__u64				owner)
1288 {
1289 	__xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1290 			xfs_buf_daddr(bp), level, numrecs, owner);
1291 	bp->b_ops = ops->buf_ops;
1292 }
1293 
1294 static inline __u64
1295 xfs_btree_owner(
1296 	struct xfs_btree_cur    *cur)
1297 {
1298 	switch (cur->bc_ops->type) {
1299 	case XFS_BTREE_TYPE_MEM:
1300 		return cur->bc_mem.xfbtree->owner;
1301 	case XFS_BTREE_TYPE_INODE:
1302 		return cur->bc_ino.ip->i_ino;
1303 	case XFS_BTREE_TYPE_AG:
1304 		return cur->bc_group->xg_gno;
1305 	default:
1306 		ASSERT(0);
1307 		return 0;
1308 	}
1309 }
1310 
1311 void
1312 xfs_btree_init_block_cur(
1313 	struct xfs_btree_cur	*cur,
1314 	struct xfs_buf		*bp,
1315 	int			level,
1316 	int			numrecs)
1317 {
1318 	xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1319 			xfs_btree_owner(cur));
1320 }
1321 
1322 STATIC void
1323 xfs_btree_buf_to_ptr(
1324 	struct xfs_btree_cur	*cur,
1325 	struct xfs_buf		*bp,
1326 	union xfs_btree_ptr	*ptr)
1327 {
1328 	switch (cur->bc_ops->type) {
1329 	case XFS_BTREE_TYPE_AG:
1330 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1331 					xfs_buf_daddr(bp)));
1332 		break;
1333 	case XFS_BTREE_TYPE_INODE:
1334 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1335 					xfs_buf_daddr(bp)));
1336 		break;
1337 	case XFS_BTREE_TYPE_MEM:
1338 		ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1339 		break;
1340 	}
1341 }
1342 
1343 static inline void
1344 xfs_btree_set_refs(
1345 	struct xfs_btree_cur	*cur,
1346 	struct xfs_buf		*bp)
1347 {
1348 	xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1349 }
1350 
1351 int
1352 xfs_btree_get_buf_block(
1353 	struct xfs_btree_cur		*cur,
1354 	const union xfs_btree_ptr	*ptr,
1355 	struct xfs_btree_block		**block,
1356 	struct xfs_buf			**bpp)
1357 {
1358 	xfs_daddr_t			d;
1359 	int				error;
1360 
1361 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1362 	if (error)
1363 		return error;
1364 	error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1365 			xfs_btree_bbsize(cur), 0, bpp);
1366 	if (error)
1367 		return error;
1368 
1369 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1370 	*block = XFS_BUF_TO_BLOCK(*bpp);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Read in the buffer at the given ptr and return the buffer and
1376  * the block pointer within the buffer.
1377  */
1378 int
1379 xfs_btree_read_buf_block(
1380 	struct xfs_btree_cur		*cur,
1381 	const union xfs_btree_ptr	*ptr,
1382 	int				flags,
1383 	struct xfs_btree_block		**block,
1384 	struct xfs_buf			**bpp)
1385 {
1386 	struct xfs_mount	*mp = cur->bc_mp;
1387 	xfs_daddr_t		d;
1388 	int			error;
1389 
1390 	/* need to sort out how callers deal with failures first */
1391 	ASSERT(!(flags & XBF_TRYLOCK));
1392 
1393 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1394 	if (error)
1395 		return error;
1396 	error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1397 			xfs_btree_bbsize(cur), flags, bpp,
1398 			cur->bc_ops->buf_ops);
1399 	if (xfs_metadata_is_sick(error))
1400 		xfs_btree_mark_sick(cur);
1401 	if (error)
1402 		return error;
1403 
1404 	xfs_btree_set_refs(cur, *bpp);
1405 	*block = XFS_BUF_TO_BLOCK(*bpp);
1406 	return 0;
1407 }
1408 
1409 /*
1410  * Copy keys from one btree block to another.
1411  */
1412 void
1413 xfs_btree_copy_keys(
1414 	struct xfs_btree_cur		*cur,
1415 	union xfs_btree_key		*dst_key,
1416 	const union xfs_btree_key	*src_key,
1417 	int				numkeys)
1418 {
1419 	ASSERT(numkeys >= 0);
1420 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1421 }
1422 
1423 /*
1424  * Copy records from one btree block to another.
1425  */
1426 STATIC void
1427 xfs_btree_copy_recs(
1428 	struct xfs_btree_cur	*cur,
1429 	union xfs_btree_rec	*dst_rec,
1430 	union xfs_btree_rec	*src_rec,
1431 	int			numrecs)
1432 {
1433 	ASSERT(numrecs >= 0);
1434 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1435 }
1436 
1437 /*
1438  * Copy block pointers from one btree block to another.
1439  */
1440 void
1441 xfs_btree_copy_ptrs(
1442 	struct xfs_btree_cur	*cur,
1443 	union xfs_btree_ptr	*dst_ptr,
1444 	const union xfs_btree_ptr *src_ptr,
1445 	int			numptrs)
1446 {
1447 	ASSERT(numptrs >= 0);
1448 	memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1449 }
1450 
1451 /*
1452  * Shift keys one index left/right inside a single btree block.
1453  */
1454 STATIC void
1455 xfs_btree_shift_keys(
1456 	struct xfs_btree_cur	*cur,
1457 	union xfs_btree_key	*key,
1458 	int			dir,
1459 	int			numkeys)
1460 {
1461 	char			*dst_key;
1462 
1463 	ASSERT(numkeys >= 0);
1464 	ASSERT(dir == 1 || dir == -1);
1465 
1466 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1467 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1468 }
1469 
1470 /*
1471  * Shift records one index left/right inside a single btree block.
1472  */
1473 STATIC void
1474 xfs_btree_shift_recs(
1475 	struct xfs_btree_cur	*cur,
1476 	union xfs_btree_rec	*rec,
1477 	int			dir,
1478 	int			numrecs)
1479 {
1480 	char			*dst_rec;
1481 
1482 	ASSERT(numrecs >= 0);
1483 	ASSERT(dir == 1 || dir == -1);
1484 
1485 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1486 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1487 }
1488 
1489 /*
1490  * Shift block pointers one index left/right inside a single btree block.
1491  */
1492 STATIC void
1493 xfs_btree_shift_ptrs(
1494 	struct xfs_btree_cur	*cur,
1495 	union xfs_btree_ptr	*ptr,
1496 	int			dir,
1497 	int			numptrs)
1498 {
1499 	char			*dst_ptr;
1500 
1501 	ASSERT(numptrs >= 0);
1502 	ASSERT(dir == 1 || dir == -1);
1503 
1504 	dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1505 	memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1506 }
1507 
1508 /*
1509  * Log key values from the btree block.
1510  */
1511 STATIC void
1512 xfs_btree_log_keys(
1513 	struct xfs_btree_cur	*cur,
1514 	struct xfs_buf		*bp,
1515 	int			first,
1516 	int			last)
1517 {
1518 
1519 	if (bp) {
1520 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1521 		xfs_trans_log_buf(cur->bc_tp, bp,
1522 				  xfs_btree_key_offset(cur, first),
1523 				  xfs_btree_key_offset(cur, last + 1) - 1);
1524 	} else {
1525 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1526 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1527 	}
1528 }
1529 
1530 /*
1531  * Log record values from the btree block.
1532  */
1533 void
1534 xfs_btree_log_recs(
1535 	struct xfs_btree_cur	*cur,
1536 	struct xfs_buf		*bp,
1537 	int			first,
1538 	int			last)
1539 {
1540 
1541 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1542 	xfs_trans_log_buf(cur->bc_tp, bp,
1543 			  xfs_btree_rec_offset(cur, first),
1544 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1545 
1546 }
1547 
1548 /*
1549  * Log block pointer fields from a btree block (nonleaf).
1550  */
1551 STATIC void
1552 xfs_btree_log_ptrs(
1553 	struct xfs_btree_cur	*cur,	/* btree cursor */
1554 	struct xfs_buf		*bp,	/* buffer containing btree block */
1555 	int			first,	/* index of first pointer to log */
1556 	int			last)	/* index of last pointer to log */
1557 {
1558 
1559 	if (bp) {
1560 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1561 		int			level = xfs_btree_get_level(block);
1562 
1563 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 		xfs_trans_log_buf(cur->bc_tp, bp,
1565 				xfs_btree_ptr_offset(cur, first, level),
1566 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1567 	} else {
1568 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1569 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1570 	}
1571 
1572 }
1573 
1574 /*
1575  * Log fields from a btree block header.
1576  */
1577 void
1578 xfs_btree_log_block(
1579 	struct xfs_btree_cur	*cur,	/* btree cursor */
1580 	struct xfs_buf		*bp,	/* buffer containing btree block */
1581 	uint32_t		fields)	/* mask of fields: XFS_BB_... */
1582 {
1583 	int			first;	/* first byte offset logged */
1584 	int			last;	/* last byte offset logged */
1585 	static const short	soffsets[] = {	/* table of offsets (short) */
1586 		offsetof(struct xfs_btree_block, bb_magic),
1587 		offsetof(struct xfs_btree_block, bb_level),
1588 		offsetof(struct xfs_btree_block, bb_numrecs),
1589 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1590 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1591 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1592 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1593 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1594 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1595 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1596 		XFS_BTREE_SBLOCK_CRC_LEN
1597 	};
1598 	static const short	loffsets[] = {	/* table of offsets (long) */
1599 		offsetof(struct xfs_btree_block, bb_magic),
1600 		offsetof(struct xfs_btree_block, bb_level),
1601 		offsetof(struct xfs_btree_block, bb_numrecs),
1602 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1603 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1604 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1605 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1606 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1607 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1608 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1609 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1610 		XFS_BTREE_LBLOCK_CRC_LEN
1611 	};
1612 
1613 	if (bp) {
1614 		int nbits;
1615 
1616 		if (xfs_has_crc(cur->bc_mp)) {
1617 			/*
1618 			 * We don't log the CRC when updating a btree
1619 			 * block but instead recreate it during log
1620 			 * recovery.  As the log buffers have checksums
1621 			 * of their own this is safe and avoids logging a crc
1622 			 * update in a lot of places.
1623 			 */
1624 			if (fields == XFS_BB_ALL_BITS)
1625 				fields = XFS_BB_ALL_BITS_CRC;
1626 			nbits = XFS_BB_NUM_BITS_CRC;
1627 		} else {
1628 			nbits = XFS_BB_NUM_BITS;
1629 		}
1630 		xfs_btree_offsets(fields,
1631 				  (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1632 					loffsets : soffsets,
1633 				  nbits, &first, &last);
1634 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1635 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1636 	} else {
1637 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1638 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1639 	}
1640 }
1641 
1642 /*
1643  * Increment cursor by one record at the level.
1644  * For nonzero levels the leaf-ward information is untouched.
1645  */
1646 int						/* error */
1647 xfs_btree_increment(
1648 	struct xfs_btree_cur	*cur,
1649 	int			level,
1650 	int			*stat)		/* success/failure */
1651 {
1652 	struct xfs_btree_block	*block;
1653 	union xfs_btree_ptr	ptr;
1654 	struct xfs_buf		*bp;
1655 	int			error;		/* error return value */
1656 	int			lev;
1657 
1658 	ASSERT(level < cur->bc_nlevels);
1659 
1660 	/* Read-ahead to the right at this level. */
1661 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1662 
1663 	/* Get a pointer to the btree block. */
1664 	block = xfs_btree_get_block(cur, level, &bp);
1665 
1666 #ifdef DEBUG
1667 	error = xfs_btree_check_block(cur, block, level, bp);
1668 	if (error)
1669 		goto error0;
1670 #endif
1671 
1672 	/* We're done if we remain in the block after the increment. */
1673 	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1674 		goto out1;
1675 
1676 	/* Fail if we just went off the right edge of the tree. */
1677 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1678 	if (xfs_btree_ptr_is_null(cur, &ptr))
1679 		goto out0;
1680 
1681 	XFS_BTREE_STATS_INC(cur, increment);
1682 
1683 	/*
1684 	 * March up the tree incrementing pointers.
1685 	 * Stop when we don't go off the right edge of a block.
1686 	 */
1687 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1688 		block = xfs_btree_get_block(cur, lev, &bp);
1689 
1690 #ifdef DEBUG
1691 		error = xfs_btree_check_block(cur, block, lev, bp);
1692 		if (error)
1693 			goto error0;
1694 #endif
1695 
1696 		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1697 			break;
1698 
1699 		/* Read-ahead the right block for the next loop. */
1700 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1701 	}
1702 
1703 	/*
1704 	 * If we went off the root then we are either seriously
1705 	 * confused or have the tree root in an inode.
1706 	 */
1707 	if (lev == cur->bc_nlevels) {
1708 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1709 			goto out0;
1710 		ASSERT(0);
1711 		xfs_btree_mark_sick(cur);
1712 		error = -EFSCORRUPTED;
1713 		goto error0;
1714 	}
1715 	ASSERT(lev < cur->bc_nlevels);
1716 
1717 	/*
1718 	 * Now walk back down the tree, fixing up the cursor's buffer
1719 	 * pointers and key numbers.
1720 	 */
1721 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1722 		union xfs_btree_ptr	*ptrp;
1723 
1724 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1725 		--lev;
1726 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1727 		if (error)
1728 			goto error0;
1729 
1730 		xfs_btree_setbuf(cur, lev, bp);
1731 		cur->bc_levels[lev].ptr = 1;
1732 	}
1733 out1:
1734 	*stat = 1;
1735 	return 0;
1736 
1737 out0:
1738 	*stat = 0;
1739 	return 0;
1740 
1741 error0:
1742 	return error;
1743 }
1744 
1745 /*
1746  * Decrement cursor by one record at the level.
1747  * For nonzero levels the leaf-ward information is untouched.
1748  */
1749 int						/* error */
1750 xfs_btree_decrement(
1751 	struct xfs_btree_cur	*cur,
1752 	int			level,
1753 	int			*stat)		/* success/failure */
1754 {
1755 	struct xfs_btree_block	*block;
1756 	struct xfs_buf		*bp;
1757 	int			error;		/* error return value */
1758 	int			lev;
1759 	union xfs_btree_ptr	ptr;
1760 
1761 	ASSERT(level < cur->bc_nlevels);
1762 
1763 	/* Read-ahead to the left at this level. */
1764 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1765 
1766 	/* We're done if we remain in the block after the decrement. */
1767 	if (--cur->bc_levels[level].ptr > 0)
1768 		goto out1;
1769 
1770 	/* Get a pointer to the btree block. */
1771 	block = xfs_btree_get_block(cur, level, &bp);
1772 
1773 #ifdef DEBUG
1774 	error = xfs_btree_check_block(cur, block, level, bp);
1775 	if (error)
1776 		goto error0;
1777 #endif
1778 
1779 	/* Fail if we just went off the left edge of the tree. */
1780 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1781 	if (xfs_btree_ptr_is_null(cur, &ptr))
1782 		goto out0;
1783 
1784 	XFS_BTREE_STATS_INC(cur, decrement);
1785 
1786 	/*
1787 	 * March up the tree decrementing pointers.
1788 	 * Stop when we don't go off the left edge of a block.
1789 	 */
1790 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1791 		if (--cur->bc_levels[lev].ptr > 0)
1792 			break;
1793 		/* Read-ahead the left block for the next loop. */
1794 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1795 	}
1796 
1797 	/*
1798 	 * If we went off the root then we are seriously confused.
1799 	 * or the root of the tree is in an inode.
1800 	 */
1801 	if (lev == cur->bc_nlevels) {
1802 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1803 			goto out0;
1804 		ASSERT(0);
1805 		xfs_btree_mark_sick(cur);
1806 		error = -EFSCORRUPTED;
1807 		goto error0;
1808 	}
1809 	ASSERT(lev < cur->bc_nlevels);
1810 
1811 	/*
1812 	 * Now walk back down the tree, fixing up the cursor's buffer
1813 	 * pointers and key numbers.
