1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_errortag.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_alloc.h" 22 #include "xfs_log.h" 23 #include "xfs_btree_staging.h" 24 #include "xfs_ag.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_ialloc_btree.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_rmap_btree.h" 29 #include "xfs_refcount_btree.h" 30 #include "xfs_health.h" 31 #include "xfs_buf_mem.h" 32 #include "xfs_btree_mem.h" 33 34 /* 35 * Btree magic numbers. 36 */ 37 uint32_t 38 xfs_btree_magic( 39 struct xfs_mount *mp, 40 const struct xfs_btree_ops *ops) 41 { 42 int idx = xfs_has_crc(mp) ? 1 : 0; 43 __be32 magic = ops->buf_ops->magic[idx]; 44 45 /* Ensure we asked for crc for crc-only magics. */ 46 ASSERT(magic != 0); 47 return be32_to_cpu(magic); 48 } 49 50 /* 51 * These sibling pointer checks are optimised for null sibling pointers. This 52 * happens a lot, and we don't need to byte swap at runtime if the sibling 53 * pointer is NULL. 54 * 55 * These are explicitly marked at inline because the cost of calling them as 56 * functions instead of inlining them is about 36 bytes extra code per call site 57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these 58 * two sibling check functions reduces the compiled code size by over 300 59 * bytes. 60 */ 61 static inline xfs_failaddr_t 62 xfs_btree_check_fsblock_siblings( 63 struct xfs_mount *mp, 64 xfs_fsblock_t fsb, 65 __be64 dsibling) 66 { 67 xfs_fsblock_t sibling; 68 69 if (dsibling == cpu_to_be64(NULLFSBLOCK)) 70 return NULL; 71 72 sibling = be64_to_cpu(dsibling); 73 if (sibling == fsb) 74 return __this_address; 75 if (!xfs_verify_fsbno(mp, sibling)) 76 return __this_address; 77 return NULL; 78 } 79 80 static inline xfs_failaddr_t 81 xfs_btree_check_memblock_siblings( 82 struct xfs_buftarg *btp, 83 xfbno_t bno, 84 __be64 dsibling) 85 { 86 xfbno_t sibling; 87 88 if (dsibling == cpu_to_be64(NULLFSBLOCK)) 89 return NULL; 90 91 sibling = be64_to_cpu(dsibling); 92 if (sibling == bno) 93 return __this_address; 94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling))) 95 return __this_address; 96 return NULL; 97 } 98 99 static inline xfs_failaddr_t 100 xfs_btree_check_agblock_siblings( 101 struct xfs_perag *pag, 102 xfs_agblock_t agbno, 103 __be32 dsibling) 104 { 105 xfs_agblock_t sibling; 106 107 if (dsibling == cpu_to_be32(NULLAGBLOCK)) 108 return NULL; 109 110 sibling = be32_to_cpu(dsibling); 111 if (sibling == agbno) 112 return __this_address; 113 if (!xfs_verify_agbno(pag, sibling)) 114 return __this_address; 115 return NULL; 116 } 117 118 static xfs_failaddr_t 119 __xfs_btree_check_lblock_hdr( 120 struct xfs_btree_cur *cur, 121 struct xfs_btree_block *block, 122 int level, 123 struct xfs_buf *bp) 124 { 125 struct xfs_mount *mp = cur->bc_mp; 126 127 if (xfs_has_crc(mp)) { 128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 129 return __this_address; 130 if (block->bb_u.l.bb_blkno != 131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) 132 return __this_address; 133 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 134 return __this_address; 135 } 136 137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops)) 138 return __this_address; 139 if (be16_to_cpu(block->bb_level) != level) 140 return __this_address; 141 if (be16_to_cpu(block->bb_numrecs) > 142 cur->bc_ops->get_maxrecs(cur, level)) 143 return __this_address; 144 145 return NULL; 146 } 147 148 /* 149 * Check a long btree block header. Return the address of the failing check, 150 * or NULL if everything is ok. 151 */ 152 static xfs_failaddr_t 153 __xfs_btree_check_fsblock( 154 struct xfs_btree_cur *cur, 155 struct xfs_btree_block *block, 156 int level, 157 struct xfs_buf *bp) 158 { 159 struct xfs_mount *mp = cur->bc_mp; 160 xfs_failaddr_t fa; 161 xfs_fsblock_t fsb; 162 163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp); 164 if (fa) 165 return fa; 166 167 /* 168 * For inode-rooted btrees, the root block sits in the inode fork. In 169 * that case bp is NULL, and the block must not have any siblings. 170 */ 171 if (!bp) { 172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK)) 173 return __this_address; 174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK)) 175 return __this_address; 176 return NULL; 177 } 178 179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 180 fa = xfs_btree_check_fsblock_siblings(mp, fsb, 181 block->bb_u.l.bb_leftsib); 182 if (!fa) 183 fa = xfs_btree_check_fsblock_siblings(mp, fsb, 184 block->bb_u.l.bb_rightsib); 185 return fa; 186 } 187 188 /* 189 * Check an in-memory btree block header. Return the address of the failing 190 * check, or NULL if everything is ok. 191 */ 192 static xfs_failaddr_t 193 __xfs_btree_check_memblock( 194 struct xfs_btree_cur *cur, 195 struct xfs_btree_block *block, 196 int level, 197 struct xfs_buf *bp) 198 { 199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target; 200 xfs_failaddr_t fa; 201 xfbno_t bno; 202 203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp); 204 if (fa) 205 return fa; 206 207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp)); 208 fa = xfs_btree_check_memblock_siblings(btp, bno, 209 block->bb_u.l.bb_leftsib); 210 if (!fa) 211 fa = xfs_btree_check_memblock_siblings(btp, bno, 212 block->bb_u.l.bb_rightsib); 213 return fa; 214 } 215 216 /* 217 * Check a short btree block header. Return the address of the failing check, 218 * or NULL if everything is ok. 219 */ 220 static xfs_failaddr_t 221 __xfs_btree_check_agblock( 222 struct xfs_btree_cur *cur, 223 struct xfs_btree_block *block, 224 int level, 225 struct xfs_buf *bp) 226 { 227 struct xfs_mount *mp = cur->bc_mp; 228 struct xfs_perag *pag = cur->bc_ag.pag; 229 xfs_failaddr_t fa; 230 xfs_agblock_t agbno; 231 232 if (xfs_has_crc(mp)) { 233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 234 return __this_address; 235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 236 return __this_address; 237 } 238 239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops)) 240 return __this_address; 241 if (be16_to_cpu(block->bb_level) != level) 242 return __this_address; 243 if (be16_to_cpu(block->bb_numrecs) > 244 cur->bc_ops->get_maxrecs(cur, level)) 245 return __this_address; 246 247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); 248 fa = xfs_btree_check_agblock_siblings(pag, agbno, 249 block->bb_u.s.bb_leftsib); 250 if (!fa) 251 fa = xfs_btree_check_agblock_siblings(pag, agbno, 252 block->bb_u.s.bb_rightsib); 253 return fa; 254 } 255 256 /* 257 * Internal btree block check. 258 * 259 * Return NULL if the block is ok or the address of the failed check otherwise. 260 */ 261 xfs_failaddr_t 262 __xfs_btree_check_block( 263 struct xfs_btree_cur *cur, 264 struct xfs_btree_block *block, 265 int level, 266 struct xfs_buf *bp) 267 { 268 switch (cur->bc_ops->type) { 269 case XFS_BTREE_TYPE_MEM: 270 return __xfs_btree_check_memblock(cur, block, level, bp); 271 case XFS_BTREE_TYPE_AG: 272 return __xfs_btree_check_agblock(cur, block, level, bp); 273 case XFS_BTREE_TYPE_INODE: 274 return __xfs_btree_check_fsblock(cur, block, level, bp); 275 default: 276 ASSERT(0); 277 return __this_address; 278 } 279 } 280 281 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur) 282 { 283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN) 284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK; 285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK; 286 } 287 288 /* 289 * Debug routine: check that block header is ok. 290 */ 291 int 292 xfs_btree_check_block( 293 struct xfs_btree_cur *cur, /* btree cursor */ 294 struct xfs_btree_block *block, /* generic btree block pointer */ 295 int level, /* level of the btree block */ 296 struct xfs_buf *bp) /* buffer containing block, if any */ 297 { 298 struct xfs_mount *mp = cur->bc_mp; 299 xfs_failaddr_t fa; 300 301 fa = __xfs_btree_check_block(cur, block, level, bp); 302 if (XFS_IS_CORRUPT(mp, fa != NULL) || 303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) { 304 if (bp) 305 trace_xfs_btree_corrupt(bp, _RET_IP_); 306 xfs_btree_mark_sick(cur); 307 return -EFSCORRUPTED; 308 } 309 return 0; 310 } 311 312 int 313 __xfs_btree_check_ptr( 314 struct xfs_btree_cur *cur, 315 const union xfs_btree_ptr *ptr, 316 int index, 317 int level) 318 { 319 if (level <= 0) 320 return -EFSCORRUPTED; 321 322 switch (cur->bc_ops->type) { 323 case XFS_BTREE_TYPE_MEM: 324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree, 325 be64_to_cpu((&ptr->l)[index]))) 326 return -EFSCORRUPTED; 327 break; 328 case XFS_BTREE_TYPE_INODE: 329 if (!xfs_verify_fsbno(cur->bc_mp, 330 be64_to_cpu((&ptr->l)[index]))) 331 return -EFSCORRUPTED; 332 break; 333 case XFS_BTREE_TYPE_AG: 334 if (!xfs_verify_agbno(cur->bc_ag.pag, 335 be32_to_cpu((&ptr->s)[index]))) 336 return -EFSCORRUPTED; 337 break; 338 } 339 340 return 0; 341 } 342 343 /* 344 * Check that a given (indexed) btree pointer at a certain level of a 345 * btree is valid and doesn't point past where it should. 346 */ 347 static int 348 xfs_btree_check_ptr( 349 struct xfs_btree_cur *cur, 350 const union xfs_btree_ptr *ptr, 351 int index, 352 int level) 353 { 354 int error; 355 356 error = __xfs_btree_check_ptr(cur, ptr, index, level); 357 if (error) { 358 switch (cur->bc_ops->type) { 359 case XFS_BTREE_TYPE_MEM: 360 xfs_err(cur->bc_mp, 361 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.", 362 cur->bc_ops->name, cur->bc_flags, level, index, 363 __this_address); 364 break; 365 case XFS_BTREE_TYPE_INODE: 366 xfs_err(cur->bc_mp, 367 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.", 368 cur->bc_ino.ip->i_ino, 369 cur->bc_ino.whichfork, cur->bc_ops->name, 370 level, index); 371 break; 372 case XFS_BTREE_TYPE_AG: 373 xfs_err(cur->bc_mp, 374 "AG %u: Corrupt %sbt pointer at level %d index %d.", 375 cur->bc_ag.pag->pag_agno, cur->bc_ops->name, 376 level, index); 377 break; 378 } 379 xfs_btree_mark_sick(cur); 380 } 381 382 return error; 383 } 384 385 #ifdef DEBUG 386 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr 387 #else 388 # define xfs_btree_debug_check_ptr(...) (0) 389 #endif 390 391 /* 392 * Calculate CRC on the whole btree block and stuff it into the 393 * long-form btree header. 394 * 395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 396 * it into the buffer so recovery knows what the last modification was that made 397 * it to disk. 398 */ 399 void 400 xfs_btree_fsblock_calc_crc( 401 struct xfs_buf *bp) 402 { 403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 404 struct xfs_buf_log_item *bip = bp->b_log_item; 405 406 if (!xfs_has_crc(bp->b_mount)) 407 return; 408 if (bip) 409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 411 } 412 413 bool 414 xfs_btree_fsblock_verify_crc( 415 struct xfs_buf *bp) 416 { 417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 418 struct xfs_mount *mp = bp->b_mount; 419 420 if (xfs_has_crc(mp)) { 421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 422 return false; 423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 424 } 425 426 return true; 427 } 428 429 /* 430 * Calculate CRC on the whole btree block and stuff it into the 431 * short-form btree header. 432 * 433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 434 * it into the buffer so recovery knows what the last modification was that made 435 * it to disk. 436 */ 437 void 438 xfs_btree_agblock_calc_crc( 439 struct xfs_buf *bp) 440 { 441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 442 struct xfs_buf_log_item *bip = bp->b_log_item; 443 444 if (!xfs_has_crc(bp->b_mount)) 445 return; 446 if (bip) 447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 449 } 450 451 bool 452 xfs_btree_agblock_verify_crc( 453 struct xfs_buf *bp) 454 { 455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 456 struct xfs_mount *mp = bp->b_mount; 457 458 if (xfs_has_crc(mp)) { 459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 460 return false; 461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 462 } 463 464 return true; 465 } 466 467 static int 468 xfs_btree_free_block( 469 struct xfs_btree_cur *cur, 470 struct xfs_buf *bp) 471 { 472 int error; 473 474 trace_xfs_btree_free_block(cur, bp); 475 476 /* 477 * Don't allow block freeing for a staging cursor, because staging 478 * cursors do not support regular btree modifications. 479 */ 480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) { 481 ASSERT(0); 482 return -EFSCORRUPTED; 483 } 484 485 error = cur->bc_ops->free_block(cur, bp); 486 if (!error) { 487 xfs_trans_binval(cur->bc_tp, bp); 488 XFS_BTREE_STATS_INC(cur, free); 489 } 490 return error; 491 } 492 493 /* 494 * Delete the btree cursor. 495 */ 496 void 497 xfs_btree_del_cursor( 498 struct xfs_btree_cur *cur, /* btree cursor */ 499 int error) /* del because of error */ 500 { 501 int i; /* btree level */ 502 503 /* 504 * Clear the buffer pointers and release the buffers. If we're doing 505 * this because of an error, inspect all of the entries in the bc_bufs 506 * array for buffers to be unlocked. This is because some of the btree 507 * code works from level n down to 0, and if we get an error along the 508 * way we won't have initialized all the entries down to 0. 509 */ 510 for (i = 0; i < cur->bc_nlevels; i++) { 511 if (cur->bc_levels[i].bp) 512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp); 513 else if (!error) 514 break; 515 } 516 517 /* 518 * If we are doing a BMBT update, the number of unaccounted blocks 519 * allocated during this cursor life time should be zero. If it's not 520 * zero, then we should be shut down or on our way to shutdown due to 521 * cancelling a dirty transaction on error. 522 */ 523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 || 524 xfs_is_shutdown(cur->bc_mp) || error != 0); 525 526 switch (cur->bc_ops->type) { 527 case XFS_BTREE_TYPE_AG: 528 if (cur->bc_ag.pag) 529 xfs_perag_put(cur->bc_ag.pag); 530 break; 531 case XFS_BTREE_TYPE_INODE: 532 /* nothing to do */ 533 break; 534 case XFS_BTREE_TYPE_MEM: 535 if (cur->bc_mem.pag) 536 xfs_perag_put(cur->bc_mem.pag); 537 break; 538 } 539 540 kmem_cache_free(cur->bc_cache, cur); 541 } 542 543 /* Return the buffer target for this btree's buffer. */ 544 static inline struct xfs_buftarg * 545 xfs_btree_buftarg( 546 struct xfs_btree_cur *cur) 547 { 548 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM) 549 return cur->bc_mem.xfbtree->target; 550 return cur->bc_mp->m_ddev_targp; 551 } 552 553 /* Return the block size (in units of 512b sectors) for this btree. */ 554 static inline unsigned int 555 xfs_btree_bbsize( 556 struct xfs_btree_cur *cur) 557 { 558 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM) 559 return XFBNO_BBSIZE; 560 return cur->bc_mp->m_bsize; 561 } 562 563 /* 564 * Duplicate the btree cursor. 565 * Allocate a new one, copy the record, re-get the buffers. 566 */ 567 int /* error */ 568 xfs_btree_dup_cursor( 569 struct xfs_btree_cur *cur, /* input cursor */ 570 struct xfs_btree_cur **ncur) /* output cursor */ 571 { 572 struct xfs_mount *mp = cur->bc_mp; 573 struct xfs_trans *tp = cur->bc_tp; 574 struct xfs_buf *bp; 575 struct xfs_btree_cur *new; 576 int error; 577 int i; 578 579 /* 580 * Don't allow staging cursors to be duplicated because they're supposed 581 * to be kept private to a single thread. 582 */ 583 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) { 584 ASSERT(0); 585 return -EFSCORRUPTED; 586 } 587 588 /* 589 * Allocate a new cursor like the old one. 590 */ 591 new = cur->bc_ops->dup_cursor(cur); 592 593 /* 594 * Copy the record currently in the cursor. 595 */ 596 new->bc_rec = cur->bc_rec; 597 598 /* 599 * For each level current, re-get the buffer and copy the ptr value. 600 */ 601 for (i = 0; i < new->bc_nlevels; i++) { 602 new->bc_levels[i].ptr = cur->bc_levels[i].ptr; 603 new->bc_levels[i].ra = cur->bc_levels[i].ra; 604 bp = cur->bc_levels[i].bp; 605 if (bp) { 606 error = xfs_trans_read_buf(mp, tp, 607 xfs_btree_buftarg(cur), 608 xfs_buf_daddr(bp), 609 xfs_btree_bbsize(cur), 0, &bp, 610 cur->bc_ops->buf_ops); 611 if (xfs_metadata_is_sick(error)) 612 xfs_btree_mark_sick(new); 613 if (error) { 614 xfs_btree_del_cursor(new, error); 615 *ncur = NULL; 616 return error; 617 } 618 } 619 new->bc_levels[i].bp = bp; 620 } 621 *ncur = new; 622 return 0; 623 } 624 625 /* 626 * XFS btree block layout and addressing: 627 * 628 * There are two types of blocks in the btree: leaf and non-leaf blocks. 629 * 630 * The leaf record start with a header then followed by records containing 631 * the values. A non-leaf block also starts with the same header, and 632 * then first contains lookup keys followed by an equal number of pointers 633 * to the btree blocks at the previous level. 634 * 635 * +--------+-------+-------+-------+-------+-------+-------+ 636 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 637 * +--------+-------+-------+-------+-------+-------+-------+ 638 * 639 * +--------+-------+-------+-------+-------+-------+-------+ 640 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 641 * +--------+-------+-------+-------+-------+-------+-------+ 642 * 643 * The header is called struct xfs_btree_block for reasons better left unknown 644 * and comes in different versions for short (32bit) and long (64bit) block 645 * pointers. The record and key structures are defined by the btree instances 646 * and opaque to the btree core. The block pointers are simple disk endian 647 * integers, available in a short (32bit) and long (64bit) variant. 648 * 649 * The helpers below calculate the offset of a given record, key or pointer 650 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 651 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 652 * inside the btree block is done using indices starting at one, not zero! 653 * 654 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing 655 * overlapping intervals. In such a tree, records are still sorted lowest to 656 * highest and indexed by the smallest key value that refers to the record. 657 * However, nodes are different: each pointer has two associated keys -- one 658 * indexing the lowest key available in the block(s) below (the same behavior 659 * as the key in a regular btree) and another indexing the highest key 660 * available in the block(s) below. Because records are /not/ sorted by the 661 * highest key, all leaf block updates require us to compute the highest key 662 * that matches any record in the leaf and to recursively update the high keys 663 * in the nodes going further up in the tree, if necessary. Nodes look like 664 * this: 665 * 666 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 667 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 668 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 669 * 670 * To perform an interval query on an overlapped tree, perform the usual 671 * depth-first search and use the low and high keys to decide if we can skip 672 * that particular node. If a leaf node is reached, return the records that 673 * intersect the interval. Note that an interval query may return numerous 674 * entries. For a non-overlapped tree, simply search for the record associated 675 * with the lowest key and iterate forward until a non-matching record is 676 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 677 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 678 * more detail. 679 * 680 * Why do we care about overlapping intervals? Let's say you have a bunch of 681 * reverse mapping records on a reflink filesystem: 682 * 683 * 1: +- file A startblock B offset C length D -----------+ 684 * 2: +- file E startblock F offset G length H --------------+ 685 * 3: +- file I startblock F offset J length K --+ 686 * 4: +- file L... --+ 687 * 688 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 689 * we'd simply increment the length of record 1. But how do we find the record 690 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 691 * record 3 because the keys are ordered first by startblock. An interval 692 * query would return records 1 and 2 because they both overlap (B+D-1), and 693 * from that we can pick out record 1 as the appropriate left neighbor. 