1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_errortag.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_alloc.h" 22 #include "xfs_log.h" 23 #include "xfs_btree_staging.h" 24 25 /* 26 * Cursor allocation zone. 27 */ 28 kmem_zone_t *xfs_btree_cur_zone; 29 30 /* 31 * Btree magic numbers. 32 */ 33 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 35 XFS_FIBT_MAGIC, 0 }, 36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 38 XFS_REFC_CRC_MAGIC } 39 }; 40 41 uint32_t 42 xfs_btree_magic( 43 int crc, 44 xfs_btnum_t btnum) 45 { 46 uint32_t magic = xfs_magics[crc][btnum]; 47 48 /* Ensure we asked for crc for crc-only magics. */ 49 ASSERT(magic != 0); 50 return magic; 51 } 52 53 /* 54 * Check a long btree block header. Return the address of the failing check, 55 * or NULL if everything is ok. 56 */ 57 xfs_failaddr_t 58 __xfs_btree_check_lblock( 59 struct xfs_btree_cur *cur, 60 struct xfs_btree_block *block, 61 int level, 62 struct xfs_buf *bp) 63 { 64 struct xfs_mount *mp = cur->bc_mp; 65 xfs_btnum_t btnum = cur->bc_btnum; 66 int crc = xfs_sb_version_hascrc(&mp->m_sb); 67 68 if (crc) { 69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 70 return __this_address; 71 if (block->bb_u.l.bb_blkno != 72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 73 return __this_address; 74 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 75 return __this_address; 76 } 77 78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 79 return __this_address; 80 if (be16_to_cpu(block->bb_level) != level) 81 return __this_address; 82 if (be16_to_cpu(block->bb_numrecs) > 83 cur->bc_ops->get_maxrecs(cur, level)) 84 return __this_address; 85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib), 87 level + 1)) 88 return __this_address; 89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib), 91 level + 1)) 92 return __this_address; 93 94 return NULL; 95 } 96 97 /* Check a long btree block header. */ 98 static int 99 xfs_btree_check_lblock( 100 struct xfs_btree_cur *cur, 101 struct xfs_btree_block *block, 102 int level, 103 struct xfs_buf *bp) 104 { 105 struct xfs_mount *mp = cur->bc_mp; 106 xfs_failaddr_t fa; 107 108 fa = __xfs_btree_check_lblock(cur, block, level, bp); 109 if (XFS_IS_CORRUPT(mp, fa != NULL) || 110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 111 if (bp) 112 trace_xfs_btree_corrupt(bp, _RET_IP_); 113 return -EFSCORRUPTED; 114 } 115 return 0; 116 } 117 118 /* 119 * Check a short btree block header. Return the address of the failing check, 120 * or NULL if everything is ok. 121 */ 122 xfs_failaddr_t 123 __xfs_btree_check_sblock( 124 struct xfs_btree_cur *cur, 125 struct xfs_btree_block *block, 126 int level, 127 struct xfs_buf *bp) 128 { 129 struct xfs_mount *mp = cur->bc_mp; 130 xfs_btnum_t btnum = cur->bc_btnum; 131 int crc = xfs_sb_version_hascrc(&mp->m_sb); 132 133 if (crc) { 134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 135 return __this_address; 136 if (block->bb_u.s.bb_blkno != 137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 138 return __this_address; 139 } 140 141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 142 return __this_address; 143 if (be16_to_cpu(block->bb_level) != level) 144 return __this_address; 145 if (be16_to_cpu(block->bb_numrecs) > 146 cur->bc_ops->get_maxrecs(cur, level)) 147 return __this_address; 148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib), 150 level + 1)) 151 return __this_address; 152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib), 154 level + 1)) 155 return __this_address; 156 157 return NULL; 158 } 159 160 /* Check a short btree block header. */ 161 STATIC int 162 xfs_btree_check_sblock( 163 struct xfs_btree_cur *cur, 164 struct xfs_btree_block *block, 165 int level, 166 struct xfs_buf *bp) 167 { 168 struct xfs_mount *mp = cur->bc_mp; 169 xfs_failaddr_t fa; 170 171 fa = __xfs_btree_check_sblock(cur, block, level, bp); 172 if (XFS_IS_CORRUPT(mp, fa != NULL) || 173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 174 if (bp) 175 trace_xfs_btree_corrupt(bp, _RET_IP_); 176 return -EFSCORRUPTED; 177 } 178 return 0; 179 } 180 181 /* 182 * Debug routine: check that block header is ok. 183 */ 184 int 185 xfs_btree_check_block( 186 struct xfs_btree_cur *cur, /* btree cursor */ 187 struct xfs_btree_block *block, /* generic btree block pointer */ 188 int level, /* level of the btree block */ 189 struct xfs_buf *bp) /* buffer containing block, if any */ 190 { 191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 192 return xfs_btree_check_lblock(cur, block, level, bp); 193 else 194 return xfs_btree_check_sblock(cur, block, level, bp); 195 } 196 197 /* Check that this long pointer is valid and points within the fs. */ 198 bool 199 xfs_btree_check_lptr( 200 struct xfs_btree_cur *cur, 201 xfs_fsblock_t fsbno, 202 int level) 203 { 204 if (level <= 0) 205 return false; 206 return xfs_verify_fsbno(cur->bc_mp, fsbno); 207 } 208 209 /* Check that this short pointer is valid and points within the AG. */ 210 bool 211 xfs_btree_check_sptr( 212 struct xfs_btree_cur *cur, 213 xfs_agblock_t agbno, 214 int level) 215 { 216 if (level <= 0) 217 return false; 218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno); 219 } 220 221 /* 222 * Check that a given (indexed) btree pointer at a certain level of a 223 * btree is valid and doesn't point past where it should. 224 */ 225 static int 226 xfs_btree_check_ptr( 227 struct xfs_btree_cur *cur, 228 union xfs_btree_ptr *ptr, 229 int index, 230 int level) 231 { 232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 234 level)) 235 return 0; 236 xfs_err(cur->bc_mp, 237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 238 cur->bc_ino.ip->i_ino, 239 cur->bc_ino.whichfork, cur->bc_btnum, 240 level, index); 241 } else { 242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 243 level)) 244 return 0; 245 xfs_err(cur->bc_mp, 246 "AG %u: Corrupt btree %d pointer at level %d index %d.", 247 cur->bc_ag.agno, cur->bc_btnum, 248 level, index); 249 } 250 251 return -EFSCORRUPTED; 252 } 253 254 #ifdef DEBUG 255 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr 256 #else 257 # define xfs_btree_debug_check_ptr(...) (0) 258 #endif 259 260 /* 261 * Calculate CRC on the whole btree block and stuff it into the 262 * long-form btree header. 263 * 264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 265 * it into the buffer so recovery knows what the last modification was that made 266 * it to disk. 267 */ 268 void 269 xfs_btree_lblock_calc_crc( 270 struct xfs_buf *bp) 271 { 272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 273 struct xfs_buf_log_item *bip = bp->b_log_item; 274 275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 276 return; 277 if (bip) 278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 280 } 281 282 bool 283 xfs_btree_lblock_verify_crc( 284 struct xfs_buf *bp) 285 { 286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 287 struct xfs_mount *mp = bp->b_mount; 288 289 if (xfs_sb_version_hascrc(&mp->m_sb)) { 290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 291 return false; 292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 293 } 294 295 return true; 296 } 297 298 /* 299 * Calculate CRC on the whole btree block and stuff it into the 300 * short-form btree header. 301 * 302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 303 * it into the buffer so recovery knows what the last modification was that made 304 * it to disk. 305 */ 306 void 307 xfs_btree_sblock_calc_crc( 308 struct xfs_buf *bp) 309 { 310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 311 struct xfs_buf_log_item *bip = bp->b_log_item; 312 313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 314 return; 315 if (bip) 316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 318 } 319 320 bool 321 xfs_btree_sblock_verify_crc( 322 struct xfs_buf *bp) 323 { 324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 325 struct xfs_mount *mp = bp->b_mount; 326 327 if (xfs_sb_version_hascrc(&mp->m_sb)) { 328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 329 return false; 330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 331 } 332 333 return true; 334 } 335 336 static int 337 xfs_btree_free_block( 338 struct xfs_btree_cur *cur, 339 struct xfs_buf *bp) 340 { 341 int error; 342 343 error = cur->bc_ops->free_block(cur, bp); 344 if (!error) { 345 xfs_trans_binval(cur->bc_tp, bp); 346 XFS_BTREE_STATS_INC(cur, free); 347 } 348 return error; 349 } 350 351 /* 352 * Delete the btree cursor. 353 */ 354 void 355 xfs_btree_del_cursor( 356 xfs_btree_cur_t *cur, /* btree cursor */ 357 int error) /* del because of error */ 358 { 359 int i; /* btree level */ 360 361 /* 362 * Clear the buffer pointers, and release the buffers. 363 * If we're doing this in the face of an error, we 364 * need to make sure to inspect all of the entries 365 * in the bc_bufs array for buffers to be unlocked. 366 * This is because some of the btree code works from 367 * level n down to 0, and if we get an error along 368 * the way we won't have initialized all the entries 369 * down to 0. 370 */ 371 for (i = 0; i < cur->bc_nlevels; i++) { 372 if (cur->bc_bufs[i]) 373 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 374 else if (!error) 375 break; 376 } 377 /* 378 * Can't free a bmap cursor without having dealt with the 379 * allocated indirect blocks' accounting. 380 */ 381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || 382 cur->bc_ino.allocated == 0); 383 /* 384 * Free the cursor. 385 */ 386 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) 387 kmem_free((void *)cur->bc_ops); 388 kmem_cache_free(xfs_btree_cur_zone, cur); 389 } 390 391 /* 392 * Duplicate the btree cursor. 393 * Allocate a new one, copy the record, re-get the buffers. 394 */ 395 int /* error */ 396 xfs_btree_dup_cursor( 397 xfs_btree_cur_t *cur, /* input cursor */ 398 xfs_btree_cur_t **ncur) /* output cursor */ 399 { 400 struct xfs_buf *bp; /* btree block's buffer pointer */ 401 int error; /* error return value */ 402 int i; /* level number of btree block */ 403 xfs_mount_t *mp; /* mount structure for filesystem */ 404 xfs_btree_cur_t *new; /* new cursor value */ 405 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 406 407 tp = cur->bc_tp; 408 mp = cur->bc_mp; 409 410 /* 411 * Allocate a new cursor like the old one. 412 */ 413 new = cur->bc_ops->dup_cursor(cur); 414 415 /* 416 * Copy the record currently in the cursor. 417 */ 418 new->bc_rec = cur->bc_rec; 419 420 /* 421 * For each level current, re-get the buffer and copy the ptr value. 422 */ 423 for (i = 0; i < new->bc_nlevels; i++) { 424 new->bc_ptrs[i] = cur->bc_ptrs[i]; 425 new->bc_ra[i] = cur->bc_ra[i]; 426 bp = cur->bc_bufs[i]; 427 if (bp) { 428 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 429 XFS_BUF_ADDR(bp), mp->m_bsize, 430 0, &bp, 431 cur->bc_ops->buf_ops); 432 if (error) { 433 xfs_btree_del_cursor(new, error); 434 *ncur = NULL; 435 return error; 436 } 437 } 438 new->bc_bufs[i] = bp; 439 } 440 *ncur = new; 441 return 0; 442 } 443 444 /* 445 * XFS btree block layout and addressing: 446 * 447 * There are two types of blocks in the btree: leaf and non-leaf blocks. 448 * 449 * The leaf record start with a header then followed by records containing 450 * the values. A non-leaf block also starts with the same header, and 451 * then first contains lookup keys followed by an equal number of pointers 452 * to the btree blocks at the previous level. 453 * 454 * +--------+-------+-------+-------+-------+-------+-------+ 455 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 456 * +--------+-------+-------+-------+-------+-------+-------+ 457 * 458 * +--------+-------+-------+-------+-------+-------+-------+ 459 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 460 * +--------+-------+-------+-------+-------+-------+-------+ 461 * 462 * The header is called struct xfs_btree_block for reasons better left unknown 463 * and comes in different versions for short (32bit) and long (64bit) block 464 * pointers. The record and key structures are defined by the btree instances 465 * and opaque to the btree core. The block pointers are simple disk endian 466 * integers, available in a short (32bit) and long (64bit) variant. 467 * 468 * The helpers below calculate the offset of a given record, key or pointer 469 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 470 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 471 * inside the btree block is done using indices starting at one, not zero! 472 * 473 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 474 * overlapping intervals. In such a tree, records are still sorted lowest to 475 * highest and indexed by the smallest key value that refers to the record. 476 * However, nodes are different: each pointer has two associated keys -- one 477 * indexing the lowest key available in the block(s) below (the same behavior 478 * as the key in a regular btree) and another indexing the highest key 479 * available in the block(s) below. Because records are /not/ sorted by the 480 * highest key, all leaf block updates require us to compute the highest key 481 * that matches any record in the leaf and to recursively update the high keys 482 * in the nodes going further up in the tree, if necessary. Nodes look like 483 * this: 484 * 485 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 486 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 487 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 488 * 489 * To perform an interval query on an overlapped tree, perform the usual 490 * depth-first search and use the low and high keys to decide if we can skip 491 * that particular node. If a leaf node is reached, return the records that 492 * intersect the interval. Note that an interval query may return numerous 493 * entries. For a non-overlapped tree, simply search for the record associated 494 * with the lowest key and iterate forward until a non-matching record is 495 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 496 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 497 * more detail. 498 * 499 * Why do we care about overlapping intervals? Let's say you have a bunch of 500 * reverse mapping records on a reflink filesystem: 501 * 502 * 1: +- file A startblock B offset C length D -----------+ 503 * 2: +- file E startblock F offset G length H --------------+ 504 * 3: +- file I startblock F offset J length K --+ 505 * 4: +- file L... --+ 506 * 507 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 508 * we'd simply increment the length of record 1. But how do we find the record 509 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 510 * record 3 because the keys are ordered first by startblock. An interval 511 * query would return records 1 and 2 because they both overlap (B+D-1), and 512 * from that we can pick out record 1 as the appropriate left neighbor. 513 * 514 * In the non-overlapped case you can do a LE lookup and decrement the cursor 515 * because a record's interval must end before the next record. 516 */ 517 518 /* 519 * Return size of the btree block header for this btree instance. 520 */ 521 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 522 { 523 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 524 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 525 return XFS_BTREE_LBLOCK_CRC_LEN; 526 return XFS_BTREE_LBLOCK_LEN; 527 } 528 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 529 return XFS_BTREE_SBLOCK_CRC_LEN; 530 return XFS_BTREE_SBLOCK_LEN; 531 } 532 533 /* 534 * Return size of btree block pointers for this btree instance. 535 */ 536 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 537 { 538 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 539 sizeof(__be64) : sizeof(__be32); 540 } 541 542 /* 543 * Calculate offset of the n-th record in a btree block. 544 */ 545 STATIC size_t 546 xfs_btree_rec_offset( 547 struct xfs_btree_cur *cur, 548 int n) 549 { 550 return xfs_btree_block_len(cur) + 551 (n - 1) * cur->bc_ops->rec_len; 552 } 553 554 /* 555 * Calculate offset of the n-th key in a btree block. 556 */ 557 STATIC size_t 558 xfs_btree_key_offset( 559 struct xfs_btree_cur *cur, 560 int n) 561 { 562 return xfs_btree_block_len(cur) + 563 (n - 1) * cur->bc_ops->key_len; 564 } 565 566 /* 567 * Calculate offset of the n-th high key in a btree block. 568 */ 569 STATIC size_t 570 xfs_btree_high_key_offset( 571 struct xfs_btree_cur *cur, 572 int n) 573 { 574 return xfs_btree_block_len(cur) + 575 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 576 } 577 578 /* 579 * Calculate offset of the n-th block pointer in a btree block. 