1814 	 */
1815 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1816 		union xfs_btree_ptr	*ptrp;
1817 
1818 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1819 		--lev;
1820 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1821 		if (error)
1822 			goto error0;
1823 		xfs_btree_setbuf(cur, lev, bp);
1824 		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1825 	}
1826 out1:
1827 	*stat = 1;
1828 	return 0;
1829 
1830 out0:
1831 	*stat = 0;
1832 	return 0;
1833 
1834 error0:
1835 	return error;
1836 }
1837 
1838 /*
1839  * Check the btree block owner now that we have the context to know who the
1840  * real owner is.
1841  */
1842 static inline xfs_failaddr_t
1843 xfs_btree_check_block_owner(
1844 	struct xfs_btree_cur	*cur,
1845 	struct xfs_btree_block	*block)
1846 {
1847 	__u64			owner;
1848 
1849 	if (!xfs_has_crc(cur->bc_mp) ||
1850 	    (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1851 		return NULL;
1852 
1853 	owner = xfs_btree_owner(cur);
1854 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1855 		if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1856 			return __this_address;
1857 	} else {
1858 		if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1859 			return __this_address;
1860 	}
1861 
1862 	return NULL;
1863 }
1864 
1865 int
1866 xfs_btree_lookup_get_block(
1867 	struct xfs_btree_cur		*cur,	/* btree cursor */
1868 	int				level,	/* level in the btree */
1869 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1870 	struct xfs_btree_block		**blkp) /* return btree block */
1871 {
1872 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1873 	xfs_daddr_t		daddr;
1874 	int			error = 0;
1875 
1876 	/* special case the root block if in an inode */
1877 	if (xfs_btree_at_iroot(cur, level)) {
1878 		*blkp = xfs_btree_get_iroot(cur);
1879 		return 0;
1880 	}
1881 
1882 	/*
1883 	 * If the old buffer at this level for the disk address we are
1884 	 * looking for re-use it.
1885 	 *
1886 	 * Otherwise throw it away and get a new one.
1887 	 */
1888 	bp = cur->bc_levels[level].bp;
1889 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1890 	if (error)
1891 		return error;
1892 	if (bp && xfs_buf_daddr(bp) == daddr) {
1893 		*blkp = XFS_BUF_TO_BLOCK(bp);
1894 		return 0;
1895 	}
1896 
1897 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1898 	if (error)
1899 		return error;
1900 
1901 	/* Check the inode owner since the verifiers don't. */
1902 	if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1903 		goto out_bad;
1904 
1905 	/* Did we get the level we were looking for? */
1906 	if (be16_to_cpu((*blkp)->bb_level) != level)
1907 		goto out_bad;
1908 
1909 	/* Check that internal nodes have at least one record. */
1910 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1911 		goto out_bad;
1912 
1913 	xfs_btree_setbuf(cur, level, bp);
1914 	return 0;
1915 
1916 out_bad:
1917 	*blkp = NULL;
1918 	xfs_buf_mark_corrupt(bp);
1919 	xfs_trans_brelse(cur->bc_tp, bp);
1920 	xfs_btree_mark_sick(cur);
1921 	return -EFSCORRUPTED;
1922 }
1923 
1924 /*
1925  * Get current search key.  For level 0 we don't actually have a key
1926  * structure so we make one up from the record.  For all other levels
1927  * we just return the right key.
1928  */
1929 STATIC union xfs_btree_key *
1930 xfs_lookup_get_search_key(
1931 	struct xfs_btree_cur	*cur,
1932 	int			level,
1933 	int			keyno,
1934 	struct xfs_btree_block	*block,
1935 	union xfs_btree_key	*kp)
1936 {
1937 	if (level == 0) {
1938 		cur->bc_ops->init_key_from_rec(kp,
1939 				xfs_btree_rec_addr(cur, keyno, block));
1940 		return kp;
1941 	}
1942 
1943 	return xfs_btree_key_addr(cur, keyno, block);
1944 }
1945 
1946 /*
1947  * Initialize a pointer to the root block.
1948  */
1949 void
1950 xfs_btree_init_ptr_from_cur(
1951 	struct xfs_btree_cur	*cur,
1952 	union xfs_btree_ptr	*ptr)
1953 {
1954 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1955 		/*
1956 		 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1957 		 * in xfs_btree_lookup_get_block and don't need a pointer here.
1958 		 */
1959 		ptr->l = 0;
1960 	} else if (cur->bc_flags & XFS_BTREE_STAGING) {
1961 		ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1962 	} else {
1963 		cur->bc_ops->init_ptr_from_cur(cur, ptr);
1964 	}
1965 }
1966 
1967 /*
1968  * Lookup the record.  The cursor is made to point to it, based on dir.
1969  * stat is set to 0 if can't find any such record, 1 for success.
1970  */
1971 int					/* error */
1972 xfs_btree_lookup(
1973 	struct xfs_btree_cur	*cur,	/* btree cursor */
1974 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1975 	int			*stat)	/* success/failure */
1976 {
1977 	struct xfs_btree_block	*block;	/* current btree block */
1978 	int64_t			diff;	/* difference for the current key */
1979 	int			error;	/* error return value */
1980 	int			keyno;	/* current key number */
1981 	int			level;	/* level in the btree */
1982 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1983 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1984 
1985 	XFS_BTREE_STATS_INC(cur, lookup);
1986 
1987 	/* No such thing as a zero-level tree. */
1988 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1989 		xfs_btree_mark_sick(cur);
1990 		return -EFSCORRUPTED;
1991 	}
1992 
1993 	block = NULL;
1994 	keyno = 0;
1995 
1996 	/* initialise start pointer from cursor */
1997 	xfs_btree_init_ptr_from_cur(cur, &ptr);
1998 	pp = &ptr;
1999 
2000 	/*
2001 	 * Iterate over each level in the btree, starting at the root.
2002 	 * For each level above the leaves, find the key we need, based
2003 	 * on the lookup record, then follow the corresponding block
2004 	 * pointer down to the next level.
2005 	 */
2006 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2007 		/* Get the block we need to do the lookup on. */
2008 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2009 		if (error)
2010 			goto error0;
2011 
2012 		if (diff == 0) {
2013 			/*
2014 			 * If we already had a key match at a higher level, we
2015 			 * know we need to use the first entry in this block.
2016 			 */
2017 			keyno = 1;
2018 		} else {
2019 			/* Otherwise search this block. Do a binary search. */
2020 
2021 			int	high;	/* high entry number */
2022 			int	low;	/* low entry number */
2023 
2024 			/* Set low and high entry numbers, 1-based. */
2025 			low = 1;
2026 			high = xfs_btree_get_numrecs(block);
2027 			if (!high) {
2028 				/* Block is empty, must be an empty leaf. */
2029 				if (level != 0 || cur->bc_nlevels != 1) {
2030 					XFS_CORRUPTION_ERROR(__func__,
2031 							XFS_ERRLEVEL_LOW,
2032 							cur->bc_mp, block,
2033 							sizeof(*block));
2034 					xfs_btree_mark_sick(cur);
2035 					return -EFSCORRUPTED;
2036 				}
2037 
2038 				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2039 				*stat = 0;
2040 				return 0;
2041 			}
2042 
2043 			/* Binary search the block. */
2044 			while (low <= high) {
2045 				union xfs_btree_key	key;
2046 				union xfs_btree_key	*kp;
2047 
2048 				XFS_BTREE_STATS_INC(cur, compare);
2049 
2050 				/* keyno is average of low and high. */
2051 				keyno = (low + high) >> 1;
2052 
2053 				/* Get current search key */
2054 				kp = xfs_lookup_get_search_key(cur, level,
2055 						keyno, block, &key);
2056 
2057 				/*
2058 				 * Compute difference to get next direction:
2059 				 *  - less than, move right
2060 				 *  - greater than, move left
2061 				 *  - equal, we're done
2062 				 */
2063 				diff = cur->bc_ops->key_diff(cur, kp);
2064 				if (diff < 0)
2065 					low = keyno + 1;
2066 				else if (diff > 0)
2067 					high = keyno - 1;
2068 				else
2069 					break;
2070 			}
2071 		}
2072 
2073 		/*
2074 		 * If there are more levels, set up for the next level
2075 		 * by getting the block number and filling in the cursor.
2076 		 */
2077 		if (level > 0) {
2078 			/*
2079 			 * If we moved left, need the previous key number,
2080 			 * unless there isn't one.
2081 			 */
2082 			if (diff > 0 && --keyno < 1)
2083 				keyno = 1;
2084 			pp = xfs_btree_ptr_addr(cur, keyno, block);
2085 
2086 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2087 			if (error)
2088 				goto error0;
2089 
2090 			cur->bc_levels[level].ptr = keyno;
2091 		}
2092 	}
2093 
2094 	/* Done with the search. See if we need to adjust the results. */
2095 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2096 		keyno++;
2097 		/*
2098 		 * If ge search and we went off the end of the block, but it's
2099 		 * not the last block, we're in the wrong block.
2100 		 */
2101 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2102 		if (dir == XFS_LOOKUP_GE &&
2103 		    keyno > xfs_btree_get_numrecs(block) &&
2104 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2105 			int	i;
2106 
2107 			cur->bc_levels[0].ptr = keyno;
2108 			error = xfs_btree_increment(cur, 0, &i);
2109 			if (error)
2110 				goto error0;
2111 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2112 				xfs_btree_mark_sick(cur);
2113 				return -EFSCORRUPTED;
2114 			}
2115 			*stat = 1;
2116 			return 0;
2117 		}
2118 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2119 		keyno--;
2120 	cur->bc_levels[0].ptr = keyno;
2121 
2122 	/* Return if we succeeded or not. */
2123 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2124 		*stat = 0;
2125 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2126 		*stat = 1;
2127 	else
2128 		*stat = 0;
2129 	return 0;
2130 
2131 error0:
2132 	return error;
2133 }
2134 
2135 /* Find the high key storage area from a regular key. */
2136 union xfs_btree_key *
2137 xfs_btree_high_key_from_key(
2138 	struct xfs_btree_cur	*cur,
2139 	union xfs_btree_key	*key)
2140 {
2141 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2142 	return (union xfs_btree_key *)((char *)key +
2143 			(cur->bc_ops->key_len / 2));
2144 }
2145 
2146 /* Determine the low (and high if overlapped) keys of a leaf block */
2147 STATIC void
2148 xfs_btree_get_leaf_keys(
2149 	struct xfs_btree_cur	*cur,
2150 	struct xfs_btree_block	*block,
2151 	union xfs_btree_key	*key)
2152 {
2153 	union xfs_btree_key	max_hkey;
2154 	union xfs_btree_key	hkey;
2155 	union xfs_btree_rec	*rec;
2156 	union xfs_btree_key	*high;
2157 	int			n;
2158 
2159 	rec = xfs_btree_rec_addr(cur, 1, block);
2160 	cur->bc_ops->init_key_from_rec(key, rec);
2161 
2162 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2163 
2164 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2165 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2166 			rec = xfs_btree_rec_addr(cur, n, block);
2167 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2168 			if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2169 				max_hkey = hkey;
2170 		}
2171 
2172 		high = xfs_btree_high_key_from_key(cur, key);
2173 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2174 	}
2175 }
2176 
2177 /* Determine the low (and high if overlapped) keys of a node block */
2178 STATIC void
2179 xfs_btree_get_node_keys(
2180 	struct xfs_btree_cur	*cur,
2181 	struct xfs_btree_block	*block,
2182 	union xfs_btree_key	*key)
2183 {
2184 	union xfs_btree_key	*hkey;
2185 	union xfs_btree_key	*max_hkey;
2186 	union xfs_btree_key	*high;
2187 	int			n;
2188 
2189 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2190 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2191 				cur->bc_ops->key_len / 2);
2192 
2193 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2194 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2195 			hkey = xfs_btree_high_key_addr(cur, n, block);
2196 			if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2197 				max_hkey = hkey;
2198 		}
2199 
2200 		high = xfs_btree_high_key_from_key(cur, key);
2201 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2202 	} else {
2203 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2204 				cur->bc_ops->key_len);
2205 	}
2206 }
2207 
2208 /* Derive the keys for any btree block. */
2209 void
2210 xfs_btree_get_keys(
2211 	struct xfs_btree_cur	*cur,
2212 	struct xfs_btree_block	*block,
2213 	union xfs_btree_key	*key)
2214 {
2215 	if (be16_to_cpu(block->bb_level) == 0)
2216 		xfs_btree_get_leaf_keys(cur, block, key);
2217 	else
2218 		xfs_btree_get_node_keys(cur, block, key);
2219 }
2220 
2221 /*
2222  * Decide if we need to update the parent keys of a btree block.  For
2223  * a standard btree this is only necessary if we're updating the first
2224  * record/key.  For an overlapping btree, we must always update the
2225  * keys because the highest key can be in any of the records or keys
2226  * in the block.
2227  */
2228 static inline bool
2229 xfs_btree_needs_key_update(
2230 	struct xfs_btree_cur	*cur,
2231 	int			ptr)
2232 {
2233 	return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2234 }
2235 
2236 /*
2237  * Update the low and high parent keys of the given level, progressing
2238  * towards the root.  If force_all is false, stop if the keys for a given
2239  * level do not need updating.
2240  */
2241 STATIC int
2242 __xfs_btree_updkeys(
2243 	struct xfs_btree_cur	*cur,
2244 	int			level,
2245 	struct xfs_btree_block	*block,
2246 	struct xfs_buf		*bp0,
2247 	bool			force_all)
2248 {
2249 	union xfs_btree_key	key;	/* keys from current level */
2250 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2251 	union xfs_btree_key	*hkey;
2252 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2253 	union xfs_btree_key	*nhkey;
2254 	struct xfs_buf		*bp;
2255 	int			ptr;
2256 
2257 	ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2258 
2259 	/* Exit if there aren't any parent levels to update. */
2260 	if (level + 1 >= cur->bc_nlevels)
2261 		return 0;
2262 
2263 	trace_xfs_btree_updkeys(cur, level, bp0);
2264 
2265 	lkey = &key;
2266 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2267 	xfs_btree_get_keys(cur, block, lkey);
2268 	for (level++; level < cur->bc_nlevels; level++) {
2269 #ifdef DEBUG
2270 		int		error;
2271 #endif
2272 		block = xfs_btree_get_block(cur, level, &bp);
2273 		trace_xfs_btree_updkeys(cur, level, bp);
2274 #ifdef DEBUG
2275 		error = xfs_btree_check_block(cur, block, level, bp);
2276 		if (error)
2277 			return error;
2278 #endif
2279 		ptr = cur->bc_levels[level].ptr;
2280 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2281 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2282 		if (!force_all &&
2283 		    xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2284 		    xfs_btree_keycmp_eq(cur, nhkey, hkey))
2285 			break;
2286 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2287 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2288 		if (level + 1 >= cur->bc_nlevels)
2289 			break;
2290 		xfs_btree_get_node_keys(cur, block, lkey);
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /* Update all the keys from some level in cursor back to the root. */
2297 STATIC int
2298 xfs_btree_updkeys_force(
2299 	struct xfs_btree_cur	*cur,
2300 	int			level)
2301 {
2302 	struct xfs_buf		*bp;
2303 	struct xfs_btree_block	*block;
2304 
2305 	block = xfs_btree_get_block(cur, level, &bp);
2306 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2307 }
2308 
2309 /*
2310  * Update the parent keys of the given level, progressing towards the root.
2311  */
2312 STATIC int
2313 xfs_btree_update_keys(
2314 	struct xfs_btree_cur	*cur,
2315 	int			level)
2316 {
2317 	struct xfs_btree_block	*block;
2318 	struct xfs_buf		*bp;
2319 	union xfs_btree_key	*kp;
2320 	union xfs_btree_key	key;
2321 	int			ptr;
2322 
2323 	ASSERT(level >= 0);
2324 
2325 	block = xfs_btree_get_block(cur, level, &bp);
2326 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2327 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2328 
2329 	/*
2330 	 * Go up the tree from this level toward the root.
2331 	 * At each level, update the key value to the value input.
2332 	 * Stop when we reach a level where the cursor isn't pointing
2333 	 * at the first entry in the block.