694 * 695 * In the non-overlapped case you can do a LE lookup and decrement the cursor 696 * because a record's interval must end before the next record. 697 */ 698 699 /* 700 * Return size of the btree block header for this btree instance. 701 */ 702 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 703 { 704 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 705 if (xfs_has_crc(cur->bc_mp)) 706 return XFS_BTREE_LBLOCK_CRC_LEN; 707 return XFS_BTREE_LBLOCK_LEN; 708 } 709 if (xfs_has_crc(cur->bc_mp)) 710 return XFS_BTREE_SBLOCK_CRC_LEN; 711 return XFS_BTREE_SBLOCK_LEN; 712 } 713 714 /* 715 * Calculate offset of the n-th record in a btree block. 716 */ 717 STATIC size_t 718 xfs_btree_rec_offset( 719 struct xfs_btree_cur *cur, 720 int n) 721 { 722 return xfs_btree_block_len(cur) + 723 (n - 1) * cur->bc_ops->rec_len; 724 } 725 726 /* 727 * Calculate offset of the n-th key in a btree block. 728 */ 729 STATIC size_t 730 xfs_btree_key_offset( 731 struct xfs_btree_cur *cur, 732 int n) 733 { 734 return xfs_btree_block_len(cur) + 735 (n - 1) * cur->bc_ops->key_len; 736 } 737 738 /* 739 * Calculate offset of the n-th high key in a btree block. 740 */ 741 STATIC size_t 742 xfs_btree_high_key_offset( 743 struct xfs_btree_cur *cur, 744 int n) 745 { 746 return xfs_btree_block_len(cur) + 747 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 748 } 749 750 /* 751 * Calculate offset of the n-th block pointer in a btree block. 752 */ 753 STATIC size_t 754 xfs_btree_ptr_offset( 755 struct xfs_btree_cur *cur, 756 int n, 757 int level) 758 { 759 return xfs_btree_block_len(cur) + 760 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 761 (n - 1) * cur->bc_ops->ptr_len; 762 } 763 764 /* 765 * Return a pointer to the n-th record in the btree block. 766 */ 767 union xfs_btree_rec * 768 xfs_btree_rec_addr( 769 struct xfs_btree_cur *cur, 770 int n, 771 struct xfs_btree_block *block) 772 { 773 return (union xfs_btree_rec *) 774 ((char *)block + xfs_btree_rec_offset(cur, n)); 775 } 776 777 /* 778 * Return a pointer to the n-th key in the btree block. 779 */ 780 union xfs_btree_key * 781 xfs_btree_key_addr( 782 struct xfs_btree_cur *cur, 783 int n, 784 struct xfs_btree_block *block) 785 { 786 return (union xfs_btree_key *) 787 ((char *)block + xfs_btree_key_offset(cur, n)); 788 } 789 790 /* 791 * Return a pointer to the n-th high key in the btree block. 792 */ 793 union xfs_btree_key * 794 xfs_btree_high_key_addr( 795 struct xfs_btree_cur *cur, 796 int n, 797 struct xfs_btree_block *block) 798 { 799 return (union xfs_btree_key *) 800 ((char *)block + xfs_btree_high_key_offset(cur, n)); 801 } 802 803 /* 804 * Return a pointer to the n-th block pointer in the btree block. 805 */ 806 union xfs_btree_ptr * 807 xfs_btree_ptr_addr( 808 struct xfs_btree_cur *cur, 809 int n, 810 struct xfs_btree_block *block) 811 { 812 int level = xfs_btree_get_level(block); 813 814 ASSERT(block->bb_level != 0); 815 816 return (union xfs_btree_ptr *) 817 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 818 } 819 820 struct xfs_ifork * 821 xfs_btree_ifork_ptr( 822 struct xfs_btree_cur *cur) 823 { 824 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE); 825 826 if (cur->bc_flags & XFS_BTREE_STAGING) 827 return cur->bc_ino.ifake->if_fork; 828 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork); 829 } 830 831 /* 832 * Get the root block which is stored in the inode. 833 * 834 * For now this btree implementation assumes the btree root is always 835 * stored in the if_broot field of an inode fork. 836 */ 837 STATIC struct xfs_btree_block * 838 xfs_btree_get_iroot( 839 struct xfs_btree_cur *cur) 840 { 841 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 842 843 return (struct xfs_btree_block *)ifp->if_broot; 844 } 845 846 /* 847 * Retrieve the block pointer from the cursor at the given level. 848 * This may be an inode btree root or from a buffer. 849 */ 850 struct xfs_btree_block * /* generic btree block pointer */ 851 xfs_btree_get_block( 852 struct xfs_btree_cur *cur, /* btree cursor */ 853 int level, /* level in btree */ 854 struct xfs_buf **bpp) /* buffer containing the block */ 855 { 856 if (xfs_btree_at_iroot(cur, level)) { 857 *bpp = NULL; 858 return xfs_btree_get_iroot(cur); 859 } 860 861 *bpp = cur->bc_levels[level].bp; 862 return XFS_BUF_TO_BLOCK(*bpp); 863 } 864 865 /* 866 * Change the cursor to point to the first record at the given level. 867 * Other levels are unaffected. 868 */ 869 STATIC int /* success=1, failure=0 */ 870 xfs_btree_firstrec( 871 struct xfs_btree_cur *cur, /* btree cursor */ 872 int level) /* level to change */ 873 { 874 struct xfs_btree_block *block; /* generic btree block pointer */ 875 struct xfs_buf *bp; /* buffer containing block */ 876 877 /* 878 * Get the block pointer for this level. 879 */ 880 block = xfs_btree_get_block(cur, level, &bp); 881 if (xfs_btree_check_block(cur, block, level, bp)) 882 return 0; 883 /* 884 * It's empty, there is no such record. 885 */ 886 if (!block->bb_numrecs) 887 return 0; 888 /* 889 * Set the ptr value to 1, that's the first record/key. 890 */ 891 cur->bc_levels[level].ptr = 1; 892 return 1; 893 } 894 895 /* 896 * Change the cursor to point to the last record in the current block 897 * at the given level. Other levels are unaffected. 898 */ 899 STATIC int /* success=1, failure=0 */ 900 xfs_btree_lastrec( 901 struct xfs_btree_cur *cur, /* btree cursor */ 902 int level) /* level to change */ 903 { 904 struct xfs_btree_block *block; /* generic btree block pointer */ 905 struct xfs_buf *bp; /* buffer containing block */ 906 907 /* 908 * Get the block pointer for this level. 909 */ 910 block = xfs_btree_get_block(cur, level, &bp); 911 if (xfs_btree_check_block(cur, block, level, bp)) 912 return 0; 913 /* 914 * It's empty, there is no such record. 915 */ 916 if (!block->bb_numrecs) 917 return 0; 918 /* 919 * Set the ptr value to numrecs, that's the last record/key. 920 */ 921 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs); 922 return 1; 923 } 924 925 /* 926 * Compute first and last byte offsets for the fields given. 927 * Interprets the offsets table, which contains struct field offsets. 928 */ 929 void 930 xfs_btree_offsets( 931 uint32_t fields, /* bitmask of fields */ 932 const short *offsets, /* table of field offsets */ 933 int nbits, /* number of bits to inspect */ 934 int *first, /* output: first byte offset */ 935 int *last) /* output: last byte offset */ 936 { 937 int i; /* current bit number */ 938 uint32_t imask; /* mask for current bit number */ 939 940 ASSERT(fields != 0); 941 /* 942 * Find the lowest bit, so the first byte offset. 943 */ 944 for (i = 0, imask = 1u; ; i++, imask <<= 1) { 945 if (imask & fields) { 946 *first = offsets[i]; 947 break; 948 } 949 } 950 /* 951 * Find the highest bit, so the last byte offset. 952 */ 953 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) { 954 if (imask & fields) { 955 *last = offsets[i + 1] - 1; 956 break; 957 } 958 } 959 } 960 961 STATIC int 962 xfs_btree_readahead_fsblock( 963 struct xfs_btree_cur *cur, 964 int lr, 965 struct xfs_btree_block *block) 966 { 967 struct xfs_mount *mp = cur->bc_mp; 968 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 969 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 970 int rval = 0; 971 972 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 973 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left), 974 mp->m_bsize, cur->bc_ops->buf_ops); 975 rval++; 976 } 977 978 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 979 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right), 980 mp->m_bsize, cur->bc_ops->buf_ops); 981 rval++; 982 } 983 984 return rval; 985 } 986 987 STATIC int 988 xfs_btree_readahead_memblock( 989 struct xfs_btree_cur *cur, 990 int lr, 991 struct xfs_btree_block *block) 992 { 993 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target; 994 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 995 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 996 int rval = 0; 997 998 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 999 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE, 1000 cur->bc_ops->buf_ops); 1001 rval++; 1002 } 1003 1004 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 1005 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE, 1006 cur->bc_ops->buf_ops); 1007 rval++; 1008 } 1009 1010 return rval; 1011 } 1012 1013 STATIC int 1014 xfs_btree_readahead_agblock( 1015 struct xfs_btree_cur *cur, 1016 int lr, 1017 struct xfs_btree_block *block) 1018 { 1019 struct xfs_mount *mp = cur->bc_mp; 1020 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno; 1021 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 1022 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 1023 int rval = 0; 1024 1025 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 1026 xfs_buf_readahead(mp->m_ddev_targp, 1027 XFS_AGB_TO_DADDR(mp, agno, left), 1028 mp->m_bsize, cur->bc_ops->buf_ops); 1029 rval++; 1030 } 1031 1032 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 1033 xfs_buf_readahead(mp->m_ddev_targp, 1034 XFS_AGB_TO_DADDR(mp, agno, right), 1035 mp->m_bsize, cur->bc_ops->buf_ops); 1036 rval++; 1037 } 1038 1039 return rval; 1040 } 1041 1042 /* 1043 * Read-ahead btree blocks, at the given level. 1044 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 1045 */ 1046 STATIC int 1047 xfs_btree_readahead( 1048 struct xfs_btree_cur *cur, /* btree cursor */ 1049 int lev, /* level in btree */ 1050 int lr) /* left/right bits */ 1051 { 1052 struct xfs_btree_block *block; 1053 1054 /* 1055 * No readahead needed if we are at the root level and the 1056 * btree root is stored in the inode. 1057 */ 1058 if (xfs_btree_at_iroot(cur, lev)) 1059 return 0; 1060 1061 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra) 1062 return 0; 1063 1064 cur->bc_levels[lev].ra |= lr; 1065 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp); 1066 1067 switch (cur->bc_ops->type) { 1068 case XFS_BTREE_TYPE_AG: 1069 return xfs_btree_readahead_agblock(cur, lr, block); 1070 case XFS_BTREE_TYPE_INODE: 1071 return xfs_btree_readahead_fsblock(cur, lr, block); 1072 case XFS_BTREE_TYPE_MEM: 1073 return xfs_btree_readahead_memblock(cur, lr, block); 1074 default: 1075 ASSERT(0); 1076 return 0; 1077 } 1078 } 1079 1080 STATIC int 1081 xfs_btree_ptr_to_daddr( 1082 struct xfs_btree_cur *cur, 1083 const union xfs_btree_ptr *ptr, 1084 xfs_daddr_t *daddr) 1085 { 1086 int error; 1087 1088 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 1089 if (error) 1090 return error; 1091 1092 switch (cur->bc_ops->type) { 1093 case XFS_BTREE_TYPE_AG: 1094 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno, 1095 be32_to_cpu(ptr->s)); 1096 break; 1097 case XFS_BTREE_TYPE_INODE: 1098 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l)); 1099 break; 1100 case XFS_BTREE_TYPE_MEM: 1101 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l)); 1102 break; 1103 } 1104 return 0; 1105 } 1106 1107 /* 1108 * Readahead @count btree blocks at the given @ptr location. 1109 * 1110 * We don't need to care about long or short form btrees here as we have a 1111 * method of converting the ptr directly to a daddr available to us. 1112 */ 1113 STATIC void 1114 xfs_btree_readahead_ptr( 1115 struct xfs_btree_cur *cur, 1116 union xfs_btree_ptr *ptr, 1117 xfs_extlen_t count) 1118 { 1119 xfs_daddr_t daddr; 1120 1121 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 1122 return; 1123 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr, 1124 xfs_btree_bbsize(cur) * count, 1125 cur->bc_ops->buf_ops); 1126 } 1127 1128 /* 1129 * Set the buffer for level "lev" in the cursor to bp, releasing 1130 * any previous buffer. 1131 */ 1132 STATIC void 1133 xfs_btree_setbuf( 1134 struct xfs_btree_cur *cur, /* btree cursor */ 1135 int lev, /* level in btree */ 1136 struct xfs_buf *bp) /* new buffer to set */ 1137 { 1138 struct xfs_btree_block *b; /* btree block */ 1139 1140 if (cur->bc_levels[lev].bp) 1141 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp); 1142 cur->bc_levels[lev].bp = bp; 1143 cur->bc_levels[lev].ra = 0; 1144 1145 b = XFS_BUF_TO_BLOCK(bp); 1146 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 1147 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1148 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1149 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1150 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1151 } else { 1152 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1153 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1154 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1155 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1156 } 1157 } 1158 1159 bool 1160 xfs_btree_ptr_is_null( 1161 struct xfs_btree_cur *cur, 1162 const union xfs_btree_ptr *ptr) 1163 { 1164 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 1165 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1166 else 1167 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1168 } 1169 1170 void 1171 xfs_btree_set_ptr_null( 1172 struct xfs_btree_cur *cur, 1173 union xfs_btree_ptr *ptr) 1174 { 1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 1176 ptr->l = cpu_to_be64(NULLFSBLOCK); 1177 else 1178 ptr->s = cpu_to_be32(NULLAGBLOCK); 1179 } 1180 1181 static inline bool 1182 xfs_btree_ptrs_equal( 1183 struct xfs_btree_cur *cur, 1184 union xfs_btree_ptr *ptr1, 1185 union xfs_btree_ptr *ptr2) 1186 { 1187 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 1188 return ptr1->l == ptr2->l; 1189 return ptr1->s == ptr2->s; 1190 } 1191 1192 /* 1193 * Get/set/init sibling pointers 1194 */ 1195 void 1196 xfs_btree_get_sibling( 1197 struct xfs_btree_cur *cur, 1198 struct xfs_btree_block *block, 1199 union xfs_btree_ptr *ptr, 1200 int lr) 1201 { 1202 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1203 1204 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 1205 if (lr == XFS_BB_RIGHTSIB) 1206 ptr->l = block->bb_u.l.bb_rightsib; 1207 else 1208 ptr->l = block->bb_u.l.bb_leftsib; 1209 } else { 1210 if (lr == XFS_BB_RIGHTSIB) 1211 ptr->s = block->bb_u.s.bb_rightsib; 1212 else 1213 ptr->s = block->bb_u.s.bb_leftsib; 1214 } 1215 } 1216 1217 void 1218 xfs_btree_set_sibling( 1219 struct xfs_btree_cur *cur, 1220 struct xfs_btree_block *block, 1221 const union xfs_btree_ptr *ptr, 1222 int lr) 1223 { 1224 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1225 1226 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 1227 if (lr == XFS_BB_RIGHTSIB) 1228 block->bb_u.l.bb_rightsib = ptr->l; 1229 else 1230 block->bb_u.l.bb_leftsib = ptr->l; 1231 } else { 1232 if (lr == XFS_BB_RIGHTSIB) 1233 block->bb_u.s.bb_rightsib = ptr->s; 1234 else 1235 block->bb_u.s.bb_leftsib = ptr->s; 1236 } 1237 } 1238 1239 static void 1240 __xfs_btree_init_block( 1241 struct xfs_mount *mp, 1242 struct xfs_btree_block *buf, 1243 const struct xfs_btree_ops *ops, 1244 xfs_daddr_t blkno, 1245 __u16 level, 1246 __u16 numrecs, 1247 __u64 owner) 1248 { 1249 bool crc = xfs_has_crc(mp); 1250 __u32 magic = xfs_btree_magic(mp, ops); 1251 1252 buf->bb_magic = cpu_to_be32(magic); 1253 buf->bb_level = cpu_to_be16(level); 1254 buf->bb_numrecs = cpu_to_be16(numrecs); 1255 1256 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 1257 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1258 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1259 if (crc) { 1260 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1261 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1262 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1263 buf->bb_u.l.bb_pad = 0; 1264 buf->bb_u.l.bb_lsn = 0; 1265 } 1266 } else { 1267 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1268 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1269 if (crc) { 1270 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1271 /* owner is a 32 bit value on short blocks */ 1272 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner); 1273 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1274 buf->bb_u.s.bb_lsn = 0; 1275 } 1276 } 1277 } 1278 1279 void 1280 xfs_btree_init_block( 1281 struct xfs_mount *mp, 1282 struct xfs_btree_block *block, 1283 const struct xfs_btree_ops *ops, 1284 __u16 level, 1285 __u16 numrecs, 1286 __u64 owner) 1287 { 1288 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level, 1289 numrecs, owner); 1290 } 1291 1292 void 1293 xfs_btree_init_buf( 1294 struct xfs_mount *mp, 1295 struct xfs_buf *bp, 1296 const struct xfs_btree_ops *ops, 1297 __u16 level, 1298 __u16 numrecs, 1299 __u64 owner) 1300 { 1301 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops, 1302 xfs_buf_daddr(bp), level, numrecs, owner); 1303 bp->b_ops = ops->buf_ops; 1304 } 1305 1306 static inline __u64 1307 xfs_btree_owner( 1308 struct xfs_btree_cur *cur) 1309 { 1310 switch (cur->bc_ops->type) { 1311 case XFS_BTREE_TYPE_MEM: 1312 return cur->bc_mem.xfbtree->owner; 1313 case XFS_BTREE_TYPE_INODE: 1314 return cur->bc_ino.ip->i_ino; 1315 case XFS_BTREE_TYPE_AG: 1316 return cur->bc_ag.pag->pag_agno; 1317 default: 1318 ASSERT(0); 1319 return 0; 1320 } 1321 } 1322 1323 void 1324 xfs_btree_init_block_cur( 1325 struct xfs_btree_cur *cur, 1326 struct xfs_buf *bp, 1327 int level, 1328 int numrecs) 1329 { 1330 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs, 1331 xfs_btree_owner(cur)); 1332 } 1333 1334 /* 1335 * Return true if ptr is the last record in the btree and 1336 * we need to track updates to this record. The decision 1337 * will be further refined in the update_lastrec method. 1338 */ 1339 STATIC int 1340 xfs_btree_is_lastrec( 1341 struct xfs_btree_cur *cur, 1342 struct xfs_btree_block *block, 1343 int level) 1344 { 1345 union xfs_btree_ptr ptr; 1346 1347 if (level > 0) 1348 return 0; 1349 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE)) 1350 return 0; 1351 1352 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1353 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1354 return 0; 1355 return 1; 1356 } 1357 1358 STATIC void 1359 xfs_btree_buf_to_ptr( 1360 struct xfs_btree_cur *cur, 1361 struct xfs_buf *bp, 1362 union xfs_btree_ptr *ptr) 1363 { 1364 switch (cur->bc_ops->type) { 1365 case XFS_BTREE_TYPE_AG: 1366 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1367 xfs_buf_daddr(bp))); 1368 break; 1369 case XFS_BTREE_TYPE_INODE: 1370 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1371 xfs_buf_daddr(bp))); 1372 break; 1373 case XFS_BTREE_TYPE_MEM: 1374 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp))); 1375 break; 1376 } 1377 } 1378 1379 static inline void 1380 xfs_btree_set_refs( 1381 struct xfs_btree_cur *cur, 1382 struct xfs_buf *bp) 1383 { 1384 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs); 1385 } 1386 1387 int 1388 xfs_btree_get_buf_block( 1389 struct xfs_btree_cur *cur, 1390 const union xfs_btree_ptr *ptr, 1391 struct xfs_btree_block **block, 1392 struct xfs_buf **bpp) 1393 { 1394 xfs_daddr_t d; 1395 int error; 1396 1397 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1398 if (error) 1399 return error; 1400 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d, 1401 xfs_btree_bbsize(cur), 0, bpp); 1402 if (error) 1403 return error; 1404 1405 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1406 *block = XFS_BUF_TO_BLOCK(*bpp); 1407 return 0; 1408 } 1409 1410 /* 1411 * Read in the buffer at the given ptr and return the buffer and 1412 * the block pointer within the buffer. 1413 */ 1414 int 1415 xfs_btree_read_buf_block( 1416 struct xfs_btree_cur *cur, 1417 const union xfs_btree_ptr *ptr, 1418 int flags, 1419 struct xfs_btree_block **block, 1420 struct xfs_buf **bpp) 1421 { 1422 struct xfs_mount *mp = cur->bc_mp; 1423 xfs_daddr_t d; 1424 int error; 1425 1426 /* need to sort out how callers deal with failures first */ 1427 ASSERT(!(flags & XBF_TRYLOCK)); 1428 1429 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1430 if (error) 1431 return error; 1432 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d, 1433 xfs_btree_bbsize(cur), flags, bpp, 1434 cur->bc_ops->buf_ops); 1435 if (xfs_metadata_is_sick(error)) 1436 xfs_btree_mark_sick(cur); 1437 if (error) 1438 return error; 1439 1440 xfs_btree_set_refs(cur, *bpp); 1441 *block = XFS_BUF_TO_BLOCK(*bpp); 1442 return 0; 1443 } 1444 1445 /* 1446 * Copy keys from one btree block to another. 