580 */ 581 STATIC size_t 582 xfs_btree_ptr_offset( 583 struct xfs_btree_cur *cur, 584 int n, 585 int level) 586 { 587 return xfs_btree_block_len(cur) + 588 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 589 (n - 1) * xfs_btree_ptr_len(cur); 590 } 591 592 /* 593 * Return a pointer to the n-th record in the btree block. 594 */ 595 union xfs_btree_rec * 596 xfs_btree_rec_addr( 597 struct xfs_btree_cur *cur, 598 int n, 599 struct xfs_btree_block *block) 600 { 601 return (union xfs_btree_rec *) 602 ((char *)block + xfs_btree_rec_offset(cur, n)); 603 } 604 605 /* 606 * Return a pointer to the n-th key in the btree block. 607 */ 608 union xfs_btree_key * 609 xfs_btree_key_addr( 610 struct xfs_btree_cur *cur, 611 int n, 612 struct xfs_btree_block *block) 613 { 614 return (union xfs_btree_key *) 615 ((char *)block + xfs_btree_key_offset(cur, n)); 616 } 617 618 /* 619 * Return a pointer to the n-th high key in the btree block. 620 */ 621 union xfs_btree_key * 622 xfs_btree_high_key_addr( 623 struct xfs_btree_cur *cur, 624 int n, 625 struct xfs_btree_block *block) 626 { 627 return (union xfs_btree_key *) 628 ((char *)block + xfs_btree_high_key_offset(cur, n)); 629 } 630 631 /* 632 * Return a pointer to the n-th block pointer in the btree block. 633 */ 634 union xfs_btree_ptr * 635 xfs_btree_ptr_addr( 636 struct xfs_btree_cur *cur, 637 int n, 638 struct xfs_btree_block *block) 639 { 640 int level = xfs_btree_get_level(block); 641 642 ASSERT(block->bb_level != 0); 643 644 return (union xfs_btree_ptr *) 645 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 646 } 647 648 struct xfs_ifork * 649 xfs_btree_ifork_ptr( 650 struct xfs_btree_cur *cur) 651 { 652 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 653 654 if (cur->bc_flags & XFS_BTREE_STAGING) 655 return cur->bc_ino.ifake->if_fork; 656 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork); 657 } 658 659 /* 660 * Get the root block which is stored in the inode. 661 * 662 * For now this btree implementation assumes the btree root is always 663 * stored in the if_broot field of an inode fork. 664 */ 665 STATIC struct xfs_btree_block * 666 xfs_btree_get_iroot( 667 struct xfs_btree_cur *cur) 668 { 669 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 670 671 return (struct xfs_btree_block *)ifp->if_broot; 672 } 673 674 /* 675 * Retrieve the block pointer from the cursor at the given level. 676 * This may be an inode btree root or from a buffer. 677 */ 678 struct xfs_btree_block * /* generic btree block pointer */ 679 xfs_btree_get_block( 680 struct xfs_btree_cur *cur, /* btree cursor */ 681 int level, /* level in btree */ 682 struct xfs_buf **bpp) /* buffer containing the block */ 683 { 684 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 685 (level == cur->bc_nlevels - 1)) { 686 *bpp = NULL; 687 return xfs_btree_get_iroot(cur); 688 } 689 690 *bpp = cur->bc_bufs[level]; 691 return XFS_BUF_TO_BLOCK(*bpp); 692 } 693 694 /* 695 * Change the cursor to point to the first record at the given level. 696 * Other levels are unaffected. 697 */ 698 STATIC int /* success=1, failure=0 */ 699 xfs_btree_firstrec( 700 xfs_btree_cur_t *cur, /* btree cursor */ 701 int level) /* level to change */ 702 { 703 struct xfs_btree_block *block; /* generic btree block pointer */ 704 struct xfs_buf *bp; /* buffer containing block */ 705 706 /* 707 * Get the block pointer for this level. 708 */ 709 block = xfs_btree_get_block(cur, level, &bp); 710 if (xfs_btree_check_block(cur, block, level, bp)) 711 return 0; 712 /* 713 * It's empty, there is no such record. 714 */ 715 if (!block->bb_numrecs) 716 return 0; 717 /* 718 * Set the ptr value to 1, that's the first record/key. 719 */ 720 cur->bc_ptrs[level] = 1; 721 return 1; 722 } 723 724 /* 725 * Change the cursor to point to the last record in the current block 726 * at the given level. Other levels are unaffected. 727 */ 728 STATIC int /* success=1, failure=0 */ 729 xfs_btree_lastrec( 730 xfs_btree_cur_t *cur, /* btree cursor */ 731 int level) /* level to change */ 732 { 733 struct xfs_btree_block *block; /* generic btree block pointer */ 734 struct xfs_buf *bp; /* buffer containing block */ 735 736 /* 737 * Get the block pointer for this level. 738 */ 739 block = xfs_btree_get_block(cur, level, &bp); 740 if (xfs_btree_check_block(cur, block, level, bp)) 741 return 0; 742 /* 743 * It's empty, there is no such record. 744 */ 745 if (!block->bb_numrecs) 746 return 0; 747 /* 748 * Set the ptr value to numrecs, that's the last record/key. 749 */ 750 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs); 751 return 1; 752 } 753 754 /* 755 * Compute first and last byte offsets for the fields given. 756 * Interprets the offsets table, which contains struct field offsets. 757 */ 758 void 759 xfs_btree_offsets( 760 int64_t fields, /* bitmask of fields */ 761 const short *offsets, /* table of field offsets */ 762 int nbits, /* number of bits to inspect */ 763 int *first, /* output: first byte offset */ 764 int *last) /* output: last byte offset */ 765 { 766 int i; /* current bit number */ 767 int64_t imask; /* mask for current bit number */ 768 769 ASSERT(fields != 0); 770 /* 771 * Find the lowest bit, so the first byte offset. 772 */ 773 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 774 if (imask & fields) { 775 *first = offsets[i]; 776 break; 777 } 778 } 779 /* 780 * Find the highest bit, so the last byte offset. 781 */ 782 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 783 if (imask & fields) { 784 *last = offsets[i + 1] - 1; 785 break; 786 } 787 } 788 } 789 790 /* 791 * Get a buffer for the block, return it read in. 792 * Long-form addressing. 793 */ 794 int 795 xfs_btree_read_bufl( 796 struct xfs_mount *mp, /* file system mount point */ 797 struct xfs_trans *tp, /* transaction pointer */ 798 xfs_fsblock_t fsbno, /* file system block number */ 799 struct xfs_buf **bpp, /* buffer for fsbno */ 800 int refval, /* ref count value for buffer */ 801 const struct xfs_buf_ops *ops) 802 { 803 struct xfs_buf *bp; /* return value */ 804 xfs_daddr_t d; /* real disk block address */ 805 int error; 806 807 if (!xfs_verify_fsbno(mp, fsbno)) 808 return -EFSCORRUPTED; 809 d = XFS_FSB_TO_DADDR(mp, fsbno); 810 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 811 mp->m_bsize, 0, &bp, ops); 812 if (error) 813 return error; 814 if (bp) 815 xfs_buf_set_ref(bp, refval); 816 *bpp = bp; 817 return 0; 818 } 819 820 /* 821 * Read-ahead the block, don't wait for it, don't return a buffer. 822 * Long-form addressing. 823 */ 824 /* ARGSUSED */ 825 void 826 xfs_btree_reada_bufl( 827 struct xfs_mount *mp, /* file system mount point */ 828 xfs_fsblock_t fsbno, /* file system block number */ 829 xfs_extlen_t count, /* count of filesystem blocks */ 830 const struct xfs_buf_ops *ops) 831 { 832 xfs_daddr_t d; 833 834 ASSERT(fsbno != NULLFSBLOCK); 835 d = XFS_FSB_TO_DADDR(mp, fsbno); 836 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 837 } 838 839 /* 840 * Read-ahead the block, don't wait for it, don't return a buffer. 841 * Short-form addressing. 842 */ 843 /* ARGSUSED */ 844 void 845 xfs_btree_reada_bufs( 846 struct xfs_mount *mp, /* file system mount point */ 847 xfs_agnumber_t agno, /* allocation group number */ 848 xfs_agblock_t agbno, /* allocation group block number */ 849 xfs_extlen_t count, /* count of filesystem blocks */ 850 const struct xfs_buf_ops *ops) 851 { 852 xfs_daddr_t d; 853 854 ASSERT(agno != NULLAGNUMBER); 855 ASSERT(agbno != NULLAGBLOCK); 856 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 857 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 858 } 859 860 STATIC int 861 xfs_btree_readahead_lblock( 862 struct xfs_btree_cur *cur, 863 int lr, 864 struct xfs_btree_block *block) 865 { 866 int rval = 0; 867 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 868 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 869 870 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 871 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 872 cur->bc_ops->buf_ops); 873 rval++; 874 } 875 876 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 877 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 878 cur->bc_ops->buf_ops); 879 rval++; 880 } 881 882 return rval; 883 } 884 885 STATIC int 886 xfs_btree_readahead_sblock( 887 struct xfs_btree_cur *cur, 888 int lr, 889 struct xfs_btree_block *block) 890 { 891 int rval = 0; 892 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 893 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 894 895 896 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno, 898 left, 1, cur->bc_ops->buf_ops); 899 rval++; 900 } 901 902 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 903 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno, 904 right, 1, cur->bc_ops->buf_ops); 905 rval++; 906 } 907 908 return rval; 909 } 910 911 /* 912 * Read-ahead btree blocks, at the given level. 913 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 914 */ 915 STATIC int 916 xfs_btree_readahead( 917 struct xfs_btree_cur *cur, /* btree cursor */ 918 int lev, /* level in btree */ 919 int lr) /* left/right bits */ 920 { 921 struct xfs_btree_block *block; 922 923 /* 924 * No readahead needed if we are at the root level and the 925 * btree root is stored in the inode. 926 */ 927 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 928 (lev == cur->bc_nlevels - 1)) 929 return 0; 930 931 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev]) 932 return 0; 933 934 cur->bc_ra[lev] |= lr; 935 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]); 936 937 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 938 return xfs_btree_readahead_lblock(cur, lr, block); 939 return xfs_btree_readahead_sblock(cur, lr, block); 940 } 941 942 STATIC int 943 xfs_btree_ptr_to_daddr( 944 struct xfs_btree_cur *cur, 945 union xfs_btree_ptr *ptr, 946 xfs_daddr_t *daddr) 947 { 948 xfs_fsblock_t fsbno; 949 xfs_agblock_t agbno; 950 int error; 951 952 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 953 if (error) 954 return error; 955 956 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 957 fsbno = be64_to_cpu(ptr->l); 958 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 959 } else { 960 agbno = be32_to_cpu(ptr->s); 961 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno, 962 agbno); 963 } 964 965 return 0; 966 } 967 968 /* 969 * Readahead @count btree blocks at the given @ptr location. 970 * 971 * We don't need to care about long or short form btrees here as we have a 972 * method of converting the ptr directly to a daddr available to us. 973 */ 974 STATIC void 975 xfs_btree_readahead_ptr( 976 struct xfs_btree_cur *cur, 977 union xfs_btree_ptr *ptr, 978 xfs_extlen_t count) 979 { 980 xfs_daddr_t daddr; 981 982 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 983 return; 984 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 985 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 986 } 987 988 /* 989 * Set the buffer for level "lev" in the cursor to bp, releasing 990 * any previous buffer. 991 */ 992 STATIC void 993 xfs_btree_setbuf( 994 xfs_btree_cur_t *cur, /* btree cursor */ 995 int lev, /* level in btree */ 996 struct xfs_buf *bp) /* new buffer to set */ 997 { 998 struct xfs_btree_block *b; /* btree block */ 999 1000 if (cur->bc_bufs[lev]) 1001 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]); 1002 cur->bc_bufs[lev] = bp; 1003 cur->bc_ra[lev] = 0; 1004 1005 b = XFS_BUF_TO_BLOCK(bp); 1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1007 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1008 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1009 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1010 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1011 } else { 1012 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1013 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1014 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1015 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1016 } 1017 } 1018 1019 bool 1020 xfs_btree_ptr_is_null( 1021 struct xfs_btree_cur *cur, 1022 union xfs_btree_ptr *ptr) 1023 { 1024 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1025 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1026 else 1027 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1028 } 1029 1030 void 1031 xfs_btree_set_ptr_null( 1032 struct xfs_btree_cur *cur, 1033 union xfs_btree_ptr *ptr) 1034 { 1035 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1036 ptr->l = cpu_to_be64(NULLFSBLOCK); 1037 else 1038 ptr->s = cpu_to_be32(NULLAGBLOCK); 1039 } 1040 1041 /* 1042 * Get/set/init sibling pointers 1043 */ 1044 void 1045 xfs_btree_get_sibling( 1046 struct xfs_btree_cur *cur, 1047 struct xfs_btree_block *block, 1048 union xfs_btree_ptr *ptr, 1049 int lr) 1050 { 1051 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1052 1053 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1054 if (lr == XFS_BB_RIGHTSIB) 1055 ptr->l = block->bb_u.l.bb_rightsib; 1056 else 1057 ptr->l = block->bb_u.l.bb_leftsib; 1058 } else { 1059 if (lr == XFS_BB_RIGHTSIB) 1060 ptr->s = block->bb_u.s.bb_rightsib; 1061 else 1062 ptr->s = block->bb_u.s.bb_leftsib; 1063 } 1064 } 1065 1066 void 1067 xfs_btree_set_sibling( 1068 struct xfs_btree_cur *cur, 1069 struct xfs_btree_block *block, 1070 union xfs_btree_ptr *ptr, 1071 int lr) 1072 { 1073 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1074 1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1076 if (lr == XFS_BB_RIGHTSIB) 1077 block->bb_u.l.bb_rightsib = ptr->l; 1078 else 1079 block->bb_u.l.bb_leftsib = ptr->l; 1080 } else { 1081 if (lr == XFS_BB_RIGHTSIB) 1082 block->bb_u.s.bb_rightsib = ptr->s; 1083 else 1084 block->bb_u.s.bb_leftsib = ptr->s; 1085 } 1086 } 1087 1088 void 1089 xfs_btree_init_block_int( 1090 struct xfs_mount *mp, 1091 struct xfs_btree_block *buf, 1092 xfs_daddr_t blkno, 1093 xfs_btnum_t btnum, 1094 __u16 level, 1095 __u16 numrecs, 1096 __u64 owner, 1097 unsigned int flags) 1098 { 1099 int crc = xfs_sb_version_hascrc(&mp->m_sb); 1100 __u32 magic = xfs_btree_magic(crc, btnum); 1101 1102 buf->bb_magic = cpu_to_be32(magic); 1103 buf->bb_level = cpu_to_be16(level); 1104 buf->bb_numrecs = cpu_to_be16(numrecs); 1105 1106 if (flags & XFS_BTREE_LONG_PTRS) { 1107 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1108 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1109 if (crc) { 1110 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1111 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1112 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1113 buf->bb_u.l.bb_pad = 0; 1114 buf->bb_u.l.bb_lsn = 0; 1115 } 1116 } else { 1117 /* owner is a 32 bit value on short blocks */ 1118 __u32 __owner = (__u32)owner; 1119 1120 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1121 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1122 if (crc) { 1123 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1124 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1125 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1126 buf->bb_u.s.bb_lsn = 0; 1127 } 1128 } 1129 } 1130 1131 void 1132 xfs_btree_init_block( 1133 struct xfs_mount *mp, 1134 struct xfs_buf *bp, 1135 xfs_btnum_t btnum, 1136 __u16 level, 1137 __u16 numrecs, 1138 __u64 owner) 1139 { 1140 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1141 btnum, level, numrecs, owner, 0); 1142 } 1143 1144 void 1145 xfs_btree_init_block_cur( 1146 struct xfs_btree_cur *cur, 1147 struct xfs_buf *bp, 1148 int level, 1149 int numrecs) 1150 { 1151 __u64 owner; 1152 1153 /* 1154 * we can pull the owner from the cursor right now as the different 1155 * owners align directly with the pointer size of the btree. This may 1156 * change in future, but is safe for current users of the generic btree 1157 * code. 1158 */ 1159 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1160 owner = cur->bc_ino.ip->i_ino; 1161 else 1162 owner = cur->bc_ag.agno; 1163 1164 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1165 cur->bc_btnum, level, numrecs, 1166 owner, cur->bc_flags); 1167 } 1168 1169 /* 1170 * Return true if ptr is the last record in the btree and 1171 * we need to track updates to this record. The decision 1172 * will be further refined in the update_lastrec method. 