2334 	 */
2335 	xfs_btree_get_keys(cur, block, &key);
2336 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2337 #ifdef DEBUG
2338 		int		error;
2339 #endif
2340 		block = xfs_btree_get_block(cur, level, &bp);
2341 #ifdef DEBUG
2342 		error = xfs_btree_check_block(cur, block, level, bp);
2343 		if (error)
2344 			return error;
2345 #endif
2346 		ptr = cur->bc_levels[level].ptr;
2347 		kp = xfs_btree_key_addr(cur, ptr, block);
2348 		xfs_btree_copy_keys(cur, kp, &key, 1);
2349 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 /*
2356  * Update the record referred to by cur to the value in the
2357  * given record. This either works (return 0) or gets an
2358  * EFSCORRUPTED error.
2359  */
2360 int
2361 xfs_btree_update(
2362 	struct xfs_btree_cur	*cur,
2363 	union xfs_btree_rec	*rec)
2364 {
2365 	struct xfs_btree_block	*block;
2366 	struct xfs_buf		*bp;
2367 	int			error;
2368 	int			ptr;
2369 	union xfs_btree_rec	*rp;
2370 
2371 	/* Pick up the current block. */
2372 	block = xfs_btree_get_block(cur, 0, &bp);
2373 
2374 #ifdef DEBUG
2375 	error = xfs_btree_check_block(cur, block, 0, bp);
2376 	if (error)
2377 		goto error0;
2378 #endif
2379 	/* Get the address of the rec to be updated. */
2380 	ptr = cur->bc_levels[0].ptr;
2381 	rp = xfs_btree_rec_addr(cur, ptr, block);
2382 
2383 	/* Fill in the new contents and log them. */
2384 	xfs_btree_copy_recs(cur, rp, rec, 1);
2385 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2386 
2387 	/* Pass new key value up to our parent. */
2388 	if (xfs_btree_needs_key_update(cur, ptr)) {
2389 		error = xfs_btree_update_keys(cur, 0);
2390 		if (error)
2391 			goto error0;
2392 	}
2393 
2394 	return 0;
2395 
2396 error0:
2397 	return error;
2398 }
2399 
2400 /*
2401  * Move 1 record left from cur/level if possible.
2402  * Update cur to reflect the new path.
2403  */
2404 STATIC int					/* error */
2405 xfs_btree_lshift(
2406 	struct xfs_btree_cur	*cur,
2407 	int			level,
2408 	int			*stat)		/* success/failure */
2409 {
2410 	struct xfs_buf		*lbp;		/* left buffer pointer */
2411 	struct xfs_btree_block	*left;		/* left btree block */
2412 	int			lrecs;		/* left record count */
2413 	struct xfs_buf		*rbp;		/* right buffer pointer */
2414 	struct xfs_btree_block	*right;		/* right btree block */
2415 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2416 	int			rrecs;		/* right record count */
2417 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2418 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2419 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2420 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2421 	int			error;		/* error return value */
2422 	int			i;
2423 
2424 	if (xfs_btree_at_iroot(cur, level))
2425 		goto out0;
2426 
2427 	/* Set up variables for this block as "right". */
2428 	right = xfs_btree_get_block(cur, level, &rbp);
2429 
2430 #ifdef DEBUG
2431 	error = xfs_btree_check_block(cur, right, level, rbp);
2432 	if (error)
2433 		goto error0;
2434 #endif
2435 
2436 	/* If we've got no left sibling then we can't shift an entry left. */
2437 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2438 	if (xfs_btree_ptr_is_null(cur, &lptr))
2439 		goto out0;
2440 
2441 	/*
2442 	 * If the cursor entry is the one that would be moved, don't
2443 	 * do it... it's too complicated.
2444 	 */
2445 	if (cur->bc_levels[level].ptr <= 1)
2446 		goto out0;
2447 
2448 	/* Set up the left neighbor as "left". */
2449 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2450 	if (error)
2451 		goto error0;
2452 
2453 	/* If it's full, it can't take another entry. */
2454 	lrecs = xfs_btree_get_numrecs(left);
2455 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2456 		goto out0;
2457 
2458 	rrecs = xfs_btree_get_numrecs(right);
2459 
2460 	/*
2461 	 * We add one entry to the left side and remove one for the right side.
2462 	 * Account for it here, the changes will be updated on disk and logged
2463 	 * later.
2464 	 */
2465 	lrecs++;
2466 	rrecs--;
2467 
2468 	XFS_BTREE_STATS_INC(cur, lshift);
2469 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2470 
2471 	/*
2472 	 * If non-leaf, copy a key and a ptr to the left block.
2473 	 * Log the changes to the left block.
2474 	 */
2475 	if (level > 0) {
2476 		/* It's a non-leaf.  Move keys and pointers. */
2477 		union xfs_btree_key	*lkp;	/* left btree key */
2478 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2479 
2480 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2481 		rkp = xfs_btree_key_addr(cur, 1, right);
2482 
2483 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2484 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2485 
2486 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2487 		if (error)
2488 			goto error0;
2489 
2490 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2491 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2492 
2493 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2494 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2495 
2496 		ASSERT(cur->bc_ops->keys_inorder(cur,
2497 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2498 	} else {
2499 		/* It's a leaf.  Move records.  */
2500 		union xfs_btree_rec	*lrp;	/* left record pointer */
2501 
2502 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2503 		rrp = xfs_btree_rec_addr(cur, 1, right);
2504 
2505 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2506 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2507 
2508 		ASSERT(cur->bc_ops->recs_inorder(cur,
2509 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2510 	}
2511 
2512 	xfs_btree_set_numrecs(left, lrecs);
2513 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2514 
2515 	xfs_btree_set_numrecs(right, rrecs);
2516 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2517 
2518 	/*
2519 	 * Slide the contents of right down one entry.
2520 	 */
2521 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2522 	if (level > 0) {
2523 		/* It's a nonleaf. operate on keys and ptrs */
2524 		for (i = 0; i < rrecs; i++) {
2525 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2526 			if (error)
2527 				goto error0;
2528 		}
2529 
2530 		xfs_btree_shift_keys(cur,
2531 				xfs_btree_key_addr(cur, 2, right),
2532 				-1, rrecs);
2533 		xfs_btree_shift_ptrs(cur,
2534 				xfs_btree_ptr_addr(cur, 2, right),
2535 				-1, rrecs);
2536 
2537 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2538 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2539 	} else {
2540 		/* It's a leaf. operate on records */
2541 		xfs_btree_shift_recs(cur,
2542 			xfs_btree_rec_addr(cur, 2, right),
2543 			-1, rrecs);
2544 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2545 	}
2546 
2547 	/*
2548 	 * Using a temporary cursor, update the parent key values of the
2549 	 * block on the left.
2550 	 */
2551 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2552 		error = xfs_btree_dup_cursor(cur, &tcur);
2553 		if (error)
2554 			goto error0;
2555 		i = xfs_btree_firstrec(tcur, level);
2556 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2557 			xfs_btree_mark_sick(cur);
2558 			error = -EFSCORRUPTED;
2559 			goto error0;
2560 		}
2561 
2562 		error = xfs_btree_decrement(tcur, level, &i);
2563 		if (error)
2564 			goto error1;
2565 
2566 		/* Update the parent high keys of the left block, if needed. */
2567 		error = xfs_btree_update_keys(tcur, level);
2568 		if (error)
2569 			goto error1;
2570 
2571 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2572 	}
2573 
2574 	/* Update the parent keys of the right block. */
2575 	error = xfs_btree_update_keys(cur, level);
2576 	if (error)
2577 		goto error0;
2578 
2579 	/* Slide the cursor value left one. */
2580 	cur->bc_levels[level].ptr--;
2581 
2582 	*stat = 1;
2583 	return 0;
2584 
2585 out0:
2586 	*stat = 0;
2587 	return 0;
2588 
2589 error0:
2590 	return error;
2591 
2592 error1:
2593 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2594 	return error;
2595 }
2596 
2597 /*
2598  * Move 1 record right from cur/level if possible.
2599  * Update cur to reflect the new path.
2600  */
2601 STATIC int					/* error */
2602 xfs_btree_rshift(
2603 	struct xfs_btree_cur	*cur,
2604 	int			level,
2605 	int			*stat)		/* success/failure */
2606 {
2607 	struct xfs_buf		*lbp;		/* left buffer pointer */
2608 	struct xfs_btree_block	*left;		/* left btree block */
2609 	struct xfs_buf		*rbp;		/* right buffer pointer */
2610 	struct xfs_btree_block	*right;		/* right btree block */
2611 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2612 	union xfs_btree_ptr	rptr;		/* right block pointer */
2613 	union xfs_btree_key	*rkp;		/* right btree key */
2614 	int			rrecs;		/* right record count */
2615 	int			lrecs;		/* left record count */
2616 	int			error;		/* error return value */
2617 	int			i;		/* loop counter */
2618 
2619 	if (xfs_btree_at_iroot(cur, level))
2620 		goto out0;
2621 
2622 	/* Set up variables for this block as "left". */
2623 	left = xfs_btree_get_block(cur, level, &lbp);
2624 
2625 #ifdef DEBUG
2626 	error = xfs_btree_check_block(cur, left, level, lbp);
2627 	if (error)
2628 		goto error0;
2629 #endif
2630 
2631 	/* If we've got no right sibling then we can't shift an entry right. */
2632 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2633 	if (xfs_btree_ptr_is_null(cur, &rptr))
2634 		goto out0;
2635 
2636 	/*
2637 	 * If the cursor entry is the one that would be moved, don't
2638 	 * do it... it's too complicated.
2639 	 */
2640 	lrecs = xfs_btree_get_numrecs(left);
2641 	if (cur->bc_levels[level].ptr >= lrecs)
2642 		goto out0;
2643 
2644 	/* Set up the right neighbor as "right". */
2645 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2646 	if (error)
2647 		goto error0;
2648 
2649 	/* If it's full, it can't take another entry. */
2650 	rrecs = xfs_btree_get_numrecs(right);
2651 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2652 		goto out0;
2653 
2654 	XFS_BTREE_STATS_INC(cur, rshift);
2655 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2656 
2657 	/*
2658 	 * Make a hole at the start of the right neighbor block, then
2659 	 * copy the last left block entry to the hole.
2660 	 */
2661 	if (level > 0) {
2662 		/* It's a nonleaf. make a hole in the keys and ptrs */
2663 		union xfs_btree_key	*lkp;
2664 		union xfs_btree_ptr	*lpp;
2665 		union xfs_btree_ptr	*rpp;
2666 
2667 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2668 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2669 		rkp = xfs_btree_key_addr(cur, 1, right);
2670 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2671 
2672 		for (i = rrecs - 1; i >= 0; i--) {
2673 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2674 			if (error)
2675 				goto error0;
2676 		}
2677 
2678 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2679 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2680 
2681 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2682 		if (error)
2683 			goto error0;
2684 
2685 		/* Now put the new data in, and log it. */
2686 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2687 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2688 
2689 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2690 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2691 
2692 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2693 			xfs_btree_key_addr(cur, 2, right)));
2694 	} else {
2695 		/* It's a leaf. make a hole in the records */
2696 		union xfs_btree_rec	*lrp;
2697 		union xfs_btree_rec	*rrp;
2698 
2699 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2700 		rrp = xfs_btree_rec_addr(cur, 1, right);
2701 
2702 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2703 
2704 		/* Now put the new data in, and log it. */
2705 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2706 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2707 	}
2708 
2709 	/*
2710 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2711 	 */
2712 	xfs_btree_set_numrecs(left, --lrecs);
2713 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2714 
2715 	xfs_btree_set_numrecs(right, ++rrecs);
2716 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2717 
2718 	/*
2719 	 * Using a temporary cursor, update the parent key values of the
2720 	 * block on the right.
2721 	 */
2722 	error = xfs_btree_dup_cursor(cur, &tcur);
2723 	if (error)
2724 		goto error0;
2725 	i = xfs_btree_lastrec(tcur, level);
2726 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2727 		xfs_btree_mark_sick(cur);
2728 		error = -EFSCORRUPTED;
2729 		goto error0;
2730 	}
2731 
2732 	error = xfs_btree_increment(tcur, level, &i);
2733 	if (error)
2734 		goto error1;
2735 
2736 	/* Update the parent high keys of the left block, if needed. */
2737 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2738 		error = xfs_btree_update_keys(cur, level);
2739 		if (error)
2740 			goto error1;
2741 	}
2742 
2743 	/* Update the parent keys of the right block. */
2744 	error = xfs_btree_update_keys(tcur, level);
2745 	if (error)
2746 		goto error1;
2747 
2748 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2749 
2750 	*stat = 1;
2751 	return 0;
2752 
2753 out0:
2754 	*stat = 0;
2755 	return 0;
2756 
2757 error0:
2758 	return error;
2759 
2760 error1:
2761 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2762 	return error;
2763 }
2764 
2765 static inline int
2766 xfs_btree_alloc_block(
2767 	struct xfs_btree_cur		*cur,
2768 	const union xfs_btree_ptr	*hint_block,
2769 	union xfs_btree_ptr		*new_block,
2770 	int				*stat)
2771 {
2772 	int				error;
2773 
2774 	/*
2775 	 * Don't allow block allocation for a staging cursor, because staging
2776 	 * cursors do not support regular btree modifications.
2777 	 *
2778 	 * Bulk loading uses a separate callback to obtain new blocks from a
2779 	 * preallocated list, which prevents ENOSPC failures during loading.
2780 	 */
2781 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2782 		ASSERT(0);
2783 		return -EFSCORRUPTED;
2784 	}
2785 
2786 	error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2787 	trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2788 	return error;
2789 }
2790 
2791 /*
2792  * Split cur/level block in half.
2793  * Return new block number and the key to its first
2794  * record (to be inserted into parent).
2795  */
2796 STATIC int					/* error */
2797 __xfs_btree_split(
2798 	struct xfs_btree_cur	*cur,
2799 	int			level,
2800 	union xfs_btree_ptr	*ptrp,
2801 	union xfs_btree_key	*key,
2802 	struct xfs_btree_cur	**curp,
2803 	int			*stat)		/* success/failure */
2804 {
2805 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2806 	struct xfs_buf		*lbp;		/* left buffer pointer */
2807 	struct xfs_btree_block	*left;		/* left btree block */
2808 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2809 	struct xfs_buf		*rbp;		/* right buffer pointer */
2810 	struct xfs_btree_block	*right;		/* right btree block */
2811 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2812 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2813 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2814 	int			lrecs;
2815 	int			rrecs;
2816 	int			src_index;
2817 	int			error;		/* error return value */
2818 	int			i;
2819 
2820 	XFS_BTREE_STATS_INC(cur, split);
2821 
2822 	/* Set up left block (current one). */
2823 	left = xfs_btree_get_block(cur, level, &lbp);
2824 
2825 #ifdef DEBUG
2826 	error = xfs_btree_check_block(cur, left, level, lbp);
2827 	if (error)
2828 		goto error0;
2829 #endif
2830 
2831 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2832 
2833 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2834 	error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2835 	if (error)
2836 		goto error0;
2837 	if (*stat == 0)
2838 		goto out0;
2839 	XFS_BTREE_STATS_INC(cur, alloc);
2840 
2841 	/* Set up the new block as "right". */
2842 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2843 	if (error)
2844 		goto error0;
2845 
2846 	/* Fill in the btree header for the new right block. */
2847 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2848 
2849 	/*
2850 	 * Split the entries between the old and the new block evenly.
2851 	 * Make sure that if there's an odd number of entries now, that
2852 	 * each new block will have the same number of entries.
2853 	 */
2854 	lrecs = xfs_btree_get_numrecs(left);
2855 	rrecs = lrecs / 2;
2856 	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2857 		rrecs++;
2858 	src_index = (lrecs - rrecs + 1);
2859 
2860 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2861 
2862 	/* Adjust numrecs for the later get_*_keys() calls. */
2863 	lrecs -= rrecs;
2864 	xfs_btree_set_numrecs(left, lrecs);
2865 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2866 
2867 	/*
2868 	 * Copy btree block entries from the left block over to the
2869 	 * new block, the right. Update the right block and log the
2870 	 * changes.