1447 */ 1448 void 1449 xfs_btree_copy_keys( 1450 struct xfs_btree_cur *cur, 1451 union xfs_btree_key *dst_key, 1452 const union xfs_btree_key *src_key, 1453 int numkeys) 1454 { 1455 ASSERT(numkeys >= 0); 1456 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1457 } 1458 1459 /* 1460 * Copy records from one btree block to another. 1461 */ 1462 STATIC void 1463 xfs_btree_copy_recs( 1464 struct xfs_btree_cur *cur, 1465 union xfs_btree_rec *dst_rec, 1466 union xfs_btree_rec *src_rec, 1467 int numrecs) 1468 { 1469 ASSERT(numrecs >= 0); 1470 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1471 } 1472 1473 /* 1474 * Copy block pointers from one btree block to another. 1475 */ 1476 void 1477 xfs_btree_copy_ptrs( 1478 struct xfs_btree_cur *cur, 1479 union xfs_btree_ptr *dst_ptr, 1480 const union xfs_btree_ptr *src_ptr, 1481 int numptrs) 1482 { 1483 ASSERT(numptrs >= 0); 1484 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len); 1485 } 1486 1487 /* 1488 * Shift keys one index left/right inside a single btree block. 1489 */ 1490 STATIC void 1491 xfs_btree_shift_keys( 1492 struct xfs_btree_cur *cur, 1493 union xfs_btree_key *key, 1494 int dir, 1495 int numkeys) 1496 { 1497 char *dst_key; 1498 1499 ASSERT(numkeys >= 0); 1500 ASSERT(dir == 1 || dir == -1); 1501 1502 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1503 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1504 } 1505 1506 /* 1507 * Shift records one index left/right inside a single btree block. 1508 */ 1509 STATIC void 1510 xfs_btree_shift_recs( 1511 struct xfs_btree_cur *cur, 1512 union xfs_btree_rec *rec, 1513 int dir, 1514 int numrecs) 1515 { 1516 char *dst_rec; 1517 1518 ASSERT(numrecs >= 0); 1519 ASSERT(dir == 1 || dir == -1); 1520 1521 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1522 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1523 } 1524 1525 /* 1526 * Shift block pointers one index left/right inside a single btree block. 1527 */ 1528 STATIC void 1529 xfs_btree_shift_ptrs( 1530 struct xfs_btree_cur *cur, 1531 union xfs_btree_ptr *ptr, 1532 int dir, 1533 int numptrs) 1534 { 1535 char *dst_ptr; 1536 1537 ASSERT(numptrs >= 0); 1538 ASSERT(dir == 1 || dir == -1); 1539 1540 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len); 1541 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len); 1542 } 1543 1544 /* 1545 * Log key values from the btree block. 1546 */ 1547 STATIC void 1548 xfs_btree_log_keys( 1549 struct xfs_btree_cur *cur, 1550 struct xfs_buf *bp, 1551 int first, 1552 int last) 1553 { 1554 1555 if (bp) { 1556 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1557 xfs_trans_log_buf(cur->bc_tp, bp, 1558 xfs_btree_key_offset(cur, first), 1559 xfs_btree_key_offset(cur, last + 1) - 1); 1560 } else { 1561 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1562 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1563 } 1564 } 1565 1566 /* 1567 * Log record values from the btree block. 1568 */ 1569 void 1570 xfs_btree_log_recs( 1571 struct xfs_btree_cur *cur, 1572 struct xfs_buf *bp, 1573 int first, 1574 int last) 1575 { 1576 1577 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1578 xfs_trans_log_buf(cur->bc_tp, bp, 1579 xfs_btree_rec_offset(cur, first), 1580 xfs_btree_rec_offset(cur, last + 1) - 1); 1581 1582 } 1583 1584 /* 1585 * Log block pointer fields from a btree block (nonleaf). 1586 */ 1587 STATIC void 1588 xfs_btree_log_ptrs( 1589 struct xfs_btree_cur *cur, /* btree cursor */ 1590 struct xfs_buf *bp, /* buffer containing btree block */ 1591 int first, /* index of first pointer to log */ 1592 int last) /* index of last pointer to log */ 1593 { 1594 1595 if (bp) { 1596 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1597 int level = xfs_btree_get_level(block); 1598 1599 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1600 xfs_trans_log_buf(cur->bc_tp, bp, 1601 xfs_btree_ptr_offset(cur, first, level), 1602 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1603 } else { 1604 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1605 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1606 } 1607 1608 } 1609 1610 /* 1611 * Log fields from a btree block header. 1612 */ 1613 void 1614 xfs_btree_log_block( 1615 struct xfs_btree_cur *cur, /* btree cursor */ 1616 struct xfs_buf *bp, /* buffer containing btree block */ 1617 uint32_t fields) /* mask of fields: XFS_BB_... */ 1618 { 1619 int first; /* first byte offset logged */ 1620 int last; /* last byte offset logged */ 1621 static const short soffsets[] = { /* table of offsets (short) */ 1622 offsetof(struct xfs_btree_block, bb_magic), 1623 offsetof(struct xfs_btree_block, bb_level), 1624 offsetof(struct xfs_btree_block, bb_numrecs), 1625 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1626 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1627 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1628 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1629 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1630 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1631 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1632 XFS_BTREE_SBLOCK_CRC_LEN 1633 }; 1634 static const short loffsets[] = { /* table of offsets (long) */ 1635 offsetof(struct xfs_btree_block, bb_magic), 1636 offsetof(struct xfs_btree_block, bb_level), 1637 offsetof(struct xfs_btree_block, bb_numrecs), 1638 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1639 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1640 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1641 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1642 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1643 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1644 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1645 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1646 XFS_BTREE_LBLOCK_CRC_LEN 1647 }; 1648 1649 if (bp) { 1650 int nbits; 1651 1652 if (xfs_has_crc(cur->bc_mp)) { 1653 /* 1654 * We don't log the CRC when updating a btree 1655 * block but instead recreate it during log 1656 * recovery. As the log buffers have checksums 1657 * of their own this is safe and avoids logging a crc 1658 * update in a lot of places. 1659 */ 1660 if (fields == XFS_BB_ALL_BITS) 1661 fields = XFS_BB_ALL_BITS_CRC; 1662 nbits = XFS_BB_NUM_BITS_CRC; 1663 } else { 1664 nbits = XFS_BB_NUM_BITS; 1665 } 1666 xfs_btree_offsets(fields, 1667 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ? 1668 loffsets : soffsets, 1669 nbits, &first, &last); 1670 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1671 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1672 } else { 1673 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1674 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1675 } 1676 } 1677 1678 /* 1679 * Increment cursor by one record at the level. 1680 * For nonzero levels the leaf-ward information is untouched. 1681 */ 1682 int /* error */ 1683 xfs_btree_increment( 1684 struct xfs_btree_cur *cur, 1685 int level, 1686 int *stat) /* success/failure */ 1687 { 1688 struct xfs_btree_block *block; 1689 union xfs_btree_ptr ptr; 1690 struct xfs_buf *bp; 1691 int error; /* error return value */ 1692 int lev; 1693 1694 ASSERT(level < cur->bc_nlevels); 1695 1696 /* Read-ahead to the right at this level. */ 1697 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1698 1699 /* Get a pointer to the btree block. */ 1700 block = xfs_btree_get_block(cur, level, &bp); 1701 1702 #ifdef DEBUG 1703 error = xfs_btree_check_block(cur, block, level, bp); 1704 if (error) 1705 goto error0; 1706 #endif 1707 1708 /* We're done if we remain in the block after the increment. */ 1709 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block)) 1710 goto out1; 1711 1712 /* Fail if we just went off the right edge of the tree. */ 1713 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1714 if (xfs_btree_ptr_is_null(cur, &ptr)) 1715 goto out0; 1716 1717 XFS_BTREE_STATS_INC(cur, increment); 1718 1719 /* 1720 * March up the tree incrementing pointers. 1721 * Stop when we don't go off the right edge of a block. 1722 */ 1723 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1724 block = xfs_btree_get_block(cur, lev, &bp); 1725 1726 #ifdef DEBUG 1727 error = xfs_btree_check_block(cur, block, lev, bp); 1728 if (error) 1729 goto error0; 1730 #endif 1731 1732 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block)) 1733 break; 1734 1735 /* Read-ahead the right block for the next loop. */ 1736 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1737 } 1738 1739 /* 1740 * If we went off the root then we are either seriously 1741 * confused or have the tree root in an inode. 1742 */ 1743 if (lev == cur->bc_nlevels) { 1744 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) 1745 goto out0; 1746 ASSERT(0); 1747 xfs_btree_mark_sick(cur); 1748 error = -EFSCORRUPTED; 1749 goto error0; 1750 } 1751 ASSERT(lev < cur->bc_nlevels); 1752 1753 /* 1754 * Now walk back down the tree, fixing up the cursor's buffer 1755 * pointers and key numbers. 1756 */ 1757 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1758 union xfs_btree_ptr *ptrp; 1759 1760 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1761 --lev; 1762 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1763 if (error) 1764 goto error0; 1765 1766 xfs_btree_setbuf(cur, lev, bp); 1767 cur->bc_levels[lev].ptr = 1; 1768 } 1769 out1: 1770 *stat = 1; 1771 return 0; 1772 1773 out0: 1774 *stat = 0; 1775 return 0; 1776 1777 error0: 1778 return error; 1779 } 1780 1781 /* 1782 * Decrement cursor by one record at the level. 1783 * For nonzero levels the leaf-ward information is untouched. 1784 */ 1785 int /* error */ 1786 xfs_btree_decrement( 1787 struct xfs_btree_cur *cur, 1788 int level, 1789 int *stat) /* success/failure */ 1790 { 1791 struct xfs_btree_block *block; 1792 struct xfs_buf *bp; 1793 int error; /* error return value */ 1794 int lev; 1795 union xfs_btree_ptr ptr; 1796 1797 ASSERT(level < cur->bc_nlevels); 1798 1799 /* Read-ahead to the left at this level. */ 1800 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1801 1802 /* We're done if we remain in the block after the decrement. */ 1803 if (--cur->bc_levels[level].ptr > 0) 1804 goto out1; 1805 1806 /* Get a pointer to the btree block. */ 1807 block = xfs_btree_get_block(cur, level, &bp); 1808 1809 #ifdef DEBUG 1810 error = xfs_btree_check_block(cur, block, level, bp); 1811 if (error) 1812 goto error0; 1813 #endif 1814 1815 /* Fail if we just went off the left edge of the tree. */ 1816 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1817 if (xfs_btree_ptr_is_null(cur, &ptr)) 1818 goto out0; 1819 1820 XFS_BTREE_STATS_INC(cur, decrement); 1821 1822 /* 1823 * March up the tree decrementing pointers. 1824 * Stop when we don't go off the left edge of a block. 1825 */ 1826 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1827 if (--cur->bc_levels[lev].ptr > 0) 1828 break; 1829 /* Read-ahead the left block for the next loop. */ 1830 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1831 } 1832 1833 /* 1834 * If we went off the root then we are seriously confused. 1835 * or the root of the tree is in an inode. 1836 */ 1837 if (lev == cur->bc_nlevels) { 1838 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) 1839 goto out0; 1840 ASSERT(0); 1841 xfs_btree_mark_sick(cur); 1842 error = -EFSCORRUPTED; 1843 goto error0; 1844 } 1845 ASSERT(lev < cur->bc_nlevels); 1846 1847 /* 1848 * Now walk back down the tree, fixing up the cursor's buffer 1849 * pointers and key numbers. 1850 */ 1851 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1852 union xfs_btree_ptr *ptrp; 1853 1854 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1855 --lev; 1856 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1857 if (error) 1858 goto error0; 1859 xfs_btree_setbuf(cur, lev, bp); 1860 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block); 1861 } 1862 out1: 1863 *stat = 1; 1864 return 0; 1865 1866 out0: 1867 *stat = 0; 1868 return 0; 1869 1870 error0: 1871 return error; 1872 } 1873 1874 /* 1875 * Check the btree block owner now that we have the context to know who the 1876 * real owner is. 1877 */ 1878 static inline xfs_failaddr_t 1879 xfs_btree_check_block_owner( 1880 struct xfs_btree_cur *cur, 1881 struct xfs_btree_block *block) 1882 { 1883 __u64 owner; 1884 1885 if (!xfs_has_crc(cur->bc_mp) || 1886 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER)) 1887 return NULL; 1888 1889 owner = xfs_btree_owner(cur); 1890 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 1891 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner) 1892 return __this_address; 1893 } else { 1894 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner) 1895 return __this_address; 1896 } 1897 1898 return NULL; 1899 } 1900 1901 int 1902 xfs_btree_lookup_get_block( 1903 struct xfs_btree_cur *cur, /* btree cursor */ 1904 int level, /* level in the btree */ 1905 const union xfs_btree_ptr *pp, /* ptr to btree block */ 1906 struct xfs_btree_block **blkp) /* return btree block */ 1907 { 1908 struct xfs_buf *bp; /* buffer pointer for btree block */ 1909 xfs_daddr_t daddr; 1910 int error = 0; 1911 1912 /* special case the root block if in an inode */ 1913 if (xfs_btree_at_iroot(cur, level)) { 1914 *blkp = xfs_btree_get_iroot(cur); 1915 return 0; 1916 } 1917 1918 /* 1919 * If the old buffer at this level for the disk address we are 1920 * looking for re-use it. 1921 * 1922 * Otherwise throw it away and get a new one. 1923 */ 1924 bp = cur->bc_levels[level].bp; 1925 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1926 if (error) 1927 return error; 1928 if (bp && xfs_buf_daddr(bp) == daddr) { 1929 *blkp = XFS_BUF_TO_BLOCK(bp); 1930 return 0; 1931 } 1932 1933 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1934 if (error) 1935 return error; 1936 1937 /* Check the inode owner since the verifiers don't. */ 1938 if (xfs_btree_check_block_owner(cur, *blkp) != NULL) 1939 goto out_bad; 1940 1941 /* Did we get the level we were looking for? */ 1942 if (be16_to_cpu((*blkp)->bb_level) != level) 1943 goto out_bad; 1944 1945 /* Check that internal nodes have at least one record. */ 1946 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1947 goto out_bad; 1948 1949 xfs_btree_setbuf(cur, level, bp); 1950 return 0; 1951 1952 out_bad: 1953 *blkp = NULL; 1954 xfs_buf_mark_corrupt(bp); 1955 xfs_trans_brelse(cur->bc_tp, bp); 1956 xfs_btree_mark_sick(cur); 1957 return -EFSCORRUPTED; 1958 } 1959 1960 /* 1961 * Get current search key. For level 0 we don't actually have a key 1962 * structure so we make one up from the record. For all other levels 1963 * we just return the right key. 1964 */ 1965 STATIC union xfs_btree_key * 1966 xfs_lookup_get_search_key( 1967 struct xfs_btree_cur *cur, 1968 int level, 1969 int keyno, 1970 struct xfs_btree_block *block, 1971 union xfs_btree_key *kp) 1972 { 1973 if (level == 0) { 1974 cur->bc_ops->init_key_from_rec(kp, 1975 xfs_btree_rec_addr(cur, keyno, block)); 1976 return kp; 1977 } 1978 1979 return xfs_btree_key_addr(cur, keyno, block); 1980 } 1981 1982 /* 1983 * Initialize a pointer to the root block. 1984 */ 1985 void 1986 xfs_btree_init_ptr_from_cur( 1987 struct xfs_btree_cur *cur, 1988 union xfs_btree_ptr *ptr) 1989 { 1990 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) { 1991 /* 1992 * Inode-rooted btrees call xfs_btree_get_iroot to find the root 1993 * in xfs_btree_lookup_get_block and don't need a pointer here. 1994 */ 1995 ptr->l = 0; 1996 } else if (cur->bc_flags & XFS_BTREE_STAGING) { 1997 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root); 1998 } else { 1999 cur->bc_ops->init_ptr_from_cur(cur, ptr); 2000 } 2001 } 2002 2003 /* 2004 * Lookup the record. The cursor is made to point to it, based on dir. 2005 * stat is set to 0 if can't find any such record, 1 for success. 2006 */ 2007 int /* error */ 2008 xfs_btree_lookup( 2009 struct xfs_btree_cur *cur, /* btree cursor */ 2010 xfs_lookup_t dir, /* <=, ==, or >= */ 2011 int *stat) /* success/failure */ 2012 { 2013 struct xfs_btree_block *block; /* current btree block */ 2014 int64_t diff; /* difference for the current key */ 2015 int error; /* error return value */ 2016 int keyno; /* current key number */ 2017 int level; /* level in the btree */ 2018 union xfs_btree_ptr *pp; /* ptr to btree block */ 2019 union xfs_btree_ptr ptr; /* ptr to btree block */ 2020 2021 XFS_BTREE_STATS_INC(cur, lookup); 2022 2023 /* No such thing as a zero-level tree. */ 2024 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) { 2025 xfs_btree_mark_sick(cur); 2026 return -EFSCORRUPTED; 2027 } 2028 2029 block = NULL; 2030 keyno = 0; 2031 2032 /* initialise start pointer from cursor */ 2033 xfs_btree_init_ptr_from_cur(cur, &ptr); 2034 pp = &ptr; 2035 2036 /* 2037 * Iterate over each level in the btree, starting at the root. 2038 * For each level above the leaves, find the key we need, based 2039 * on the lookup record, then follow the corresponding block 2040 * pointer down to the next level. 2041 */ 2042 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 2043 /* Get the block we need to do the lookup on. */ 2044 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 2045 if (error) 2046 goto error0; 2047 2048 if (diff == 0) { 2049 /* 2050 * If we already had a key match at a higher level, we 2051 * know we need to use the first entry in this block. 2052 */ 2053 keyno = 1; 2054 } else { 2055 /* Otherwise search this block. Do a binary search. */ 2056 2057 int high; /* high entry number */ 2058 int low; /* low entry number */ 2059 2060 /* Set low and high entry numbers, 1-based. */ 2061 low = 1; 2062 high = xfs_btree_get_numrecs(block); 2063 if (!high) { 2064 /* Block is empty, must be an empty leaf. */ 2065 if (level != 0 || cur->bc_nlevels != 1) { 2066 XFS_CORRUPTION_ERROR(__func__, 2067 XFS_ERRLEVEL_LOW, 2068 cur->bc_mp, block, 2069 sizeof(*block)); 2070 xfs_btree_mark_sick(cur); 2071 return -EFSCORRUPTED; 2072 } 2073 2074 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE; 2075 *stat = 0; 2076 return 0; 2077 } 2078 2079 /* Binary search the block. */ 2080 while (low <= high) { 2081 union xfs_btree_key key; 2082 union xfs_btree_key *kp; 2083 2084 XFS_BTREE_STATS_INC(cur, compare); 2085 2086 /* keyno is average of low and high. */ 2087 keyno = (low + high) >> 1; 2088 2089 /* Get current search key */ 2090 kp = xfs_lookup_get_search_key(cur, level, 2091 keyno, block, &key); 2092 2093 /* 2094 * Compute difference to get next direction: 2095 * - less than, move right 2096 * - greater than, move left 2097 * - equal, we're done 2098 */ 2099 diff = cur->bc_ops->key_diff(cur, kp); 2100 if (diff < 0) 2101 low = keyno + 1; 2102 else if (diff > 0) 2103 high = keyno - 1; 2104 else 2105 break; 2106 } 2107 } 2108 2109 /* 2110 * If there are more levels, set up for the next level 2111 * by getting the block number and filling in the cursor. 2112 */ 2113 if (level > 0) { 2114 /* 2115 * If we moved left, need the previous key number, 2116 * unless there isn't one. 2117 */ 2118 if (diff > 0 && --keyno < 1) 2119 keyno = 1; 2120 pp = xfs_btree_ptr_addr(cur, keyno, block); 2121 2122 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 2123 if (error) 2124 goto error0; 2125 2126 cur->bc_levels[level].ptr = keyno; 2127 } 2128 } 2129 2130 /* Done with the search. See if we need to adjust the results. */ 2131 if (dir != XFS_LOOKUP_LE && diff < 0) { 2132 keyno++; 2133 /* 2134 * If ge search and we went off the end of the block, but it's 2135 * not the last block, we're in the wrong block. 