1173 */ 1174 STATIC int 1175 xfs_btree_is_lastrec( 1176 struct xfs_btree_cur *cur, 1177 struct xfs_btree_block *block, 1178 int level) 1179 { 1180 union xfs_btree_ptr ptr; 1181 1182 if (level > 0) 1183 return 0; 1184 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1185 return 0; 1186 1187 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1188 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1189 return 0; 1190 return 1; 1191 } 1192 1193 STATIC void 1194 xfs_btree_buf_to_ptr( 1195 struct xfs_btree_cur *cur, 1196 struct xfs_buf *bp, 1197 union xfs_btree_ptr *ptr) 1198 { 1199 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1200 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1201 XFS_BUF_ADDR(bp))); 1202 else { 1203 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1204 XFS_BUF_ADDR(bp))); 1205 } 1206 } 1207 1208 STATIC void 1209 xfs_btree_set_refs( 1210 struct xfs_btree_cur *cur, 1211 struct xfs_buf *bp) 1212 { 1213 switch (cur->bc_btnum) { 1214 case XFS_BTNUM_BNO: 1215 case XFS_BTNUM_CNT: 1216 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1217 break; 1218 case XFS_BTNUM_INO: 1219 case XFS_BTNUM_FINO: 1220 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1221 break; 1222 case XFS_BTNUM_BMAP: 1223 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1224 break; 1225 case XFS_BTNUM_RMAP: 1226 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1227 break; 1228 case XFS_BTNUM_REFC: 1229 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1230 break; 1231 default: 1232 ASSERT(0); 1233 } 1234 } 1235 1236 int 1237 xfs_btree_get_buf_block( 1238 struct xfs_btree_cur *cur, 1239 union xfs_btree_ptr *ptr, 1240 struct xfs_btree_block **block, 1241 struct xfs_buf **bpp) 1242 { 1243 struct xfs_mount *mp = cur->bc_mp; 1244 xfs_daddr_t d; 1245 int error; 1246 1247 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1248 if (error) 1249 return error; 1250 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1251 0, bpp); 1252 if (error) 1253 return error; 1254 1255 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1256 *block = XFS_BUF_TO_BLOCK(*bpp); 1257 return 0; 1258 } 1259 1260 /* 1261 * Read in the buffer at the given ptr and return the buffer and 1262 * the block pointer within the buffer. 1263 */ 1264 STATIC int 1265 xfs_btree_read_buf_block( 1266 struct xfs_btree_cur *cur, 1267 union xfs_btree_ptr *ptr, 1268 int flags, 1269 struct xfs_btree_block **block, 1270 struct xfs_buf **bpp) 1271 { 1272 struct xfs_mount *mp = cur->bc_mp; 1273 xfs_daddr_t d; 1274 int error; 1275 1276 /* need to sort out how callers deal with failures first */ 1277 ASSERT(!(flags & XBF_TRYLOCK)); 1278 1279 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1280 if (error) 1281 return error; 1282 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1283 mp->m_bsize, flags, bpp, 1284 cur->bc_ops->buf_ops); 1285 if (error) 1286 return error; 1287 1288 xfs_btree_set_refs(cur, *bpp); 1289 *block = XFS_BUF_TO_BLOCK(*bpp); 1290 return 0; 1291 } 1292 1293 /* 1294 * Copy keys from one btree block to another. 1295 */ 1296 void 1297 xfs_btree_copy_keys( 1298 struct xfs_btree_cur *cur, 1299 union xfs_btree_key *dst_key, 1300 union xfs_btree_key *src_key, 1301 int numkeys) 1302 { 1303 ASSERT(numkeys >= 0); 1304 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1305 } 1306 1307 /* 1308 * Copy records from one btree block to another. 1309 */ 1310 STATIC void 1311 xfs_btree_copy_recs( 1312 struct xfs_btree_cur *cur, 1313 union xfs_btree_rec *dst_rec, 1314 union xfs_btree_rec *src_rec, 1315 int numrecs) 1316 { 1317 ASSERT(numrecs >= 0); 1318 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1319 } 1320 1321 /* 1322 * Copy block pointers from one btree block to another. 1323 */ 1324 void 1325 xfs_btree_copy_ptrs( 1326 struct xfs_btree_cur *cur, 1327 union xfs_btree_ptr *dst_ptr, 1328 const union xfs_btree_ptr *src_ptr, 1329 int numptrs) 1330 { 1331 ASSERT(numptrs >= 0); 1332 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1333 } 1334 1335 /* 1336 * Shift keys one index left/right inside a single btree block. 1337 */ 1338 STATIC void 1339 xfs_btree_shift_keys( 1340 struct xfs_btree_cur *cur, 1341 union xfs_btree_key *key, 1342 int dir, 1343 int numkeys) 1344 { 1345 char *dst_key; 1346 1347 ASSERT(numkeys >= 0); 1348 ASSERT(dir == 1 || dir == -1); 1349 1350 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1351 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1352 } 1353 1354 /* 1355 * Shift records one index left/right inside a single btree block. 1356 */ 1357 STATIC void 1358 xfs_btree_shift_recs( 1359 struct xfs_btree_cur *cur, 1360 union xfs_btree_rec *rec, 1361 int dir, 1362 int numrecs) 1363 { 1364 char *dst_rec; 1365 1366 ASSERT(numrecs >= 0); 1367 ASSERT(dir == 1 || dir == -1); 1368 1369 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1370 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1371 } 1372 1373 /* 1374 * Shift block pointers one index left/right inside a single btree block. 1375 */ 1376 STATIC void 1377 xfs_btree_shift_ptrs( 1378 struct xfs_btree_cur *cur, 1379 union xfs_btree_ptr *ptr, 1380 int dir, 1381 int numptrs) 1382 { 1383 char *dst_ptr; 1384 1385 ASSERT(numptrs >= 0); 1386 ASSERT(dir == 1 || dir == -1); 1387 1388 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1389 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1390 } 1391 1392 /* 1393 * Log key values from the btree block. 1394 */ 1395 STATIC void 1396 xfs_btree_log_keys( 1397 struct xfs_btree_cur *cur, 1398 struct xfs_buf *bp, 1399 int first, 1400 int last) 1401 { 1402 1403 if (bp) { 1404 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1405 xfs_trans_log_buf(cur->bc_tp, bp, 1406 xfs_btree_key_offset(cur, first), 1407 xfs_btree_key_offset(cur, last + 1) - 1); 1408 } else { 1409 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1410 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1411 } 1412 } 1413 1414 /* 1415 * Log record values from the btree block. 1416 */ 1417 void 1418 xfs_btree_log_recs( 1419 struct xfs_btree_cur *cur, 1420 struct xfs_buf *bp, 1421 int first, 1422 int last) 1423 { 1424 1425 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1426 xfs_trans_log_buf(cur->bc_tp, bp, 1427 xfs_btree_rec_offset(cur, first), 1428 xfs_btree_rec_offset(cur, last + 1) - 1); 1429 1430 } 1431 1432 /* 1433 * Log block pointer fields from a btree block (nonleaf). 1434 */ 1435 STATIC void 1436 xfs_btree_log_ptrs( 1437 struct xfs_btree_cur *cur, /* btree cursor */ 1438 struct xfs_buf *bp, /* buffer containing btree block */ 1439 int first, /* index of first pointer to log */ 1440 int last) /* index of last pointer to log */ 1441 { 1442 1443 if (bp) { 1444 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1445 int level = xfs_btree_get_level(block); 1446 1447 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1448 xfs_trans_log_buf(cur->bc_tp, bp, 1449 xfs_btree_ptr_offset(cur, first, level), 1450 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1451 } else { 1452 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1453 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1454 } 1455 1456 } 1457 1458 /* 1459 * Log fields from a btree block header. 1460 */ 1461 void 1462 xfs_btree_log_block( 1463 struct xfs_btree_cur *cur, /* btree cursor */ 1464 struct xfs_buf *bp, /* buffer containing btree block */ 1465 int fields) /* mask of fields: XFS_BB_... */ 1466 { 1467 int first; /* first byte offset logged */ 1468 int last; /* last byte offset logged */ 1469 static const short soffsets[] = { /* table of offsets (short) */ 1470 offsetof(struct xfs_btree_block, bb_magic), 1471 offsetof(struct xfs_btree_block, bb_level), 1472 offsetof(struct xfs_btree_block, bb_numrecs), 1473 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1474 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1475 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1476 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1477 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1478 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1479 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1480 XFS_BTREE_SBLOCK_CRC_LEN 1481 }; 1482 static const short loffsets[] = { /* table of offsets (long) */ 1483 offsetof(struct xfs_btree_block, bb_magic), 1484 offsetof(struct xfs_btree_block, bb_level), 1485 offsetof(struct xfs_btree_block, bb_numrecs), 1486 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1487 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1488 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1489 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1490 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1491 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1492 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1493 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1494 XFS_BTREE_LBLOCK_CRC_LEN 1495 }; 1496 1497 if (bp) { 1498 int nbits; 1499 1500 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1501 /* 1502 * We don't log the CRC when updating a btree 1503 * block but instead recreate it during log 1504 * recovery. As the log buffers have checksums 1505 * of their own this is safe and avoids logging a crc 1506 * update in a lot of places. 1507 */ 1508 if (fields == XFS_BB_ALL_BITS) 1509 fields = XFS_BB_ALL_BITS_CRC; 1510 nbits = XFS_BB_NUM_BITS_CRC; 1511 } else { 1512 nbits = XFS_BB_NUM_BITS; 1513 } 1514 xfs_btree_offsets(fields, 1515 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1516 loffsets : soffsets, 1517 nbits, &first, &last); 1518 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1519 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1520 } else { 1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1522 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1523 } 1524 } 1525 1526 /* 1527 * Increment cursor by one record at the level. 1528 * For nonzero levels the leaf-ward information is untouched. 1529 */ 1530 int /* error */ 1531 xfs_btree_increment( 1532 struct xfs_btree_cur *cur, 1533 int level, 1534 int *stat) /* success/failure */ 1535 { 1536 struct xfs_btree_block *block; 1537 union xfs_btree_ptr ptr; 1538 struct xfs_buf *bp; 1539 int error; /* error return value */ 1540 int lev; 1541 1542 ASSERT(level < cur->bc_nlevels); 1543 1544 /* Read-ahead to the right at this level. */ 1545 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1546 1547 /* Get a pointer to the btree block. */ 1548 block = xfs_btree_get_block(cur, level, &bp); 1549 1550 #ifdef DEBUG 1551 error = xfs_btree_check_block(cur, block, level, bp); 1552 if (error) 1553 goto error0; 1554 #endif 1555 1556 /* We're done if we remain in the block after the increment. */ 1557 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block)) 1558 goto out1; 1559 1560 /* Fail if we just went off the right edge of the tree. */ 1561 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1562 if (xfs_btree_ptr_is_null(cur, &ptr)) 1563 goto out0; 1564 1565 XFS_BTREE_STATS_INC(cur, increment); 1566 1567 /* 1568 * March up the tree incrementing pointers. 1569 * Stop when we don't go off the right edge of a block. 1570 */ 1571 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1572 block = xfs_btree_get_block(cur, lev, &bp); 1573 1574 #ifdef DEBUG 1575 error = xfs_btree_check_block(cur, block, lev, bp); 1576 if (error) 1577 goto error0; 1578 #endif 1579 1580 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block)) 1581 break; 1582 1583 /* Read-ahead the right block for the next loop. */ 1584 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1585 } 1586 1587 /* 1588 * If we went off the root then we are either seriously 1589 * confused or have the tree root in an inode. 1590 */ 1591 if (lev == cur->bc_nlevels) { 1592 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1593 goto out0; 1594 ASSERT(0); 1595 error = -EFSCORRUPTED; 1596 goto error0; 1597 } 1598 ASSERT(lev < cur->bc_nlevels); 1599 1600 /* 1601 * Now walk back down the tree, fixing up the cursor's buffer 1602 * pointers and key numbers. 1603 */ 1604 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1605 union xfs_btree_ptr *ptrp; 1606 1607 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1608 --lev; 1609 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1610 if (error) 1611 goto error0; 1612 1613 xfs_btree_setbuf(cur, lev, bp); 1614 cur->bc_ptrs[lev] = 1; 1615 } 1616 out1: 1617 *stat = 1; 1618 return 0; 1619 1620 out0: 1621 *stat = 0; 1622 return 0; 1623 1624 error0: 1625 return error; 1626 } 1627 1628 /* 1629 * Decrement cursor by one record at the level. 1630 * For nonzero levels the leaf-ward information is untouched. 1631 */ 1632 int /* error */ 1633 xfs_btree_decrement( 1634 struct xfs_btree_cur *cur, 1635 int level, 1636 int *stat) /* success/failure */ 1637 { 1638 struct xfs_btree_block *block; 1639 struct xfs_buf *bp; 1640 int error; /* error return value */ 1641 int lev; 1642 union xfs_btree_ptr ptr; 1643 1644 ASSERT(level < cur->bc_nlevels); 1645 1646 /* Read-ahead to the left at this level. */ 1647 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1648 1649 /* We're done if we remain in the block after the decrement. */ 1650 if (--cur->bc_ptrs[level] > 0) 1651 goto out1; 1652 1653 /* Get a pointer to the btree block. */ 1654 block = xfs_btree_get_block(cur, level, &bp); 1655 1656 #ifdef DEBUG 1657 error = xfs_btree_check_block(cur, block, level, bp); 1658 if (error) 1659 goto error0; 1660 #endif 1661 1662 /* Fail if we just went off the left edge of the tree. */ 1663 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1664 if (xfs_btree_ptr_is_null(cur, &ptr)) 1665 goto out0; 1666 1667 XFS_BTREE_STATS_INC(cur, decrement); 1668 1669 /* 1670 * March up the tree decrementing pointers. 1671 * Stop when we don't go off the left edge of a block. 1672 */ 1673 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1674 if (--cur->bc_ptrs[lev] > 0) 1675 break; 1676 /* Read-ahead the left block for the next loop. */ 1677 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1678 } 1679 1680 /* 1681 * If we went off the root then we are seriously confused. 1682 * or the root of the tree is in an inode. 1683 */ 1684 if (lev == cur->bc_nlevels) { 1685 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1686 goto out0; 1687 ASSERT(0); 1688 error = -EFSCORRUPTED; 1689 goto error0; 1690 } 1691 ASSERT(lev < cur->bc_nlevels); 1692 1693 /* 1694 * Now walk back down the tree, fixing up the cursor's buffer 1695 * pointers and key numbers. 1696 */ 1697 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1698 union xfs_btree_ptr *ptrp; 1699 1700 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1701 --lev; 1702 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1703 if (error) 1704 goto error0; 1705 xfs_btree_setbuf(cur, lev, bp); 1706 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block); 1707 } 1708 out1: 1709 *stat = 1; 1710 return 0; 1711 1712 out0: 1713 *stat = 0; 1714 return 0; 1715 1716 error0: 1717 return error; 1718 } 1719 1720 int 1721 xfs_btree_lookup_get_block( 1722 struct xfs_btree_cur *cur, /* btree cursor */ 1723 int level, /* level in the btree */ 1724 union xfs_btree_ptr *pp, /* ptr to btree block */ 1725 struct xfs_btree_block **blkp) /* return btree block */ 1726 { 1727 struct xfs_buf *bp; /* buffer pointer for btree block */ 1728 xfs_daddr_t daddr; 1729 int error = 0; 1730 1731 /* special case the root block if in an inode */ 1732 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1733 (level == cur->bc_nlevels - 1)) { 1734 *blkp = xfs_btree_get_iroot(cur); 1735 return 0; 1736 } 1737 1738 /* 1739 * If the old buffer at this level for the disk address we are 1740 * looking for re-use it. 1741 * 1742 * Otherwise throw it away and get a new one. 1743 */ 1744 bp = cur->bc_bufs[level]; 1745 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1746 if (error) 1747 return error; 1748 if (bp && XFS_BUF_ADDR(bp) == daddr) { 1749 *blkp = XFS_BUF_TO_BLOCK(bp); 1750 return 0; 1751 } 1752 1753 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1754 if (error) 1755 return error; 1756 1757 /* Check the inode owner since the verifiers don't. */ 1758 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) && 1759 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && 1760 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1761 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1762 cur->bc_ino.ip->i_ino) 1763 goto out_bad; 1764 1765 /* Did we get the level we were looking for? */ 1766 if (be16_to_cpu((*blkp)->bb_level) != level) 1767 goto out_bad; 1768 1769 /* Check that internal nodes have at least one record. */ 1770 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1771 goto out_bad; 1772 1773 xfs_btree_setbuf(cur, level, bp); 1774 return 0; 1775 1776 out_bad: 1777 *blkp = NULL; 1778 xfs_buf_mark_corrupt(bp); 1779 xfs_trans_brelse(cur->bc_tp, bp); 1780 return -EFSCORRUPTED; 1781 } 1782 1783 /* 1784 * Get current search key. For level 0 we don't actually have a key 1785 * structure so we make one up from the record. For all other levels 1786 * we just return the right key. 1787 */ 1788 STATIC union xfs_btree_key * 1789 xfs_lookup_get_search_key( 1790 struct xfs_btree_cur *cur, 1791 int level, 1792 int keyno, 1793 struct xfs_btree_block *block, 1794 union xfs_btree_key *kp) 1795 { 1796 if (level == 0) { 1797 cur->bc_ops->init_key_from_rec(kp, 1798 xfs_btree_rec_addr(cur, keyno, block)); 1799 return kp; 1800 } 1801 1802 return xfs_btree_key_addr(cur, keyno, block); 1803 } 1804 1805 /* 1806 * Lookup the record. The cursor is made to point to it, based on dir. 1807 * stat is set to 0 if can't find any such record, 1 for success. 