2871 	 */
2872 	if (level > 0) {
2873 		/* It's a non-leaf.  Move keys and pointers. */
2874 		union xfs_btree_key	*lkp;	/* left btree key */
2875 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2876 		union xfs_btree_key	*rkp;	/* right btree key */
2877 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2878 
2879 		lkp = xfs_btree_key_addr(cur, src_index, left);
2880 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2881 		rkp = xfs_btree_key_addr(cur, 1, right);
2882 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2883 
2884 		for (i = src_index; i < rrecs; i++) {
2885 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2886 			if (error)
2887 				goto error0;
2888 		}
2889 
2890 		/* Copy the keys & pointers to the new block. */
2891 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2892 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2893 
2894 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2895 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2896 
2897 		/* Stash the keys of the new block for later insertion. */
2898 		xfs_btree_get_node_keys(cur, right, key);
2899 	} else {
2900 		/* It's a leaf.  Move records.  */
2901 		union xfs_btree_rec	*lrp;	/* left record pointer */
2902 		union xfs_btree_rec	*rrp;	/* right record pointer */
2903 
2904 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2905 		rrp = xfs_btree_rec_addr(cur, 1, right);
2906 
2907 		/* Copy records to the new block. */
2908 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2909 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2910 
2911 		/* Stash the keys of the new block for later insertion. */
2912 		xfs_btree_get_leaf_keys(cur, right, key);
2913 	}
2914 
2915 	/*
2916 	 * Find the left block number by looking in the buffer.
2917 	 * Adjust sibling pointers.
2918 	 */
2919 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2920 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2921 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2922 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2923 
2924 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2925 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2926 
2927 	/*
2928 	 * If there's a block to the new block's right, make that block
2929 	 * point back to right instead of to left.
2930 	 */
2931 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2932 		error = xfs_btree_read_buf_block(cur, &rrptr,
2933 							0, &rrblock, &rrbp);
2934 		if (error)
2935 			goto error0;
2936 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2937 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2938 	}
2939 
2940 	/* Update the parent high keys of the left block, if needed. */
2941 	if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2942 		error = xfs_btree_update_keys(cur, level);
2943 		if (error)
2944 			goto error0;
2945 	}
2946 
2947 	/*
2948 	 * If the cursor is really in the right block, move it there.
2949 	 * If it's just pointing past the last entry in left, then we'll
2950 	 * insert there, so don't change anything in that case.
2951 	 */
2952 	if (cur->bc_levels[level].ptr > lrecs + 1) {
2953 		xfs_btree_setbuf(cur, level, rbp);
2954 		cur->bc_levels[level].ptr -= lrecs;
2955 	}
2956 	/*
2957 	 * If there are more levels, we'll need another cursor which refers
2958 	 * the right block, no matter where this cursor was.
2959 	 */
2960 	if (level + 1 < cur->bc_nlevels) {
2961 		error = xfs_btree_dup_cursor(cur, curp);
2962 		if (error)
2963 			goto error0;
2964 		(*curp)->bc_levels[level + 1].ptr++;
2965 	}
2966 	*ptrp = rptr;
2967 	*stat = 1;
2968 	return 0;
2969 out0:
2970 	*stat = 0;
2971 	return 0;
2972 
2973 error0:
2974 	return error;
2975 }
2976 
2977 #ifdef __KERNEL__
2978 struct xfs_btree_split_args {
2979 	struct xfs_btree_cur	*cur;
2980 	int			level;
2981 	union xfs_btree_ptr	*ptrp;
2982 	union xfs_btree_key	*key;
2983 	struct xfs_btree_cur	**curp;
2984 	int			*stat;		/* success/failure */
2985 	int			result;
2986 	bool			kswapd;	/* allocation in kswapd context */
2987 	struct completion	*done;
2988 	struct work_struct	work;
2989 };
2990 
2991 /*
2992  * Stack switching interfaces for allocation
2993  */
2994 static void
2995 xfs_btree_split_worker(
2996 	struct work_struct	*work)
2997 {
2998 	struct xfs_btree_split_args	*args = container_of(work,
2999 						struct xfs_btree_split_args, work);
3000 	unsigned long		pflags;
3001 	unsigned long		new_pflags = 0;
3002 
3003 	/*
3004 	 * we are in a transaction context here, but may also be doing work
3005 	 * in kswapd context, and hence we may need to inherit that state
3006 	 * temporarily to ensure that we don't block waiting for memory reclaim
3007 	 * in any way.
3008 	 */
3009 	if (args->kswapd)
3010 		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3011 
3012 	current_set_flags_nested(&pflags, new_pflags);
3013 	xfs_trans_set_context(args->cur->bc_tp);
3014 
3015 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3016 					 args->key, args->curp, args->stat);
3017 
3018 	xfs_trans_clear_context(args->cur->bc_tp);
3019 	current_restore_flags_nested(&pflags, new_pflags);
3020 
3021 	/*
3022 	 * Do not access args after complete() has run here. We don't own args
3023 	 * and the owner may run and free args before we return here.
3024 	 */
3025 	complete(args->done);
3026 
3027 }
3028 
3029 /*
3030  * BMBT split requests often come in with little stack to work on so we push
3031  * them off to a worker thread so there is lots of stack to use. For the other
3032  * btree types, just call directly to avoid the context switch overhead here.
3033  *
3034  * Care must be taken here - the work queue rescuer thread introduces potential
3035  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3036  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3037  * lock an AGF that is already locked by a task queued to run by the rescuer,
3038  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3039  * release it until the current thread it is running gains the lock.
3040  *
3041  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3042  * already locked to allocate from. The only place that doesn't hold an AGF
3043  * locked is unwritten extent conversion at IO completion, but that has already
3044  * been offloaded to a worker thread and hence has no stack consumption issues
3045  * we have to worry about.
3046  */
3047 STATIC int					/* error */
3048 xfs_btree_split(
3049 	struct xfs_btree_cur	*cur,
3050 	int			level,
3051 	union xfs_btree_ptr	*ptrp,
3052 	union xfs_btree_key	*key,
3053 	struct xfs_btree_cur	**curp,
3054 	int			*stat)		/* success/failure */
3055 {
3056 	struct xfs_btree_split_args	args;
3057 	DECLARE_COMPLETION_ONSTACK(done);
3058 
3059 	if (!xfs_btree_is_bmap(cur->bc_ops) ||
3060 	    cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3061 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3062 
3063 	args.cur = cur;
3064 	args.level = level;
3065 	args.ptrp = ptrp;
3066 	args.key = key;
3067 	args.curp = curp;
3068 	args.stat = stat;
3069 	args.done = &done;
3070 	args.kswapd = current_is_kswapd();
3071 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3072 	queue_work(xfs_alloc_wq, &args.work);
3073 	wait_for_completion(&done);
3074 	destroy_work_on_stack(&args.work);
3075 	return args.result;
3076 }
3077 #else
3078 #define xfs_btree_split	__xfs_btree_split
3079 #endif /* __KERNEL__ */
3080 
3081 /*
3082  * Copy the old inode root contents into a real block and make the
3083  * broot point to it.
3084  */
3085 int						/* error */
3086 xfs_btree_new_iroot(
3087 	struct xfs_btree_cur	*cur,		/* btree cursor */
3088 	int			*logflags,	/* logging flags for inode */
3089 	int			*stat)		/* return status - 0 fail */
3090 {
3091 	struct xfs_buf		*cbp;		/* buffer for cblock */
3092 	struct xfs_btree_block	*block;		/* btree block */
3093 	struct xfs_btree_block	*cblock;	/* child btree block */
3094 	union xfs_btree_key	*ckp;		/* child key pointer */
3095 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
3096 	union xfs_btree_key	*kp;		/* pointer to btree key */
3097 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
3098 	union xfs_btree_ptr	nptr;		/* new block addr */
3099 	int			level;		/* btree level */
3100 	int			error;		/* error return code */
3101 	int			i;		/* loop counter */
3102 
3103 	XFS_BTREE_STATS_INC(cur, newroot);
3104 
3105 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3106 
3107 	level = cur->bc_nlevels - 1;
3108 
3109 	block = xfs_btree_get_iroot(cur);
3110 	pp = xfs_btree_ptr_addr(cur, 1, block);
3111 
3112 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3113 	error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3114 	if (error)
3115 		goto error0;
3116 	if (*stat == 0)
3117 		return 0;
3118 
3119 	XFS_BTREE_STATS_INC(cur, alloc);
3120 
3121 	/* Copy the root into a real block. */
3122 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3123 	if (error)
3124 		goto error0;
3125 
3126 	/*
3127 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3128 	 * In that case have to also ensure the blkno remains correct
3129 	 */
3130 	memcpy(cblock, block, xfs_btree_block_len(cur));
3131 	if (xfs_has_crc(cur->bc_mp)) {
3132 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3133 		if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3134 			cblock->bb_u.l.bb_blkno = bno;
3135 		else
3136 			cblock->bb_u.s.bb_blkno = bno;
3137 	}
3138 
3139 	be16_add_cpu(&block->bb_level, 1);
3140 	xfs_btree_set_numrecs(block, 1);
3141 	cur->bc_nlevels++;
3142 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3143 	cur->bc_levels[level + 1].ptr = 1;
3144 
3145 	kp = xfs_btree_key_addr(cur, 1, block);
3146 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3147 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3148 
3149 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3150 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3151 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3152 		if (error)
3153 			goto error0;
3154 	}
3155 
3156 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3157 
3158 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3159 	if (error)
3160 		goto error0;
3161 
3162 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3163 
3164 	xfs_iroot_realloc(cur->bc_ino.ip,
3165 			  1 - xfs_btree_get_numrecs(cblock),
3166 			  cur->bc_ino.whichfork);
3167 
3168 	xfs_btree_setbuf(cur, level, cbp);
3169 
3170 	/*
3171 	 * Do all this logging at the end so that
3172 	 * the root is at the right level.
3173 	 */
3174 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3175 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3176 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3177 
3178 	*logflags |=
3179 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3180 	*stat = 1;
3181 	return 0;
3182 error0:
3183 	return error;
3184 }
3185 
3186 static void
3187 xfs_btree_set_root(
3188 	struct xfs_btree_cur		*cur,
3189 	const union xfs_btree_ptr	*ptr,
3190 	int				inc)
3191 {
3192 	if (cur->bc_flags & XFS_BTREE_STAGING) {
3193 		/* Update the btree root information for a per-AG fake root. */
3194 		cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3195 		cur->bc_ag.afake->af_levels += inc;
3196 	} else {
3197 		cur->bc_ops->set_root(cur, ptr, inc);
3198 	}
3199 }
3200 
3201 /*
3202  * Allocate a new root block, fill it in.
3203  */
3204 STATIC int				/* error */
3205 xfs_btree_new_root(
3206 	struct xfs_btree_cur	*cur,	/* btree cursor */
3207 	int			*stat)	/* success/failure */
3208 {
3209 	struct xfs_btree_block	*block;	/* one half of the old root block */
3210 	struct xfs_buf		*bp;	/* buffer containing block */
3211 	int			error;	/* error return value */
3212 	struct xfs_buf		*lbp;	/* left buffer pointer */
3213 	struct xfs_btree_block	*left;	/* left btree block */
3214 	struct xfs_buf		*nbp;	/* new (root) buffer */
3215 	struct xfs_btree_block	*new;	/* new (root) btree block */
3216 	int			nptr;	/* new value for key index, 1 or 2 */
3217 	struct xfs_buf		*rbp;	/* right buffer pointer */
3218 	struct xfs_btree_block	*right;	/* right btree block */
3219 	union xfs_btree_ptr	rptr;
3220 	union xfs_btree_ptr	lptr;
3221 
3222 	XFS_BTREE_STATS_INC(cur, newroot);
3223 
3224 	/* initialise our start point from the cursor */
3225 	xfs_btree_init_ptr_from_cur(cur, &rptr);
3226 
3227 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3228 	error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3229 	if (error)
3230 		goto error0;
3231 	if (*stat == 0)
3232 		goto out0;
3233 	XFS_BTREE_STATS_INC(cur, alloc);
3234 
3235 	/* Set up the new block. */
3236 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3237 	if (error)
3238 		goto error0;
3239 
3240 	/* Set the root in the holding structure  increasing the level by 1. */
3241 	xfs_btree_set_root(cur, &lptr, 1);
3242 
3243 	/*
3244 	 * At the previous root level there are now two blocks: the old root,
3245 	 * and the new block generated when it was split.  We don't know which
3246 	 * one the cursor is pointing at, so we set up variables "left" and
3247 	 * "right" for each case.
3248 	 */
3249 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3250 
3251 #ifdef DEBUG
3252 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3253 	if (error)
3254 		goto error0;
3255 #endif
3256 
3257 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3258 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3259 		/* Our block is left, pick up the right block. */
3260 		lbp = bp;
3261 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3262 		left = block;
3263 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3264 		if (error)
3265 			goto error0;
3266 		bp = rbp;
3267 		nptr = 1;
3268 	} else {
3269 		/* Our block is right, pick up the left block. */
3270 		rbp = bp;
3271 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3272 		right = block;
3273 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3274 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3275 		if (error)
3276 			goto error0;
3277 		bp = lbp;
3278 		nptr = 2;
3279 	}
3280 
3281 	/* Fill in the new block's btree header and log it. */
3282 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3283 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3284 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3285 			!xfs_btree_ptr_is_null(cur, &rptr));
3286 
3287 	/* Fill in the key data in the new root. */
3288 	if (xfs_btree_get_level(left) > 0) {
3289 		/*
3290 		 * Get the keys for the left block's keys and put them directly
3291 		 * in the parent block.  Do the same for the right block.
3292 		 */
3293 		xfs_btree_get_node_keys(cur, left,
3294 				xfs_btree_key_addr(cur, 1, new));
3295 		xfs_btree_get_node_keys(cur, right,
3296 				xfs_btree_key_addr(cur, 2, new));
3297 	} else {
3298 		/*
3299 		 * Get the keys for the left block's records and put them
3300 		 * directly in the parent block.  Do the same for the right
3301 		 * block.
3302 		 */
3303 		xfs_btree_get_leaf_keys(cur, left,
3304 			xfs_btree_key_addr(cur, 1, new));
3305 		xfs_btree_get_leaf_keys(cur, right,
3306 			xfs_btree_key_addr(cur, 2, new));
3307 	}
3308 	xfs_btree_log_keys(cur, nbp, 1, 2);
3309 
3310 	/* Fill in the pointer data in the new root. */
3311 	xfs_btree_copy_ptrs(cur,
3312 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3313 	xfs_btree_copy_ptrs(cur,
3314 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3315 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3316 
3317 	/* Fix up the cursor. */
3318 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3319 	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3320 	cur->bc_nlevels++;
3321 	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3322 	*stat = 1;
3323 	return 0;
3324 error0:
3325 	return error;
3326 out0:
3327 	*stat = 0;
3328 	return 0;
3329 }
3330 
3331 STATIC int
3332 xfs_btree_make_block_unfull(
3333 	struct xfs_btree_cur	*cur,	/* btree cursor */
3334 	int			level,	/* btree level */
3335 	int			numrecs,/* # of recs in block */
3336 	int			*oindex,/* old tree index */
3337 	int			*index,	/* new tree index */
3338 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3339 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3340 	union xfs_btree_key	*key,	/* key of new block */
3341 	int			*stat)
3342 {
3343 	int			error = 0;
3344 
3345 	if (xfs_btree_at_iroot(cur, level)) {
3346 		struct xfs_inode *ip = cur->bc_ino.ip;
3347 
3348 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3349 			/* A root block that can be made bigger. */
3350 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3351 			*stat = 1;
3352 		} else {
3353 			/* A root block that needs replacing */
3354 			int	logflags = 0;
3355 
3356 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3357 			if (error || *stat == 0)
3358 				return error;
3359 
3360 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3361 		}
3362 
3363 		return 0;
3364 	}
3365 
3366 	/* First, try shifting an entry to the right neighbor. */
3367 	error = xfs_btree_rshift(cur, level, stat);
3368 	if (error || *stat)
3369 		return error;
3370 
3371 	/* Next, try shifting an entry to the left neighbor. */
3372 	error = xfs_btree_lshift(cur, level, stat);
3373 	if (error)
3374 		return error;
3375 
3376 	if (*stat) {
3377 		*oindex = *index = cur->bc_levels[level].ptr;
3378 		return 0;
3379 	}
3380 
3381 	/*
3382 	 * Next, try splitting the current block in half.