2136 */ 2137 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 2138 if (dir == XFS_LOOKUP_GE && 2139 keyno > xfs_btree_get_numrecs(block) && 2140 !xfs_btree_ptr_is_null(cur, &ptr)) { 2141 int i; 2142 2143 cur->bc_levels[0].ptr = keyno; 2144 error = xfs_btree_increment(cur, 0, &i); 2145 if (error) 2146 goto error0; 2147 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 2148 xfs_btree_mark_sick(cur); 2149 return -EFSCORRUPTED; 2150 } 2151 *stat = 1; 2152 return 0; 2153 } 2154 } else if (dir == XFS_LOOKUP_LE && diff > 0) 2155 keyno--; 2156 cur->bc_levels[0].ptr = keyno; 2157 2158 /* Return if we succeeded or not. */ 2159 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 2160 *stat = 0; 2161 else if (dir != XFS_LOOKUP_EQ || diff == 0) 2162 *stat = 1; 2163 else 2164 *stat = 0; 2165 return 0; 2166 2167 error0: 2168 return error; 2169 } 2170 2171 /* Find the high key storage area from a regular key. */ 2172 union xfs_btree_key * 2173 xfs_btree_high_key_from_key( 2174 struct xfs_btree_cur *cur, 2175 union xfs_btree_key *key) 2176 { 2177 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING); 2178 return (union xfs_btree_key *)((char *)key + 2179 (cur->bc_ops->key_len / 2)); 2180 } 2181 2182 /* Determine the low (and high if overlapped) keys of a leaf block */ 2183 STATIC void 2184 xfs_btree_get_leaf_keys( 2185 struct xfs_btree_cur *cur, 2186 struct xfs_btree_block *block, 2187 union xfs_btree_key *key) 2188 { 2189 union xfs_btree_key max_hkey; 2190 union xfs_btree_key hkey; 2191 union xfs_btree_rec *rec; 2192 union xfs_btree_key *high; 2193 int n; 2194 2195 rec = xfs_btree_rec_addr(cur, 1, block); 2196 cur->bc_ops->init_key_from_rec(key, rec); 2197 2198 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) { 2199 2200 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 2201 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2202 rec = xfs_btree_rec_addr(cur, n, block); 2203 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 2204 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey)) 2205 max_hkey = hkey; 2206 } 2207 2208 high = xfs_btree_high_key_from_key(cur, key); 2209 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2210 } 2211 } 2212 2213 /* Determine the low (and high if overlapped) keys of a node block */ 2214 STATIC void 2215 xfs_btree_get_node_keys( 2216 struct xfs_btree_cur *cur, 2217 struct xfs_btree_block *block, 2218 union xfs_btree_key *key) 2219 { 2220 union xfs_btree_key *hkey; 2221 union xfs_btree_key *max_hkey; 2222 union xfs_btree_key *high; 2223 int n; 2224 2225 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) { 2226 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2227 cur->bc_ops->key_len / 2); 2228 2229 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2230 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2231 hkey = xfs_btree_high_key_addr(cur, n, block); 2232 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey)) 2233 max_hkey = hkey; 2234 } 2235 2236 high = xfs_btree_high_key_from_key(cur, key); 2237 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2238 } else { 2239 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2240 cur->bc_ops->key_len); 2241 } 2242 } 2243 2244 /* Derive the keys for any btree block. */ 2245 void 2246 xfs_btree_get_keys( 2247 struct xfs_btree_cur *cur, 2248 struct xfs_btree_block *block, 2249 union xfs_btree_key *key) 2250 { 2251 if (be16_to_cpu(block->bb_level) == 0) 2252 xfs_btree_get_leaf_keys(cur, block, key); 2253 else 2254 xfs_btree_get_node_keys(cur, block, key); 2255 } 2256 2257 /* 2258 * Decide if we need to update the parent keys of a btree block. For 2259 * a standard btree this is only necessary if we're updating the first 2260 * record/key. For an overlapping btree, we must always update the 2261 * keys because the highest key can be in any of the records or keys 2262 * in the block. 2263 */ 2264 static inline bool 2265 xfs_btree_needs_key_update( 2266 struct xfs_btree_cur *cur, 2267 int ptr) 2268 { 2269 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1; 2270 } 2271 2272 /* 2273 * Update the low and high parent keys of the given level, progressing 2274 * towards the root. If force_all is false, stop if the keys for a given 2275 * level do not need updating. 2276 */ 2277 STATIC int 2278 __xfs_btree_updkeys( 2279 struct xfs_btree_cur *cur, 2280 int level, 2281 struct xfs_btree_block *block, 2282 struct xfs_buf *bp0, 2283 bool force_all) 2284 { 2285 union xfs_btree_key key; /* keys from current level */ 2286 union xfs_btree_key *lkey; /* keys from the next level up */ 2287 union xfs_btree_key *hkey; 2288 union xfs_btree_key *nlkey; /* keys from the next level up */ 2289 union xfs_btree_key *nhkey; 2290 struct xfs_buf *bp; 2291 int ptr; 2292 2293 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING); 2294 2295 /* Exit if there aren't any parent levels to update. */ 2296 if (level + 1 >= cur->bc_nlevels) 2297 return 0; 2298 2299 trace_xfs_btree_updkeys(cur, level, bp0); 2300 2301 lkey = &key; 2302 hkey = xfs_btree_high_key_from_key(cur, lkey); 2303 xfs_btree_get_keys(cur, block, lkey); 2304 for (level++; level < cur->bc_nlevels; level++) { 2305 #ifdef DEBUG 2306 int error; 2307 #endif 2308 block = xfs_btree_get_block(cur, level, &bp); 2309 trace_xfs_btree_updkeys(cur, level, bp); 2310 #ifdef DEBUG 2311 error = xfs_btree_check_block(cur, block, level, bp); 2312 if (error) 2313 return error; 2314 #endif 2315 ptr = cur->bc_levels[level].ptr; 2316 nlkey = xfs_btree_key_addr(cur, ptr, block); 2317 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2318 if (!force_all && 2319 xfs_btree_keycmp_eq(cur, nlkey, lkey) && 2320 xfs_btree_keycmp_eq(cur, nhkey, hkey)) 2321 break; 2322 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2323 xfs_btree_log_keys(cur, bp, ptr, ptr); 2324 if (level + 1 >= cur->bc_nlevels) 2325 break; 2326 xfs_btree_get_node_keys(cur, block, lkey); 2327 } 2328 2329 return 0; 2330 } 2331 2332 /* Update all the keys from some level in cursor back to the root. */ 2333 STATIC int 2334 xfs_btree_updkeys_force( 2335 struct xfs_btree_cur *cur, 2336 int level) 2337 { 2338 struct xfs_buf *bp; 2339 struct xfs_btree_block *block; 2340 2341 block = xfs_btree_get_block(cur, level, &bp); 2342 return __xfs_btree_updkeys(cur, level, block, bp, true); 2343 } 2344 2345 /* 2346 * Update the parent keys of the given level, progressing towards the root. 2347 */ 2348 STATIC int 2349 xfs_btree_update_keys( 2350 struct xfs_btree_cur *cur, 2351 int level) 2352 { 2353 struct xfs_btree_block *block; 2354 struct xfs_buf *bp; 2355 union xfs_btree_key *kp; 2356 union xfs_btree_key key; 2357 int ptr; 2358 2359 ASSERT(level >= 0); 2360 2361 block = xfs_btree_get_block(cur, level, &bp); 2362 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) 2363 return __xfs_btree_updkeys(cur, level, block, bp, false); 2364 2365 /* 2366 * Go up the tree from this level toward the root. 2367 * At each level, update the key value to the value input. 2368 * Stop when we reach a level where the cursor isn't pointing 2369 * at the first entry in the block. 2370 */ 2371 xfs_btree_get_keys(cur, block, &key); 2372 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2373 #ifdef DEBUG 2374 int error; 2375 #endif 2376 block = xfs_btree_get_block(cur, level, &bp); 2377 #ifdef DEBUG 2378 error = xfs_btree_check_block(cur, block, level, bp); 2379 if (error) 2380 return error; 2381 #endif 2382 ptr = cur->bc_levels[level].ptr; 2383 kp = xfs_btree_key_addr(cur, ptr, block); 2384 xfs_btree_copy_keys(cur, kp, &key, 1); 2385 xfs_btree_log_keys(cur, bp, ptr, ptr); 2386 } 2387 2388 return 0; 2389 } 2390 2391 /* 2392 * Update the record referred to by cur to the value in the 2393 * given record. This either works (return 0) or gets an 2394 * EFSCORRUPTED error. 2395 */ 2396 int 2397 xfs_btree_update( 2398 struct xfs_btree_cur *cur, 2399 union xfs_btree_rec *rec) 2400 { 2401 struct xfs_btree_block *block; 2402 struct xfs_buf *bp; 2403 int error; 2404 int ptr; 2405 union xfs_btree_rec *rp; 2406 2407 /* Pick up the current block. */ 2408 block = xfs_btree_get_block(cur, 0, &bp); 2409 2410 #ifdef DEBUG 2411 error = xfs_btree_check_block(cur, block, 0, bp); 2412 if (error) 2413 goto error0; 2414 #endif 2415 /* Get the address of the rec to be updated. */ 2416 ptr = cur->bc_levels[0].ptr; 2417 rp = xfs_btree_rec_addr(cur, ptr, block); 2418 2419 /* Fill in the new contents and log them. */ 2420 xfs_btree_copy_recs(cur, rp, rec, 1); 2421 xfs_btree_log_recs(cur, bp, ptr, ptr); 2422 2423 /* 2424 * If we are tracking the last record in the tree and 2425 * we are at the far right edge of the tree, update it. 2426 */ 2427 if (xfs_btree_is_lastrec(cur, block, 0)) { 2428 cur->bc_ops->update_lastrec(cur, block, rec, 2429 ptr, LASTREC_UPDATE); 2430 } 2431 2432 /* Pass new key value up to our parent. */ 2433 if (xfs_btree_needs_key_update(cur, ptr)) { 2434 error = xfs_btree_update_keys(cur, 0); 2435 if (error) 2436 goto error0; 2437 } 2438 2439 return 0; 2440 2441 error0: 2442 return error; 2443 } 2444 2445 /* 2446 * Move 1 record left from cur/level if possible. 2447 * Update cur to reflect the new path. 2448 */ 2449 STATIC int /* error */ 2450 xfs_btree_lshift( 2451 struct xfs_btree_cur *cur, 2452 int level, 2453 int *stat) /* success/failure */ 2454 { 2455 struct xfs_buf *lbp; /* left buffer pointer */ 2456 struct xfs_btree_block *left; /* left btree block */ 2457 int lrecs; /* left record count */ 2458 struct xfs_buf *rbp; /* right buffer pointer */ 2459 struct xfs_btree_block *right; /* right btree block */ 2460 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2461 int rrecs; /* right record count */ 2462 union xfs_btree_ptr lptr; /* left btree pointer */ 2463 union xfs_btree_key *rkp = NULL; /* right btree key */ 2464 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2465 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2466 int error; /* error return value */ 2467 int i; 2468 2469 if (xfs_btree_at_iroot(cur, level)) 2470 goto out0; 2471 2472 /* Set up variables for this block as "right". */ 2473 right = xfs_btree_get_block(cur, level, &rbp); 2474 2475 #ifdef DEBUG 2476 error = xfs_btree_check_block(cur, right, level, rbp); 2477 if (error) 2478 goto error0; 2479 #endif 2480 2481 /* If we've got no left sibling then we can't shift an entry left. */ 2482 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2483 if (xfs_btree_ptr_is_null(cur, &lptr)) 2484 goto out0; 2485 2486 /* 2487 * If the cursor entry is the one that would be moved, don't 2488 * do it... it's too complicated. 2489 */ 2490 if (cur->bc_levels[level].ptr <= 1) 2491 goto out0; 2492 2493 /* Set up the left neighbor as "left". */ 2494 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2495 if (error) 2496 goto error0; 2497 2498 /* If it's full, it can't take another entry. */ 2499 lrecs = xfs_btree_get_numrecs(left); 2500 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2501 goto out0; 2502 2503 rrecs = xfs_btree_get_numrecs(right); 2504 2505 /* 2506 * We add one entry to the left side and remove one for the right side. 2507 * Account for it here, the changes will be updated on disk and logged 2508 * later. 2509 */ 2510 lrecs++; 2511 rrecs--; 2512 2513 XFS_BTREE_STATS_INC(cur, lshift); 2514 XFS_BTREE_STATS_ADD(cur, moves, 1); 2515 2516 /* 2517 * If non-leaf, copy a key and a ptr to the left block. 2518 * Log the changes to the left block. 2519 */ 2520 if (level > 0) { 2521 /* It's a non-leaf. Move keys and pointers. */ 2522 union xfs_btree_key *lkp; /* left btree key */ 2523 union xfs_btree_ptr *lpp; /* left address pointer */ 2524 2525 lkp = xfs_btree_key_addr(cur, lrecs, left); 2526 rkp = xfs_btree_key_addr(cur, 1, right); 2527 2528 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2529 rpp = xfs_btree_ptr_addr(cur, 1, right); 2530 2531 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2532 if (error) 2533 goto error0; 2534 2535 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2536 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2537 2538 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2539 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2540 2541 ASSERT(cur->bc_ops->keys_inorder(cur, 2542 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2543 } else { 2544 /* It's a leaf. Move records. */ 2545 union xfs_btree_rec *lrp; /* left record pointer */ 2546 2547 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2548 rrp = xfs_btree_rec_addr(cur, 1, right); 2549 2550 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2551 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2552 2553 ASSERT(cur->bc_ops->recs_inorder(cur, 2554 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2555 } 2556 2557 xfs_btree_set_numrecs(left, lrecs); 2558 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2559 2560 xfs_btree_set_numrecs(right, rrecs); 2561 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2562 2563 /* 2564 * Slide the contents of right down one entry. 2565 */ 2566 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2567 if (level > 0) { 2568 /* It's a nonleaf. operate on keys and ptrs */ 2569 for (i = 0; i < rrecs; i++) { 2570 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2571 if (error) 2572 goto error0; 2573 } 2574 2575 xfs_btree_shift_keys(cur, 2576 xfs_btree_key_addr(cur, 2, right), 2577 -1, rrecs); 2578 xfs_btree_shift_ptrs(cur, 2579 xfs_btree_ptr_addr(cur, 2, right), 2580 -1, rrecs); 2581 2582 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2583 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2584 } else { 2585 /* It's a leaf. operate on records */ 2586 xfs_btree_shift_recs(cur, 2587 xfs_btree_rec_addr(cur, 2, right), 2588 -1, rrecs); 2589 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2590 } 2591 2592 /* 2593 * Using a temporary cursor, update the parent key values of the 2594 * block on the left. 2595 */ 2596 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) { 2597 error = xfs_btree_dup_cursor(cur, &tcur); 2598 if (error) 2599 goto error0; 2600 i = xfs_btree_firstrec(tcur, level); 2601 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2602 xfs_btree_mark_sick(cur); 2603 error = -EFSCORRUPTED; 2604 goto error0; 2605 } 2606 2607 error = xfs_btree_decrement(tcur, level, &i); 2608 if (error) 2609 goto error1; 2610 2611 /* Update the parent high keys of the left block, if needed. */ 2612 error = xfs_btree_update_keys(tcur, level); 2613 if (error) 2614 goto error1; 2615 2616 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2617 } 2618 2619 /* Update the parent keys of the right block. */ 2620 error = xfs_btree_update_keys(cur, level); 2621 if (error) 2622 goto error0; 2623 2624 /* Slide the cursor value left one. */ 2625 cur->bc_levels[level].ptr--; 2626 2627 *stat = 1; 2628 return 0; 2629 2630 out0: 2631 *stat = 0; 2632 return 0; 2633 2634 error0: 2635 return error; 2636 2637 error1: 2638 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2639 return error; 2640 } 2641 2642 /* 2643 * Move 1 record right from cur/level if possible. 2644 * Update cur to reflect the new path. 2645 */ 2646 STATIC int /* error */ 2647 xfs_btree_rshift( 2648 struct xfs_btree_cur *cur, 2649 int level, 2650 int *stat) /* success/failure */ 2651 { 2652 struct xfs_buf *lbp; /* left buffer pointer */ 2653 struct xfs_btree_block *left; /* left btree block */ 2654 struct xfs_buf *rbp; /* right buffer pointer */ 2655 struct xfs_btree_block *right; /* right btree block */ 2656 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2657 union xfs_btree_ptr rptr; /* right block pointer */ 2658 union xfs_btree_key *rkp; /* right btree key */ 2659 int rrecs; /* right record count */ 2660 int lrecs; /* left record count */ 2661 int error; /* error return value */ 2662 int i; /* loop counter */ 2663 2664 if (xfs_btree_at_iroot(cur, level)) 2665 goto out0; 2666 2667 /* Set up variables for this block as "left". */ 2668 left = xfs_btree_get_block(cur, level, &lbp); 2669 2670 #ifdef DEBUG 2671 error = xfs_btree_check_block(cur, left, level, lbp); 2672 if (error) 2673 goto error0; 2674 #endif 2675 2676 /* If we've got no right sibling then we can't shift an entry right. */ 2677 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2678 if (xfs_btree_ptr_is_null(cur, &rptr)) 2679 goto out0; 2680 2681 /* 2682 * If the cursor entry is the one that would be moved, don't 2683 * do it... it's too complicated. 2684 */ 2685 lrecs = xfs_btree_get_numrecs(left); 2686 if (cur->bc_levels[level].ptr >= lrecs) 2687 goto out0; 2688 2689 /* Set up the right neighbor as "right". */ 2690 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2691 if (error) 2692 goto error0; 2693 2694 /* If it's full, it can't take another entry. */ 2695 rrecs = xfs_btree_get_numrecs(right); 2696 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2697 goto out0; 2698 2699 XFS_BTREE_STATS_INC(cur, rshift); 2700 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2701 2702 /* 2703 * Make a hole at the start of the right neighbor block, then 2704 * copy the last left block entry to the hole. 2705 */ 2706 if (level > 0) { 2707 /* It's a nonleaf. make a hole in the keys and ptrs */ 2708 union xfs_btree_key *lkp; 2709 union xfs_btree_ptr *lpp; 2710 union xfs_btree_ptr *rpp; 2711 2712 lkp = xfs_btree_key_addr(cur, lrecs, left); 2713 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2714 rkp = xfs_btree_key_addr(cur, 1, right); 2715 rpp = xfs_btree_ptr_addr(cur, 1, right); 2716 2717 for (i = rrecs - 1; i >= 0; i--) { 2718 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2719 if (error) 2720 goto error0; 2721 } 2722 2723 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2724 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2725 2726 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2727 if (error) 2728 goto error0; 2729 2730 /* Now put the new data in, and log it. */ 2731 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2732 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2733 2734 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2735 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2736 2737 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2738 xfs_btree_key_addr(cur, 2, right))); 2739 } else { 2740 /* It's a leaf. make a hole in the records */ 2741 union xfs_btree_rec *lrp; 2742 union xfs_btree_rec *rrp; 2743 2744 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2745 rrp = xfs_btree_rec_addr(cur, 1, right); 2746 2747 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2748 2749 /* Now put the new data in, and log it. */ 2750 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2751 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2752 } 2753 2754 /* 2755 * Decrement and log left's numrecs, bump and log right's numrecs. 2756 */ 2757 xfs_btree_set_numrecs(left, --lrecs); 2758 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2759 2760 xfs_btree_set_numrecs(right, ++rrecs); 2761 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2762 2763 /* 2764 * Using a temporary cursor, update the parent key values of the 2765 * block on the right. 2766 */ 2767 error = xfs_btree_dup_cursor(cur, &tcur); 2768 if (error) 2769 goto error0; 2770 i = xfs_btree_lastrec(tcur, level); 2771 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2772 xfs_btree_mark_sick(cur); 2773 error = -EFSCORRUPTED; 2774 goto error0; 2775 } 2776 2777 error = xfs_btree_increment(tcur, level, &i); 2778 if (error) 2779 goto error1; 2780 2781 /* Update the parent high keys of the left block, if needed. */ 2782 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) { 2783 error = xfs_btree_update_keys(cur, level); 2784 if (error) 2785 goto error1; 2786 } 2787 2788 /* Update the parent keys of the right block. */ 2789 error = xfs_btree_update_keys(tcur, level); 2790 if (error) 2791 goto error1; 2792 2793 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2794 2795 *stat = 1; 2796 return 0; 2797 2798 out0: 2799 *stat = 0; 2800 return 0; 2801 2802 error0: 2803 return error; 2804 2805 error1: 2806 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2807 return error; 2808 } 2809 2810 static inline int 2811 xfs_btree_alloc_block( 2812 struct xfs_btree_cur *cur, 2813 const union xfs_btree_ptr *hint_block, 2814 union xfs_btree_ptr *new_block, 2815 int *stat) 2816 { 2817 int error; 2818 2819 /* 2820 * Don't allow block allocation for a staging cursor, because staging 2821 * cursors do not support regular btree modifications. 2822 * 2823 * Bulk loading uses a separate callback to obtain new blocks from a 2824 * preallocated list, which prevents ENOSPC failures during loading. 