1808 */ 1809 int /* error */ 1810 xfs_btree_lookup( 1811 struct xfs_btree_cur *cur, /* btree cursor */ 1812 xfs_lookup_t dir, /* <=, ==, or >= */ 1813 int *stat) /* success/failure */ 1814 { 1815 struct xfs_btree_block *block; /* current btree block */ 1816 int64_t diff; /* difference for the current key */ 1817 int error; /* error return value */ 1818 int keyno; /* current key number */ 1819 int level; /* level in the btree */ 1820 union xfs_btree_ptr *pp; /* ptr to btree block */ 1821 union xfs_btree_ptr ptr; /* ptr to btree block */ 1822 1823 XFS_BTREE_STATS_INC(cur, lookup); 1824 1825 /* No such thing as a zero-level tree. */ 1826 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1827 return -EFSCORRUPTED; 1828 1829 block = NULL; 1830 keyno = 0; 1831 1832 /* initialise start pointer from cursor */ 1833 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1834 pp = &ptr; 1835 1836 /* 1837 * Iterate over each level in the btree, starting at the root. 1838 * For each level above the leaves, find the key we need, based 1839 * on the lookup record, then follow the corresponding block 1840 * pointer down to the next level. 1841 */ 1842 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1843 /* Get the block we need to do the lookup on. */ 1844 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1845 if (error) 1846 goto error0; 1847 1848 if (diff == 0) { 1849 /* 1850 * If we already had a key match at a higher level, we 1851 * know we need to use the first entry in this block. 1852 */ 1853 keyno = 1; 1854 } else { 1855 /* Otherwise search this block. Do a binary search. */ 1856 1857 int high; /* high entry number */ 1858 int low; /* low entry number */ 1859 1860 /* Set low and high entry numbers, 1-based. */ 1861 low = 1; 1862 high = xfs_btree_get_numrecs(block); 1863 if (!high) { 1864 /* Block is empty, must be an empty leaf. */ 1865 if (level != 0 || cur->bc_nlevels != 1) { 1866 XFS_CORRUPTION_ERROR(__func__, 1867 XFS_ERRLEVEL_LOW, 1868 cur->bc_mp, block, 1869 sizeof(*block)); 1870 return -EFSCORRUPTED; 1871 } 1872 1873 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; 1874 *stat = 0; 1875 return 0; 1876 } 1877 1878 /* Binary search the block. */ 1879 while (low <= high) { 1880 union xfs_btree_key key; 1881 union xfs_btree_key *kp; 1882 1883 XFS_BTREE_STATS_INC(cur, compare); 1884 1885 /* keyno is average of low and high. */ 1886 keyno = (low + high) >> 1; 1887 1888 /* Get current search key */ 1889 kp = xfs_lookup_get_search_key(cur, level, 1890 keyno, block, &key); 1891 1892 /* 1893 * Compute difference to get next direction: 1894 * - less than, move right 1895 * - greater than, move left 1896 * - equal, we're done 1897 */ 1898 diff = cur->bc_ops->key_diff(cur, kp); 1899 if (diff < 0) 1900 low = keyno + 1; 1901 else if (diff > 0) 1902 high = keyno - 1; 1903 else 1904 break; 1905 } 1906 } 1907 1908 /* 1909 * If there are more levels, set up for the next level 1910 * by getting the block number and filling in the cursor. 1911 */ 1912 if (level > 0) { 1913 /* 1914 * If we moved left, need the previous key number, 1915 * unless there isn't one. 1916 */ 1917 if (diff > 0 && --keyno < 1) 1918 keyno = 1; 1919 pp = xfs_btree_ptr_addr(cur, keyno, block); 1920 1921 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1922 if (error) 1923 goto error0; 1924 1925 cur->bc_ptrs[level] = keyno; 1926 } 1927 } 1928 1929 /* Done with the search. See if we need to adjust the results. */ 1930 if (dir != XFS_LOOKUP_LE && diff < 0) { 1931 keyno++; 1932 /* 1933 * If ge search and we went off the end of the block, but it's 1934 * not the last block, we're in the wrong block. 1935 */ 1936 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1937 if (dir == XFS_LOOKUP_GE && 1938 keyno > xfs_btree_get_numrecs(block) && 1939 !xfs_btree_ptr_is_null(cur, &ptr)) { 1940 int i; 1941 1942 cur->bc_ptrs[0] = keyno; 1943 error = xfs_btree_increment(cur, 0, &i); 1944 if (error) 1945 goto error0; 1946 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1947 return -EFSCORRUPTED; 1948 *stat = 1; 1949 return 0; 1950 } 1951 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1952 keyno--; 1953 cur->bc_ptrs[0] = keyno; 1954 1955 /* Return if we succeeded or not. */ 1956 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1957 *stat = 0; 1958 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1959 *stat = 1; 1960 else 1961 *stat = 0; 1962 return 0; 1963 1964 error0: 1965 return error; 1966 } 1967 1968 /* Find the high key storage area from a regular key. */ 1969 union xfs_btree_key * 1970 xfs_btree_high_key_from_key( 1971 struct xfs_btree_cur *cur, 1972 union xfs_btree_key *key) 1973 { 1974 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 1975 return (union xfs_btree_key *)((char *)key + 1976 (cur->bc_ops->key_len / 2)); 1977 } 1978 1979 /* Determine the low (and high if overlapped) keys of a leaf block */ 1980 STATIC void 1981 xfs_btree_get_leaf_keys( 1982 struct xfs_btree_cur *cur, 1983 struct xfs_btree_block *block, 1984 union xfs_btree_key *key) 1985 { 1986 union xfs_btree_key max_hkey; 1987 union xfs_btree_key hkey; 1988 union xfs_btree_rec *rec; 1989 union xfs_btree_key *high; 1990 int n; 1991 1992 rec = xfs_btree_rec_addr(cur, 1, block); 1993 cur->bc_ops->init_key_from_rec(key, rec); 1994 1995 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 1996 1997 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 1998 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 1999 rec = xfs_btree_rec_addr(cur, n, block); 2000 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 2001 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 2002 > 0) 2003 max_hkey = hkey; 2004 } 2005 2006 high = xfs_btree_high_key_from_key(cur, key); 2007 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2008 } 2009 } 2010 2011 /* Determine the low (and high if overlapped) keys of a node block */ 2012 STATIC void 2013 xfs_btree_get_node_keys( 2014 struct xfs_btree_cur *cur, 2015 struct xfs_btree_block *block, 2016 union xfs_btree_key *key) 2017 { 2018 union xfs_btree_key *hkey; 2019 union xfs_btree_key *max_hkey; 2020 union xfs_btree_key *high; 2021 int n; 2022 2023 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2024 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2025 cur->bc_ops->key_len / 2); 2026 2027 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2028 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2029 hkey = xfs_btree_high_key_addr(cur, n, block); 2030 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2031 max_hkey = hkey; 2032 } 2033 2034 high = xfs_btree_high_key_from_key(cur, key); 2035 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2036 } else { 2037 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2038 cur->bc_ops->key_len); 2039 } 2040 } 2041 2042 /* Derive the keys for any btree block. */ 2043 void 2044 xfs_btree_get_keys( 2045 struct xfs_btree_cur *cur, 2046 struct xfs_btree_block *block, 2047 union xfs_btree_key *key) 2048 { 2049 if (be16_to_cpu(block->bb_level) == 0) 2050 xfs_btree_get_leaf_keys(cur, block, key); 2051 else 2052 xfs_btree_get_node_keys(cur, block, key); 2053 } 2054 2055 /* 2056 * Decide if we need to update the parent keys of a btree block. For 2057 * a standard btree this is only necessary if we're updating the first 2058 * record/key. For an overlapping btree, we must always update the 2059 * keys because the highest key can be in any of the records or keys 2060 * in the block. 2061 */ 2062 static inline bool 2063 xfs_btree_needs_key_update( 2064 struct xfs_btree_cur *cur, 2065 int ptr) 2066 { 2067 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2068 } 2069 2070 /* 2071 * Update the low and high parent keys of the given level, progressing 2072 * towards the root. If force_all is false, stop if the keys for a given 2073 * level do not need updating. 2074 */ 2075 STATIC int 2076 __xfs_btree_updkeys( 2077 struct xfs_btree_cur *cur, 2078 int level, 2079 struct xfs_btree_block *block, 2080 struct xfs_buf *bp0, 2081 bool force_all) 2082 { 2083 union xfs_btree_key key; /* keys from current level */ 2084 union xfs_btree_key *lkey; /* keys from the next level up */ 2085 union xfs_btree_key *hkey; 2086 union xfs_btree_key *nlkey; /* keys from the next level up */ 2087 union xfs_btree_key *nhkey; 2088 struct xfs_buf *bp; 2089 int ptr; 2090 2091 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2092 2093 /* Exit if there aren't any parent levels to update. */ 2094 if (level + 1 >= cur->bc_nlevels) 2095 return 0; 2096 2097 trace_xfs_btree_updkeys(cur, level, bp0); 2098 2099 lkey = &key; 2100 hkey = xfs_btree_high_key_from_key(cur, lkey); 2101 xfs_btree_get_keys(cur, block, lkey); 2102 for (level++; level < cur->bc_nlevels; level++) { 2103 #ifdef DEBUG 2104 int error; 2105 #endif 2106 block = xfs_btree_get_block(cur, level, &bp); 2107 trace_xfs_btree_updkeys(cur, level, bp); 2108 #ifdef DEBUG 2109 error = xfs_btree_check_block(cur, block, level, bp); 2110 if (error) 2111 return error; 2112 #endif 2113 ptr = cur->bc_ptrs[level]; 2114 nlkey = xfs_btree_key_addr(cur, ptr, block); 2115 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2116 if (!force_all && 2117 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2118 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2119 break; 2120 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2121 xfs_btree_log_keys(cur, bp, ptr, ptr); 2122 if (level + 1 >= cur->bc_nlevels) 2123 break; 2124 xfs_btree_get_node_keys(cur, block, lkey); 2125 } 2126 2127 return 0; 2128 } 2129 2130 /* Update all the keys from some level in cursor back to the root. */ 2131 STATIC int 2132 xfs_btree_updkeys_force( 2133 struct xfs_btree_cur *cur, 2134 int level) 2135 { 2136 struct xfs_buf *bp; 2137 struct xfs_btree_block *block; 2138 2139 block = xfs_btree_get_block(cur, level, &bp); 2140 return __xfs_btree_updkeys(cur, level, block, bp, true); 2141 } 2142 2143 /* 2144 * Update the parent keys of the given level, progressing towards the root. 2145 */ 2146 STATIC int 2147 xfs_btree_update_keys( 2148 struct xfs_btree_cur *cur, 2149 int level) 2150 { 2151 struct xfs_btree_block *block; 2152 struct xfs_buf *bp; 2153 union xfs_btree_key *kp; 2154 union xfs_btree_key key; 2155 int ptr; 2156 2157 ASSERT(level >= 0); 2158 2159 block = xfs_btree_get_block(cur, level, &bp); 2160 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2161 return __xfs_btree_updkeys(cur, level, block, bp, false); 2162 2163 /* 2164 * Go up the tree from this level toward the root. 2165 * At each level, update the key value to the value input. 2166 * Stop when we reach a level where the cursor isn't pointing 2167 * at the first entry in the block. 2168 */ 2169 xfs_btree_get_keys(cur, block, &key); 2170 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2171 #ifdef DEBUG 2172 int error; 2173 #endif 2174 block = xfs_btree_get_block(cur, level, &bp); 2175 #ifdef DEBUG 2176 error = xfs_btree_check_block(cur, block, level, bp); 2177 if (error) 2178 return error; 2179 #endif 2180 ptr = cur->bc_ptrs[level]; 2181 kp = xfs_btree_key_addr(cur, ptr, block); 2182 xfs_btree_copy_keys(cur, kp, &key, 1); 2183 xfs_btree_log_keys(cur, bp, ptr, ptr); 2184 } 2185 2186 return 0; 2187 } 2188 2189 /* 2190 * Update the record referred to by cur to the value in the 2191 * given record. This either works (return 0) or gets an 2192 * EFSCORRUPTED error. 2193 */ 2194 int 2195 xfs_btree_update( 2196 struct xfs_btree_cur *cur, 2197 union xfs_btree_rec *rec) 2198 { 2199 struct xfs_btree_block *block; 2200 struct xfs_buf *bp; 2201 int error; 2202 int ptr; 2203 union xfs_btree_rec *rp; 2204 2205 /* Pick up the current block. */ 2206 block = xfs_btree_get_block(cur, 0, &bp); 2207 2208 #ifdef DEBUG 2209 error = xfs_btree_check_block(cur, block, 0, bp); 2210 if (error) 2211 goto error0; 2212 #endif 2213 /* Get the address of the rec to be updated. */ 2214 ptr = cur->bc_ptrs[0]; 2215 rp = xfs_btree_rec_addr(cur, ptr, block); 2216 2217 /* Fill in the new contents and log them. */ 2218 xfs_btree_copy_recs(cur, rp, rec, 1); 2219 xfs_btree_log_recs(cur, bp, ptr, ptr); 2220 2221 /* 2222 * If we are tracking the last record in the tree and 2223 * we are at the far right edge of the tree, update it. 2224 */ 2225 if (xfs_btree_is_lastrec(cur, block, 0)) { 2226 cur->bc_ops->update_lastrec(cur, block, rec, 2227 ptr, LASTREC_UPDATE); 2228 } 2229 2230 /* Pass new key value up to our parent. */ 2231 if (xfs_btree_needs_key_update(cur, ptr)) { 2232 error = xfs_btree_update_keys(cur, 0); 2233 if (error) 2234 goto error0; 2235 } 2236 2237 return 0; 2238 2239 error0: 2240 return error; 2241 } 2242 2243 /* 2244 * Move 1 record left from cur/level if possible. 2245 * Update cur to reflect the new path. 2246 */ 2247 STATIC int /* error */ 2248 xfs_btree_lshift( 2249 struct xfs_btree_cur *cur, 2250 int level, 2251 int *stat) /* success/failure */ 2252 { 2253 struct xfs_buf *lbp; /* left buffer pointer */ 2254 struct xfs_btree_block *left; /* left btree block */ 2255 int lrecs; /* left record count */ 2256 struct xfs_buf *rbp; /* right buffer pointer */ 2257 struct xfs_btree_block *right; /* right btree block */ 2258 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2259 int rrecs; /* right record count */ 2260 union xfs_btree_ptr lptr; /* left btree pointer */ 2261 union xfs_btree_key *rkp = NULL; /* right btree key */ 2262 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2263 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2264 int error; /* error return value */ 2265 int i; 2266 2267 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2268 level == cur->bc_nlevels - 1) 2269 goto out0; 2270 2271 /* Set up variables for this block as "right". */ 2272 right = xfs_btree_get_block(cur, level, &rbp); 2273 2274 #ifdef DEBUG 2275 error = xfs_btree_check_block(cur, right, level, rbp); 2276 if (error) 2277 goto error0; 2278 #endif 2279 2280 /* If we've got no left sibling then we can't shift an entry left. */ 2281 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2282 if (xfs_btree_ptr_is_null(cur, &lptr)) 2283 goto out0; 2284 2285 /* 2286 * If the cursor entry is the one that would be moved, don't 2287 * do it... it's too complicated. 2288 */ 2289 if (cur->bc_ptrs[level] <= 1) 2290 goto out0; 2291 2292 /* Set up the left neighbor as "left". */ 2293 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2294 if (error) 2295 goto error0; 2296 2297 /* If it's full, it can't take another entry. */ 2298 lrecs = xfs_btree_get_numrecs(left); 2299 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2300 goto out0; 2301 2302 rrecs = xfs_btree_get_numrecs(right); 2303 2304 /* 2305 * We add one entry to the left side and remove one for the right side. 2306 * Account for it here, the changes will be updated on disk and logged 2307 * later. 2308 */ 2309 lrecs++; 2310 rrecs--; 2311 2312 XFS_BTREE_STATS_INC(cur, lshift); 2313 XFS_BTREE_STATS_ADD(cur, moves, 1); 2314 2315 /* 2316 * If non-leaf, copy a key and a ptr to the left block. 2317 * Log the changes to the left block. 2318 */ 2319 if (level > 0) { 2320 /* It's a non-leaf. Move keys and pointers. */ 2321 union xfs_btree_key *lkp; /* left btree key */ 2322 union xfs_btree_ptr *lpp; /* left address pointer */ 2323 2324 lkp = xfs_btree_key_addr(cur, lrecs, left); 2325 rkp = xfs_btree_key_addr(cur, 1, right); 2326 2327 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2328 rpp = xfs_btree_ptr_addr(cur, 1, right); 2329 2330 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2331 if (error) 2332 goto error0; 2333 2334 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2335 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2336 2337 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2338 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2339 2340 ASSERT(cur->bc_ops->keys_inorder(cur, 2341 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2342 } else { 2343 /* It's a leaf. Move records. */ 2344 union xfs_btree_rec *lrp; /* left record pointer */ 2345 2346 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2347 rrp = xfs_btree_rec_addr(cur, 1, right); 2348 2349 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2350 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2351 2352 ASSERT(cur->bc_ops->recs_inorder(cur, 2353 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2354 } 2355 2356 xfs_btree_set_numrecs(left, lrecs); 2357 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2358 2359 xfs_btree_set_numrecs(right, rrecs); 2360 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2361 2362 /* 2363 * Slide the contents of right down one entry. 