3383 	 *
3384 	 * If this works we have to re-set our variables because we
3385 	 * could be in a different block now.
3386 	 */
3387 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3388 	if (error || *stat == 0)
3389 		return error;
3390 
3391 
3392 	*index = cur->bc_levels[level].ptr;
3393 	return 0;
3394 }
3395 
3396 /*
3397  * Insert one record/level.  Return information to the caller
3398  * allowing the next level up to proceed if necessary.
3399  */
3400 STATIC int
3401 xfs_btree_insrec(
3402 	struct xfs_btree_cur	*cur,	/* btree cursor */
3403 	int			level,	/* level to insert record at */
3404 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3405 	union xfs_btree_rec	*rec,	/* record to insert */
3406 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3407 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3408 	int			*stat)	/* success/failure */
3409 {
3410 	struct xfs_btree_block	*block;	/* btree block */
3411 	struct xfs_buf		*bp;	/* buffer for block */
3412 	union xfs_btree_ptr	nptr;	/* new block ptr */
3413 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3414 	union xfs_btree_key	nkey;	/* new block key */
3415 	union xfs_btree_key	*lkey;
3416 	int			optr;	/* old key/record index */
3417 	int			ptr;	/* key/record index */
3418 	int			numrecs;/* number of records */
3419 	int			error;	/* error return value */
3420 	int			i;
3421 	xfs_daddr_t		old_bn;
3422 
3423 	ncur = NULL;
3424 	lkey = &nkey;
3425 
3426 	/*
3427 	 * If we have an external root pointer, and we've made it to the
3428 	 * root level, allocate a new root block and we're done.
3429 	 */
3430 	if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3431 	    level >= cur->bc_nlevels) {
3432 		error = xfs_btree_new_root(cur, stat);
3433 		xfs_btree_set_ptr_null(cur, ptrp);
3434 
3435 		return error;
3436 	}
3437 
3438 	/* If we're off the left edge, return failure. */
3439 	ptr = cur->bc_levels[level].ptr;
3440 	if (ptr == 0) {
3441 		*stat = 0;
3442 		return 0;
3443 	}
3444 
3445 	optr = ptr;
3446 
3447 	XFS_BTREE_STATS_INC(cur, insrec);
3448 
3449 	/* Get pointers to the btree buffer and block. */
3450 	block = xfs_btree_get_block(cur, level, &bp);
3451 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3452 	numrecs = xfs_btree_get_numrecs(block);
3453 
3454 #ifdef DEBUG
3455 	error = xfs_btree_check_block(cur, block, level, bp);
3456 	if (error)
3457 		goto error0;
3458 
3459 	/* Check that the new entry is being inserted in the right place. */
3460 	if (ptr <= numrecs) {
3461 		if (level == 0) {
3462 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3463 				xfs_btree_rec_addr(cur, ptr, block)));
3464 		} else {
3465 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3466 				xfs_btree_key_addr(cur, ptr, block)));
3467 		}
3468 	}
3469 #endif
3470 
3471 	/*
3472 	 * If the block is full, we can't insert the new entry until we
3473 	 * make the block un-full.
3474 	 */
3475 	xfs_btree_set_ptr_null(cur, &nptr);
3476 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3477 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3478 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3479 		if (error || *stat == 0)
3480 			goto error0;
3481 	}
3482 
3483 	/*
3484 	 * The current block may have changed if the block was
3485 	 * previously full and we have just made space in it.
3486 	 */
3487 	block = xfs_btree_get_block(cur, level, &bp);
3488 	numrecs = xfs_btree_get_numrecs(block);
3489 
3490 #ifdef DEBUG
3491 	error = xfs_btree_check_block(cur, block, level, bp);
3492 	if (error)
3493 		goto error0;
3494 #endif
3495 
3496 	/*
3497 	 * At this point we know there's room for our new entry in the block
3498 	 * we're pointing at.
3499 	 */
3500 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3501 
3502 	if (level > 0) {
3503 		/* It's a nonleaf. make a hole in the keys and ptrs */
3504 		union xfs_btree_key	*kp;
3505 		union xfs_btree_ptr	*pp;
3506 
3507 		kp = xfs_btree_key_addr(cur, ptr, block);
3508 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3509 
3510 		for (i = numrecs - ptr; i >= 0; i--) {
3511 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3512 			if (error)
3513 				goto error0;
3514 		}
3515 
3516 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3517 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3518 
3519 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3520 		if (error)
3521 			goto error0;
3522 
3523 		/* Now put the new data in, bump numrecs and log it. */
3524 		xfs_btree_copy_keys(cur, kp, key, 1);
3525 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3526 		numrecs++;
3527 		xfs_btree_set_numrecs(block, numrecs);
3528 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3529 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3530 #ifdef DEBUG
3531 		if (ptr < numrecs) {
3532 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3533 				xfs_btree_key_addr(cur, ptr + 1, block)));
3534 		}
3535 #endif
3536 	} else {
3537 		/* It's a leaf. make a hole in the records */
3538 		union xfs_btree_rec             *rp;
3539 
3540 		rp = xfs_btree_rec_addr(cur, ptr, block);
3541 
3542 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3543 
3544 		/* Now put the new data in, bump numrecs and log it. */
3545 		xfs_btree_copy_recs(cur, rp, rec, 1);
3546 		xfs_btree_set_numrecs(block, ++numrecs);
3547 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3548 #ifdef DEBUG
3549 		if (ptr < numrecs) {
3550 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3551 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3552 		}
3553 #endif
3554 	}
3555 
3556 	/* Log the new number of records in the btree header. */
3557 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3558 
3559 	/*
3560 	 * Update btree keys to reflect the newly added record or keyptr.
3561 	 * There are three cases here to be aware of.  Normally, all we have to
3562 	 * do is walk towards the root, updating keys as necessary.
3563 	 *
3564 	 * If the caller had us target a full block for the insertion, we dealt
3565 	 * with that by calling the _make_block_unfull function.  If the
3566 	 * "make unfull" function splits the block, it'll hand us back the key
3567 	 * and pointer of the new block.  We haven't yet added the new block to
3568 	 * the next level up, so if we decide to add the new record to the new
3569 	 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3570 	 * so that the caller adds the new block with the correct key.
3571 	 *
3572 	 * However, there is a third possibility-- if the selected block is the
3573 	 * root block of an inode-rooted btree and cannot be expanded further,
3574 	 * the "make unfull" function moves the root block contents to a new
3575 	 * block and updates the root block to point to the new block.  In this
3576 	 * case, no block pointer is passed back because the block has already
3577 	 * been added to the btree.  In this case, we need to use the regular
3578 	 * key update function, just like the first case.  This is critical for
3579 	 * overlapping btrees, because the high key must be updated to reflect
3580 	 * the entire tree, not just the subtree accessible through the first
3581 	 * child of the root (which is now two levels down from the root).
3582 	 */
3583 	if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3584 	    bp && xfs_buf_daddr(bp) != old_bn) {
3585 		xfs_btree_get_keys(cur, block, lkey);
3586 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3587 		error = xfs_btree_update_keys(cur, level);
3588 		if (error)
3589 			goto error0;
3590 	}
3591 
3592 	/*
3593 	 * Return the new block number, if any.
3594 	 * If there is one, give back a record value and a cursor too.
3595 	 */
3596 	*ptrp = nptr;
3597 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3598 		xfs_btree_copy_keys(cur, key, lkey, 1);
3599 		*curp = ncur;
3600 	}
3601 
3602 	*stat = 1;
3603 	return 0;
3604 
3605 error0:
3606 	if (ncur)
3607 		xfs_btree_del_cursor(ncur, error);
3608 	return error;
3609 }
3610 
3611 /*
3612  * Insert the record at the point referenced by cur.
3613  *
3614  * A multi-level split of the tree on insert will invalidate the original
3615  * cursor.  All callers of this function should assume that the cursor is
3616  * no longer valid and revalidate it.
3617  */
3618 int
3619 xfs_btree_insert(
3620 	struct xfs_btree_cur	*cur,
3621 	int			*stat)
3622 {
3623 	int			error;	/* error return value */
3624 	int			i;	/* result value, 0 for failure */
3625 	int			level;	/* current level number in btree */
3626 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3627 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3628 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3629 	union xfs_btree_key	bkey;	/* key of block to insert */
3630 	union xfs_btree_key	*key;
3631 	union xfs_btree_rec	rec;	/* record to insert */
3632 
3633 	level = 0;
3634 	ncur = NULL;
3635 	pcur = cur;
3636 	key = &bkey;
3637 
3638 	xfs_btree_set_ptr_null(cur, &nptr);
3639 
3640 	/* Make a key out of the record data to be inserted, and save it. */
3641 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3642 	cur->bc_ops->init_key_from_rec(key, &rec);
3643 
3644 	/*
3645 	 * Loop going up the tree, starting at the leaf level.
3646 	 * Stop when we don't get a split block, that must mean that
3647 	 * the insert is finished with this level.
3648 	 */
3649 	do {
3650 		/*
3651 		 * Insert nrec/nptr into this level of the tree.
3652 		 * Note if we fail, nptr will be null.
3653 		 */
3654 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3655 				&ncur, &i);
3656 		if (error) {
3657 			if (pcur != cur)
3658 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3659 			goto error0;
3660 		}
3661 
3662 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3663 			xfs_btree_mark_sick(cur);
3664 			error = -EFSCORRUPTED;
3665 			goto error0;
3666 		}
3667 		level++;
3668 
3669 		/*
3670 		 * See if the cursor we just used is trash.
3671 		 * Can't trash the caller's cursor, but otherwise we should
3672 		 * if ncur is a new cursor or we're about to be done.
3673 		 */
3674 		if (pcur != cur &&
3675 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3676 			/* Save the state from the cursor before we trash it */
3677 			if (cur->bc_ops->update_cursor &&
3678 			    !(cur->bc_flags & XFS_BTREE_STAGING))
3679 				cur->bc_ops->update_cursor(pcur, cur);
3680 			cur->bc_nlevels = pcur->bc_nlevels;
3681 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3682 		}
3683 		/* If we got a new cursor, switch to it. */
3684 		if (ncur) {
3685 			pcur = ncur;
3686 			ncur = NULL;
3687 		}
3688 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3689 
3690 	*stat = i;
3691 	return 0;
3692 error0:
3693 	return error;
3694 }
3695 
3696 /*
3697  * Try to merge a non-leaf block back into the inode root.
3698  *
3699  * Note: the killroot names comes from the fact that we're effectively
3700  * killing the old root block.  But because we can't just delete the
3701  * inode we have to copy the single block it was pointing to into the
3702  * inode.
3703  */
3704 STATIC int
3705 xfs_btree_kill_iroot(
3706 	struct xfs_btree_cur	*cur)
3707 {
3708 	int			whichfork = cur->bc_ino.whichfork;
3709 	struct xfs_inode	*ip = cur->bc_ino.ip;
3710 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
3711 	struct xfs_btree_block	*block;
3712 	struct xfs_btree_block	*cblock;
3713 	union xfs_btree_key	*kp;
3714 	union xfs_btree_key	*ckp;
3715 	union xfs_btree_ptr	*pp;
3716 	union xfs_btree_ptr	*cpp;
3717 	struct xfs_buf		*cbp;
3718 	int			level;
3719 	int			index;
3720 	int			numrecs;
3721 	int			error;
3722 #ifdef DEBUG
3723 	union xfs_btree_ptr	ptr;
3724 #endif
3725 	int			i;
3726 
3727 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3728 	ASSERT(cur->bc_nlevels > 1);
3729 
3730 	/*
3731 	 * Don't deal with the root block needs to be a leaf case.
3732 	 * We're just going to turn the thing back into extents anyway.
3733 	 */
3734 	level = cur->bc_nlevels - 1;
3735 	if (level == 1)
3736 		goto out0;
3737 
3738 	/*
3739 	 * Give up if the root has multiple children.
3740 	 */
3741 	block = xfs_btree_get_iroot(cur);
3742 	if (xfs_btree_get_numrecs(block) != 1)
3743 		goto out0;
3744 
3745 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3746 	numrecs = xfs_btree_get_numrecs(cblock);
3747 
3748 	/*
3749 	 * Only do this if the next level will fit.
3750 	 * Then the data must be copied up to the inode,
3751 	 * instead of freeing the root you free the next level.
3752 	 */
3753 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3754 		goto out0;
3755 
3756 	XFS_BTREE_STATS_INC(cur, killroot);
3757 
3758 #ifdef DEBUG
3759 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3760 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3761 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3762 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3763 #endif
3764 
3765 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3766 	if (index) {
3767 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3768 				  cur->bc_ino.whichfork);
3769 		block = ifp->if_broot;
3770 	}
3771 
3772 	be16_add_cpu(&block->bb_numrecs, index);
3773 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3774 
3775 	kp = xfs_btree_key_addr(cur, 1, block);
3776 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3777 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3778 
3779 	pp = xfs_btree_ptr_addr(cur, 1, block);
3780 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3781 
3782 	for (i = 0; i < numrecs; i++) {
3783 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3784 		if (error)
3785 			return error;
3786 	}
3787 
3788 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3789 
3790 	error = xfs_btree_free_block(cur, cbp);
3791 	if (error)
3792 		return error;
3793 
3794 	cur->bc_levels[level - 1].bp = NULL;
3795 	be16_add_cpu(&block->bb_level, -1);
3796 	xfs_trans_log_inode(cur->bc_tp, ip,
3797 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3798 	cur->bc_nlevels--;
3799 out0:
3800 	return 0;
3801 }
3802 
3803 /*
3804  * Kill the current root node, and replace it with it's only child node.
3805  */
3806 STATIC int
3807 xfs_btree_kill_root(
3808 	struct xfs_btree_cur	*cur,
3809 	struct xfs_buf		*bp,
3810 	int			level,
3811 	union xfs_btree_ptr	*newroot)
3812 {
3813 	int			error;
3814 
3815 	XFS_BTREE_STATS_INC(cur, killroot);
3816 
3817 	/*
3818 	 * Update the root pointer, decreasing the level by 1 and then
3819 	 * free the old root.
3820 	 */
3821 	xfs_btree_set_root(cur, newroot, -1);
3822 
3823 	error = xfs_btree_free_block(cur, bp);
3824 	if (error)
3825 		return error;
3826 
3827 	cur->bc_levels[level].bp = NULL;
3828 	cur->bc_levels[level].ra = 0;
3829 	cur->bc_nlevels--;
3830 
3831 	return 0;
3832 }
3833 
3834 STATIC int
3835 xfs_btree_dec_cursor(
3836 	struct xfs_btree_cur	*cur,
3837 	int			level,
3838 	int			*stat)
3839 {
3840 	int			error;
3841 	int			i;
3842 
3843 	if (level > 0) {
3844 		error = xfs_btree_decrement(cur, level, &i);
3845 		if (error)
3846 			return error;
3847 	}
3848 
3849 	*stat = 1;
3850 	return 0;
3851 }
3852 
3853 /*
3854  * Single level of the btree record deletion routine.
3855  * Delete record pointed to by cur/level.
3856  * Remove the record from its block then rebalance the tree.
3857  * Return 0 for error, 1 for done, 2 to go on to the next level.