2825 */ 2826 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) { 2827 ASSERT(0); 2828 return -EFSCORRUPTED; 2829 } 2830 2831 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat); 2832 trace_xfs_btree_alloc_block(cur, new_block, *stat, error); 2833 return error; 2834 } 2835 2836 /* 2837 * Split cur/level block in half. 2838 * Return new block number and the key to its first 2839 * record (to be inserted into parent). 2840 */ 2841 STATIC int /* error */ 2842 __xfs_btree_split( 2843 struct xfs_btree_cur *cur, 2844 int level, 2845 union xfs_btree_ptr *ptrp, 2846 union xfs_btree_key *key, 2847 struct xfs_btree_cur **curp, 2848 int *stat) /* success/failure */ 2849 { 2850 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2851 struct xfs_buf *lbp; /* left buffer pointer */ 2852 struct xfs_btree_block *left; /* left btree block */ 2853 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2854 struct xfs_buf *rbp; /* right buffer pointer */ 2855 struct xfs_btree_block *right; /* right btree block */ 2856 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2857 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2858 struct xfs_btree_block *rrblock; /* right-right btree block */ 2859 int lrecs; 2860 int rrecs; 2861 int src_index; 2862 int error; /* error return value */ 2863 int i; 2864 2865 XFS_BTREE_STATS_INC(cur, split); 2866 2867 /* Set up left block (current one). */ 2868 left = xfs_btree_get_block(cur, level, &lbp); 2869 2870 #ifdef DEBUG 2871 error = xfs_btree_check_block(cur, left, level, lbp); 2872 if (error) 2873 goto error0; 2874 #endif 2875 2876 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2877 2878 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2879 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat); 2880 if (error) 2881 goto error0; 2882 if (*stat == 0) 2883 goto out0; 2884 XFS_BTREE_STATS_INC(cur, alloc); 2885 2886 /* Set up the new block as "right". */ 2887 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2888 if (error) 2889 goto error0; 2890 2891 /* Fill in the btree header for the new right block. */ 2892 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2893 2894 /* 2895 * Split the entries between the old and the new block evenly. 2896 * Make sure that if there's an odd number of entries now, that 2897 * each new block will have the same number of entries. 2898 */ 2899 lrecs = xfs_btree_get_numrecs(left); 2900 rrecs = lrecs / 2; 2901 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1) 2902 rrecs++; 2903 src_index = (lrecs - rrecs + 1); 2904 2905 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2906 2907 /* Adjust numrecs for the later get_*_keys() calls. */ 2908 lrecs -= rrecs; 2909 xfs_btree_set_numrecs(left, lrecs); 2910 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2911 2912 /* 2913 * Copy btree block entries from the left block over to the 2914 * new block, the right. Update the right block and log the 2915 * changes. 2916 */ 2917 if (level > 0) { 2918 /* It's a non-leaf. Move keys and pointers. */ 2919 union xfs_btree_key *lkp; /* left btree key */ 2920 union xfs_btree_ptr *lpp; /* left address pointer */ 2921 union xfs_btree_key *rkp; /* right btree key */ 2922 union xfs_btree_ptr *rpp; /* right address pointer */ 2923 2924 lkp = xfs_btree_key_addr(cur, src_index, left); 2925 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2926 rkp = xfs_btree_key_addr(cur, 1, right); 2927 rpp = xfs_btree_ptr_addr(cur, 1, right); 2928 2929 for (i = src_index; i < rrecs; i++) { 2930 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2931 if (error) 2932 goto error0; 2933 } 2934 2935 /* Copy the keys & pointers to the new block. */ 2936 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2937 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2938 2939 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2940 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2941 2942 /* Stash the keys of the new block for later insertion. */ 2943 xfs_btree_get_node_keys(cur, right, key); 2944 } else { 2945 /* It's a leaf. Move records. */ 2946 union xfs_btree_rec *lrp; /* left record pointer */ 2947 union xfs_btree_rec *rrp; /* right record pointer */ 2948 2949 lrp = xfs_btree_rec_addr(cur, src_index, left); 2950 rrp = xfs_btree_rec_addr(cur, 1, right); 2951 2952 /* Copy records to the new block. */ 2953 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2954 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2955 2956 /* Stash the keys of the new block for later insertion. */ 2957 xfs_btree_get_leaf_keys(cur, right, key); 2958 } 2959 2960 /* 2961 * Find the left block number by looking in the buffer. 2962 * Adjust sibling pointers. 2963 */ 2964 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2965 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2966 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2967 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2968 2969 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2970 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2971 2972 /* 2973 * If there's a block to the new block's right, make that block 2974 * point back to right instead of to left. 2975 */ 2976 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2977 error = xfs_btree_read_buf_block(cur, &rrptr, 2978 0, &rrblock, &rrbp); 2979 if (error) 2980 goto error0; 2981 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2982 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2983 } 2984 2985 /* Update the parent high keys of the left block, if needed. */ 2986 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) { 2987 error = xfs_btree_update_keys(cur, level); 2988 if (error) 2989 goto error0; 2990 } 2991 2992 /* 2993 * If the cursor is really in the right block, move it there. 2994 * If it's just pointing past the last entry in left, then we'll 2995 * insert there, so don't change anything in that case. 2996 */ 2997 if (cur->bc_levels[level].ptr > lrecs + 1) { 2998 xfs_btree_setbuf(cur, level, rbp); 2999 cur->bc_levels[level].ptr -= lrecs; 3000 } 3001 /* 3002 * If there are more levels, we'll need another cursor which refers 3003 * the right block, no matter where this cursor was. 3004 */ 3005 if (level + 1 < cur->bc_nlevels) { 3006 error = xfs_btree_dup_cursor(cur, curp); 3007 if (error) 3008 goto error0; 3009 (*curp)->bc_levels[level + 1].ptr++; 3010 } 3011 *ptrp = rptr; 3012 *stat = 1; 3013 return 0; 3014 out0: 3015 *stat = 0; 3016 return 0; 3017 3018 error0: 3019 return error; 3020 } 3021 3022 #ifdef __KERNEL__ 3023 struct xfs_btree_split_args { 3024 struct xfs_btree_cur *cur; 3025 int level; 3026 union xfs_btree_ptr *ptrp; 3027 union xfs_btree_key *key; 3028 struct xfs_btree_cur **curp; 3029 int *stat; /* success/failure */ 3030 int result; 3031 bool kswapd; /* allocation in kswapd context */ 3032 struct completion *done; 3033 struct work_struct work; 3034 }; 3035 3036 /* 3037 * Stack switching interfaces for allocation 3038 */ 3039 static void 3040 xfs_btree_split_worker( 3041 struct work_struct *work) 3042 { 3043 struct xfs_btree_split_args *args = container_of(work, 3044 struct xfs_btree_split_args, work); 3045 unsigned long pflags; 3046 unsigned long new_pflags = 0; 3047 3048 /* 3049 * we are in a transaction context here, but may also be doing work 3050 * in kswapd context, and hence we may need to inherit that state 3051 * temporarily to ensure that we don't block waiting for memory reclaim 3052 * in any way. 3053 */ 3054 if (args->kswapd) 3055 new_pflags |= PF_MEMALLOC | PF_KSWAPD; 3056 3057 current_set_flags_nested(&pflags, new_pflags); 3058 xfs_trans_set_context(args->cur->bc_tp); 3059 3060 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 3061 args->key, args->curp, args->stat); 3062 3063 xfs_trans_clear_context(args->cur->bc_tp); 3064 current_restore_flags_nested(&pflags, new_pflags); 3065 3066 /* 3067 * Do not access args after complete() has run here. We don't own args 3068 * and the owner may run and free args before we return here. 3069 */ 3070 complete(args->done); 3071 3072 } 3073 3074 /* 3075 * BMBT split requests often come in with little stack to work on so we push 3076 * them off to a worker thread so there is lots of stack to use. For the other 3077 * btree types, just call directly to avoid the context switch overhead here. 3078 * 3079 * Care must be taken here - the work queue rescuer thread introduces potential 3080 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new 3081 * AGFs to allocate blocks. A task being run by the rescuer could attempt to 3082 * lock an AGF that is already locked by a task queued to run by the rescuer, 3083 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to 3084 * release it until the current thread it is running gains the lock. 3085 * 3086 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF 3087 * already locked to allocate from. The only place that doesn't hold an AGF 3088 * locked is unwritten extent conversion at IO completion, but that has already 3089 * been offloaded to a worker thread and hence has no stack consumption issues 3090 * we have to worry about. 3091 */ 3092 STATIC int /* error */ 3093 xfs_btree_split( 3094 struct xfs_btree_cur *cur, 3095 int level, 3096 union xfs_btree_ptr *ptrp, 3097 union xfs_btree_key *key, 3098 struct xfs_btree_cur **curp, 3099 int *stat) /* success/failure */ 3100 { 3101 struct xfs_btree_split_args args; 3102 DECLARE_COMPLETION_ONSTACK(done); 3103 3104 if (!xfs_btree_is_bmap(cur->bc_ops) || 3105 cur->bc_tp->t_highest_agno == NULLAGNUMBER) 3106 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 3107 3108 args.cur = cur; 3109 args.level = level; 3110 args.ptrp = ptrp; 3111 args.key = key; 3112 args.curp = curp; 3113 args.stat = stat; 3114 args.done = &done; 3115 args.kswapd = current_is_kswapd(); 3116 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 3117 queue_work(xfs_alloc_wq, &args.work); 3118 wait_for_completion(&done); 3119 destroy_work_on_stack(&args.work); 3120 return args.result; 3121 } 3122 #else 3123 #define xfs_btree_split __xfs_btree_split 3124 #endif /* __KERNEL__ */ 3125 3126 /* 3127 * Copy the old inode root contents into a real block and make the 3128 * broot point to it. 3129 */ 3130 int /* error */ 3131 xfs_btree_new_iroot( 3132 struct xfs_btree_cur *cur, /* btree cursor */ 3133 int *logflags, /* logging flags for inode */ 3134 int *stat) /* return status - 0 fail */ 3135 { 3136 struct xfs_buf *cbp; /* buffer for cblock */ 3137 struct xfs_btree_block *block; /* btree block */ 3138 struct xfs_btree_block *cblock; /* child btree block */ 3139 union xfs_btree_key *ckp; /* child key pointer */ 3140 union xfs_btree_ptr *cpp; /* child ptr pointer */ 3141 union xfs_btree_key *kp; /* pointer to btree key */ 3142 union xfs_btree_ptr *pp; /* pointer to block addr */ 3143 union xfs_btree_ptr nptr; /* new block addr */ 3144 int level; /* btree level */ 3145 int error; /* error return code */ 3146 int i; /* loop counter */ 3147 3148 XFS_BTREE_STATS_INC(cur, newroot); 3149 3150 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE); 3151 3152 level = cur->bc_nlevels - 1; 3153 3154 block = xfs_btree_get_iroot(cur); 3155 pp = xfs_btree_ptr_addr(cur, 1, block); 3156 3157 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3158 error = xfs_btree_alloc_block(cur, pp, &nptr, stat); 3159 if (error) 3160 goto error0; 3161 if (*stat == 0) 3162 return 0; 3163 3164 XFS_BTREE_STATS_INC(cur, alloc); 3165 3166 /* Copy the root into a real block. */ 3167 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 3168 if (error) 3169 goto error0; 3170 3171 /* 3172 * we can't just memcpy() the root in for CRC enabled btree blocks. 3173 * In that case have to also ensure the blkno remains correct 3174 */ 3175 memcpy(cblock, block, xfs_btree_block_len(cur)); 3176 if (xfs_has_crc(cur->bc_mp)) { 3177 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp)); 3178 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 3179 cblock->bb_u.l.bb_blkno = bno; 3180 else 3181 cblock->bb_u.s.bb_blkno = bno; 3182 } 3183 3184 be16_add_cpu(&block->bb_level, 1); 3185 xfs_btree_set_numrecs(block, 1); 3186 cur->bc_nlevels++; 3187 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 3188 cur->bc_levels[level + 1].ptr = 1; 3189 3190 kp = xfs_btree_key_addr(cur, 1, block); 3191 ckp = xfs_btree_key_addr(cur, 1, cblock); 3192 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 3193 3194 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3195 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 3196 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3197 if (error) 3198 goto error0; 3199 } 3200 3201 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 3202 3203 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 3204 if (error) 3205 goto error0; 3206 3207 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 3208 3209 xfs_iroot_realloc(cur->bc_ino.ip, 3210 1 - xfs_btree_get_numrecs(cblock), 3211 cur->bc_ino.whichfork); 3212 3213 xfs_btree_setbuf(cur, level, cbp); 3214 3215 /* 3216 * Do all this logging at the end so that 3217 * the root is at the right level. 3218 */ 3219 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 3220 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3221 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3222 3223 *logflags |= 3224 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 3225 *stat = 1; 3226 return 0; 3227 error0: 3228 return error; 3229 } 3230 3231 static void 3232 xfs_btree_set_root( 3233 struct xfs_btree_cur *cur, 3234 const union xfs_btree_ptr *ptr, 3235 int inc) 3236 { 3237 if (cur->bc_flags & XFS_BTREE_STAGING) { 3238 /* Update the btree root information for a per-AG fake root. */ 3239 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s); 3240 cur->bc_ag.afake->af_levels += inc; 3241 } else { 3242 cur->bc_ops->set_root(cur, ptr, inc); 3243 } 3244 } 3245 3246 /* 3247 * Allocate a new root block, fill it in. 3248 */ 3249 STATIC int /* error */ 3250 xfs_btree_new_root( 3251 struct xfs_btree_cur *cur, /* btree cursor */ 3252 int *stat) /* success/failure */ 3253 { 3254 struct xfs_btree_block *block; /* one half of the old root block */ 3255 struct xfs_buf *bp; /* buffer containing block */ 3256 int error; /* error return value */ 3257 struct xfs_buf *lbp; /* left buffer pointer */ 3258 struct xfs_btree_block *left; /* left btree block */ 3259 struct xfs_buf *nbp; /* new (root) buffer */ 3260 struct xfs_btree_block *new; /* new (root) btree block */ 3261 int nptr; /* new value for key index, 1 or 2 */ 3262 struct xfs_buf *rbp; /* right buffer pointer */ 3263 struct xfs_btree_block *right; /* right btree block */ 3264 union xfs_btree_ptr rptr; 3265 union xfs_btree_ptr lptr; 3266 3267 XFS_BTREE_STATS_INC(cur, newroot); 3268 3269 /* initialise our start point from the cursor */ 3270 xfs_btree_init_ptr_from_cur(cur, &rptr); 3271 3272 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3273 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat); 3274 if (error) 3275 goto error0; 3276 if (*stat == 0) 3277 goto out0; 3278 XFS_BTREE_STATS_INC(cur, alloc); 3279 3280 /* Set up the new block. */ 3281 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3282 if (error) 3283 goto error0; 3284 3285 /* Set the root in the holding structure increasing the level by 1. */ 3286 xfs_btree_set_root(cur, &lptr, 1); 3287 3288 /* 3289 * At the previous root level there are now two blocks: the old root, 3290 * and the new block generated when it was split. We don't know which 3291 * one the cursor is pointing at, so we set up variables "left" and 3292 * "right" for each case. 3293 */ 3294 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3295 3296 #ifdef DEBUG 3297 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3298 if (error) 3299 goto error0; 3300 #endif 3301 3302 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3303 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3304 /* Our block is left, pick up the right block. */ 3305 lbp = bp; 3306 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3307 left = block; 3308 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3309 if (error) 3310 goto error0; 3311 bp = rbp; 3312 nptr = 1; 3313 } else { 3314 /* Our block is right, pick up the left block. */ 3315 rbp = bp; 3316 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3317 right = block; 3318 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3319 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3320 if (error) 3321 goto error0; 3322 bp = lbp; 3323 nptr = 2; 3324 } 3325 3326 /* Fill in the new block's btree header and log it. */ 3327 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3328 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3329 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3330 !xfs_btree_ptr_is_null(cur, &rptr)); 3331 3332 /* Fill in the key data in the new root. */ 3333 if (xfs_btree_get_level(left) > 0) { 3334 /* 3335 * Get the keys for the left block's keys and put them directly 3336 * in the parent block. Do the same for the right block. 3337 */ 3338 xfs_btree_get_node_keys(cur, left, 3339 xfs_btree_key_addr(cur, 1, new)); 3340 xfs_btree_get_node_keys(cur, right, 3341 xfs_btree_key_addr(cur, 2, new)); 3342 } else { 3343 /* 3344 * Get the keys for the left block's records and put them 3345 * directly in the parent block. Do the same for the right 3346 * block. 3347 */ 3348 xfs_btree_get_leaf_keys(cur, left, 3349 xfs_btree_key_addr(cur, 1, new)); 3350 xfs_btree_get_leaf_keys(cur, right, 3351 xfs_btree_key_addr(cur, 2, new)); 3352 } 3353 xfs_btree_log_keys(cur, nbp, 1, 2); 3354 3355 /* Fill in the pointer data in the new root. */ 3356 xfs_btree_copy_ptrs(cur, 3357 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3358 xfs_btree_copy_ptrs(cur, 3359 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3360 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3361 3362 /* Fix up the cursor. */ 3363 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3364 cur->bc_levels[cur->bc_nlevels].ptr = nptr; 3365 cur->bc_nlevels++; 3366 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 3367 *stat = 1; 3368 return 0; 3369 error0: 3370 return error; 3371 out0: 3372 *stat = 0; 3373 return 0; 3374 } 3375 3376 STATIC int 3377 xfs_btree_make_block_unfull( 3378 struct xfs_btree_cur *cur, /* btree cursor */ 3379 int level, /* btree level */ 3380 int numrecs,/* # of recs in block */ 3381 int *oindex,/* old tree index */ 3382 int *index, /* new tree index */ 3383 union xfs_btree_ptr *nptr, /* new btree ptr */ 3384 struct xfs_btree_cur **ncur, /* new btree cursor */ 3385 union xfs_btree_key *key, /* key of new block */ 3386 int *stat) 3387 { 3388 int error = 0; 3389 3390 if (xfs_btree_at_iroot(cur, level)) { 3391 struct xfs_inode *ip = cur->bc_ino.ip; 3392 3393 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3394 /* A root block that can be made bigger. */ 3395 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3396 *stat = 1; 3397 } else { 3398 /* A root block that needs replacing */ 3399 int logflags = 0; 3400 3401 error = xfs_btree_new_iroot(cur, &logflags, stat); 3402 if (error || *stat == 0) 3403 return error; 3404 3405 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3406 } 3407 3408 return 0; 3409 } 3410 3411 /* First, try shifting an entry to the right neighbor. */ 3412 error = xfs_btree_rshift(cur, level, stat); 3413 if (error || *stat) 3414 return error; 3415 3416 /* Next, try shifting an entry to the left neighbor. */ 3417 error = xfs_btree_lshift(cur, level, stat); 3418 if (error) 3419 return error; 3420 3421 if (*stat) { 3422 *oindex = *index = cur->bc_levels[level].ptr; 3423 return 0; 3424 } 3425 3426 /* 3427 * Next, try splitting the current block in half. 3428 * 3429 * If this works we have to re-set our variables because we 3430 * could be in a different block now. 3431 */ 3432 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3433 if (error || *stat == 0) 3434 return error; 3435 3436 3437 *index = cur->bc_levels[level].ptr; 3438 return 0; 3439 } 3440 3441 /* 3442 * Insert one record/level. Return information to the caller 3443 * allowing the next level up to proceed if necessary. 