2364 */ 2365 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2366 if (level > 0) { 2367 /* It's a nonleaf. operate on keys and ptrs */ 2368 for (i = 0; i < rrecs; i++) { 2369 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2370 if (error) 2371 goto error0; 2372 } 2373 2374 xfs_btree_shift_keys(cur, 2375 xfs_btree_key_addr(cur, 2, right), 2376 -1, rrecs); 2377 xfs_btree_shift_ptrs(cur, 2378 xfs_btree_ptr_addr(cur, 2, right), 2379 -1, rrecs); 2380 2381 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2382 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2383 } else { 2384 /* It's a leaf. operate on records */ 2385 xfs_btree_shift_recs(cur, 2386 xfs_btree_rec_addr(cur, 2, right), 2387 -1, rrecs); 2388 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2389 } 2390 2391 /* 2392 * Using a temporary cursor, update the parent key values of the 2393 * block on the left. 2394 */ 2395 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2396 error = xfs_btree_dup_cursor(cur, &tcur); 2397 if (error) 2398 goto error0; 2399 i = xfs_btree_firstrec(tcur, level); 2400 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2401 error = -EFSCORRUPTED; 2402 goto error0; 2403 } 2404 2405 error = xfs_btree_decrement(tcur, level, &i); 2406 if (error) 2407 goto error1; 2408 2409 /* Update the parent high keys of the left block, if needed. */ 2410 error = xfs_btree_update_keys(tcur, level); 2411 if (error) 2412 goto error1; 2413 2414 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2415 } 2416 2417 /* Update the parent keys of the right block. */ 2418 error = xfs_btree_update_keys(cur, level); 2419 if (error) 2420 goto error0; 2421 2422 /* Slide the cursor value left one. */ 2423 cur->bc_ptrs[level]--; 2424 2425 *stat = 1; 2426 return 0; 2427 2428 out0: 2429 *stat = 0; 2430 return 0; 2431 2432 error0: 2433 return error; 2434 2435 error1: 2436 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2437 return error; 2438 } 2439 2440 /* 2441 * Move 1 record right from cur/level if possible. 2442 * Update cur to reflect the new path. 2443 */ 2444 STATIC int /* error */ 2445 xfs_btree_rshift( 2446 struct xfs_btree_cur *cur, 2447 int level, 2448 int *stat) /* success/failure */ 2449 { 2450 struct xfs_buf *lbp; /* left buffer pointer */ 2451 struct xfs_btree_block *left; /* left btree block */ 2452 struct xfs_buf *rbp; /* right buffer pointer */ 2453 struct xfs_btree_block *right; /* right btree block */ 2454 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2455 union xfs_btree_ptr rptr; /* right block pointer */ 2456 union xfs_btree_key *rkp; /* right btree key */ 2457 int rrecs; /* right record count */ 2458 int lrecs; /* left record count */ 2459 int error; /* error return value */ 2460 int i; /* loop counter */ 2461 2462 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2463 (level == cur->bc_nlevels - 1)) 2464 goto out0; 2465 2466 /* Set up variables for this block as "left". */ 2467 left = xfs_btree_get_block(cur, level, &lbp); 2468 2469 #ifdef DEBUG 2470 error = xfs_btree_check_block(cur, left, level, lbp); 2471 if (error) 2472 goto error0; 2473 #endif 2474 2475 /* If we've got no right sibling then we can't shift an entry right. */ 2476 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2477 if (xfs_btree_ptr_is_null(cur, &rptr)) 2478 goto out0; 2479 2480 /* 2481 * If the cursor entry is the one that would be moved, don't 2482 * do it... it's too complicated. 2483 */ 2484 lrecs = xfs_btree_get_numrecs(left); 2485 if (cur->bc_ptrs[level] >= lrecs) 2486 goto out0; 2487 2488 /* Set up the right neighbor as "right". */ 2489 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2490 if (error) 2491 goto error0; 2492 2493 /* If it's full, it can't take another entry. */ 2494 rrecs = xfs_btree_get_numrecs(right); 2495 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2496 goto out0; 2497 2498 XFS_BTREE_STATS_INC(cur, rshift); 2499 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2500 2501 /* 2502 * Make a hole at the start of the right neighbor block, then 2503 * copy the last left block entry to the hole. 2504 */ 2505 if (level > 0) { 2506 /* It's a nonleaf. make a hole in the keys and ptrs */ 2507 union xfs_btree_key *lkp; 2508 union xfs_btree_ptr *lpp; 2509 union xfs_btree_ptr *rpp; 2510 2511 lkp = xfs_btree_key_addr(cur, lrecs, left); 2512 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2513 rkp = xfs_btree_key_addr(cur, 1, right); 2514 rpp = xfs_btree_ptr_addr(cur, 1, right); 2515 2516 for (i = rrecs - 1; i >= 0; i--) { 2517 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2518 if (error) 2519 goto error0; 2520 } 2521 2522 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2523 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2524 2525 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2526 if (error) 2527 goto error0; 2528 2529 /* Now put the new data in, and log it. */ 2530 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2531 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2532 2533 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2534 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2535 2536 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2537 xfs_btree_key_addr(cur, 2, right))); 2538 } else { 2539 /* It's a leaf. make a hole in the records */ 2540 union xfs_btree_rec *lrp; 2541 union xfs_btree_rec *rrp; 2542 2543 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2544 rrp = xfs_btree_rec_addr(cur, 1, right); 2545 2546 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2547 2548 /* Now put the new data in, and log it. */ 2549 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2550 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2551 } 2552 2553 /* 2554 * Decrement and log left's numrecs, bump and log right's numrecs. 2555 */ 2556 xfs_btree_set_numrecs(left, --lrecs); 2557 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2558 2559 xfs_btree_set_numrecs(right, ++rrecs); 2560 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2561 2562 /* 2563 * Using a temporary cursor, update the parent key values of the 2564 * block on the right. 2565 */ 2566 error = xfs_btree_dup_cursor(cur, &tcur); 2567 if (error) 2568 goto error0; 2569 i = xfs_btree_lastrec(tcur, level); 2570 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2571 error = -EFSCORRUPTED; 2572 goto error0; 2573 } 2574 2575 error = xfs_btree_increment(tcur, level, &i); 2576 if (error) 2577 goto error1; 2578 2579 /* Update the parent high keys of the left block, if needed. */ 2580 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2581 error = xfs_btree_update_keys(cur, level); 2582 if (error) 2583 goto error1; 2584 } 2585 2586 /* Update the parent keys of the right block. */ 2587 error = xfs_btree_update_keys(tcur, level); 2588 if (error) 2589 goto error1; 2590 2591 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2592 2593 *stat = 1; 2594 return 0; 2595 2596 out0: 2597 *stat = 0; 2598 return 0; 2599 2600 error0: 2601 return error; 2602 2603 error1: 2604 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2605 return error; 2606 } 2607 2608 /* 2609 * Split cur/level block in half. 2610 * Return new block number and the key to its first 2611 * record (to be inserted into parent). 2612 */ 2613 STATIC int /* error */ 2614 __xfs_btree_split( 2615 struct xfs_btree_cur *cur, 2616 int level, 2617 union xfs_btree_ptr *ptrp, 2618 union xfs_btree_key *key, 2619 struct xfs_btree_cur **curp, 2620 int *stat) /* success/failure */ 2621 { 2622 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2623 struct xfs_buf *lbp; /* left buffer pointer */ 2624 struct xfs_btree_block *left; /* left btree block */ 2625 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2626 struct xfs_buf *rbp; /* right buffer pointer */ 2627 struct xfs_btree_block *right; /* right btree block */ 2628 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2629 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2630 struct xfs_btree_block *rrblock; /* right-right btree block */ 2631 int lrecs; 2632 int rrecs; 2633 int src_index; 2634 int error; /* error return value */ 2635 int i; 2636 2637 XFS_BTREE_STATS_INC(cur, split); 2638 2639 /* Set up left block (current one). */ 2640 left = xfs_btree_get_block(cur, level, &lbp); 2641 2642 #ifdef DEBUG 2643 error = xfs_btree_check_block(cur, left, level, lbp); 2644 if (error) 2645 goto error0; 2646 #endif 2647 2648 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2649 2650 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2651 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2652 if (error) 2653 goto error0; 2654 if (*stat == 0) 2655 goto out0; 2656 XFS_BTREE_STATS_INC(cur, alloc); 2657 2658 /* Set up the new block as "right". */ 2659 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2660 if (error) 2661 goto error0; 2662 2663 /* Fill in the btree header for the new right block. */ 2664 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2665 2666 /* 2667 * Split the entries between the old and the new block evenly. 2668 * Make sure that if there's an odd number of entries now, that 2669 * each new block will have the same number of entries. 2670 */ 2671 lrecs = xfs_btree_get_numrecs(left); 2672 rrecs = lrecs / 2; 2673 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1) 2674 rrecs++; 2675 src_index = (lrecs - rrecs + 1); 2676 2677 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2678 2679 /* Adjust numrecs for the later get_*_keys() calls. */ 2680 lrecs -= rrecs; 2681 xfs_btree_set_numrecs(left, lrecs); 2682 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2683 2684 /* 2685 * Copy btree block entries from the left block over to the 2686 * new block, the right. Update the right block and log the 2687 * changes. 2688 */ 2689 if (level > 0) { 2690 /* It's a non-leaf. Move keys and pointers. */ 2691 union xfs_btree_key *lkp; /* left btree key */ 2692 union xfs_btree_ptr *lpp; /* left address pointer */ 2693 union xfs_btree_key *rkp; /* right btree key */ 2694 union xfs_btree_ptr *rpp; /* right address pointer */ 2695 2696 lkp = xfs_btree_key_addr(cur, src_index, left); 2697 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2698 rkp = xfs_btree_key_addr(cur, 1, right); 2699 rpp = xfs_btree_ptr_addr(cur, 1, right); 2700 2701 for (i = src_index; i < rrecs; i++) { 2702 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2703 if (error) 2704 goto error0; 2705 } 2706 2707 /* Copy the keys & pointers to the new block. */ 2708 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2709 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2710 2711 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2712 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2713 2714 /* Stash the keys of the new block for later insertion. */ 2715 xfs_btree_get_node_keys(cur, right, key); 2716 } else { 2717 /* It's a leaf. Move records. */ 2718 union xfs_btree_rec *lrp; /* left record pointer */ 2719 union xfs_btree_rec *rrp; /* right record pointer */ 2720 2721 lrp = xfs_btree_rec_addr(cur, src_index, left); 2722 rrp = xfs_btree_rec_addr(cur, 1, right); 2723 2724 /* Copy records to the new block. */ 2725 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2726 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2727 2728 /* Stash the keys of the new block for later insertion. */ 2729 xfs_btree_get_leaf_keys(cur, right, key); 2730 } 2731 2732 /* 2733 * Find the left block number by looking in the buffer. 2734 * Adjust sibling pointers. 2735 */ 2736 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2737 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2738 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2739 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2740 2741 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2742 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2743 2744 /* 2745 * If there's a block to the new block's right, make that block 2746 * point back to right instead of to left. 2747 */ 2748 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2749 error = xfs_btree_read_buf_block(cur, &rrptr, 2750 0, &rrblock, &rrbp); 2751 if (error) 2752 goto error0; 2753 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2754 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2755 } 2756 2757 /* Update the parent high keys of the left block, if needed. */ 2758 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2759 error = xfs_btree_update_keys(cur, level); 2760 if (error) 2761 goto error0; 2762 } 2763 2764 /* 2765 * If the cursor is really in the right block, move it there. 2766 * If it's just pointing past the last entry in left, then we'll 2767 * insert there, so don't change anything in that case. 2768 */ 2769 if (cur->bc_ptrs[level] > lrecs + 1) { 2770 xfs_btree_setbuf(cur, level, rbp); 2771 cur->bc_ptrs[level] -= lrecs; 2772 } 2773 /* 2774 * If there are more levels, we'll need another cursor which refers 2775 * the right block, no matter where this cursor was. 2776 */ 2777 if (level + 1 < cur->bc_nlevels) { 2778 error = xfs_btree_dup_cursor(cur, curp); 2779 if (error) 2780 goto error0; 2781 (*curp)->bc_ptrs[level + 1]++; 2782 } 2783 *ptrp = rptr; 2784 *stat = 1; 2785 return 0; 2786 out0: 2787 *stat = 0; 2788 return 0; 2789 2790 error0: 2791 return error; 2792 } 2793 2794 struct xfs_btree_split_args { 2795 struct xfs_btree_cur *cur; 2796 int level; 2797 union xfs_btree_ptr *ptrp; 2798 union xfs_btree_key *key; 2799 struct xfs_btree_cur **curp; 2800 int *stat; /* success/failure */ 2801 int result; 2802 bool kswapd; /* allocation in kswapd context */ 2803 struct completion *done; 2804 struct work_struct work; 2805 }; 2806 2807 /* 2808 * Stack switching interfaces for allocation 2809 */ 2810 static void 2811 xfs_btree_split_worker( 2812 struct work_struct *work) 2813 { 2814 struct xfs_btree_split_args *args = container_of(work, 2815 struct xfs_btree_split_args, work); 2816 unsigned long pflags; 2817 unsigned long new_pflags = PF_MEMALLOC_NOFS; 2818 2819 /* 2820 * we are in a transaction context here, but may also be doing work 2821 * in kswapd context, and hence we may need to inherit that state 2822 * temporarily to ensure that we don't block waiting for memory reclaim 2823 * in any way. 2824 */ 2825 if (args->kswapd) 2826 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2827 2828 current_set_flags_nested(&pflags, new_pflags); 2829 2830 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2831 args->key, args->curp, args->stat); 2832 complete(args->done); 2833 2834 current_restore_flags_nested(&pflags, new_pflags); 2835 } 2836 2837 /* 2838 * BMBT split requests often come in with little stack to work on. Push 2839 * them off to a worker thread so there is lots of stack to use. For the other 2840 * btree types, just call directly to avoid the context switch overhead here. 2841 */ 2842 STATIC int /* error */ 2843 xfs_btree_split( 2844 struct xfs_btree_cur *cur, 2845 int level, 2846 union xfs_btree_ptr *ptrp, 2847 union xfs_btree_key *key, 2848 struct xfs_btree_cur **curp, 2849 int *stat) /* success/failure */ 2850 { 2851 struct xfs_btree_split_args args; 2852 DECLARE_COMPLETION_ONSTACK(done); 2853 2854 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2855 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2856 2857 args.cur = cur; 2858 args.level = level; 2859 args.ptrp = ptrp; 2860 args.key = key; 2861 args.curp = curp; 2862 args.stat = stat; 2863 args.done = &done; 2864 args.kswapd = current_is_kswapd(); 2865 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2866 queue_work(xfs_alloc_wq, &args.work); 2867 wait_for_completion(&done); 2868 destroy_work_on_stack(&args.work); 2869 return args.result; 2870 } 2871 2872 2873 /* 2874 * Copy the old inode root contents into a real block and make the 2875 * broot point to it. 2876 */ 2877 int /* error */ 2878 xfs_btree_new_iroot( 2879 struct xfs_btree_cur *cur, /* btree cursor */ 2880 int *logflags, /* logging flags for inode */ 2881 int *stat) /* return status - 0 fail */ 2882 { 2883 struct xfs_buf *cbp; /* buffer for cblock */ 2884 struct xfs_btree_block *block; /* btree block */ 2885 struct xfs_btree_block *cblock; /* child btree block */ 2886 union xfs_btree_key *ckp; /* child key pointer */ 2887 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2888 union xfs_btree_key *kp; /* pointer to btree key */ 2889 union xfs_btree_ptr *pp; /* pointer to block addr */ 2890 union xfs_btree_ptr nptr; /* new block addr */ 2891 int level; /* btree level */ 2892 int error; /* error return code */ 2893 int i; /* loop counter */ 2894 2895 XFS_BTREE_STATS_INC(cur, newroot); 2896 2897 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2898 2899 level = cur->bc_nlevels - 1; 2900 2901 block = xfs_btree_get_iroot(cur); 2902 pp = xfs_btree_ptr_addr(cur, 1, block); 2903 2904 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2905 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2906 if (error) 2907 goto error0; 2908 if (*stat == 0) 2909 return 0; 2910 2911 XFS_BTREE_STATS_INC(cur, alloc); 2912 2913 /* Copy the root into a real block. */ 2914 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2915 if (error) 2916 goto error0; 2917 2918 /* 2919 * we can't just memcpy() the root in for CRC enabled btree blocks. 