3858  */
3859 STATIC int					/* error */
3860 xfs_btree_delrec(
3861 	struct xfs_btree_cur	*cur,		/* btree cursor */
3862 	int			level,		/* level removing record from */
3863 	int			*stat)		/* fail/done/go-on */
3864 {
3865 	struct xfs_btree_block	*block;		/* btree block */
3866 	union xfs_btree_ptr	cptr;		/* current block ptr */
3867 	struct xfs_buf		*bp;		/* buffer for block */
3868 	int			error;		/* error return value */
3869 	int			i;		/* loop counter */
3870 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3871 	struct xfs_buf		*lbp;		/* left buffer pointer */
3872 	struct xfs_btree_block	*left;		/* left btree block */
3873 	int			lrecs = 0;	/* left record count */
3874 	int			ptr;		/* key/record index */
3875 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3876 	struct xfs_buf		*rbp;		/* right buffer pointer */
3877 	struct xfs_btree_block	*right;		/* right btree block */
3878 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3879 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3880 	int			rrecs = 0;	/* right record count */
3881 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3882 	int			numrecs;	/* temporary numrec count */
3883 
3884 	tcur = NULL;
3885 
3886 	/* Get the index of the entry being deleted, check for nothing there. */
3887 	ptr = cur->bc_levels[level].ptr;
3888 	if (ptr == 0) {
3889 		*stat = 0;
3890 		return 0;
3891 	}
3892 
3893 	/* Get the buffer & block containing the record or key/ptr. */
3894 	block = xfs_btree_get_block(cur, level, &bp);
3895 	numrecs = xfs_btree_get_numrecs(block);
3896 
3897 #ifdef DEBUG
3898 	error = xfs_btree_check_block(cur, block, level, bp);
3899 	if (error)
3900 		goto error0;
3901 #endif
3902 
3903 	/* Fail if we're off the end of the block. */
3904 	if (ptr > numrecs) {
3905 		*stat = 0;
3906 		return 0;
3907 	}
3908 
3909 	XFS_BTREE_STATS_INC(cur, delrec);
3910 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3911 
3912 	/* Excise the entries being deleted. */
3913 	if (level > 0) {
3914 		/* It's a nonleaf. operate on keys and ptrs */
3915 		union xfs_btree_key	*lkp;
3916 		union xfs_btree_ptr	*lpp;
3917 
3918 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3919 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3920 
3921 		for (i = 0; i < numrecs - ptr; i++) {
3922 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3923 			if (error)
3924 				goto error0;
3925 		}
3926 
3927 		if (ptr < numrecs) {
3928 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3929 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3930 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3931 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3932 		}
3933 	} else {
3934 		/* It's a leaf. operate on records */
3935 		if (ptr < numrecs) {
3936 			xfs_btree_shift_recs(cur,
3937 				xfs_btree_rec_addr(cur, ptr + 1, block),
3938 				-1, numrecs - ptr);
3939 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3940 		}
3941 	}
3942 
3943 	/*
3944 	 * Decrement and log the number of entries in the block.
3945 	 */
3946 	xfs_btree_set_numrecs(block, --numrecs);
3947 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3948 
3949 	/*
3950 	 * We're at the root level.  First, shrink the root block in-memory.
3951 	 * Try to get rid of the next level down.  If we can't then there's
3952 	 * nothing left to do.
3953 	 */
3954 	if (xfs_btree_at_iroot(cur, level)) {
3955 		xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
3956 
3957 		error = xfs_btree_kill_iroot(cur);
3958 		if (error)
3959 			goto error0;
3960 
3961 		error = xfs_btree_dec_cursor(cur, level, stat);
3962 		if (error)
3963 			goto error0;
3964 		*stat = 1;
3965 		return 0;
3966 	}
3967 
3968 	/*
3969 	 * If this is the root level, and there's only one entry left, and it's
3970 	 * NOT the leaf level, then we can get rid of this level.
3971 	 */
3972 	if (level == cur->bc_nlevels - 1) {
3973 		if (numrecs == 1 && level > 0) {
3974 			union xfs_btree_ptr	*pp;
3975 			/*
3976 			 * pp is still set to the first pointer in the block.
3977 			 * Make it the new root of the btree.
3978 			 */
3979 			pp = xfs_btree_ptr_addr(cur, 1, block);
3980 			error = xfs_btree_kill_root(cur, bp, level, pp);
3981 			if (error)
3982 				goto error0;
3983 		} else if (level > 0) {
3984 			error = xfs_btree_dec_cursor(cur, level, stat);
3985 			if (error)
3986 				goto error0;
3987 		}
3988 		*stat = 1;
3989 		return 0;
3990 	}
3991 
3992 	/*
3993 	 * If we deleted the leftmost entry in the block, update the
3994 	 * key values above us in the tree.
3995 	 */
3996 	if (xfs_btree_needs_key_update(cur, ptr)) {
3997 		error = xfs_btree_update_keys(cur, level);
3998 		if (error)
3999 			goto error0;
4000 	}
4001 
4002 	/*
4003 	 * If the number of records remaining in the block is at least
4004 	 * the minimum, we're done.
4005 	 */
4006 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4007 		error = xfs_btree_dec_cursor(cur, level, stat);
4008 		if (error)
4009 			goto error0;
4010 		return 0;
4011 	}
4012 
4013 	/*
4014 	 * Otherwise, we have to move some records around to keep the
4015 	 * tree balanced.  Look at the left and right sibling blocks to
4016 	 * see if we can re-balance by moving only one record.
4017 	 */
4018 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4019 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4020 
4021 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4022 		/*
4023 		 * One child of root, need to get a chance to copy its contents
4024 		 * into the root and delete it. Can't go up to next level,
4025 		 * there's nothing to delete there.
4026 		 */
4027 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
4028 		    xfs_btree_ptr_is_null(cur, &lptr) &&
4029 		    level == cur->bc_nlevels - 2) {
4030 			error = xfs_btree_kill_iroot(cur);
4031 			if (!error)
4032 				error = xfs_btree_dec_cursor(cur, level, stat);
4033 			if (error)
4034 				goto error0;
4035 			return 0;
4036 		}
4037 	}
4038 
4039 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4040 	       !xfs_btree_ptr_is_null(cur, &lptr));
4041 
4042 	/*
4043 	 * Duplicate the cursor so our btree manipulations here won't
4044 	 * disrupt the next level up.
4045 	 */
4046 	error = xfs_btree_dup_cursor(cur, &tcur);
4047 	if (error)
4048 		goto error0;
4049 
4050 	/*
4051 	 * If there's a right sibling, see if it's ok to shift an entry
4052 	 * out of it.
4053 	 */
4054 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4055 		/*
4056 		 * Move the temp cursor to the last entry in the next block.
4057 		 * Actually any entry but the first would suffice.
4058 		 */
4059 		i = xfs_btree_lastrec(tcur, level);
4060 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4061 			xfs_btree_mark_sick(cur);
4062 			error = -EFSCORRUPTED;
4063 			goto error0;
4064 		}
4065 
4066 		error = xfs_btree_increment(tcur, level, &i);
4067 		if (error)
4068 			goto error0;
4069 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4070 			xfs_btree_mark_sick(cur);
4071 			error = -EFSCORRUPTED;
4072 			goto error0;
4073 		}
4074 
4075 		i = xfs_btree_lastrec(tcur, level);
4076 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4077 			xfs_btree_mark_sick(cur);
4078 			error = -EFSCORRUPTED;
4079 			goto error0;
4080 		}
4081 
4082 		/* Grab a pointer to the block. */
4083 		right = xfs_btree_get_block(tcur, level, &rbp);
4084 #ifdef DEBUG
4085 		error = xfs_btree_check_block(tcur, right, level, rbp);
4086 		if (error)
4087 			goto error0;
4088 #endif
4089 		/* Grab the current block number, for future use. */
4090 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4091 
4092 		/*
4093 		 * If right block is full enough so that removing one entry
4094 		 * won't make it too empty, and left-shifting an entry out
4095 		 * of right to us works, we're done.
4096 		 */
4097 		if (xfs_btree_get_numrecs(right) - 1 >=
4098 		    cur->bc_ops->get_minrecs(tcur, level)) {
4099 			error = xfs_btree_lshift(tcur, level, &i);
4100 			if (error)
4101 				goto error0;
4102 			if (i) {
4103 				ASSERT(xfs_btree_get_numrecs(block) >=
4104 				       cur->bc_ops->get_minrecs(tcur, level));
4105 
4106 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4107 				tcur = NULL;
4108 
4109 				error = xfs_btree_dec_cursor(cur, level, stat);
4110 				if (error)
4111 					goto error0;
4112 				return 0;
4113 			}
4114 		}
4115 
4116 		/*
4117 		 * Otherwise, grab the number of records in right for
4118 		 * future reference, and fix up the temp cursor to point
4119 		 * to our block again (last record).
4120 		 */
4121 		rrecs = xfs_btree_get_numrecs(right);
4122 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4123 			i = xfs_btree_firstrec(tcur, level);
4124 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4125 				xfs_btree_mark_sick(cur);
4126 				error = -EFSCORRUPTED;
4127 				goto error0;
4128 			}
4129 
4130 			error = xfs_btree_decrement(tcur, level, &i);
4131 			if (error)
4132 				goto error0;
4133 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4134 				xfs_btree_mark_sick(cur);
4135 				error = -EFSCORRUPTED;
4136 				goto error0;
4137 			}
4138 		}
4139 	}
4140 
4141 	/*
4142 	 * If there's a left sibling, see if it's ok to shift an entry
4143 	 * out of it.
4144 	 */
4145 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4146 		/*
4147 		 * Move the temp cursor to the first entry in the
4148 		 * previous block.
4149 		 */
4150 		i = xfs_btree_firstrec(tcur, level);
4151 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4152 			xfs_btree_mark_sick(cur);
4153 			error = -EFSCORRUPTED;
4154 			goto error0;
4155 		}
4156 
4157 		error = xfs_btree_decrement(tcur, level, &i);
4158 		if (error)
4159 			goto error0;
4160 		i = xfs_btree_firstrec(tcur, level);
4161 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4162 			xfs_btree_mark_sick(cur);
4163 			error = -EFSCORRUPTED;
4164 			goto error0;
4165 		}
4166 
4167 		/* Grab a pointer to the block. */
4168 		left = xfs_btree_get_block(tcur, level, &lbp);
4169 #ifdef DEBUG
4170 		error = xfs_btree_check_block(cur, left, level, lbp);
4171 		if (error)
4172 			goto error0;
4173 #endif
4174 		/* Grab the current block number, for future use. */
4175 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4176 
4177 		/*
4178 		 * If left block is full enough so that removing one entry
4179 		 * won't make it too empty, and right-shifting an entry out
4180 		 * of left to us works, we're done.
4181 		 */
4182 		if (xfs_btree_get_numrecs(left) - 1 >=
4183 		    cur->bc_ops->get_minrecs(tcur, level)) {
4184 			error = xfs_btree_rshift(tcur, level, &i);
4185 			if (error)
4186 				goto error0;
4187 			if (i) {
4188 				ASSERT(xfs_btree_get_numrecs(block) >=
4189 				       cur->bc_ops->get_minrecs(tcur, level));
4190 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4191 				tcur = NULL;
4192 				if (level == 0)
4193 					cur->bc_levels[0].ptr++;
4194 
4195 				*stat = 1;
4196 				return 0;
4197 			}
4198 		}
4199 
4200 		/*
4201 		 * Otherwise, grab the number of records in right for
4202 		 * future reference.
4203 		 */
4204 		lrecs = xfs_btree_get_numrecs(left);
4205 	}
4206 
4207 	/* Delete the temp cursor, we're done with it. */
4208 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4209 	tcur = NULL;
4210 
4211 	/* If here, we need to do a join to keep the tree balanced. */
4212 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4213 
4214 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4215 	    lrecs + xfs_btree_get_numrecs(block) <=
4216 			cur->bc_ops->get_maxrecs(cur, level)) {
4217 		/*
4218 		 * Set "right" to be the starting block,
4219 		 * "left" to be the left neighbor.
4220 		 */
4221 		rptr = cptr;
4222 		right = block;
4223 		rbp = bp;
4224 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4225 		if (error)
4226 			goto error0;
4227 
4228 	/*
4229 	 * If that won't work, see if we can join with the right neighbor block.
4230 	 */
4231 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4232 		   rrecs + xfs_btree_get_numrecs(block) <=
4233 			cur->bc_ops->get_maxrecs(cur, level)) {
4234 		/*
4235 		 * Set "left" to be the starting block,
4236 		 * "right" to be the right neighbor.
4237 		 */
4238 		lptr = cptr;
4239 		left = block;
4240 		lbp = bp;
4241 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4242 		if (error)
4243 			goto error0;
4244 
4245 	/*
4246 	 * Otherwise, we can't fix the imbalance.
4247 	 * Just return.  This is probably a logic error, but it's not fatal.
4248 	 */
4249 	} else {
4250 		error = xfs_btree_dec_cursor(cur, level, stat);
4251 		if (error)
4252 			goto error0;
4253 		return 0;
4254 	}
4255 
4256 	rrecs = xfs_btree_get_numrecs(right);
4257 	lrecs = xfs_btree_get_numrecs(left);
4258 
4259 	/*
4260 	 * We're now going to join "left" and "right" by moving all the stuff
4261 	 * in "right" to "left" and deleting "right".
4262 	 */
4263 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4264 	if (level > 0) {
4265 		/* It's a non-leaf.  Move keys and pointers. */
4266 		union xfs_btree_key	*lkp;	/* left btree key */
4267 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4268 		union xfs_btree_key	*rkp;	/* right btree key */
4269 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4270 
4271 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4272 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4273 		rkp = xfs_btree_key_addr(cur, 1, right);
4274 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4275 
4276 		for (i = 1; i < rrecs; i++) {
4277 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4278 			if (error)
4279 				goto error0;
4280 		}
4281 
4282 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4283 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4284 
4285 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4286 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4287 	} else {
4288 		/* It's a leaf.  Move records.  */
4289 		union xfs_btree_rec	*lrp;	/* left record pointer */
4290 		union xfs_btree_rec	*rrp;	/* right record pointer */
4291 
4292 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4293 		rrp = xfs_btree_rec_addr(cur, 1, right);
4294 
4295 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4296 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4297 	}
4298 
4299 	XFS_BTREE_STATS_INC(cur, join);
4300 
4301 	/*
4302 	 * Fix up the number of records and right block pointer in the
4303 	 * surviving block, and log it.
4304 	 */
4305 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4306 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4307 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4308 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4309 
4310 	/* If there is a right sibling, point it to the remaining block. */
4311 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4312 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4313 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4314 		if (error)
4315 			goto error0;
4316 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4317 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4318 	}
4319 
4320 	/* Free the deleted block. */
4321 	error = xfs_btree_free_block(cur, rbp);
4322 	if (error)
4323 		goto error0;
4324 
4325 	/*
4326 	 * If we joined with the left neighbor, set the buffer in the
4327 	 * cursor to the left block, and fix up the index.
4328 	 */
4329 	if (bp != lbp) {
4330 		cur->bc_levels[level].bp = lbp;
4331 		cur->bc_levels[level].ptr += lrecs;
4332 		cur->bc_levels[level].ra = 0;
4333 	}
4334 	/*
4335 	 * If we joined with the right neighbor and there's a level above
4336 	 * us, increment the cursor at that level.
4337 	 */
4338 	else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4339 		 level + 1 < cur->bc_nlevels) {
4340 		error = xfs_btree_increment(cur, level + 1, &i);
4341 		if (error)
4342 			goto error0;
4343 	}
4344 
4345 	/*
4346 	 * Readjust the ptr at this level if it's not a leaf, since it's
4347 	 * still pointing at the deletion point, which makes the cursor
4348 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4349 	 * We can't use decrement because it would change the next level up.
4350 	 */
4351 	if (level > 0)
4352 		cur->bc_levels[level].ptr--;
4353 
4354 	/*
4355 	 * We combined blocks, so we have to update the parent keys if the
4356 	 * btree supports overlapped intervals.  However,
4357 	 * bc_levels[level + 1].ptr points to the old block so that the caller
4358 	 * knows which record to delete.  Therefore, the caller must be savvy
4359 	 * enough to call updkeys for us if we return stat == 2.  The other
4360 	 * exit points from this function don't require deletions further up
4361 	 * the tree, so they can call updkeys directly.
4362 	 */
4363 
4364 	/* Return value means the next level up has something to do. */
4365 	*stat = 2;
4366 	return 0;
4367 
4368 error0:
4369 	if (tcur)
4370 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4371 	return error;
4372 }
4373 
4374 /*
4375  * Delete the record pointed to by cur.
4376  * The cursor refers to the place where the record was (could be inserted)
4377  * when the operation returns.
4378  */
4379 int					/* error */
4380 xfs_btree_delete(
4381 	struct xfs_btree_cur	*cur,
4382 	int			*stat)	/* success/failure */
4383 {
4384 	int			error;	/* error return value */
4385 	int			level;
4386 	int			i;
4387 	bool			joined = false;
4388 
4389 	/*
4390 	 * Go up the tree, starting at leaf level.