3444 */ 3445 STATIC int 3446 xfs_btree_insrec( 3447 struct xfs_btree_cur *cur, /* btree cursor */ 3448 int level, /* level to insert record at */ 3449 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3450 union xfs_btree_rec *rec, /* record to insert */ 3451 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3452 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3453 int *stat) /* success/failure */ 3454 { 3455 struct xfs_btree_block *block; /* btree block */ 3456 struct xfs_buf *bp; /* buffer for block */ 3457 union xfs_btree_ptr nptr; /* new block ptr */ 3458 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */ 3459 union xfs_btree_key nkey; /* new block key */ 3460 union xfs_btree_key *lkey; 3461 int optr; /* old key/record index */ 3462 int ptr; /* key/record index */ 3463 int numrecs;/* number of records */ 3464 int error; /* error return value */ 3465 int i; 3466 xfs_daddr_t old_bn; 3467 3468 ncur = NULL; 3469 lkey = &nkey; 3470 3471 /* 3472 * If we have an external root pointer, and we've made it to the 3473 * root level, allocate a new root block and we're done. 3474 */ 3475 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE && 3476 level >= cur->bc_nlevels) { 3477 error = xfs_btree_new_root(cur, stat); 3478 xfs_btree_set_ptr_null(cur, ptrp); 3479 3480 return error; 3481 } 3482 3483 /* If we're off the left edge, return failure. */ 3484 ptr = cur->bc_levels[level].ptr; 3485 if (ptr == 0) { 3486 *stat = 0; 3487 return 0; 3488 } 3489 3490 optr = ptr; 3491 3492 XFS_BTREE_STATS_INC(cur, insrec); 3493 3494 /* Get pointers to the btree buffer and block. */ 3495 block = xfs_btree_get_block(cur, level, &bp); 3496 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL; 3497 numrecs = xfs_btree_get_numrecs(block); 3498 3499 #ifdef DEBUG 3500 error = xfs_btree_check_block(cur, block, level, bp); 3501 if (error) 3502 goto error0; 3503 3504 /* Check that the new entry is being inserted in the right place. */ 3505 if (ptr <= numrecs) { 3506 if (level == 0) { 3507 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3508 xfs_btree_rec_addr(cur, ptr, block))); 3509 } else { 3510 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3511 xfs_btree_key_addr(cur, ptr, block))); 3512 } 3513 } 3514 #endif 3515 3516 /* 3517 * If the block is full, we can't insert the new entry until we 3518 * make the block un-full. 3519 */ 3520 xfs_btree_set_ptr_null(cur, &nptr); 3521 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3522 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3523 &optr, &ptr, &nptr, &ncur, lkey, stat); 3524 if (error || *stat == 0) 3525 goto error0; 3526 } 3527 3528 /* 3529 * The current block may have changed if the block was 3530 * previously full and we have just made space in it. 3531 */ 3532 block = xfs_btree_get_block(cur, level, &bp); 3533 numrecs = xfs_btree_get_numrecs(block); 3534 3535 #ifdef DEBUG 3536 error = xfs_btree_check_block(cur, block, level, bp); 3537 if (error) 3538 goto error0; 3539 #endif 3540 3541 /* 3542 * At this point we know there's room for our new entry in the block 3543 * we're pointing at. 3544 */ 3545 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3546 3547 if (level > 0) { 3548 /* It's a nonleaf. make a hole in the keys and ptrs */ 3549 union xfs_btree_key *kp; 3550 union xfs_btree_ptr *pp; 3551 3552 kp = xfs_btree_key_addr(cur, ptr, block); 3553 pp = xfs_btree_ptr_addr(cur, ptr, block); 3554 3555 for (i = numrecs - ptr; i >= 0; i--) { 3556 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3557 if (error) 3558 goto error0; 3559 } 3560 3561 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3562 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3563 3564 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3565 if (error) 3566 goto error0; 3567 3568 /* Now put the new data in, bump numrecs and log it. */ 3569 xfs_btree_copy_keys(cur, kp, key, 1); 3570 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3571 numrecs++; 3572 xfs_btree_set_numrecs(block, numrecs); 3573 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3574 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3575 #ifdef DEBUG 3576 if (ptr < numrecs) { 3577 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3578 xfs_btree_key_addr(cur, ptr + 1, block))); 3579 } 3580 #endif 3581 } else { 3582 /* It's a leaf. make a hole in the records */ 3583 union xfs_btree_rec *rp; 3584 3585 rp = xfs_btree_rec_addr(cur, ptr, block); 3586 3587 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3588 3589 /* Now put the new data in, bump numrecs and log it. */ 3590 xfs_btree_copy_recs(cur, rp, rec, 1); 3591 xfs_btree_set_numrecs(block, ++numrecs); 3592 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3593 #ifdef DEBUG 3594 if (ptr < numrecs) { 3595 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3596 xfs_btree_rec_addr(cur, ptr + 1, block))); 3597 } 3598 #endif 3599 } 3600 3601 /* Log the new number of records in the btree header. */ 3602 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3603 3604 /* 3605 * If we just inserted into a new tree block, we have to 3606 * recalculate nkey here because nkey is out of date. 3607 * 3608 * Otherwise we're just updating an existing block (having shoved 3609 * some records into the new tree block), so use the regular key 3610 * update mechanism. 3611 */ 3612 if (bp && xfs_buf_daddr(bp) != old_bn) { 3613 xfs_btree_get_keys(cur, block, lkey); 3614 } else if (xfs_btree_needs_key_update(cur, optr)) { 3615 error = xfs_btree_update_keys(cur, level); 3616 if (error) 3617 goto error0; 3618 } 3619 3620 /* 3621 * If we are tracking the last record in the tree and 3622 * we are at the far right edge of the tree, update it. 3623 */ 3624 if (xfs_btree_is_lastrec(cur, block, level)) { 3625 cur->bc_ops->update_lastrec(cur, block, rec, 3626 ptr, LASTREC_INSREC); 3627 } 3628 3629 /* 3630 * Return the new block number, if any. 3631 * If there is one, give back a record value and a cursor too. 3632 */ 3633 *ptrp = nptr; 3634 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3635 xfs_btree_copy_keys(cur, key, lkey, 1); 3636 *curp = ncur; 3637 } 3638 3639 *stat = 1; 3640 return 0; 3641 3642 error0: 3643 if (ncur) 3644 xfs_btree_del_cursor(ncur, error); 3645 return error; 3646 } 3647 3648 /* 3649 * Insert the record at the point referenced by cur. 3650 * 3651 * A multi-level split of the tree on insert will invalidate the original 3652 * cursor. All callers of this function should assume that the cursor is 3653 * no longer valid and revalidate it. 3654 */ 3655 int 3656 xfs_btree_insert( 3657 struct xfs_btree_cur *cur, 3658 int *stat) 3659 { 3660 int error; /* error return value */ 3661 int i; /* result value, 0 for failure */ 3662 int level; /* current level number in btree */ 3663 union xfs_btree_ptr nptr; /* new block number (split result) */ 3664 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3665 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3666 union xfs_btree_key bkey; /* key of block to insert */ 3667 union xfs_btree_key *key; 3668 union xfs_btree_rec rec; /* record to insert */ 3669 3670 level = 0; 3671 ncur = NULL; 3672 pcur = cur; 3673 key = &bkey; 3674 3675 xfs_btree_set_ptr_null(cur, &nptr); 3676 3677 /* Make a key out of the record data to be inserted, and save it. */ 3678 cur->bc_ops->init_rec_from_cur(cur, &rec); 3679 cur->bc_ops->init_key_from_rec(key, &rec); 3680 3681 /* 3682 * Loop going up the tree, starting at the leaf level. 3683 * Stop when we don't get a split block, that must mean that 3684 * the insert is finished with this level. 3685 */ 3686 do { 3687 /* 3688 * Insert nrec/nptr into this level of the tree. 3689 * Note if we fail, nptr will be null. 3690 */ 3691 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3692 &ncur, &i); 3693 if (error) { 3694 if (pcur != cur) 3695 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3696 goto error0; 3697 } 3698 3699 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3700 xfs_btree_mark_sick(cur); 3701 error = -EFSCORRUPTED; 3702 goto error0; 3703 } 3704 level++; 3705 3706 /* 3707 * See if the cursor we just used is trash. 3708 * Can't trash the caller's cursor, but otherwise we should 3709 * if ncur is a new cursor or we're about to be done. 3710 */ 3711 if (pcur != cur && 3712 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3713 /* Save the state from the cursor before we trash it */ 3714 if (cur->bc_ops->update_cursor && 3715 !(cur->bc_flags & XFS_BTREE_STAGING)) 3716 cur->bc_ops->update_cursor(pcur, cur); 3717 cur->bc_nlevels = pcur->bc_nlevels; 3718 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3719 } 3720 /* If we got a new cursor, switch to it. */ 3721 if (ncur) { 3722 pcur = ncur; 3723 ncur = NULL; 3724 } 3725 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3726 3727 *stat = i; 3728 return 0; 3729 error0: 3730 return error; 3731 } 3732 3733 /* 3734 * Try to merge a non-leaf block back into the inode root. 3735 * 3736 * Note: the killroot names comes from the fact that we're effectively 3737 * killing the old root block. But because we can't just delete the 3738 * inode we have to copy the single block it was pointing to into the 3739 * inode. 3740 */ 3741 STATIC int 3742 xfs_btree_kill_iroot( 3743 struct xfs_btree_cur *cur) 3744 { 3745 int whichfork = cur->bc_ino.whichfork; 3746 struct xfs_inode *ip = cur->bc_ino.ip; 3747 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 3748 struct xfs_btree_block *block; 3749 struct xfs_btree_block *cblock; 3750 union xfs_btree_key *kp; 3751 union xfs_btree_key *ckp; 3752 union xfs_btree_ptr *pp; 3753 union xfs_btree_ptr *cpp; 3754 struct xfs_buf *cbp; 3755 int level; 3756 int index; 3757 int numrecs; 3758 int error; 3759 #ifdef DEBUG 3760 union xfs_btree_ptr ptr; 3761 #endif 3762 int i; 3763 3764 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE); 3765 ASSERT(cur->bc_nlevels > 1); 3766 3767 /* 3768 * Don't deal with the root block needs to be a leaf case. 3769 * We're just going to turn the thing back into extents anyway. 3770 */ 3771 level = cur->bc_nlevels - 1; 3772 if (level == 1) 3773 goto out0; 3774 3775 /* 3776 * Give up if the root has multiple children. 3777 */ 3778 block = xfs_btree_get_iroot(cur); 3779 if (xfs_btree_get_numrecs(block) != 1) 3780 goto out0; 3781 3782 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3783 numrecs = xfs_btree_get_numrecs(cblock); 3784 3785 /* 3786 * Only do this if the next level will fit. 3787 * Then the data must be copied up to the inode, 3788 * instead of freeing the root you free the next level. 3789 */ 3790 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3791 goto out0; 3792 3793 XFS_BTREE_STATS_INC(cur, killroot); 3794 3795 #ifdef DEBUG 3796 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3797 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3798 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3799 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3800 #endif 3801 3802 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3803 if (index) { 3804 xfs_iroot_realloc(cur->bc_ino.ip, index, 3805 cur->bc_ino.whichfork); 3806 block = ifp->if_broot; 3807 } 3808 3809 be16_add_cpu(&block->bb_numrecs, index); 3810 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3811 3812 kp = xfs_btree_key_addr(cur, 1, block); 3813 ckp = xfs_btree_key_addr(cur, 1, cblock); 3814 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3815 3816 pp = xfs_btree_ptr_addr(cur, 1, block); 3817 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3818 3819 for (i = 0; i < numrecs; i++) { 3820 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3821 if (error) 3822 return error; 3823 } 3824 3825 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3826 3827 error = xfs_btree_free_block(cur, cbp); 3828 if (error) 3829 return error; 3830 3831 cur->bc_levels[level - 1].bp = NULL; 3832 be16_add_cpu(&block->bb_level, -1); 3833 xfs_trans_log_inode(cur->bc_tp, ip, 3834 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3835 cur->bc_nlevels--; 3836 out0: 3837 return 0; 3838 } 3839 3840 /* 3841 * Kill the current root node, and replace it with it's only child node. 3842 */ 3843 STATIC int 3844 xfs_btree_kill_root( 3845 struct xfs_btree_cur *cur, 3846 struct xfs_buf *bp, 3847 int level, 3848 union xfs_btree_ptr *newroot) 3849 { 3850 int error; 3851 3852 XFS_BTREE_STATS_INC(cur, killroot); 3853 3854 /* 3855 * Update the root pointer, decreasing the level by 1 and then 3856 * free the old root. 3857 */ 3858 xfs_btree_set_root(cur, newroot, -1); 3859 3860 error = xfs_btree_free_block(cur, bp); 3861 if (error) 3862 return error; 3863 3864 cur->bc_levels[level].bp = NULL; 3865 cur->bc_levels[level].ra = 0; 3866 cur->bc_nlevels--; 3867 3868 return 0; 3869 } 3870 3871 STATIC int 3872 xfs_btree_dec_cursor( 3873 struct xfs_btree_cur *cur, 3874 int level, 3875 int *stat) 3876 { 3877 int error; 3878 int i; 3879 3880 if (level > 0) { 3881 error = xfs_btree_decrement(cur, level, &i); 3882 if (error) 3883 return error; 3884 } 3885 3886 *stat = 1; 3887 return 0; 3888 } 3889 3890 /* 3891 * Single level of the btree record deletion routine. 3892 * Delete record pointed to by cur/level. 3893 * Remove the record from its block then rebalance the tree. 3894 * Return 0 for error, 1 for done, 2 to go on to the next level. 3895 */ 3896 STATIC int /* error */ 3897 xfs_btree_delrec( 3898 struct xfs_btree_cur *cur, /* btree cursor */ 3899 int level, /* level removing record from */ 3900 int *stat) /* fail/done/go-on */ 3901 { 3902 struct xfs_btree_block *block; /* btree block */ 3903 union xfs_btree_ptr cptr; /* current block ptr */ 3904 struct xfs_buf *bp; /* buffer for block */ 3905 int error; /* error return value */ 3906 int i; /* loop counter */ 3907 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3908 struct xfs_buf *lbp; /* left buffer pointer */ 3909 struct xfs_btree_block *left; /* left btree block */ 3910 int lrecs = 0; /* left record count */ 3911 int ptr; /* key/record index */ 3912 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3913 struct xfs_buf *rbp; /* right buffer pointer */ 3914 struct xfs_btree_block *right; /* right btree block */ 3915 struct xfs_btree_block *rrblock; /* right-right btree block */ 3916 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3917 int rrecs = 0; /* right record count */ 3918 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3919 int numrecs; /* temporary numrec count */ 3920 3921 tcur = NULL; 3922 3923 /* Get the index of the entry being deleted, check for nothing there. */ 3924 ptr = cur->bc_levels[level].ptr; 3925 if (ptr == 0) { 3926 *stat = 0; 3927 return 0; 3928 } 3929 3930 /* Get the buffer & block containing the record or key/ptr. */ 3931 block = xfs_btree_get_block(cur, level, &bp); 3932 numrecs = xfs_btree_get_numrecs(block); 3933 3934 #ifdef DEBUG 3935 error = xfs_btree_check_block(cur, block, level, bp); 3936 if (error) 3937 goto error0; 3938 #endif 3939 3940 /* Fail if we're off the end of the block. */ 3941 if (ptr > numrecs) { 3942 *stat = 0; 3943 return 0; 3944 } 3945 3946 XFS_BTREE_STATS_INC(cur, delrec); 3947 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3948 3949 /* Excise the entries being deleted. */ 3950 if (level > 0) { 3951 /* It's a nonleaf. operate on keys and ptrs */ 3952 union xfs_btree_key *lkp; 3953 union xfs_btree_ptr *lpp; 3954 3955 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3956 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3957 3958 for (i = 0; i < numrecs - ptr; i++) { 3959 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3960 if (error) 3961 goto error0; 3962 } 3963 3964 if (ptr < numrecs) { 3965 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3966 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3967 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3968 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3969 } 3970 } else { 3971 /* It's a leaf. operate on records */ 3972 if (ptr < numrecs) { 3973 xfs_btree_shift_recs(cur, 3974 xfs_btree_rec_addr(cur, ptr + 1, block), 3975 -1, numrecs - ptr); 3976 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3977 } 3978 } 3979 3980 /* 3981 * Decrement and log the number of entries in the block. 3982 */ 3983 xfs_btree_set_numrecs(block, --numrecs); 3984 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3985 3986 /* 3987 * If we are tracking the last record in the tree and 3988 * we are at the far right edge of the tree, update it. 3989 */ 3990 if (xfs_btree_is_lastrec(cur, block, level)) { 3991 cur->bc_ops->update_lastrec(cur, block, NULL, 3992 ptr, LASTREC_DELREC); 3993 } 3994 3995 /* 3996 * We're at the root level. First, shrink the root block in-memory. 3997 * Try to get rid of the next level down. If we can't then there's 3998 * nothing left to do. 3999 */ 4000 if (xfs_btree_at_iroot(cur, level)) { 4001 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork); 4002 4003 error = xfs_btree_kill_iroot(cur); 4004 if (error) 4005 goto error0; 4006 4007 error = xfs_btree_dec_cursor(cur, level, stat); 4008 if (error) 4009 goto error0; 4010 *stat = 1; 4011 return 0; 4012 } 4013 4014 /* 4015 * If this is the root level, and there's only one entry left, and it's 4016 * NOT the leaf level, then we can get rid of this level. 4017 */ 4018 if (level == cur->bc_nlevels - 1) { 4019 if (numrecs == 1 && level > 0) { 4020 union xfs_btree_ptr *pp; 4021 /* 4022 * pp is still set to the first pointer in the block. 4023 * Make it the new root of the btree. 4024 */ 4025 pp = xfs_btree_ptr_addr(cur, 1, block); 4026 error = xfs_btree_kill_root(cur, bp, level, pp); 4027 if (error) 4028 goto error0; 4029 } else if (level > 0) { 4030 error = xfs_btree_dec_cursor(cur, level, stat); 4031 if (error) 4032 goto error0; 4033 } 4034 *stat = 1; 4035 return 0; 4036 } 4037 4038 /* 4039 * If we deleted the leftmost entry in the block, update the 4040 * key values above us in the tree. 4041 */ 4042 if (xfs_btree_needs_key_update(cur, ptr)) { 4043 error = xfs_btree_update_keys(cur, level); 4044 if (error) 4045 goto error0; 4046 } 4047 4048 /* 4049 * If the number of records remaining in the block is at least 4050 * the minimum, we're done. 4051 */ 4052 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 4053 error = xfs_btree_dec_cursor(cur, level, stat); 4054 if (error) 4055 goto error0; 4056 return 0; 4057 } 4058 4059 /* 4060 * Otherwise, we have to move some records around to keep the 4061 * tree balanced. Look at the left and right sibling blocks to 4062 * see if we can re-balance by moving only one record. 4063 */ 4064 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4065 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 4066 4067 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) { 4068 /* 4069 * One child of root, need to get a chance to copy its contents 4070 * into the root and delete it. Can't go up to next level, 4071 * there's nothing to delete there. 4072 */ 4073 if (xfs_btree_ptr_is_null(cur, &rptr) && 4074 xfs_btree_ptr_is_null(cur, &lptr) && 4075 level == cur->bc_nlevels - 2) { 4076 error = xfs_btree_kill_iroot(cur); 4077 if (!error) 4078 error = xfs_btree_dec_cursor(cur, level, stat); 4079 if (error) 4080 goto error0; 4081 return 0; 4082 } 4083 } 4084 4085 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 4086 !xfs_btree_ptr_is_null(cur, &lptr)); 4087 4088 /* 4089 * Duplicate the cursor so our btree manipulations here won't 4090 * disrupt the next level up. 4091 */ 4092 error = xfs_btree_dup_cursor(cur, &tcur); 4093 if (error) 4094 goto error0; 4095 4096 /* 4097 * If there's a right sibling, see if it's ok to shift an entry 4098 * out of it. 4099 */ 4100 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 4101 /* 4102 * Move the temp cursor to the last entry in the next block. 4103 * Actually any entry but the first would suffice. 