2920 * In that case have to also ensure the blkno remains correct 2921 */ 2922 memcpy(cblock, block, xfs_btree_block_len(cur)); 2923 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 2924 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 2925 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn); 2926 else 2927 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn); 2928 } 2929 2930 be16_add_cpu(&block->bb_level, 1); 2931 xfs_btree_set_numrecs(block, 1); 2932 cur->bc_nlevels++; 2933 cur->bc_ptrs[level + 1] = 1; 2934 2935 kp = xfs_btree_key_addr(cur, 1, block); 2936 ckp = xfs_btree_key_addr(cur, 1, cblock); 2937 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 2938 2939 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 2940 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 2941 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 2942 if (error) 2943 goto error0; 2944 } 2945 2946 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 2947 2948 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 2949 if (error) 2950 goto error0; 2951 2952 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 2953 2954 xfs_iroot_realloc(cur->bc_ino.ip, 2955 1 - xfs_btree_get_numrecs(cblock), 2956 cur->bc_ino.whichfork); 2957 2958 xfs_btree_setbuf(cur, level, cbp); 2959 2960 /* 2961 * Do all this logging at the end so that 2962 * the root is at the right level. 2963 */ 2964 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 2965 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2966 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2967 2968 *logflags |= 2969 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 2970 *stat = 1; 2971 return 0; 2972 error0: 2973 return error; 2974 } 2975 2976 /* 2977 * Allocate a new root block, fill it in. 2978 */ 2979 STATIC int /* error */ 2980 xfs_btree_new_root( 2981 struct xfs_btree_cur *cur, /* btree cursor */ 2982 int *stat) /* success/failure */ 2983 { 2984 struct xfs_btree_block *block; /* one half of the old root block */ 2985 struct xfs_buf *bp; /* buffer containing block */ 2986 int error; /* error return value */ 2987 struct xfs_buf *lbp; /* left buffer pointer */ 2988 struct xfs_btree_block *left; /* left btree block */ 2989 struct xfs_buf *nbp; /* new (root) buffer */ 2990 struct xfs_btree_block *new; /* new (root) btree block */ 2991 int nptr; /* new value for key index, 1 or 2 */ 2992 struct xfs_buf *rbp; /* right buffer pointer */ 2993 struct xfs_btree_block *right; /* right btree block */ 2994 union xfs_btree_ptr rptr; 2995 union xfs_btree_ptr lptr; 2996 2997 XFS_BTREE_STATS_INC(cur, newroot); 2998 2999 /* initialise our start point from the cursor */ 3000 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3001 3002 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3003 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3004 if (error) 3005 goto error0; 3006 if (*stat == 0) 3007 goto out0; 3008 XFS_BTREE_STATS_INC(cur, alloc); 3009 3010 /* Set up the new block. */ 3011 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3012 if (error) 3013 goto error0; 3014 3015 /* Set the root in the holding structure increasing the level by 1. */ 3016 cur->bc_ops->set_root(cur, &lptr, 1); 3017 3018 /* 3019 * At the previous root level there are now two blocks: the old root, 3020 * and the new block generated when it was split. We don't know which 3021 * one the cursor is pointing at, so we set up variables "left" and 3022 * "right" for each case. 3023 */ 3024 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3025 3026 #ifdef DEBUG 3027 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3028 if (error) 3029 goto error0; 3030 #endif 3031 3032 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3033 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3034 /* Our block is left, pick up the right block. */ 3035 lbp = bp; 3036 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3037 left = block; 3038 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3039 if (error) 3040 goto error0; 3041 bp = rbp; 3042 nptr = 1; 3043 } else { 3044 /* Our block is right, pick up the left block. */ 3045 rbp = bp; 3046 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3047 right = block; 3048 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3049 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3050 if (error) 3051 goto error0; 3052 bp = lbp; 3053 nptr = 2; 3054 } 3055 3056 /* Fill in the new block's btree header and log it. */ 3057 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3058 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3059 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3060 !xfs_btree_ptr_is_null(cur, &rptr)); 3061 3062 /* Fill in the key data in the new root. */ 3063 if (xfs_btree_get_level(left) > 0) { 3064 /* 3065 * Get the keys for the left block's keys and put them directly 3066 * in the parent block. Do the same for the right block. 3067 */ 3068 xfs_btree_get_node_keys(cur, left, 3069 xfs_btree_key_addr(cur, 1, new)); 3070 xfs_btree_get_node_keys(cur, right, 3071 xfs_btree_key_addr(cur, 2, new)); 3072 } else { 3073 /* 3074 * Get the keys for the left block's records and put them 3075 * directly in the parent block. Do the same for the right 3076 * block. 3077 */ 3078 xfs_btree_get_leaf_keys(cur, left, 3079 xfs_btree_key_addr(cur, 1, new)); 3080 xfs_btree_get_leaf_keys(cur, right, 3081 xfs_btree_key_addr(cur, 2, new)); 3082 } 3083 xfs_btree_log_keys(cur, nbp, 1, 2); 3084 3085 /* Fill in the pointer data in the new root. */ 3086 xfs_btree_copy_ptrs(cur, 3087 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3088 xfs_btree_copy_ptrs(cur, 3089 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3090 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3091 3092 /* Fix up the cursor. */ 3093 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3094 cur->bc_ptrs[cur->bc_nlevels] = nptr; 3095 cur->bc_nlevels++; 3096 *stat = 1; 3097 return 0; 3098 error0: 3099 return error; 3100 out0: 3101 *stat = 0; 3102 return 0; 3103 } 3104 3105 STATIC int 3106 xfs_btree_make_block_unfull( 3107 struct xfs_btree_cur *cur, /* btree cursor */ 3108 int level, /* btree level */ 3109 int numrecs,/* # of recs in block */ 3110 int *oindex,/* old tree index */ 3111 int *index, /* new tree index */ 3112 union xfs_btree_ptr *nptr, /* new btree ptr */ 3113 struct xfs_btree_cur **ncur, /* new btree cursor */ 3114 union xfs_btree_key *key, /* key of new block */ 3115 int *stat) 3116 { 3117 int error = 0; 3118 3119 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3120 level == cur->bc_nlevels - 1) { 3121 struct xfs_inode *ip = cur->bc_ino.ip; 3122 3123 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3124 /* A root block that can be made bigger. */ 3125 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3126 *stat = 1; 3127 } else { 3128 /* A root block that needs replacing */ 3129 int logflags = 0; 3130 3131 error = xfs_btree_new_iroot(cur, &logflags, stat); 3132 if (error || *stat == 0) 3133 return error; 3134 3135 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3136 } 3137 3138 return 0; 3139 } 3140 3141 /* First, try shifting an entry to the right neighbor. */ 3142 error = xfs_btree_rshift(cur, level, stat); 3143 if (error || *stat) 3144 return error; 3145 3146 /* Next, try shifting an entry to the left neighbor. */ 3147 error = xfs_btree_lshift(cur, level, stat); 3148 if (error) 3149 return error; 3150 3151 if (*stat) { 3152 *oindex = *index = cur->bc_ptrs[level]; 3153 return 0; 3154 } 3155 3156 /* 3157 * Next, try splitting the current block in half. 3158 * 3159 * If this works we have to re-set our variables because we 3160 * could be in a different block now. 3161 */ 3162 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3163 if (error || *stat == 0) 3164 return error; 3165 3166 3167 *index = cur->bc_ptrs[level]; 3168 return 0; 3169 } 3170 3171 /* 3172 * Insert one record/level. Return information to the caller 3173 * allowing the next level up to proceed if necessary. 3174 */ 3175 STATIC int 3176 xfs_btree_insrec( 3177 struct xfs_btree_cur *cur, /* btree cursor */ 3178 int level, /* level to insert record at */ 3179 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3180 union xfs_btree_rec *rec, /* record to insert */ 3181 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3182 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3183 int *stat) /* success/failure */ 3184 { 3185 struct xfs_btree_block *block; /* btree block */ 3186 struct xfs_buf *bp; /* buffer for block */ 3187 union xfs_btree_ptr nptr; /* new block ptr */ 3188 struct xfs_btree_cur *ncur; /* new btree cursor */ 3189 union xfs_btree_key nkey; /* new block key */ 3190 union xfs_btree_key *lkey; 3191 int optr; /* old key/record index */ 3192 int ptr; /* key/record index */ 3193 int numrecs;/* number of records */ 3194 int error; /* error return value */ 3195 int i; 3196 xfs_daddr_t old_bn; 3197 3198 ncur = NULL; 3199 lkey = &nkey; 3200 3201 /* 3202 * If we have an external root pointer, and we've made it to the 3203 * root level, allocate a new root block and we're done. 3204 */ 3205 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3206 (level >= cur->bc_nlevels)) { 3207 error = xfs_btree_new_root(cur, stat); 3208 xfs_btree_set_ptr_null(cur, ptrp); 3209 3210 return error; 3211 } 3212 3213 /* If we're off the left edge, return failure. */ 3214 ptr = cur->bc_ptrs[level]; 3215 if (ptr == 0) { 3216 *stat = 0; 3217 return 0; 3218 } 3219 3220 optr = ptr; 3221 3222 XFS_BTREE_STATS_INC(cur, insrec); 3223 3224 /* Get pointers to the btree buffer and block. */ 3225 block = xfs_btree_get_block(cur, level, &bp); 3226 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL; 3227 numrecs = xfs_btree_get_numrecs(block); 3228 3229 #ifdef DEBUG 3230 error = xfs_btree_check_block(cur, block, level, bp); 3231 if (error) 3232 goto error0; 3233 3234 /* Check that the new entry is being inserted in the right place. */ 3235 if (ptr <= numrecs) { 3236 if (level == 0) { 3237 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3238 xfs_btree_rec_addr(cur, ptr, block))); 3239 } else { 3240 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3241 xfs_btree_key_addr(cur, ptr, block))); 3242 } 3243 } 3244 #endif 3245 3246 /* 3247 * If the block is full, we can't insert the new entry until we 3248 * make the block un-full. 3249 */ 3250 xfs_btree_set_ptr_null(cur, &nptr); 3251 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3252 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3253 &optr, &ptr, &nptr, &ncur, lkey, stat); 3254 if (error || *stat == 0) 3255 goto error0; 3256 } 3257 3258 /* 3259 * The current block may have changed if the block was 3260 * previously full and we have just made space in it. 3261 */ 3262 block = xfs_btree_get_block(cur, level, &bp); 3263 numrecs = xfs_btree_get_numrecs(block); 3264 3265 #ifdef DEBUG 3266 error = xfs_btree_check_block(cur, block, level, bp); 3267 if (error) 3268 return error; 3269 #endif 3270 3271 /* 3272 * At this point we know there's room for our new entry in the block 3273 * we're pointing at. 3274 */ 3275 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3276 3277 if (level > 0) { 3278 /* It's a nonleaf. make a hole in the keys and ptrs */ 3279 union xfs_btree_key *kp; 3280 union xfs_btree_ptr *pp; 3281 3282 kp = xfs_btree_key_addr(cur, ptr, block); 3283 pp = xfs_btree_ptr_addr(cur, ptr, block); 3284 3285 for (i = numrecs - ptr; i >= 0; i--) { 3286 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3287 if (error) 3288 return error; 3289 } 3290 3291 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3292 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3293 3294 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3295 if (error) 3296 goto error0; 3297 3298 /* Now put the new data in, bump numrecs and log it. */ 3299 xfs_btree_copy_keys(cur, kp, key, 1); 3300 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3301 numrecs++; 3302 xfs_btree_set_numrecs(block, numrecs); 3303 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3304 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3305 #ifdef DEBUG 3306 if (ptr < numrecs) { 3307 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3308 xfs_btree_key_addr(cur, ptr + 1, block))); 3309 } 3310 #endif 3311 } else { 3312 /* It's a leaf. make a hole in the records */ 3313 union xfs_btree_rec *rp; 3314 3315 rp = xfs_btree_rec_addr(cur, ptr, block); 3316 3317 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3318 3319 /* Now put the new data in, bump numrecs and log it. */ 3320 xfs_btree_copy_recs(cur, rp, rec, 1); 3321 xfs_btree_set_numrecs(block, ++numrecs); 3322 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3323 #ifdef DEBUG 3324 if (ptr < numrecs) { 3325 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3326 xfs_btree_rec_addr(cur, ptr + 1, block))); 3327 } 3328 #endif 3329 } 3330 3331 /* Log the new number of records in the btree header. */ 3332 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3333 3334 /* 3335 * If we just inserted into a new tree block, we have to 3336 * recalculate nkey here because nkey is out of date. 3337 * 3338 * Otherwise we're just updating an existing block (having shoved 3339 * some records into the new tree block), so use the regular key 3340 * update mechanism. 3341 */ 3342 if (bp && bp->b_bn != old_bn) { 3343 xfs_btree_get_keys(cur, block, lkey); 3344 } else if (xfs_btree_needs_key_update(cur, optr)) { 3345 error = xfs_btree_update_keys(cur, level); 3346 if (error) 3347 goto error0; 3348 } 3349 3350 /* 3351 * If we are tracking the last record in the tree and 3352 * we are at the far right edge of the tree, update it. 3353 */ 3354 if (xfs_btree_is_lastrec(cur, block, level)) { 3355 cur->bc_ops->update_lastrec(cur, block, rec, 3356 ptr, LASTREC_INSREC); 3357 } 3358 3359 /* 3360 * Return the new block number, if any. 3361 * If there is one, give back a record value and a cursor too. 3362 */ 3363 *ptrp = nptr; 3364 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3365 xfs_btree_copy_keys(cur, key, lkey, 1); 3366 *curp = ncur; 3367 } 3368 3369 *stat = 1; 3370 return 0; 3371 3372 error0: 3373 return error; 3374 } 3375 3376 /* 3377 * Insert the record at the point referenced by cur. 3378 * 3379 * A multi-level split of the tree on insert will invalidate the original 3380 * cursor. All callers of this function should assume that the cursor is 3381 * no longer valid and revalidate it. 3382 */ 3383 int 3384 xfs_btree_insert( 3385 struct xfs_btree_cur *cur, 3386 int *stat) 3387 { 3388 int error; /* error return value */ 3389 int i; /* result value, 0 for failure */ 3390 int level; /* current level number in btree */ 3391 union xfs_btree_ptr nptr; /* new block number (split result) */ 3392 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3393 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3394 union xfs_btree_key bkey; /* key of block to insert */ 3395 union xfs_btree_key *key; 3396 union xfs_btree_rec rec; /* record to insert */ 3397 3398 level = 0; 3399 ncur = NULL; 3400 pcur = cur; 3401 key = &bkey; 3402 3403 xfs_btree_set_ptr_null(cur, &nptr); 3404 3405 /* Make a key out of the record data to be inserted, and save it. */ 3406 cur->bc_ops->init_rec_from_cur(cur, &rec); 3407 cur->bc_ops->init_key_from_rec(key, &rec); 3408 3409 /* 3410 * Loop going up the tree, starting at the leaf level. 