4391 	 *
4392 	 * If 2 is returned then a join was done; go to the next level.
4393 	 * Otherwise we are done.
4394 	 */
4395 	for (level = 0, i = 2; i == 2; level++) {
4396 		error = xfs_btree_delrec(cur, level, &i);
4397 		if (error)
4398 			goto error0;
4399 		if (i == 2)
4400 			joined = true;
4401 	}
4402 
4403 	/*
4404 	 * If we combined blocks as part of deleting the record, delrec won't
4405 	 * have updated the parent high keys so we have to do that here.
4406 	 */
4407 	if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4408 		error = xfs_btree_updkeys_force(cur, 0);
4409 		if (error)
4410 			goto error0;
4411 	}
4412 
4413 	if (i == 0) {
4414 		for (level = 1; level < cur->bc_nlevels; level++) {
4415 			if (cur->bc_levels[level].ptr == 0) {
4416 				error = xfs_btree_decrement(cur, level, &i);
4417 				if (error)
4418 					goto error0;
4419 				break;
4420 			}
4421 		}
4422 	}
4423 
4424 	*stat = i;
4425 	return 0;
4426 error0:
4427 	return error;
4428 }
4429 
4430 /*
4431  * Get the data from the pointed-to record.
4432  */
4433 int					/* error */
4434 xfs_btree_get_rec(
4435 	struct xfs_btree_cur	*cur,	/* btree cursor */
4436 	union xfs_btree_rec	**recp,	/* output: btree record */
4437 	int			*stat)	/* output: success/failure */
4438 {
4439 	struct xfs_btree_block	*block;	/* btree block */
4440 	struct xfs_buf		*bp;	/* buffer pointer */
4441 	int			ptr;	/* record number */
4442 #ifdef DEBUG
4443 	int			error;	/* error return value */
4444 #endif
4445 
4446 	ptr = cur->bc_levels[0].ptr;
4447 	block = xfs_btree_get_block(cur, 0, &bp);
4448 
4449 #ifdef DEBUG
4450 	error = xfs_btree_check_block(cur, block, 0, bp);
4451 	if (error)
4452 		return error;
4453 #endif
4454 
4455 	/*
4456 	 * Off the right end or left end, return failure.
4457 	 */
4458 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4459 		*stat = 0;
4460 		return 0;
4461 	}
4462 
4463 	/*
4464 	 * Point to the record and extract its data.
4465 	 */
4466 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4467 	*stat = 1;
4468 	return 0;
4469 }
4470 
4471 /* Visit a block in a btree. */
4472 STATIC int
4473 xfs_btree_visit_block(
4474 	struct xfs_btree_cur		*cur,
4475 	int				level,
4476 	xfs_btree_visit_blocks_fn	fn,
4477 	void				*data)
4478 {
4479 	struct xfs_btree_block		*block;
4480 	struct xfs_buf			*bp;
4481 	union xfs_btree_ptr		rptr, bufptr;
4482 	int				error;
4483 
4484 	/* do right sibling readahead */
4485 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4486 	block = xfs_btree_get_block(cur, level, &bp);
4487 
4488 	/* process the block */
4489 	error = fn(cur, level, data);
4490 	if (error)
4491 		return error;
4492 
4493 	/* now read rh sibling block for next iteration */
4494 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4495 	if (xfs_btree_ptr_is_null(cur, &rptr))
4496 		return -ENOENT;
4497 
4498 	/*
4499 	 * We only visit blocks once in this walk, so we have to avoid the
4500 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4501 	 * return the same block without checking if the right sibling points
4502 	 * back to us and creates a cyclic reference in the btree.
4503 	 */
4504 	xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4505 	if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4506 		xfs_btree_mark_sick(cur);
4507 		return -EFSCORRUPTED;
4508 	}
4509 
4510 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4511 }
4512 
4513 
4514 /* Visit every block in a btree. */
4515 int
4516 xfs_btree_visit_blocks(
4517 	struct xfs_btree_cur		*cur,
4518 	xfs_btree_visit_blocks_fn	fn,
4519 	unsigned int			flags,
4520 	void				*data)
4521 {
4522 	union xfs_btree_ptr		lptr;
4523 	int				level;
4524 	struct xfs_btree_block		*block = NULL;
4525 	int				error = 0;
4526 
4527 	xfs_btree_init_ptr_from_cur(cur, &lptr);
4528 
4529 	/* for each level */
4530 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4531 		/* grab the left hand block */
4532 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4533 		if (error)
4534 			return error;
4535 
4536 		/* readahead the left most block for the next level down */
4537 		if (level > 0) {
4538 			union xfs_btree_ptr     *ptr;
4539 
4540 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4541 			xfs_btree_readahead_ptr(cur, ptr, 1);
4542 
4543 			/* save for the next iteration of the loop */
4544 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4545 
4546 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4547 				continue;
4548 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4549 			continue;
4550 		}
4551 
4552 		/* for each buffer in the level */
4553 		do {
4554 			error = xfs_btree_visit_block(cur, level, fn, data);
4555 		} while (!error);
4556 
4557 		if (error != -ENOENT)
4558 			return error;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 /*
4565  * Change the owner of a btree.
4566  *
4567  * The mechanism we use here is ordered buffer logging. Because we don't know
4568  * how many buffers were are going to need to modify, we don't really want to
4569  * have to make transaction reservations for the worst case of every buffer in a
4570  * full size btree as that may be more space that we can fit in the log....
4571  *
4572  * We do the btree walk in the most optimal manner possible - we have sibling
4573  * pointers so we can just walk all the blocks on each level from left to right
4574  * in a single pass, and then move to the next level and do the same. We can
4575  * also do readahead on the sibling pointers to get IO moving more quickly,
4576  * though for slow disks this is unlikely to make much difference to performance
4577  * as the amount of CPU work we have to do before moving to the next block is
4578  * relatively small.
4579  *
4580  * For each btree block that we load, modify the owner appropriately, set the
4581  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4582  * we mark the region we change dirty so that if the buffer is relogged in
4583  * a subsequent transaction the changes we make here as an ordered buffer are
4584  * correctly relogged in that transaction.  If we are in recovery context, then
4585  * just queue the modified buffer as delayed write buffer so the transaction
4586  * recovery completion writes the changes to disk.
4587  */
4588 struct xfs_btree_block_change_owner_info {
4589 	uint64_t		new_owner;
4590 	struct list_head	*buffer_list;
4591 };
4592 
4593 static int
4594 xfs_btree_block_change_owner(
4595 	struct xfs_btree_cur	*cur,
4596 	int			level,
4597 	void			*data)
4598 {
4599 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4600 	struct xfs_btree_block	*block;
4601 	struct xfs_buf		*bp;
4602 
4603 	/* modify the owner */
4604 	block = xfs_btree_get_block(cur, level, &bp);
4605 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4606 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4607 			return 0;
4608 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4609 	} else {
4610 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4611 			return 0;
4612 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4613 	}
4614 
4615 	/*
4616 	 * If the block is a root block hosted in an inode, we might not have a
4617 	 * buffer pointer here and we shouldn't attempt to log the change as the
4618 	 * information is already held in the inode and discarded when the root
4619 	 * block is formatted into the on-disk inode fork. We still change it,
4620 	 * though, so everything is consistent in memory.
4621 	 */
4622 	if (!bp) {
4623 		ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4624 		ASSERT(level == cur->bc_nlevels - 1);
4625 		return 0;
4626 	}
4627 
4628 	if (cur->bc_tp) {
4629 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4630 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4631 			return -EAGAIN;
4632 		}
4633 	} else {
4634 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4635 	}
4636 
4637 	return 0;
4638 }
4639 
4640 int
4641 xfs_btree_change_owner(
4642 	struct xfs_btree_cur	*cur,
4643 	uint64_t		new_owner,
4644 	struct list_head	*buffer_list)
4645 {
4646 	struct xfs_btree_block_change_owner_info	bbcoi;
4647 
4648 	bbcoi.new_owner = new_owner;
4649 	bbcoi.buffer_list = buffer_list;
4650 
4651 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4652 			XFS_BTREE_VISIT_ALL, &bbcoi);
4653 }
4654 
4655 /* Verify the v5 fields of a long-format btree block. */
4656 xfs_failaddr_t
4657 xfs_btree_fsblock_v5hdr_verify(
4658 	struct xfs_buf		*bp,
4659 	uint64_t		owner)
4660 {
4661 	struct xfs_mount	*mp = bp->b_mount;
4662 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4663 
4664 	if (!xfs_has_crc(mp))
4665 		return __this_address;
4666 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4667 		return __this_address;
4668 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4669 		return __this_address;
4670 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4671 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4672 		return __this_address;
4673 	return NULL;
4674 }
4675 
4676 /* Verify a long-format btree block. */
4677 xfs_failaddr_t
4678 xfs_btree_fsblock_verify(
4679 	struct xfs_buf		*bp,
4680 	unsigned int		max_recs)
4681 {
4682 	struct xfs_mount	*mp = bp->b_mount;
4683 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4684 	xfs_fsblock_t		fsb;
4685 	xfs_failaddr_t		fa;
4686 
4687 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4688 
4689 	/* numrecs verification */
4690 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4691 		return __this_address;
4692 
4693 	/* sibling pointer verification */
4694 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4695 	fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4696 			block->bb_u.l.bb_leftsib);
4697 	if (!fa)
4698 		fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4699 				block->bb_u.l.bb_rightsib);
4700 	return fa;
4701 }
4702 
4703 /* Verify an in-memory btree block. */
4704 xfs_failaddr_t
4705 xfs_btree_memblock_verify(
4706 	struct xfs_buf		*bp,
4707 	unsigned int		max_recs)
4708 {
4709 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4710 	struct xfs_buftarg	*btp = bp->b_target;
4711 	xfs_failaddr_t		fa;
4712 	xfbno_t			bno;
4713 
4714 	ASSERT(xfs_buftarg_is_mem(bp->b_target));
4715 
4716 	/* numrecs verification */
4717 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4718 		return __this_address;
4719 
4720 	/* sibling pointer verification */
4721 	bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4722 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4723 			block->bb_u.l.bb_leftsib);
4724 	if (fa)
4725 		return fa;
4726 	fa = xfs_btree_check_memblock_siblings(btp, bno,
4727 			block->bb_u.l.bb_rightsib);
4728 	if (fa)
4729 		return fa;
4730 
4731 	return NULL;
4732 }
4733 /**
4734  * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4735  *				      btree block
4736  *
4737  * @bp: buffer containing the btree block
4738  */
4739 xfs_failaddr_t
4740 xfs_btree_agblock_v5hdr_verify(
4741 	struct xfs_buf		*bp)
4742 {
4743 	struct xfs_mount	*mp = bp->b_mount;
4744 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4745 	struct xfs_perag	*pag = bp->b_pag;
4746 
4747 	if (!xfs_has_crc(mp))
4748 		return __this_address;
4749 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4750 		return __this_address;
4751 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4752 		return __this_address;
4753 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4754 		return __this_address;
4755 	return NULL;
4756 }
4757 
4758 /**
4759  * xfs_btree_agblock_verify() -- verify a short-format btree block
4760  *
4761  * @bp: buffer containing the btree block
4762  * @max_recs: maximum records allowed in this btree node
4763  */
4764 xfs_failaddr_t
4765 xfs_btree_agblock_verify(
4766 	struct xfs_buf		*bp,
4767 	unsigned int		max_recs)
4768 {
4769 	struct xfs_mount	*mp = bp->b_mount;
4770 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4771 	xfs_agblock_t		agbno;
4772 	xfs_failaddr_t		fa;
4773 
4774 	ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4775 
4776 	/* numrecs verification */
4777 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4778 		return __this_address;
4779 
4780 	/* sibling pointer verification */
4781 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4782 	fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4783 			block->bb_u.s.bb_leftsib);
4784 	if (!fa)
4785 		fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4786 				block->bb_u.s.bb_rightsib);
4787 	return fa;
4788 }
4789 
4790 /*
4791  * For the given limits on leaf and keyptr records per block, calculate the
4792  * height of the tree needed to index the number of leaf records.
4793  */
4794 unsigned int
4795 xfs_btree_compute_maxlevels(
4796 	const unsigned int	*limits,
4797 	unsigned long long	records)
4798 {
4799 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4800 	unsigned int		height = 1;
4801 
4802 	while (level_blocks > 1) {
4803 		level_blocks = howmany_64(level_blocks, limits[1]);
4804 		height++;
4805 	}
4806 
4807 	return height;
4808 }
4809 
4810 /*
4811  * For the given limits on leaf and keyptr records per block, calculate the
4812  * number of blocks needed to index the given number of leaf records.
4813  */
4814 unsigned long long
4815 xfs_btree_calc_size(
4816 	const unsigned int	*limits,
4817 	unsigned long long	records)
4818 {
4819 	unsigned long long	level_blocks = howmany_64(records, limits[0]);
4820 	unsigned long long	blocks = level_blocks;
4821 
4822 	while (level_blocks > 1) {
4823 		level_blocks = howmany_64(level_blocks, limits[1]);
4824 		blocks += level_blocks;
4825 	}
4826 
4827 	return blocks;
4828 }
4829 
4830 /*
4831  * Given a number of available blocks for the btree to consume with records and
4832  * pointers, calculate the height of the tree needed to index all the records
4833  * that space can hold based on the number of pointers each interior node
4834  * holds.
4835  *
4836  * We start by assuming a single level tree consumes a single block, then track
4837  * the number of blocks each node level consumes until we no longer have space
4838  * to store the next node level. At this point, we are indexing all the leaf
4839  * blocks in the space, and there's no more free space to split the tree any
4840  * further. That's our maximum btree height.
4841  */
4842 unsigned int
4843 xfs_btree_space_to_height(
4844 	const unsigned int	*limits,
4845 	unsigned long long	leaf_blocks)
4846 {
4847 	/*
4848 	 * The root btree block can have fewer than minrecs pointers in it
4849 	 * because the tree might not be big enough to require that amount of
4850 	 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4851 	 */
4852 	unsigned long long	node_blocks = 2;
4853 	unsigned long long	blocks_left = leaf_blocks - 1;
4854 	unsigned int		height = 1;
4855 
4856 	if (leaf_blocks < 1)
4857 		return 0;
4858 
4859 	while (node_blocks < blocks_left) {
4860 		blocks_left -= node_blocks;
4861 		node_blocks *= limits[1];
4862 		height++;
4863 	}
4864 
4865 	return height;
4866 }
4867 
4868 /*
4869  * Query a regular btree for all records overlapping a given interval.
4870  * Start with a LE lookup of the key of low_rec and return all records
4871  * until we find a record with a key greater than the key of high_rec.
4872  */
4873 STATIC int
4874 xfs_btree_simple_query_range(
4875 	struct xfs_btree_cur		*cur,
4876 	const union xfs_btree_key	*low_key,
4877 	const union xfs_btree_key	*high_key,
4878 	xfs_btree_query_range_fn	fn,
4879 	void				*priv)
4880 {
4881 	union xfs_btree_rec		*recp;
4882 	union xfs_btree_key		rec_key;
4883 	int				stat;
4884 	bool				firstrec = true;
4885 	int				error;
4886 
4887 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4888 	ASSERT(cur->bc_ops->diff_two_keys);
4889 
4890 	/*
4891 	 * Find the leftmost record.  The btree cursor must be set
4892 	 * to the low record used to generate low_key.
4893 	 */
4894 	stat = 0;
4895 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4896 	if (error)
4897 		goto out;
4898 
4899 	/* Nothing?  See if there's anything to the right. */
4900 	if (!stat) {
4901 		error = xfs_btree_increment(cur, 0, &stat);
4902 		if (error)
4903 			goto out;
4904 	}
4905 
4906 	while (stat) {
4907 		/* Find the record. */
4908 		error = xfs_btree_get_rec(cur, &recp, &stat);
4909 		if (error || !stat)
4910 			break;
4911 
4912 		/* Skip if low_key > high_key(rec). */
4913 		if (firstrec) {
4914 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4915 			firstrec = false;
4916 			if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4917 				goto advloop;
4918 		}
4919 
4920 		/* Stop if low_key(rec) > high_key. */
4921 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4922 		if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4923 			break;
4924 
4925 		/* Callback */
4926 		error = fn(cur, recp, priv);
4927 		if (error)
4928 			break;
4929 
4930 advloop:
4931 		/* Move on to the next record. */
4932 		error = xfs_btree_increment(cur, 0, &stat);
4933 		if (error)
4934 			break;
4935 	}
4936 
4937 out:
4938 	return error;
4939 }
4940 
4941 /*
4942  * Query an overlapped interval btree for all records overlapping a given
4943  * interval.  This function roughly follows the algorithm given in
4944  * "Interval Trees" of _Introduction to Algorithms_, which is section
4945  * 14.3 in the 2nd and 3rd editions.