4104 */ 4105 i = xfs_btree_lastrec(tcur, level); 4106 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4107 xfs_btree_mark_sick(cur); 4108 error = -EFSCORRUPTED; 4109 goto error0; 4110 } 4111 4112 error = xfs_btree_increment(tcur, level, &i); 4113 if (error) 4114 goto error0; 4115 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4116 xfs_btree_mark_sick(cur); 4117 error = -EFSCORRUPTED; 4118 goto error0; 4119 } 4120 4121 i = xfs_btree_lastrec(tcur, level); 4122 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4123 xfs_btree_mark_sick(cur); 4124 error = -EFSCORRUPTED; 4125 goto error0; 4126 } 4127 4128 /* Grab a pointer to the block. */ 4129 right = xfs_btree_get_block(tcur, level, &rbp); 4130 #ifdef DEBUG 4131 error = xfs_btree_check_block(tcur, right, level, rbp); 4132 if (error) 4133 goto error0; 4134 #endif 4135 /* Grab the current block number, for future use. */ 4136 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 4137 4138 /* 4139 * If right block is full enough so that removing one entry 4140 * won't make it too empty, and left-shifting an entry out 4141 * of right to us works, we're done. 4142 */ 4143 if (xfs_btree_get_numrecs(right) - 1 >= 4144 cur->bc_ops->get_minrecs(tcur, level)) { 4145 error = xfs_btree_lshift(tcur, level, &i); 4146 if (error) 4147 goto error0; 4148 if (i) { 4149 ASSERT(xfs_btree_get_numrecs(block) >= 4150 cur->bc_ops->get_minrecs(tcur, level)); 4151 4152 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4153 tcur = NULL; 4154 4155 error = xfs_btree_dec_cursor(cur, level, stat); 4156 if (error) 4157 goto error0; 4158 return 0; 4159 } 4160 } 4161 4162 /* 4163 * Otherwise, grab the number of records in right for 4164 * future reference, and fix up the temp cursor to point 4165 * to our block again (last record). 4166 */ 4167 rrecs = xfs_btree_get_numrecs(right); 4168 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 4169 i = xfs_btree_firstrec(tcur, level); 4170 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4171 xfs_btree_mark_sick(cur); 4172 error = -EFSCORRUPTED; 4173 goto error0; 4174 } 4175 4176 error = xfs_btree_decrement(tcur, level, &i); 4177 if (error) 4178 goto error0; 4179 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4180 xfs_btree_mark_sick(cur); 4181 error = -EFSCORRUPTED; 4182 goto error0; 4183 } 4184 } 4185 } 4186 4187 /* 4188 * If there's a left sibling, see if it's ok to shift an entry 4189 * out of it. 4190 */ 4191 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 4192 /* 4193 * Move the temp cursor to the first entry in the 4194 * previous block. 4195 */ 4196 i = xfs_btree_firstrec(tcur, level); 4197 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4198 xfs_btree_mark_sick(cur); 4199 error = -EFSCORRUPTED; 4200 goto error0; 4201 } 4202 4203 error = xfs_btree_decrement(tcur, level, &i); 4204 if (error) 4205 goto error0; 4206 i = xfs_btree_firstrec(tcur, level); 4207 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4208 xfs_btree_mark_sick(cur); 4209 error = -EFSCORRUPTED; 4210 goto error0; 4211 } 4212 4213 /* Grab a pointer to the block. */ 4214 left = xfs_btree_get_block(tcur, level, &lbp); 4215 #ifdef DEBUG 4216 error = xfs_btree_check_block(cur, left, level, lbp); 4217 if (error) 4218 goto error0; 4219 #endif 4220 /* Grab the current block number, for future use. */ 4221 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 4222 4223 /* 4224 * If left block is full enough so that removing one entry 4225 * won't make it too empty, and right-shifting an entry out 4226 * of left to us works, we're done. 4227 */ 4228 if (xfs_btree_get_numrecs(left) - 1 >= 4229 cur->bc_ops->get_minrecs(tcur, level)) { 4230 error = xfs_btree_rshift(tcur, level, &i); 4231 if (error) 4232 goto error0; 4233 if (i) { 4234 ASSERT(xfs_btree_get_numrecs(block) >= 4235 cur->bc_ops->get_minrecs(tcur, level)); 4236 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4237 tcur = NULL; 4238 if (level == 0) 4239 cur->bc_levels[0].ptr++; 4240 4241 *stat = 1; 4242 return 0; 4243 } 4244 } 4245 4246 /* 4247 * Otherwise, grab the number of records in right for 4248 * future reference. 4249 */ 4250 lrecs = xfs_btree_get_numrecs(left); 4251 } 4252 4253 /* Delete the temp cursor, we're done with it. */ 4254 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4255 tcur = NULL; 4256 4257 /* If here, we need to do a join to keep the tree balanced. */ 4258 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 4259 4260 if (!xfs_btree_ptr_is_null(cur, &lptr) && 4261 lrecs + xfs_btree_get_numrecs(block) <= 4262 cur->bc_ops->get_maxrecs(cur, level)) { 4263 /* 4264 * Set "right" to be the starting block, 4265 * "left" to be the left neighbor. 4266 */ 4267 rptr = cptr; 4268 right = block; 4269 rbp = bp; 4270 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 4271 if (error) 4272 goto error0; 4273 4274 /* 4275 * If that won't work, see if we can join with the right neighbor block. 4276 */ 4277 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4278 rrecs + xfs_btree_get_numrecs(block) <= 4279 cur->bc_ops->get_maxrecs(cur, level)) { 4280 /* 4281 * Set "left" to be the starting block, 4282 * "right" to be the right neighbor. 4283 */ 4284 lptr = cptr; 4285 left = block; 4286 lbp = bp; 4287 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4288 if (error) 4289 goto error0; 4290 4291 /* 4292 * Otherwise, we can't fix the imbalance. 4293 * Just return. This is probably a logic error, but it's not fatal. 4294 */ 4295 } else { 4296 error = xfs_btree_dec_cursor(cur, level, stat); 4297 if (error) 4298 goto error0; 4299 return 0; 4300 } 4301 4302 rrecs = xfs_btree_get_numrecs(right); 4303 lrecs = xfs_btree_get_numrecs(left); 4304 4305 /* 4306 * We're now going to join "left" and "right" by moving all the stuff 4307 * in "right" to "left" and deleting "right". 4308 */ 4309 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4310 if (level > 0) { 4311 /* It's a non-leaf. Move keys and pointers. */ 4312 union xfs_btree_key *lkp; /* left btree key */ 4313 union xfs_btree_ptr *lpp; /* left address pointer */ 4314 union xfs_btree_key *rkp; /* right btree key */ 4315 union xfs_btree_ptr *rpp; /* right address pointer */ 4316 4317 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4318 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4319 rkp = xfs_btree_key_addr(cur, 1, right); 4320 rpp = xfs_btree_ptr_addr(cur, 1, right); 4321 4322 for (i = 1; i < rrecs; i++) { 4323 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4324 if (error) 4325 goto error0; 4326 } 4327 4328 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4329 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4330 4331 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4332 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4333 } else { 4334 /* It's a leaf. Move records. */ 4335 union xfs_btree_rec *lrp; /* left record pointer */ 4336 union xfs_btree_rec *rrp; /* right record pointer */ 4337 4338 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4339 rrp = xfs_btree_rec_addr(cur, 1, right); 4340 4341 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4342 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4343 } 4344 4345 XFS_BTREE_STATS_INC(cur, join); 4346 4347 /* 4348 * Fix up the number of records and right block pointer in the 4349 * surviving block, and log it. 4350 */ 4351 xfs_btree_set_numrecs(left, lrecs + rrecs); 4352 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); 4353 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4355 4356 /* If there is a right sibling, point it to the remaining block. */ 4357 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4358 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4359 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4360 if (error) 4361 goto error0; 4362 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4363 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4364 } 4365 4366 /* Free the deleted block. */ 4367 error = xfs_btree_free_block(cur, rbp); 4368 if (error) 4369 goto error0; 4370 4371 /* 4372 * If we joined with the left neighbor, set the buffer in the 4373 * cursor to the left block, and fix up the index. 4374 */ 4375 if (bp != lbp) { 4376 cur->bc_levels[level].bp = lbp; 4377 cur->bc_levels[level].ptr += lrecs; 4378 cur->bc_levels[level].ra = 0; 4379 } 4380 /* 4381 * If we joined with the right neighbor and there's a level above 4382 * us, increment the cursor at that level. 4383 */ 4384 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE || 4385 level + 1 < cur->bc_nlevels) { 4386 error = xfs_btree_increment(cur, level + 1, &i); 4387 if (error) 4388 goto error0; 4389 } 4390 4391 /* 4392 * Readjust the ptr at this level if it's not a leaf, since it's 4393 * still pointing at the deletion point, which makes the cursor 4394 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4395 * We can't use decrement because it would change the next level up. 4396 */ 4397 if (level > 0) 4398 cur->bc_levels[level].ptr--; 4399 4400 /* 4401 * We combined blocks, so we have to update the parent keys if the 4402 * btree supports overlapped intervals. However, 4403 * bc_levels[level + 1].ptr points to the old block so that the caller 4404 * knows which record to delete. Therefore, the caller must be savvy 4405 * enough to call updkeys for us if we return stat == 2. The other 4406 * exit points from this function don't require deletions further up 4407 * the tree, so they can call updkeys directly. 4408 */ 4409 4410 /* Return value means the next level up has something to do. */ 4411 *stat = 2; 4412 return 0; 4413 4414 error0: 4415 if (tcur) 4416 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4417 return error; 4418 } 4419 4420 /* 4421 * Delete the record pointed to by cur. 4422 * The cursor refers to the place where the record was (could be inserted) 4423 * when the operation returns. 4424 */ 4425 int /* error */ 4426 xfs_btree_delete( 4427 struct xfs_btree_cur *cur, 4428 int *stat) /* success/failure */ 4429 { 4430 int error; /* error return value */ 4431 int level; 4432 int i; 4433 bool joined = false; 4434 4435 /* 4436 * Go up the tree, starting at leaf level. 4437 * 4438 * If 2 is returned then a join was done; go to the next level. 4439 * Otherwise we are done. 4440 */ 4441 for (level = 0, i = 2; i == 2; level++) { 4442 error = xfs_btree_delrec(cur, level, &i); 4443 if (error) 4444 goto error0; 4445 if (i == 2) 4446 joined = true; 4447 } 4448 4449 /* 4450 * If we combined blocks as part of deleting the record, delrec won't 4451 * have updated the parent high keys so we have to do that here. 4452 */ 4453 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) { 4454 error = xfs_btree_updkeys_force(cur, 0); 4455 if (error) 4456 goto error0; 4457 } 4458 4459 if (i == 0) { 4460 for (level = 1; level < cur->bc_nlevels; level++) { 4461 if (cur->bc_levels[level].ptr == 0) { 4462 error = xfs_btree_decrement(cur, level, &i); 4463 if (error) 4464 goto error0; 4465 break; 4466 } 4467 } 4468 } 4469 4470 *stat = i; 4471 return 0; 4472 error0: 4473 return error; 4474 } 4475 4476 /* 4477 * Get the data from the pointed-to record. 4478 */ 4479 int /* error */ 4480 xfs_btree_get_rec( 4481 struct xfs_btree_cur *cur, /* btree cursor */ 4482 union xfs_btree_rec **recp, /* output: btree record */ 4483 int *stat) /* output: success/failure */ 4484 { 4485 struct xfs_btree_block *block; /* btree block */ 4486 struct xfs_buf *bp; /* buffer pointer */ 4487 int ptr; /* record number */ 4488 #ifdef DEBUG 4489 int error; /* error return value */ 4490 #endif 4491 4492 ptr = cur->bc_levels[0].ptr; 4493 block = xfs_btree_get_block(cur, 0, &bp); 4494 4495 #ifdef DEBUG 4496 error = xfs_btree_check_block(cur, block, 0, bp); 4497 if (error) 4498 return error; 4499 #endif 4500 4501 /* 4502 * Off the right end or left end, return failure. 4503 */ 4504 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4505 *stat = 0; 4506 return 0; 4507 } 4508 4509 /* 4510 * Point to the record and extract its data. 4511 */ 4512 *recp = xfs_btree_rec_addr(cur, ptr, block); 4513 *stat = 1; 4514 return 0; 4515 } 4516 4517 /* Visit a block in a btree. */ 4518 STATIC int 4519 xfs_btree_visit_block( 4520 struct xfs_btree_cur *cur, 4521 int level, 4522 xfs_btree_visit_blocks_fn fn, 4523 void *data) 4524 { 4525 struct xfs_btree_block *block; 4526 struct xfs_buf *bp; 4527 union xfs_btree_ptr rptr, bufptr; 4528 int error; 4529 4530 /* do right sibling readahead */ 4531 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4532 block = xfs_btree_get_block(cur, level, &bp); 4533 4534 /* process the block */ 4535 error = fn(cur, level, data); 4536 if (error) 4537 return error; 4538 4539 /* now read rh sibling block for next iteration */ 4540 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4541 if (xfs_btree_ptr_is_null(cur, &rptr)) 4542 return -ENOENT; 4543 4544 /* 4545 * We only visit blocks once in this walk, so we have to avoid the 4546 * internal xfs_btree_lookup_get_block() optimisation where it will 4547 * return the same block without checking if the right sibling points 4548 * back to us and creates a cyclic reference in the btree. 4549 */ 4550 xfs_btree_buf_to_ptr(cur, bp, &bufptr); 4551 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) { 4552 xfs_btree_mark_sick(cur); 4553 return -EFSCORRUPTED; 4554 } 4555 4556 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4557 } 4558 4559 4560 /* Visit every block in a btree. */ 4561 int 4562 xfs_btree_visit_blocks( 4563 struct xfs_btree_cur *cur, 4564 xfs_btree_visit_blocks_fn fn, 4565 unsigned int flags, 4566 void *data) 4567 { 4568 union xfs_btree_ptr lptr; 4569 int level; 4570 struct xfs_btree_block *block = NULL; 4571 int error = 0; 4572 4573 xfs_btree_init_ptr_from_cur(cur, &lptr); 4574 4575 /* for each level */ 4576 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4577 /* grab the left hand block */ 4578 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4579 if (error) 4580 return error; 4581 4582 /* readahead the left most block for the next level down */ 4583 if (level > 0) { 4584 union xfs_btree_ptr *ptr; 4585 4586 ptr = xfs_btree_ptr_addr(cur, 1, block); 4587 xfs_btree_readahead_ptr(cur, ptr, 1); 4588 4589 /* save for the next iteration of the loop */ 4590 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4591 4592 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4593 continue; 4594 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4595 continue; 4596 } 4597 4598 /* for each buffer in the level */ 4599 do { 4600 error = xfs_btree_visit_block(cur, level, fn, data); 4601 } while (!error); 4602 4603 if (error != -ENOENT) 4604 return error; 4605 } 4606 4607 return 0; 4608 } 4609 4610 /* 4611 * Change the owner of a btree. 4612 * 4613 * The mechanism we use here is ordered buffer logging. Because we don't know 4614 * how many buffers were are going to need to modify, we don't really want to 4615 * have to make transaction reservations for the worst case of every buffer in a 4616 * full size btree as that may be more space that we can fit in the log.... 4617 * 4618 * We do the btree walk in the most optimal manner possible - we have sibling 4619 * pointers so we can just walk all the blocks on each level from left to right 4620 * in a single pass, and then move to the next level and do the same. We can 4621 * also do readahead on the sibling pointers to get IO moving more quickly, 4622 * though for slow disks this is unlikely to make much difference to performance 4623 * as the amount of CPU work we have to do before moving to the next block is 4624 * relatively small. 4625 * 4626 * For each btree block that we load, modify the owner appropriately, set the 4627 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4628 * we mark the region we change dirty so that if the buffer is relogged in 4629 * a subsequent transaction the changes we make here as an ordered buffer are 4630 * correctly relogged in that transaction. If we are in recovery context, then 4631 * just queue the modified buffer as delayed write buffer so the transaction 4632 * recovery completion writes the changes to disk. 4633 */ 4634 struct xfs_btree_block_change_owner_info { 4635 uint64_t new_owner; 4636 struct list_head *buffer_list; 4637 }; 4638 4639 static int 4640 xfs_btree_block_change_owner( 4641 struct xfs_btree_cur *cur, 4642 int level, 4643 void *data) 4644 { 4645 struct xfs_btree_block_change_owner_info *bbcoi = data; 4646 struct xfs_btree_block *block; 4647 struct xfs_buf *bp; 4648 4649 /* modify the owner */ 4650 block = xfs_btree_get_block(cur, level, &bp); 4651 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) { 4652 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4653 return 0; 4654 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4655 } else { 4656 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4657 return 0; 4658 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4659 } 4660 4661 /* 4662 * If the block is a root block hosted in an inode, we might not have a 4663 * buffer pointer here and we shouldn't attempt to log the change as the 4664 * information is already held in the inode and discarded when the root 4665 * block is formatted into the on-disk inode fork. We still change it, 4666 * though, so everything is consistent in memory. 4667 */ 4668 if (!bp) { 4669 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE); 4670 ASSERT(level == cur->bc_nlevels - 1); 4671 return 0; 4672 } 4673 4674 if (cur->bc_tp) { 4675 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4676 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4677 return -EAGAIN; 4678 } 4679 } else { 4680 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4681 } 4682 4683 return 0; 4684 } 4685 4686 int 4687 xfs_btree_change_owner( 4688 struct xfs_btree_cur *cur, 4689 uint64_t new_owner, 4690 struct list_head *buffer_list) 4691 { 4692 struct xfs_btree_block_change_owner_info bbcoi; 4693 4694 bbcoi.new_owner = new_owner; 4695 bbcoi.buffer_list = buffer_list; 4696 4697 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4698 XFS_BTREE_VISIT_ALL, &bbcoi); 4699 } 4700 4701 /* Verify the v5 fields of a long-format btree block. */ 4702 xfs_failaddr_t 4703 xfs_btree_fsblock_v5hdr_verify( 4704 struct xfs_buf *bp, 4705 uint64_t owner) 4706 { 4707 struct xfs_mount *mp = bp->b_mount; 4708 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4709 4710 if (!xfs_has_crc(mp)) 4711 return __this_address; 4712 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4713 return __this_address; 4714 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4715 return __this_address; 4716 if (owner != XFS_RMAP_OWN_UNKNOWN && 4717 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4718 return __this_address; 4719 return NULL; 4720 } 4721 4722 /* Verify a long-format btree block. */ 4723 xfs_failaddr_t 4724 xfs_btree_fsblock_verify( 4725 struct xfs_buf *bp, 4726 unsigned int max_recs) 4727 { 4728 struct xfs_mount *mp = bp->b_mount; 4729 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4730 xfs_fsblock_t fsb; 4731 xfs_failaddr_t fa; 4732 4733 ASSERT(!xfs_buftarg_is_mem(bp->b_target)); 4734 4735 /* numrecs verification */ 4736 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4737 return __this_address; 4738 4739 /* sibling pointer verification */ 4740 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 4741 fa = xfs_btree_check_fsblock_siblings(mp, fsb, 4742 block->bb_u.l.bb_leftsib); 4743 if (!fa) 4744 fa = xfs_btree_check_fsblock_siblings(mp, fsb, 4745 block->bb_u.l.bb_rightsib); 4746 return fa; 4747 } 4748 4749 /* Verify an in-memory btree block. */ 4750 xfs_failaddr_t 4751 xfs_btree_memblock_verify( 4752 struct xfs_buf *bp, 4753 unsigned int max_recs) 4754 { 4755 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4756 struct xfs_buftarg *btp = bp->b_target; 4757 xfs_failaddr_t fa; 4758 xfbno_t bno; 4759 4760 ASSERT(xfs_buftarg_is_mem(bp->b_target)); 4761 4762 /* numrecs verification */ 4763 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4764 return __this_address; 4765 4766 /* sibling pointer verification */ 4767 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp)); 4768 fa = xfs_btree_check_memblock_siblings(btp, bno, 4769 block->bb_u.l.bb_leftsib); 4770 if (fa) 4771 return fa; 4772 fa = xfs_btree_check_memblock_siblings(btp, bno, 4773 block->bb_u.l.bb_rightsib); 4774 if (fa) 4775 return fa; 4776 4777 return NULL; 4778 } 4779 /** 4780 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format 4781 * btree block 4782 * 4783 * @bp: buffer containing the btree block 4784 */ 4785 xfs_failaddr_t 4786 xfs_btree_agblock_v5hdr_verify( 4787 struct xfs_buf *bp) 4788 { 4789 struct xfs_mount *mp = bp->b_mount; 4790 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4791 struct xfs_perag *pag = bp->b_pag; 4792 4793 if (!xfs_has_crc(mp)) 4794 return __this_address; 4795 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4796 return __this_address; 4797 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4798 return __this_address; 4799 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4800 return __this_address; 4801 return NULL; 4802 } 4803 4804 /** 4805 * xfs_btree_agblock_verify() -- verify a short-format btree block 4806 * 4807 * @bp: buffer containing the btree block 4808 * @max_recs: maximum records allowed in this btree node 4809 */ 4810 xfs_failaddr_t 4811 xfs_btree_agblock_verify( 4812 struct xfs_buf *bp, 4813 unsigned int max_recs) 4814 { 4815 struct xfs_mount *mp = bp->b_mount; 4816 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4817 xfs_agblock_t agbno; 4818 xfs_failaddr_t fa; 4819 4820 ASSERT(!xfs_buftarg_is_mem(bp->b_target)); 4821 4822 /* numrecs verification */ 4823 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4824 return __this_address; 4825 4826 /* sibling pointer verification */ 4827 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); 4828 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno, 4829 block->bb_u.s.bb_leftsib); 4830 if (!fa) 4831 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno, 4832 block->bb_u.s.bb_rightsib); 4833 return fa; 4834 } 4835 4836 /* 4837 * For the given limits on leaf and keyptr records per block, calculate the 4838 * height of the tree needed to index the number of leaf records. 