3411 * Stop when we don't get a split block, that must mean that 3412 * the insert is finished with this level. 3413 */ 3414 do { 3415 /* 3416 * Insert nrec/nptr into this level of the tree. 3417 * Note if we fail, nptr will be null. 3418 */ 3419 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3420 &ncur, &i); 3421 if (error) { 3422 if (pcur != cur) 3423 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3424 goto error0; 3425 } 3426 3427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3428 error = -EFSCORRUPTED; 3429 goto error0; 3430 } 3431 level++; 3432 3433 /* 3434 * See if the cursor we just used is trash. 3435 * Can't trash the caller's cursor, but otherwise we should 3436 * if ncur is a new cursor or we're about to be done. 3437 */ 3438 if (pcur != cur && 3439 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3440 /* Save the state from the cursor before we trash it */ 3441 if (cur->bc_ops->update_cursor) 3442 cur->bc_ops->update_cursor(pcur, cur); 3443 cur->bc_nlevels = pcur->bc_nlevels; 3444 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3445 } 3446 /* If we got a new cursor, switch to it. */ 3447 if (ncur) { 3448 pcur = ncur; 3449 ncur = NULL; 3450 } 3451 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3452 3453 *stat = i; 3454 return 0; 3455 error0: 3456 return error; 3457 } 3458 3459 /* 3460 * Try to merge a non-leaf block back into the inode root. 3461 * 3462 * Note: the killroot names comes from the fact that we're effectively 3463 * killing the old root block. But because we can't just delete the 3464 * inode we have to copy the single block it was pointing to into the 3465 * inode. 3466 */ 3467 STATIC int 3468 xfs_btree_kill_iroot( 3469 struct xfs_btree_cur *cur) 3470 { 3471 int whichfork = cur->bc_ino.whichfork; 3472 struct xfs_inode *ip = cur->bc_ino.ip; 3473 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3474 struct xfs_btree_block *block; 3475 struct xfs_btree_block *cblock; 3476 union xfs_btree_key *kp; 3477 union xfs_btree_key *ckp; 3478 union xfs_btree_ptr *pp; 3479 union xfs_btree_ptr *cpp; 3480 struct xfs_buf *cbp; 3481 int level; 3482 int index; 3483 int numrecs; 3484 int error; 3485 #ifdef DEBUG 3486 union xfs_btree_ptr ptr; 3487 #endif 3488 int i; 3489 3490 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3491 ASSERT(cur->bc_nlevels > 1); 3492 3493 /* 3494 * Don't deal with the root block needs to be a leaf case. 3495 * We're just going to turn the thing back into extents anyway. 3496 */ 3497 level = cur->bc_nlevels - 1; 3498 if (level == 1) 3499 goto out0; 3500 3501 /* 3502 * Give up if the root has multiple children. 3503 */ 3504 block = xfs_btree_get_iroot(cur); 3505 if (xfs_btree_get_numrecs(block) != 1) 3506 goto out0; 3507 3508 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3509 numrecs = xfs_btree_get_numrecs(cblock); 3510 3511 /* 3512 * Only do this if the next level will fit. 3513 * Then the data must be copied up to the inode, 3514 * instead of freeing the root you free the next level. 3515 */ 3516 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3517 goto out0; 3518 3519 XFS_BTREE_STATS_INC(cur, killroot); 3520 3521 #ifdef DEBUG 3522 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3523 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3526 #endif 3527 3528 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3529 if (index) { 3530 xfs_iroot_realloc(cur->bc_ino.ip, index, 3531 cur->bc_ino.whichfork); 3532 block = ifp->if_broot; 3533 } 3534 3535 be16_add_cpu(&block->bb_numrecs, index); 3536 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3537 3538 kp = xfs_btree_key_addr(cur, 1, block); 3539 ckp = xfs_btree_key_addr(cur, 1, cblock); 3540 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3541 3542 pp = xfs_btree_ptr_addr(cur, 1, block); 3543 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3544 3545 for (i = 0; i < numrecs; i++) { 3546 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3547 if (error) 3548 return error; 3549 } 3550 3551 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3552 3553 error = xfs_btree_free_block(cur, cbp); 3554 if (error) 3555 return error; 3556 3557 cur->bc_bufs[level - 1] = NULL; 3558 be16_add_cpu(&block->bb_level, -1); 3559 xfs_trans_log_inode(cur->bc_tp, ip, 3560 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3561 cur->bc_nlevels--; 3562 out0: 3563 return 0; 3564 } 3565 3566 /* 3567 * Kill the current root node, and replace it with it's only child node. 3568 */ 3569 STATIC int 3570 xfs_btree_kill_root( 3571 struct xfs_btree_cur *cur, 3572 struct xfs_buf *bp, 3573 int level, 3574 union xfs_btree_ptr *newroot) 3575 { 3576 int error; 3577 3578 XFS_BTREE_STATS_INC(cur, killroot); 3579 3580 /* 3581 * Update the root pointer, decreasing the level by 1 and then 3582 * free the old root. 3583 */ 3584 cur->bc_ops->set_root(cur, newroot, -1); 3585 3586 error = xfs_btree_free_block(cur, bp); 3587 if (error) 3588 return error; 3589 3590 cur->bc_bufs[level] = NULL; 3591 cur->bc_ra[level] = 0; 3592 cur->bc_nlevels--; 3593 3594 return 0; 3595 } 3596 3597 STATIC int 3598 xfs_btree_dec_cursor( 3599 struct xfs_btree_cur *cur, 3600 int level, 3601 int *stat) 3602 { 3603 int error; 3604 int i; 3605 3606 if (level > 0) { 3607 error = xfs_btree_decrement(cur, level, &i); 3608 if (error) 3609 return error; 3610 } 3611 3612 *stat = 1; 3613 return 0; 3614 } 3615 3616 /* 3617 * Single level of the btree record deletion routine. 3618 * Delete record pointed to by cur/level. 3619 * Remove the record from its block then rebalance the tree. 3620 * Return 0 for error, 1 for done, 2 to go on to the next level. 3621 */ 3622 STATIC int /* error */ 3623 xfs_btree_delrec( 3624 struct xfs_btree_cur *cur, /* btree cursor */ 3625 int level, /* level removing record from */ 3626 int *stat) /* fail/done/go-on */ 3627 { 3628 struct xfs_btree_block *block; /* btree block */ 3629 union xfs_btree_ptr cptr; /* current block ptr */ 3630 struct xfs_buf *bp; /* buffer for block */ 3631 int error; /* error return value */ 3632 int i; /* loop counter */ 3633 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3634 struct xfs_buf *lbp; /* left buffer pointer */ 3635 struct xfs_btree_block *left; /* left btree block */ 3636 int lrecs = 0; /* left record count */ 3637 int ptr; /* key/record index */ 3638 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3639 struct xfs_buf *rbp; /* right buffer pointer */ 3640 struct xfs_btree_block *right; /* right btree block */ 3641 struct xfs_btree_block *rrblock; /* right-right btree block */ 3642 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3643 int rrecs = 0; /* right record count */ 3644 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3645 int numrecs; /* temporary numrec count */ 3646 3647 tcur = NULL; 3648 3649 /* Get the index of the entry being deleted, check for nothing there. */ 3650 ptr = cur->bc_ptrs[level]; 3651 if (ptr == 0) { 3652 *stat = 0; 3653 return 0; 3654 } 3655 3656 /* Get the buffer & block containing the record or key/ptr. */ 3657 block = xfs_btree_get_block(cur, level, &bp); 3658 numrecs = xfs_btree_get_numrecs(block); 3659 3660 #ifdef DEBUG 3661 error = xfs_btree_check_block(cur, block, level, bp); 3662 if (error) 3663 goto error0; 3664 #endif 3665 3666 /* Fail if we're off the end of the block. */ 3667 if (ptr > numrecs) { 3668 *stat = 0; 3669 return 0; 3670 } 3671 3672 XFS_BTREE_STATS_INC(cur, delrec); 3673 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3674 3675 /* Excise the entries being deleted. */ 3676 if (level > 0) { 3677 /* It's a nonleaf. operate on keys and ptrs */ 3678 union xfs_btree_key *lkp; 3679 union xfs_btree_ptr *lpp; 3680 3681 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3682 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3683 3684 for (i = 0; i < numrecs - ptr; i++) { 3685 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3686 if (error) 3687 goto error0; 3688 } 3689 3690 if (ptr < numrecs) { 3691 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3692 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3693 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3694 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3695 } 3696 } else { 3697 /* It's a leaf. operate on records */ 3698 if (ptr < numrecs) { 3699 xfs_btree_shift_recs(cur, 3700 xfs_btree_rec_addr(cur, ptr + 1, block), 3701 -1, numrecs - ptr); 3702 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3703 } 3704 } 3705 3706 /* 3707 * Decrement and log the number of entries in the block. 3708 */ 3709 xfs_btree_set_numrecs(block, --numrecs); 3710 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3711 3712 /* 3713 * If we are tracking the last record in the tree and 3714 * we are at the far right edge of the tree, update it. 3715 */ 3716 if (xfs_btree_is_lastrec(cur, block, level)) { 3717 cur->bc_ops->update_lastrec(cur, block, NULL, 3718 ptr, LASTREC_DELREC); 3719 } 3720 3721 /* 3722 * We're at the root level. First, shrink the root block in-memory. 3723 * Try to get rid of the next level down. If we can't then there's 3724 * nothing left to do. 3725 */ 3726 if (level == cur->bc_nlevels - 1) { 3727 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3728 xfs_iroot_realloc(cur->bc_ino.ip, -1, 3729 cur->bc_ino.whichfork); 3730 3731 error = xfs_btree_kill_iroot(cur); 3732 if (error) 3733 goto error0; 3734 3735 error = xfs_btree_dec_cursor(cur, level, stat); 3736 if (error) 3737 goto error0; 3738 *stat = 1; 3739 return 0; 3740 } 3741 3742 /* 3743 * If this is the root level, and there's only one entry left, 3744 * and it's NOT the leaf level, then we can get rid of this 3745 * level. 3746 */ 3747 if (numrecs == 1 && level > 0) { 3748 union xfs_btree_ptr *pp; 3749 /* 3750 * pp is still set to the first pointer in the block. 3751 * Make it the new root of the btree. 3752 */ 3753 pp = xfs_btree_ptr_addr(cur, 1, block); 3754 error = xfs_btree_kill_root(cur, bp, level, pp); 3755 if (error) 3756 goto error0; 3757 } else if (level > 0) { 3758 error = xfs_btree_dec_cursor(cur, level, stat); 3759 if (error) 3760 goto error0; 3761 } 3762 *stat = 1; 3763 return 0; 3764 } 3765 3766 /* 3767 * If we deleted the leftmost entry in the block, update the 3768 * key values above us in the tree. 3769 */ 3770 if (xfs_btree_needs_key_update(cur, ptr)) { 3771 error = xfs_btree_update_keys(cur, level); 3772 if (error) 3773 goto error0; 3774 } 3775 3776 /* 3777 * If the number of records remaining in the block is at least 3778 * the minimum, we're done. 3779 */ 3780 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3781 error = xfs_btree_dec_cursor(cur, level, stat); 3782 if (error) 3783 goto error0; 3784 return 0; 3785 } 3786 3787 /* 3788 * Otherwise, we have to move some records around to keep the 3789 * tree balanced. Look at the left and right sibling blocks to 3790 * see if we can re-balance by moving only one record. 3791 */ 3792 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3793 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3794 3795 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3796 /* 3797 * One child of root, need to get a chance to copy its contents 3798 * into the root and delete it. Can't go up to next level, 3799 * there's nothing to delete there. 3800 */ 3801 if (xfs_btree_ptr_is_null(cur, &rptr) && 3802 xfs_btree_ptr_is_null(cur, &lptr) && 3803 level == cur->bc_nlevels - 2) { 3804 error = xfs_btree_kill_iroot(cur); 3805 if (!error) 3806 error = xfs_btree_dec_cursor(cur, level, stat); 3807 if (error) 3808 goto error0; 3809 return 0; 3810 } 3811 } 3812 3813 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3814 !xfs_btree_ptr_is_null(cur, &lptr)); 3815 3816 /* 3817 * Duplicate the cursor so our btree manipulations here won't 3818 * disrupt the next level up. 3819 */ 3820 error = xfs_btree_dup_cursor(cur, &tcur); 3821 if (error) 3822 goto error0; 3823 3824 /* 3825 * If there's a right sibling, see if it's ok to shift an entry 3826 * out of it. 3827 */ 3828 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3829 /* 3830 * Move the temp cursor to the last entry in the next block. 3831 * Actually any entry but the first would suffice. 3832 */ 3833 i = xfs_btree_lastrec(tcur, level); 3834 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3835 error = -EFSCORRUPTED; 3836 goto error0; 3837 } 3838 3839 error = xfs_btree_increment(tcur, level, &i); 3840 if (error) 3841 goto error0; 3842 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3843 error = -EFSCORRUPTED; 3844 goto error0; 3845 } 3846 3847 i = xfs_btree_lastrec(tcur, level); 3848 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3849 error = -EFSCORRUPTED; 3850 goto error0; 3851 } 3852 3853 /* Grab a pointer to the block. */ 3854 right = xfs_btree_get_block(tcur, level, &rbp); 3855 #ifdef DEBUG 3856 error = xfs_btree_check_block(tcur, right, level, rbp); 3857 if (error) 3858 goto error0; 3859 #endif 3860 /* Grab the current block number, for future use. */ 3861 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3862 3863 /* 3864 * If right block is full enough so that removing one entry 3865 * won't make it too empty, and left-shifting an entry out 3866 * of right to us works, we're done. 3867 */ 3868 if (xfs_btree_get_numrecs(right) - 1 >= 3869 cur->bc_ops->get_minrecs(tcur, level)) { 3870 error = xfs_btree_lshift(tcur, level, &i); 3871 if (error) 3872 goto error0; 3873 if (i) { 3874 ASSERT(xfs_btree_get_numrecs(block) >= 3875 cur->bc_ops->get_minrecs(tcur, level)); 3876 3877 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3878 tcur = NULL; 3879 3880 error = xfs_btree_dec_cursor(cur, level, stat); 3881 if (error) 3882 goto error0; 3883 return 0; 3884 } 3885 } 3886 3887 /* 3888 * Otherwise, grab the number of records in right for 3889 * future reference, and fix up the temp cursor to point 3890 * to our block again (last record). 3891 */ 3892 rrecs = xfs_btree_get_numrecs(right); 3893 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3894 i = xfs_btree_firstrec(tcur, level); 3895 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3896 error = -EFSCORRUPTED; 3897 goto error0; 3898 } 3899 3900 error = xfs_btree_decrement(tcur, level, &i); 3901 if (error) 3902 goto error0; 3903 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3904 error = -EFSCORRUPTED; 3905 goto error0; 3906 } 3907 } 3908 } 3909 3910 /* 3911 * If there's a left sibling, see if it's ok to shift an entry 3912 * out of it. 3913 */ 3914 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3915 /* 3916 * Move the temp cursor to the first entry in the 3917 * previous block. 3918 */ 3919 i = xfs_btree_firstrec(tcur, level); 3920 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3921 error = -EFSCORRUPTED; 3922 goto error0; 3923 } 3924 3925 error = xfs_btree_decrement(tcur, level, &i); 3926 if (error) 3927 goto error0; 3928 i = xfs_btree_firstrec(tcur, level); 3929 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3930 error = -EFSCORRUPTED; 3931 goto error0; 3932 } 3933 3934 /* Grab a pointer to the block. */ 3935 left = xfs_btree_get_block(tcur, level, &lbp); 3936 #ifdef DEBUG 3937 error = xfs_btree_check_block(cur, left, level, lbp); 3938 if (error) 3939 goto error0; 3940 #endif 3941 /* Grab the current block number, for future use. */ 3942 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 3943 3944 /* 3945 * If left block is full enough so that removing one entry 3946 * won't make it too empty, and right-shifting an entry out 3947 * of left to us works, we're done. 3948 */ 3949 if (xfs_btree_get_numrecs(left) - 1 >= 3950 cur->bc_ops->get_minrecs(tcur, level)) { 3951 error = xfs_btree_rshift(tcur, level, &i); 3952 if (error) 3953 goto error0; 3954 if (i) { 3955 ASSERT(xfs_btree_get_numrecs(block) >= 3956 cur->bc_ops->get_minrecs(tcur, level)); 3957 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3958 tcur = NULL; 3959 if (level == 0) 3960 cur->bc_ptrs[0]++; 3961 3962 *stat = 1; 3963 return 0; 3964 } 3965 } 3966 3967 /* 3968 * Otherwise, grab the number of records in right for 3969 * future reference. 3970 */ 3971 lrecs = xfs_btree_get_numrecs(left); 3972 } 3973 3974 /* Delete the temp cursor, we're done with it. */ 3975 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3976 tcur = NULL; 3977 3978 /* If here, we need to do a join to keep the tree balanced. */ 3979 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 3980 3981 if (!xfs_btree_ptr_is_null(cur, &lptr) && 3982 lrecs + xfs_btree_get_numrecs(block) <= 3983 cur->bc_ops->get_maxrecs(cur, level)) { 3984 /* 3985 * Set "right" to be the starting block, 3986 * "left" to be the left neighbor. 