4946  *
4947  * First, generate keys for the low and high records passed in.
4948  *
4949  * For any leaf node, generate the high and low keys for the record.
4950  * If the record keys overlap with the query low/high keys, pass the
4951  * record to the function iterator.
4952  *
4953  * For any internal node, compare the low and high keys of each
4954  * pointer against the query low/high keys.  If there's an overlap,
4955  * follow the pointer.
4956  *
4957  * As an optimization, we stop scanning a block when we find a low key
4958  * that is greater than the query's high key.
4959  */
4960 STATIC int
4961 xfs_btree_overlapped_query_range(
4962 	struct xfs_btree_cur		*cur,
4963 	const union xfs_btree_key	*low_key,
4964 	const union xfs_btree_key	*high_key,
4965 	xfs_btree_query_range_fn	fn,
4966 	void				*priv)
4967 {
4968 	union xfs_btree_ptr		ptr;
4969 	union xfs_btree_ptr		*pp;
4970 	union xfs_btree_key		rec_key;
4971 	union xfs_btree_key		rec_hkey;
4972 	union xfs_btree_key		*lkp;
4973 	union xfs_btree_key		*hkp;
4974 	union xfs_btree_rec		*recp;
4975 	struct xfs_btree_block		*block;
4976 	int				level;
4977 	struct xfs_buf			*bp;
4978 	int				i;
4979 	int				error;
4980 
4981 	/* Load the root of the btree. */
4982 	level = cur->bc_nlevels - 1;
4983 	xfs_btree_init_ptr_from_cur(cur, &ptr);
4984 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4985 	if (error)
4986 		return error;
4987 	xfs_btree_get_block(cur, level, &bp);
4988 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4989 #ifdef DEBUG
4990 	error = xfs_btree_check_block(cur, block, level, bp);
4991 	if (error)
4992 		goto out;
4993 #endif
4994 	cur->bc_levels[level].ptr = 1;
4995 
4996 	while (level < cur->bc_nlevels) {
4997 		block = xfs_btree_get_block(cur, level, &bp);
4998 
4999 		/* End of node, pop back towards the root. */
5000 		if (cur->bc_levels[level].ptr >
5001 					be16_to_cpu(block->bb_numrecs)) {
5002 pop_up:
5003 			if (level < cur->bc_nlevels - 1)
5004 				cur->bc_levels[level + 1].ptr++;
5005 			level++;
5006 			continue;
5007 		}
5008 
5009 		if (level == 0) {
5010 			/* Handle a leaf node. */
5011 			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5012 					block);
5013 
5014 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5015 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
5016 
5017 			/*
5018 			 * If (query's high key < record's low key), then there
5019 			 * are no more interesting records in this block.  Pop
5020 			 * up to the leaf level to find more record blocks.
5021 			 *
5022 			 * If (record's high key >= query's low key) and
5023 			 *    (query's high key >= record's low key), then
5024 			 * this record overlaps the query range; callback.
5025 			 */
5026 			if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5027 				goto pop_up;
5028 			if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5029 				error = fn(cur, recp, priv);
5030 				if (error)
5031 					break;
5032 			}
5033 			cur->bc_levels[level].ptr++;
5034 			continue;
5035 		}
5036 
5037 		/* Handle an internal node. */
5038 		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5039 		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5040 				block);
5041 		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5042 
5043 		/*
5044 		 * If (query's high key < pointer's low key), then there are no
5045 		 * more interesting keys in this block.  Pop up one leaf level
5046 		 * to continue looking for records.
5047 		 *
5048 		 * If (pointer's high key >= query's low key) and
5049 		 *    (query's high key >= pointer's low key), then
5050 		 * this record overlaps the query range; follow pointer.
5051 		 */
5052 		if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5053 			goto pop_up;
5054 		if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5055 			level--;
5056 			error = xfs_btree_lookup_get_block(cur, level, pp,
5057 					&block);
5058 			if (error)
5059 				goto out;
5060 			xfs_btree_get_block(cur, level, &bp);
5061 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
5062 #ifdef DEBUG
5063 			error = xfs_btree_check_block(cur, block, level, bp);
5064 			if (error)
5065 				goto out;
5066 #endif
5067 			cur->bc_levels[level].ptr = 1;
5068 			continue;
5069 		}
5070 		cur->bc_levels[level].ptr++;
5071 	}
5072 
5073 out:
5074 	/*
5075 	 * If we don't end this function with the cursor pointing at a record
5076 	 * block, a subsequent non-error cursor deletion will not release
5077 	 * node-level buffers, causing a buffer leak.  This is quite possible
5078 	 * with a zero-results range query, so release the buffers if we
5079 	 * failed to return any results.
5080 	 */
5081 	if (cur->bc_levels[0].bp == NULL) {
5082 		for (i = 0; i < cur->bc_nlevels; i++) {
5083 			if (cur->bc_levels[i].bp) {
5084 				xfs_trans_brelse(cur->bc_tp,
5085 						cur->bc_levels[i].bp);
5086 				cur->bc_levels[i].bp = NULL;
5087 				cur->bc_levels[i].ptr = 0;
5088 				cur->bc_levels[i].ra = 0;
5089 			}
5090 		}
5091 	}
5092 
5093 	return error;
5094 }
5095 
5096 static inline void
5097 xfs_btree_key_from_irec(
5098 	struct xfs_btree_cur		*cur,
5099 	union xfs_btree_key		*key,
5100 	const union xfs_btree_irec	*irec)
5101 {
5102 	union xfs_btree_rec		rec;
5103 
5104 	cur->bc_rec = *irec;
5105 	cur->bc_ops->init_rec_from_cur(cur, &rec);
5106 	cur->bc_ops->init_key_from_rec(key, &rec);
5107 }
5108 
5109 /*
5110  * Query a btree for all records overlapping a given interval of keys.  The
5111  * supplied function will be called with each record found; return one of the
5112  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5113  * code.  This function returns -ECANCELED, zero, or a negative error code.
5114  */
5115 int
5116 xfs_btree_query_range(
5117 	struct xfs_btree_cur		*cur,
5118 	const union xfs_btree_irec	*low_rec,
5119 	const union xfs_btree_irec	*high_rec,
5120 	xfs_btree_query_range_fn	fn,
5121 	void				*priv)
5122 {
5123 	union xfs_btree_key		low_key;
5124 	union xfs_btree_key		high_key;
5125 
5126 	/* Find the keys of both ends of the interval. */
5127 	xfs_btree_key_from_irec(cur, &high_key, high_rec);
5128 	xfs_btree_key_from_irec(cur, &low_key, low_rec);
5129 
5130 	/* Enforce low key <= high key. */
5131 	if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5132 		return -EINVAL;
5133 
5134 	if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5135 		return xfs_btree_simple_query_range(cur, &low_key,
5136 				&high_key, fn, priv);
5137 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5138 			fn, priv);
5139 }
5140 
5141 /* Query a btree for all records. */
5142 int
5143 xfs_btree_query_all(
5144 	struct xfs_btree_cur		*cur,
5145 	xfs_btree_query_range_fn	fn,
5146 	void				*priv)
5147 {
5148 	union xfs_btree_key		low_key;
5149 	union xfs_btree_key		high_key;
5150 
5151 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5152 	memset(&low_key, 0, sizeof(low_key));
5153 	memset(&high_key, 0xFF, sizeof(high_key));
5154 
5155 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5156 }
5157 
5158 static int
5159 xfs_btree_count_blocks_helper(
5160 	struct xfs_btree_cur	*cur,
5161 	int			level,
5162 	void			*data)
5163 {
5164 	xfs_filblks_t		*blocks = data;
5165 	(*blocks)++;
5166 
5167 	return 0;
5168 }
5169 
5170 /* Count the blocks in a btree and return the result in *blocks. */
5171 int
5172 xfs_btree_count_blocks(
5173 	struct xfs_btree_cur	*cur,
5174 	xfs_filblks_t		*blocks)
5175 {
5176 	*blocks = 0;
5177 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5178 			XFS_BTREE_VISIT_ALL, blocks);
5179 }
5180 
5181 /* Compare two btree pointers. */
5182 int64_t
5183 xfs_btree_diff_two_ptrs(
5184 	struct xfs_btree_cur		*cur,
5185 	const union xfs_btree_ptr	*a,
5186 	const union xfs_btree_ptr	*b)
5187 {
5188 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5189 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5190 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5191 }
5192 
5193 struct xfs_btree_has_records {
5194 	/* Keys for the start and end of the range we want to know about. */
5195 	union xfs_btree_key		start_key;
5196 	union xfs_btree_key		end_key;
5197 
5198 	/* Mask for key comparisons, if desired. */
5199 	const union xfs_btree_key	*key_mask;
5200 
5201 	/* Highest record key we've seen so far. */
5202 	union xfs_btree_key		high_key;
5203 
5204 	enum xbtree_recpacking		outcome;
5205 };
5206 
5207 STATIC int
5208 xfs_btree_has_records_helper(
5209 	struct xfs_btree_cur		*cur,
5210 	const union xfs_btree_rec	*rec,
5211 	void				*priv)
5212 {
5213 	union xfs_btree_key		rec_key;
5214 	union xfs_btree_key		rec_high_key;
5215 	struct xfs_btree_has_records	*info = priv;
5216 	enum xbtree_key_contig		key_contig;
5217 
5218 	cur->bc_ops->init_key_from_rec(&rec_key, rec);
5219 
5220 	if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5221 		info->outcome = XBTREE_RECPACKING_SPARSE;
5222 
5223 		/*
5224 		 * If the first record we find does not overlap the start key,
5225 		 * then there is a hole at the start of the search range.
5226 		 * Classify this as sparse and stop immediately.
5227 		 */
5228 		if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5229 					info->key_mask))
5230 			return -ECANCELED;
5231 	} else {
5232 		/*
5233 		 * If a subsequent record does not overlap with the any record
5234 		 * we've seen so far, there is a hole in the middle of the
5235 		 * search range.  Classify this as sparse and stop.
5236 		 * If the keys overlap and this btree does not allow overlap,
5237 		 * signal corruption.
5238 		 */
5239 		key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5240 					&rec_key, info->key_mask);
5241 		if (key_contig == XBTREE_KEY_OVERLAP &&
5242 				!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5243 			return -EFSCORRUPTED;
5244 		if (key_contig == XBTREE_KEY_GAP)
5245 			return -ECANCELED;
5246 	}
5247 
5248 	/*
5249 	 * If high_key(rec) is larger than any other high key we've seen,
5250 	 * remember it for later.
5251 	 */
5252 	cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5253 	if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5254 				info->key_mask))
5255 		info->high_key = rec_high_key; /* struct copy */
5256 
5257 	return 0;
5258 }
5259 
5260 /*
5261  * Scan part of the keyspace of a btree and tell us if that keyspace does not
5262  * map to any records; is fully mapped to records; or is partially mapped to
5263  * records.  This is the btree record equivalent to determining if a file is
5264  * sparse.
5265  *
5266  * For most btree types, the record scan should use all available btree key
5267  * fields to compare the keys encountered.  These callers should pass NULL for
5268  * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5269  * want to ignore some part of the btree record keyspace when performing the
5270  * comparison.  These callers should pass in a union xfs_btree_key object with
5271  * the fields that *should* be a part of the comparison set to any nonzero
5272  * value, and the rest zeroed.
5273  */
5274 int
5275 xfs_btree_has_records(
5276 	struct xfs_btree_cur		*cur,
5277 	const union xfs_btree_irec	*low,
5278 	const union xfs_btree_irec	*high,
5279 	const union xfs_btree_key	*mask,
5280 	enum xbtree_recpacking		*outcome)
5281 {
5282 	struct xfs_btree_has_records	info = {
5283 		.outcome		= XBTREE_RECPACKING_EMPTY,
5284 		.key_mask		= mask,
5285 	};
5286 	int				error;
5287 
5288 	/* Not all btrees support this operation. */
5289 	if (!cur->bc_ops->keys_contiguous) {
5290 		ASSERT(0);
5291 		return -EOPNOTSUPP;
5292 	}
5293 
5294 	xfs_btree_key_from_irec(cur, &info.start_key, low);
5295 	xfs_btree_key_from_irec(cur, &info.end_key, high);
5296 
5297 	error = xfs_btree_query_range(cur, low, high,
5298 			xfs_btree_has_records_helper, &info);
5299 	if (error == -ECANCELED)
5300 		goto out;
5301 	if (error)
5302 		return error;
5303 
5304 	if (info.outcome == XBTREE_RECPACKING_EMPTY)
5305 		goto out;
5306 
5307 	/*
5308 	 * If the largest high_key(rec) we saw during the walk is greater than
5309 	 * the end of the search range, classify this as full.  Otherwise,
5310 	 * there is a hole at the end of the search range.
5311 	 */
5312 	if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5313 				mask))
5314 		info.outcome = XBTREE_RECPACKING_FULL;
5315 
5316 out:
5317 	*outcome = info.outcome;
5318 	return 0;
5319 }
5320 
5321 /* Are there more records in this btree? */
5322 bool
5323 xfs_btree_has_more_records(
5324 	struct xfs_btree_cur	*cur)
5325 {
5326 	struct xfs_btree_block	*block;
5327 	struct xfs_buf		*bp;
5328 
5329 	block = xfs_btree_get_block(cur, 0, &bp);
5330 
5331 	/* There are still records in this block. */
5332 	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5333 		return true;
5334 
5335 	/* There are more record blocks. */
5336 	if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5337 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5338 	else
5339 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5340 }
5341 
5342 /* Set up all the btree cursor caches. */
5343 int __init
5344 xfs_btree_init_cur_caches(void)
5345 {
5346 	int		error;
5347 
5348 	error = xfs_allocbt_init_cur_cache();
5349 	if (error)
5350 		return error;
5351 	error = xfs_inobt_init_cur_cache();
5352 	if (error)
5353 		goto err;
5354 	error = xfs_bmbt_init_cur_cache();
5355 	if (error)
5356 		goto err;
5357 	error = xfs_rmapbt_init_cur_cache();
5358 	if (error)
5359 		goto err;
5360 	error = xfs_refcountbt_init_cur_cache();
5361 	if (error)
5362 		goto err;
5363 
5364 	return 0;
5365 err:
5366 	xfs_btree_destroy_cur_caches();
5367 	return error;
5368 }
5369 
5370 /* Destroy all the btree cursor caches, if they've been allocated. */
5371 void
5372 xfs_btree_destroy_cur_caches(void)
5373 {
5374 	xfs_allocbt_destroy_cur_cache();
5375 	xfs_inobt_destroy_cur_cache();
5376 	xfs_bmbt_destroy_cur_cache();
5377 	xfs_rmapbt_destroy_cur_cache();
5378 	xfs_refcountbt_destroy_cur_cache();
5379 }
5380 
5381 /* Move the btree cursor before the first record. */
5382 int
5383 xfs_btree_goto_left_edge(
5384 	struct xfs_btree_cur	*cur)
5385 {
5386 	int			stat = 0;
5387 	int			error;
5388 
5389 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5390 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5391 	if (error)
5392 		return error;
5393 	if (!stat)
5394 		return 0;
5395 
5396 	error = xfs_btree_decrement(cur, 0, &stat);
5397 	if (error)
5398 		return error;
5399 	if (stat != 0) {
5400 		ASSERT(0);
5401 		xfs_btree_mark_sick(cur);
5402 		return -EFSCORRUPTED;
5403 	}
5404 
5405 	return 0;
5406 }
5407