4839 */ 4840 unsigned int 4841 xfs_btree_compute_maxlevels( 4842 const unsigned int *limits, 4843 unsigned long long records) 4844 { 4845 unsigned long long level_blocks = howmany_64(records, limits[0]); 4846 unsigned int height = 1; 4847 4848 while (level_blocks > 1) { 4849 level_blocks = howmany_64(level_blocks, limits[1]); 4850 height++; 4851 } 4852 4853 return height; 4854 } 4855 4856 /* 4857 * For the given limits on leaf and keyptr records per block, calculate the 4858 * number of blocks needed to index the given number of leaf records. 4859 */ 4860 unsigned long long 4861 xfs_btree_calc_size( 4862 const unsigned int *limits, 4863 unsigned long long records) 4864 { 4865 unsigned long long level_blocks = howmany_64(records, limits[0]); 4866 unsigned long long blocks = level_blocks; 4867 4868 while (level_blocks > 1) { 4869 level_blocks = howmany_64(level_blocks, limits[1]); 4870 blocks += level_blocks; 4871 } 4872 4873 return blocks; 4874 } 4875 4876 /* 4877 * Given a number of available blocks for the btree to consume with records and 4878 * pointers, calculate the height of the tree needed to index all the records 4879 * that space can hold based on the number of pointers each interior node 4880 * holds. 4881 * 4882 * We start by assuming a single level tree consumes a single block, then track 4883 * the number of blocks each node level consumes until we no longer have space 4884 * to store the next node level. At this point, we are indexing all the leaf 4885 * blocks in the space, and there's no more free space to split the tree any 4886 * further. That's our maximum btree height. 4887 */ 4888 unsigned int 4889 xfs_btree_space_to_height( 4890 const unsigned int *limits, 4891 unsigned long long leaf_blocks) 4892 { 4893 /* 4894 * The root btree block can have fewer than minrecs pointers in it 4895 * because the tree might not be big enough to require that amount of 4896 * fanout. Hence it has a minimum size of 2 pointers, not limits[1]. 4897 */ 4898 unsigned long long node_blocks = 2; 4899 unsigned long long blocks_left = leaf_blocks - 1; 4900 unsigned int height = 1; 4901 4902 if (leaf_blocks < 1) 4903 return 0; 4904 4905 while (node_blocks < blocks_left) { 4906 blocks_left -= node_blocks; 4907 node_blocks *= limits[1]; 4908 height++; 4909 } 4910 4911 return height; 4912 } 4913 4914 /* 4915 * Query a regular btree for all records overlapping a given interval. 4916 * Start with a LE lookup of the key of low_rec and return all records 4917 * until we find a record with a key greater than the key of high_rec. 4918 */ 4919 STATIC int 4920 xfs_btree_simple_query_range( 4921 struct xfs_btree_cur *cur, 4922 const union xfs_btree_key *low_key, 4923 const union xfs_btree_key *high_key, 4924 xfs_btree_query_range_fn fn, 4925 void *priv) 4926 { 4927 union xfs_btree_rec *recp; 4928 union xfs_btree_key rec_key; 4929 int stat; 4930 bool firstrec = true; 4931 int error; 4932 4933 ASSERT(cur->bc_ops->init_high_key_from_rec); 4934 ASSERT(cur->bc_ops->diff_two_keys); 4935 4936 /* 4937 * Find the leftmost record. The btree cursor must be set 4938 * to the low record used to generate low_key. 4939 */ 4940 stat = 0; 4941 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4942 if (error) 4943 goto out; 4944 4945 /* Nothing? See if there's anything to the right. */ 4946 if (!stat) { 4947 error = xfs_btree_increment(cur, 0, &stat); 4948 if (error) 4949 goto out; 4950 } 4951 4952 while (stat) { 4953 /* Find the record. */ 4954 error = xfs_btree_get_rec(cur, &recp, &stat); 4955 if (error || !stat) 4956 break; 4957 4958 /* Skip if low_key > high_key(rec). */ 4959 if (firstrec) { 4960 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4961 firstrec = false; 4962 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key)) 4963 goto advloop; 4964 } 4965 4966 /* Stop if low_key(rec) > high_key. */ 4967 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4968 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key)) 4969 break; 4970 4971 /* Callback */ 4972 error = fn(cur, recp, priv); 4973 if (error) 4974 break; 4975 4976 advloop: 4977 /* Move on to the next record. */ 4978 error = xfs_btree_increment(cur, 0, &stat); 4979 if (error) 4980 break; 4981 } 4982 4983 out: 4984 return error; 4985 } 4986 4987 /* 4988 * Query an overlapped interval btree for all records overlapping a given 4989 * interval. This function roughly follows the algorithm given in 4990 * "Interval Trees" of _Introduction to Algorithms_, which is section 4991 * 14.3 in the 2nd and 3rd editions. 4992 * 4993 * First, generate keys for the low and high records passed in. 4994 * 4995 * For any leaf node, generate the high and low keys for the record. 4996 * If the record keys overlap with the query low/high keys, pass the 4997 * record to the function iterator. 4998 * 4999 * For any internal node, compare the low and high keys of each 5000 * pointer against the query low/high keys. If there's an overlap, 5001 * follow the pointer. 5002 * 5003 * As an optimization, we stop scanning a block when we find a low key 5004 * that is greater than the query's high key. 5005 */ 5006 STATIC int 5007 xfs_btree_overlapped_query_range( 5008 struct xfs_btree_cur *cur, 5009 const union xfs_btree_key *low_key, 5010 const union xfs_btree_key *high_key, 5011 xfs_btree_query_range_fn fn, 5012 void *priv) 5013 { 5014 union xfs_btree_ptr ptr; 5015 union xfs_btree_ptr *pp; 5016 union xfs_btree_key rec_key; 5017 union xfs_btree_key rec_hkey; 5018 union xfs_btree_key *lkp; 5019 union xfs_btree_key *hkp; 5020 union xfs_btree_rec *recp; 5021 struct xfs_btree_block *block; 5022 int level; 5023 struct xfs_buf *bp; 5024 int i; 5025 int error; 5026 5027 /* Load the root of the btree. */ 5028 level = cur->bc_nlevels - 1; 5029 xfs_btree_init_ptr_from_cur(cur, &ptr); 5030 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 5031 if (error) 5032 return error; 5033 xfs_btree_get_block(cur, level, &bp); 5034 trace_xfs_btree_overlapped_query_range(cur, level, bp); 5035 #ifdef DEBUG 5036 error = xfs_btree_check_block(cur, block, level, bp); 5037 if (error) 5038 goto out; 5039 #endif 5040 cur->bc_levels[level].ptr = 1; 5041 5042 while (level < cur->bc_nlevels) { 5043 block = xfs_btree_get_block(cur, level, &bp); 5044 5045 /* End of node, pop back towards the root. */ 5046 if (cur->bc_levels[level].ptr > 5047 be16_to_cpu(block->bb_numrecs)) { 5048 pop_up: 5049 if (level < cur->bc_nlevels - 1) 5050 cur->bc_levels[level + 1].ptr++; 5051 level++; 5052 continue; 5053 } 5054 5055 if (level == 0) { 5056 /* Handle a leaf node. */ 5057 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr, 5058 block); 5059 5060 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 5061 cur->bc_ops->init_key_from_rec(&rec_key, recp); 5062 5063 /* 5064 * If (query's high key < record's low key), then there 5065 * are no more interesting records in this block. Pop 5066 * up to the leaf level to find more record blocks. 5067 * 5068 * If (record's high key >= query's low key) and 5069 * (query's high key >= record's low key), then 5070 * this record overlaps the query range; callback. 5071 */ 5072 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key)) 5073 goto pop_up; 5074 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) { 5075 error = fn(cur, recp, priv); 5076 if (error) 5077 break; 5078 } 5079 cur->bc_levels[level].ptr++; 5080 continue; 5081 } 5082 5083 /* Handle an internal node. */ 5084 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block); 5085 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr, 5086 block); 5087 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block); 5088 5089 /* 5090 * If (query's high key < pointer's low key), then there are no 5091 * more interesting keys in this block. Pop up one leaf level 5092 * to continue looking for records. 5093 * 5094 * If (pointer's high key >= query's low key) and 5095 * (query's high key >= pointer's low key), then 5096 * this record overlaps the query range; follow pointer. 5097 */ 5098 if (xfs_btree_keycmp_lt(cur, high_key, lkp)) 5099 goto pop_up; 5100 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) { 5101 level--; 5102 error = xfs_btree_lookup_get_block(cur, level, pp, 5103 &block); 5104 if (error) 5105 goto out; 5106 xfs_btree_get_block(cur, level, &bp); 5107 trace_xfs_btree_overlapped_query_range(cur, level, bp); 5108 #ifdef DEBUG 5109 error = xfs_btree_check_block(cur, block, level, bp); 5110 if (error) 5111 goto out; 5112 #endif 5113 cur->bc_levels[level].ptr = 1; 5114 continue; 5115 } 5116 cur->bc_levels[level].ptr++; 5117 } 5118 5119 out: 5120 /* 5121 * If we don't end this function with the cursor pointing at a record 5122 * block, a subsequent non-error cursor deletion will not release 5123 * node-level buffers, causing a buffer leak. This is quite possible 5124 * with a zero-results range query, so release the buffers if we 5125 * failed to return any results. 5126 */ 5127 if (cur->bc_levels[0].bp == NULL) { 5128 for (i = 0; i < cur->bc_nlevels; i++) { 5129 if (cur->bc_levels[i].bp) { 5130 xfs_trans_brelse(cur->bc_tp, 5131 cur->bc_levels[i].bp); 5132 cur->bc_levels[i].bp = NULL; 5133 cur->bc_levels[i].ptr = 0; 5134 cur->bc_levels[i].ra = 0; 5135 } 5136 } 5137 } 5138 5139 return error; 5140 } 5141 5142 static inline void 5143 xfs_btree_key_from_irec( 5144 struct xfs_btree_cur *cur, 5145 union xfs_btree_key *key, 5146 const union xfs_btree_irec *irec) 5147 { 5148 union xfs_btree_rec rec; 5149 5150 cur->bc_rec = *irec; 5151 cur->bc_ops->init_rec_from_cur(cur, &rec); 5152 cur->bc_ops->init_key_from_rec(key, &rec); 5153 } 5154 5155 /* 5156 * Query a btree for all records overlapping a given interval of keys. The 5157 * supplied function will be called with each record found; return one of the 5158 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 5159 * code. This function returns -ECANCELED, zero, or a negative error code. 5160 */ 5161 int 5162 xfs_btree_query_range( 5163 struct xfs_btree_cur *cur, 5164 const union xfs_btree_irec *low_rec, 5165 const union xfs_btree_irec *high_rec, 5166 xfs_btree_query_range_fn fn, 5167 void *priv) 5168 { 5169 union xfs_btree_key low_key; 5170 union xfs_btree_key high_key; 5171 5172 /* Find the keys of both ends of the interval. */ 5173 xfs_btree_key_from_irec(cur, &high_key, high_rec); 5174 xfs_btree_key_from_irec(cur, &low_key, low_rec); 5175 5176 /* Enforce low key <= high key. */ 5177 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key)) 5178 return -EINVAL; 5179 5180 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) 5181 return xfs_btree_simple_query_range(cur, &low_key, 5182 &high_key, fn, priv); 5183 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 5184 fn, priv); 5185 } 5186 5187 /* Query a btree for all records. */ 5188 int 5189 xfs_btree_query_all( 5190 struct xfs_btree_cur *cur, 5191 xfs_btree_query_range_fn fn, 5192 void *priv) 5193 { 5194 union xfs_btree_key low_key; 5195 union xfs_btree_key high_key; 5196 5197 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 5198 memset(&low_key, 0, sizeof(low_key)); 5199 memset(&high_key, 0xFF, sizeof(high_key)); 5200 5201 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 5202 } 5203 5204 static int 5205 xfs_btree_count_blocks_helper( 5206 struct xfs_btree_cur *cur, 5207 int level, 5208 void *data) 5209 { 5210 xfs_extlen_t *blocks = data; 5211 (*blocks)++; 5212 5213 return 0; 5214 } 5215 5216 /* Count the blocks in a btree and return the result in *blocks. */ 5217 int 5218 xfs_btree_count_blocks( 5219 struct xfs_btree_cur *cur, 5220 xfs_extlen_t *blocks) 5221 { 5222 *blocks = 0; 5223 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 5224 XFS_BTREE_VISIT_ALL, blocks); 5225 } 5226 5227 /* Compare two btree pointers. */ 5228 int64_t 5229 xfs_btree_diff_two_ptrs( 5230 struct xfs_btree_cur *cur, 5231 const union xfs_btree_ptr *a, 5232 const union xfs_btree_ptr *b) 5233 { 5234 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 5235 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 5236 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 5237 } 5238 5239 struct xfs_btree_has_records { 5240 /* Keys for the start and end of the range we want to know about. */ 5241 union xfs_btree_key start_key; 5242 union xfs_btree_key end_key; 5243 5244 /* Mask for key comparisons, if desired. */ 5245 const union xfs_btree_key *key_mask; 5246 5247 /* Highest record key we've seen so far. */ 5248 union xfs_btree_key high_key; 5249 5250 enum xbtree_recpacking outcome; 5251 }; 5252 5253 STATIC int 5254 xfs_btree_has_records_helper( 5255 struct xfs_btree_cur *cur, 5256 const union xfs_btree_rec *rec, 5257 void *priv) 5258 { 5259 union xfs_btree_key rec_key; 5260 union xfs_btree_key rec_high_key; 5261 struct xfs_btree_has_records *info = priv; 5262 enum xbtree_key_contig key_contig; 5263 5264 cur->bc_ops->init_key_from_rec(&rec_key, rec); 5265 5266 if (info->outcome == XBTREE_RECPACKING_EMPTY) { 5267 info->outcome = XBTREE_RECPACKING_SPARSE; 5268 5269 /* 5270 * If the first record we find does not overlap the start key, 5271 * then there is a hole at the start of the search range. 5272 * Classify this as sparse and stop immediately. 5273 */ 5274 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key, 5275 info->key_mask)) 5276 return -ECANCELED; 5277 } else { 5278 /* 5279 * If a subsequent record does not overlap with the any record 5280 * we've seen so far, there is a hole in the middle of the 5281 * search range. Classify this as sparse and stop. 5282 * If the keys overlap and this btree does not allow overlap, 5283 * signal corruption. 5284 */ 5285 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key, 5286 &rec_key, info->key_mask); 5287 if (key_contig == XBTREE_KEY_OVERLAP && 5288 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) 5289 return -EFSCORRUPTED; 5290 if (key_contig == XBTREE_KEY_GAP) 5291 return -ECANCELED; 5292 } 5293 5294 /* 5295 * If high_key(rec) is larger than any other high key we've seen, 5296 * remember it for later. 5297 */ 5298 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec); 5299 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key, 5300 info->key_mask)) 5301 info->high_key = rec_high_key; /* struct copy */ 5302 5303 return 0; 5304 } 5305 5306 /* 5307 * Scan part of the keyspace of a btree and tell us if that keyspace does not 5308 * map to any records; is fully mapped to records; or is partially mapped to 5309 * records. This is the btree record equivalent to determining if a file is 5310 * sparse. 5311 * 5312 * For most btree types, the record scan should use all available btree key 5313 * fields to compare the keys encountered. These callers should pass NULL for 5314 * @mask. However, some callers (e.g. scanning physical space in the rmapbt) 5315 * want to ignore some part of the btree record keyspace when performing the 5316 * comparison. These callers should pass in a union xfs_btree_key object with 5317 * the fields that *should* be a part of the comparison set to any nonzero 5318 * value, and the rest zeroed. 5319 */ 5320 int 5321 xfs_btree_has_records( 5322 struct xfs_btree_cur *cur, 5323 const union xfs_btree_irec *low, 5324 const union xfs_btree_irec *high, 5325 const union xfs_btree_key *mask, 5326 enum xbtree_recpacking *outcome) 5327 { 5328 struct xfs_btree_has_records info = { 5329 .outcome = XBTREE_RECPACKING_EMPTY, 5330 .key_mask = mask, 5331 }; 5332 int error; 5333 5334 /* Not all btrees support this operation. */ 5335 if (!cur->bc_ops->keys_contiguous) { 5336 ASSERT(0); 5337 return -EOPNOTSUPP; 5338 } 5339 5340 xfs_btree_key_from_irec(cur, &info.start_key, low); 5341 xfs_btree_key_from_irec(cur, &info.end_key, high); 5342 5343 error = xfs_btree_query_range(cur, low, high, 5344 xfs_btree_has_records_helper, &info); 5345 if (error == -ECANCELED) 5346 goto out; 5347 if (error) 5348 return error; 5349 5350 if (info.outcome == XBTREE_RECPACKING_EMPTY) 5351 goto out; 5352 5353 /* 5354 * If the largest high_key(rec) we saw during the walk is greater than 5355 * the end of the search range, classify this as full. Otherwise, 5356 * there is a hole at the end of the search range. 5357 */ 5358 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key, 5359 mask)) 5360 info.outcome = XBTREE_RECPACKING_FULL; 5361 5362 out: 5363 *outcome = info.outcome; 5364 return 0; 5365 } 5366 5367 /* Are there more records in this btree? */ 5368 bool 5369 xfs_btree_has_more_records( 5370 struct xfs_btree_cur *cur) 5371 { 5372 struct xfs_btree_block *block; 5373 struct xfs_buf *bp; 5374 5375 block = xfs_btree_get_block(cur, 0, &bp); 5376 5377 /* There are still records in this block. */ 5378 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block)) 5379 return true; 5380 5381 /* There are more record blocks. */ 5382 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 5383 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 5384 else 5385 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 5386 } 5387 5388 /* Set up all the btree cursor caches. */ 5389 int __init 5390 xfs_btree_init_cur_caches(void) 5391 { 5392 int error; 5393 5394 error = xfs_allocbt_init_cur_cache(); 5395 if (error) 5396 return error; 5397 error = xfs_inobt_init_cur_cache(); 5398 if (error) 5399 goto err; 5400 error = xfs_bmbt_init_cur_cache(); 5401 if (error) 5402 goto err; 5403 error = xfs_rmapbt_init_cur_cache(); 5404 if (error) 5405 goto err; 5406 error = xfs_refcountbt_init_cur_cache(); 5407 if (error) 5408 goto err; 5409 5410 return 0; 5411 err: 5412 xfs_btree_destroy_cur_caches(); 5413 return error; 5414 } 5415 5416 /* Destroy all the btree cursor caches, if they've been allocated. */ 5417 void 5418 xfs_btree_destroy_cur_caches(void) 5419 { 5420 xfs_allocbt_destroy_cur_cache(); 5421 xfs_inobt_destroy_cur_cache(); 5422 xfs_bmbt_destroy_cur_cache(); 5423 xfs_rmapbt_destroy_cur_cache(); 5424 xfs_refcountbt_destroy_cur_cache(); 5425 } 5426 5427 /* Move the btree cursor before the first record. */ 5428 int 5429 xfs_btree_goto_left_edge( 5430 struct xfs_btree_cur *cur) 5431 { 5432 int stat = 0; 5433 int error; 5434 5435 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 5436 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 5437 if (error) 5438 return error; 5439 if (!stat) 5440 return 0; 5441 5442 error = xfs_btree_decrement(cur, 0, &stat); 5443 if (error) 5444 return error; 5445 if (stat != 0) { 5446 ASSERT(0); 5447 xfs_btree_mark_sick(cur); 5448 return -EFSCORRUPTED; 5449 } 5450 5451 return 0; 5452 } 5453