3987 */ 3988 rptr = cptr; 3989 right = block; 3990 rbp = bp; 3991 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3992 if (error) 3993 goto error0; 3994 3995 /* 3996 * If that won't work, see if we can join with the right neighbor block. 3997 */ 3998 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 3999 rrecs + xfs_btree_get_numrecs(block) <= 4000 cur->bc_ops->get_maxrecs(cur, level)) { 4001 /* 4002 * Set "left" to be the starting block, 4003 * "right" to be the right neighbor. 4004 */ 4005 lptr = cptr; 4006 left = block; 4007 lbp = bp; 4008 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4009 if (error) 4010 goto error0; 4011 4012 /* 4013 * Otherwise, we can't fix the imbalance. 4014 * Just return. This is probably a logic error, but it's not fatal. 4015 */ 4016 } else { 4017 error = xfs_btree_dec_cursor(cur, level, stat); 4018 if (error) 4019 goto error0; 4020 return 0; 4021 } 4022 4023 rrecs = xfs_btree_get_numrecs(right); 4024 lrecs = xfs_btree_get_numrecs(left); 4025 4026 /* 4027 * We're now going to join "left" and "right" by moving all the stuff 4028 * in "right" to "left" and deleting "right". 4029 */ 4030 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4031 if (level > 0) { 4032 /* It's a non-leaf. Move keys and pointers. */ 4033 union xfs_btree_key *lkp; /* left btree key */ 4034 union xfs_btree_ptr *lpp; /* left address pointer */ 4035 union xfs_btree_key *rkp; /* right btree key */ 4036 union xfs_btree_ptr *rpp; /* right address pointer */ 4037 4038 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4039 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4040 rkp = xfs_btree_key_addr(cur, 1, right); 4041 rpp = xfs_btree_ptr_addr(cur, 1, right); 4042 4043 for (i = 1; i < rrecs; i++) { 4044 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4045 if (error) 4046 goto error0; 4047 } 4048 4049 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4050 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4051 4052 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4053 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4054 } else { 4055 /* It's a leaf. Move records. */ 4056 union xfs_btree_rec *lrp; /* left record pointer */ 4057 union xfs_btree_rec *rrp; /* right record pointer */ 4058 4059 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4060 rrp = xfs_btree_rec_addr(cur, 1, right); 4061 4062 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4063 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4064 } 4065 4066 XFS_BTREE_STATS_INC(cur, join); 4067 4068 /* 4069 * Fix up the number of records and right block pointer in the 4070 * surviving block, and log it. 4071 */ 4072 xfs_btree_set_numrecs(left, lrecs + rrecs); 4073 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); 4074 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4075 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4076 4077 /* If there is a right sibling, point it to the remaining block. */ 4078 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4079 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4080 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4081 if (error) 4082 goto error0; 4083 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4084 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4085 } 4086 4087 /* Free the deleted block. */ 4088 error = xfs_btree_free_block(cur, rbp); 4089 if (error) 4090 goto error0; 4091 4092 /* 4093 * If we joined with the left neighbor, set the buffer in the 4094 * cursor to the left block, and fix up the index. 4095 */ 4096 if (bp != lbp) { 4097 cur->bc_bufs[level] = lbp; 4098 cur->bc_ptrs[level] += lrecs; 4099 cur->bc_ra[level] = 0; 4100 } 4101 /* 4102 * If we joined with the right neighbor and there's a level above 4103 * us, increment the cursor at that level. 4104 */ 4105 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4106 (level + 1 < cur->bc_nlevels)) { 4107 error = xfs_btree_increment(cur, level + 1, &i); 4108 if (error) 4109 goto error0; 4110 } 4111 4112 /* 4113 * Readjust the ptr at this level if it's not a leaf, since it's 4114 * still pointing at the deletion point, which makes the cursor 4115 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4116 * We can't use decrement because it would change the next level up. 4117 */ 4118 if (level > 0) 4119 cur->bc_ptrs[level]--; 4120 4121 /* 4122 * We combined blocks, so we have to update the parent keys if the 4123 * btree supports overlapped intervals. However, bc_ptrs[level + 1] 4124 * points to the old block so that the caller knows which record to 4125 * delete. Therefore, the caller must be savvy enough to call updkeys 4126 * for us if we return stat == 2. The other exit points from this 4127 * function don't require deletions further up the tree, so they can 4128 * call updkeys directly. 4129 */ 4130 4131 /* Return value means the next level up has something to do. */ 4132 *stat = 2; 4133 return 0; 4134 4135 error0: 4136 if (tcur) 4137 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4138 return error; 4139 } 4140 4141 /* 4142 * Delete the record pointed to by cur. 4143 * The cursor refers to the place where the record was (could be inserted) 4144 * when the operation returns. 4145 */ 4146 int /* error */ 4147 xfs_btree_delete( 4148 struct xfs_btree_cur *cur, 4149 int *stat) /* success/failure */ 4150 { 4151 int error; /* error return value */ 4152 int level; 4153 int i; 4154 bool joined = false; 4155 4156 /* 4157 * Go up the tree, starting at leaf level. 4158 * 4159 * If 2 is returned then a join was done; go to the next level. 4160 * Otherwise we are done. 4161 */ 4162 for (level = 0, i = 2; i == 2; level++) { 4163 error = xfs_btree_delrec(cur, level, &i); 4164 if (error) 4165 goto error0; 4166 if (i == 2) 4167 joined = true; 4168 } 4169 4170 /* 4171 * If we combined blocks as part of deleting the record, delrec won't 4172 * have updated the parent high keys so we have to do that here. 4173 */ 4174 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4175 error = xfs_btree_updkeys_force(cur, 0); 4176 if (error) 4177 goto error0; 4178 } 4179 4180 if (i == 0) { 4181 for (level = 1; level < cur->bc_nlevels; level++) { 4182 if (cur->bc_ptrs[level] == 0) { 4183 error = xfs_btree_decrement(cur, level, &i); 4184 if (error) 4185 goto error0; 4186 break; 4187 } 4188 } 4189 } 4190 4191 *stat = i; 4192 return 0; 4193 error0: 4194 return error; 4195 } 4196 4197 /* 4198 * Get the data from the pointed-to record. 4199 */ 4200 int /* error */ 4201 xfs_btree_get_rec( 4202 struct xfs_btree_cur *cur, /* btree cursor */ 4203 union xfs_btree_rec **recp, /* output: btree record */ 4204 int *stat) /* output: success/failure */ 4205 { 4206 struct xfs_btree_block *block; /* btree block */ 4207 struct xfs_buf *bp; /* buffer pointer */ 4208 int ptr; /* record number */ 4209 #ifdef DEBUG 4210 int error; /* error return value */ 4211 #endif 4212 4213 ptr = cur->bc_ptrs[0]; 4214 block = xfs_btree_get_block(cur, 0, &bp); 4215 4216 #ifdef DEBUG 4217 error = xfs_btree_check_block(cur, block, 0, bp); 4218 if (error) 4219 return error; 4220 #endif 4221 4222 /* 4223 * Off the right end or left end, return failure. 4224 */ 4225 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4226 *stat = 0; 4227 return 0; 4228 } 4229 4230 /* 4231 * Point to the record and extract its data. 4232 */ 4233 *recp = xfs_btree_rec_addr(cur, ptr, block); 4234 *stat = 1; 4235 return 0; 4236 } 4237 4238 /* Visit a block in a btree. */ 4239 STATIC int 4240 xfs_btree_visit_block( 4241 struct xfs_btree_cur *cur, 4242 int level, 4243 xfs_btree_visit_blocks_fn fn, 4244 void *data) 4245 { 4246 struct xfs_btree_block *block; 4247 struct xfs_buf *bp; 4248 union xfs_btree_ptr rptr; 4249 int error; 4250 4251 /* do right sibling readahead */ 4252 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4253 block = xfs_btree_get_block(cur, level, &bp); 4254 4255 /* process the block */ 4256 error = fn(cur, level, data); 4257 if (error) 4258 return error; 4259 4260 /* now read rh sibling block for next iteration */ 4261 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4262 if (xfs_btree_ptr_is_null(cur, &rptr)) 4263 return -ENOENT; 4264 4265 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4266 } 4267 4268 4269 /* Visit every block in a btree. */ 4270 int 4271 xfs_btree_visit_blocks( 4272 struct xfs_btree_cur *cur, 4273 xfs_btree_visit_blocks_fn fn, 4274 unsigned int flags, 4275 void *data) 4276 { 4277 union xfs_btree_ptr lptr; 4278 int level; 4279 struct xfs_btree_block *block = NULL; 4280 int error = 0; 4281 4282 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4283 4284 /* for each level */ 4285 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4286 /* grab the left hand block */ 4287 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4288 if (error) 4289 return error; 4290 4291 /* readahead the left most block for the next level down */ 4292 if (level > 0) { 4293 union xfs_btree_ptr *ptr; 4294 4295 ptr = xfs_btree_ptr_addr(cur, 1, block); 4296 xfs_btree_readahead_ptr(cur, ptr, 1); 4297 4298 /* save for the next iteration of the loop */ 4299 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4300 4301 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4302 continue; 4303 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4304 continue; 4305 } 4306 4307 /* for each buffer in the level */ 4308 do { 4309 error = xfs_btree_visit_block(cur, level, fn, data); 4310 } while (!error); 4311 4312 if (error != -ENOENT) 4313 return error; 4314 } 4315 4316 return 0; 4317 } 4318 4319 /* 4320 * Change the owner of a btree. 4321 * 4322 * The mechanism we use here is ordered buffer logging. Because we don't know 4323 * how many buffers were are going to need to modify, we don't really want to 4324 * have to make transaction reservations for the worst case of every buffer in a 4325 * full size btree as that may be more space that we can fit in the log.... 4326 * 4327 * We do the btree walk in the most optimal manner possible - we have sibling 4328 * pointers so we can just walk all the blocks on each level from left to right 4329 * in a single pass, and then move to the next level and do the same. We can 4330 * also do readahead on the sibling pointers to get IO moving more quickly, 4331 * though for slow disks this is unlikely to make much difference to performance 4332 * as the amount of CPU work we have to do before moving to the next block is 4333 * relatively small. 4334 * 4335 * For each btree block that we load, modify the owner appropriately, set the 4336 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4337 * we mark the region we change dirty so that if the buffer is relogged in 4338 * a subsequent transaction the changes we make here as an ordered buffer are 4339 * correctly relogged in that transaction. If we are in recovery context, then 4340 * just queue the modified buffer as delayed write buffer so the transaction 4341 * recovery completion writes the changes to disk. 4342 */ 4343 struct xfs_btree_block_change_owner_info { 4344 uint64_t new_owner; 4345 struct list_head *buffer_list; 4346 }; 4347 4348 static int 4349 xfs_btree_block_change_owner( 4350 struct xfs_btree_cur *cur, 4351 int level, 4352 void *data) 4353 { 4354 struct xfs_btree_block_change_owner_info *bbcoi = data; 4355 struct xfs_btree_block *block; 4356 struct xfs_buf *bp; 4357 4358 /* modify the owner */ 4359 block = xfs_btree_get_block(cur, level, &bp); 4360 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4361 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4362 return 0; 4363 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4364 } else { 4365 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4366 return 0; 4367 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4368 } 4369 4370 /* 4371 * If the block is a root block hosted in an inode, we might not have a 4372 * buffer pointer here and we shouldn't attempt to log the change as the 4373 * information is already held in the inode and discarded when the root 4374 * block is formatted into the on-disk inode fork. We still change it, 4375 * though, so everything is consistent in memory. 4376 */ 4377 if (!bp) { 4378 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4379 ASSERT(level == cur->bc_nlevels - 1); 4380 return 0; 4381 } 4382 4383 if (cur->bc_tp) { 4384 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4385 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4386 return -EAGAIN; 4387 } 4388 } else { 4389 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4390 } 4391 4392 return 0; 4393 } 4394 4395 int 4396 xfs_btree_change_owner( 4397 struct xfs_btree_cur *cur, 4398 uint64_t new_owner, 4399 struct list_head *buffer_list) 4400 { 4401 struct xfs_btree_block_change_owner_info bbcoi; 4402 4403 bbcoi.new_owner = new_owner; 4404 bbcoi.buffer_list = buffer_list; 4405 4406 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4407 XFS_BTREE_VISIT_ALL, &bbcoi); 4408 } 4409 4410 /* Verify the v5 fields of a long-format btree block. */ 4411 xfs_failaddr_t 4412 xfs_btree_lblock_v5hdr_verify( 4413 struct xfs_buf *bp, 4414 uint64_t owner) 4415 { 4416 struct xfs_mount *mp = bp->b_mount; 4417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4418 4419 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4420 return __this_address; 4421 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4422 return __this_address; 4423 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn)) 4424 return __this_address; 4425 if (owner != XFS_RMAP_OWN_UNKNOWN && 4426 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4427 return __this_address; 4428 return NULL; 4429 } 4430 4431 /* Verify a long-format btree block. */ 4432 xfs_failaddr_t 4433 xfs_btree_lblock_verify( 4434 struct xfs_buf *bp, 4435 unsigned int max_recs) 4436 { 4437 struct xfs_mount *mp = bp->b_mount; 4438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4439 4440 /* numrecs verification */ 4441 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4442 return __this_address; 4443 4444 /* sibling pointer verification */ 4445 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 4446 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))) 4447 return __this_address; 4448 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 4449 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))) 4450 return __this_address; 4451 4452 return NULL; 4453 } 4454 4455 /** 4456 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4457 * btree block 4458 * 4459 * @bp: buffer containing the btree block 4460 */ 4461 xfs_failaddr_t 4462 xfs_btree_sblock_v5hdr_verify( 4463 struct xfs_buf *bp) 4464 { 4465 struct xfs_mount *mp = bp->b_mount; 4466 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4467 struct xfs_perag *pag = bp->b_pag; 4468 4469 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4470 return __this_address; 4471 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4472 return __this_address; 4473 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn)) 4474 return __this_address; 4475 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4476 return __this_address; 4477 return NULL; 4478 } 4479 4480 /** 4481 * xfs_btree_sblock_verify() -- verify a short-format btree block 4482 * 4483 * @bp: buffer containing the btree block 4484 * @max_recs: maximum records allowed in this btree node 4485 */ 4486 xfs_failaddr_t 4487 xfs_btree_sblock_verify( 4488 struct xfs_buf *bp, 4489 unsigned int max_recs) 4490 { 4491 struct xfs_mount *mp = bp->b_mount; 4492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4493 xfs_agblock_t agno; 4494 4495 /* numrecs verification */ 4496 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4497 return __this_address; 4498 4499 /* sibling pointer verification */ 4500 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp)); 4501 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 4502 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib))) 4503 return __this_address; 4504 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 4505 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib))) 4506 return __this_address; 4507 4508 return NULL; 4509 } 4510 4511 /* 4512 * Calculate the number of btree levels needed to store a given number of 4513 * records in a short-format btree. 4514 */ 4515 uint 4516 xfs_btree_compute_maxlevels( 4517 uint *limits, 4518 unsigned long len) 4519 { 4520 uint level; 4521 unsigned long maxblocks; 4522 4523 maxblocks = (len + limits[0] - 1) / limits[0]; 4524 for (level = 1; maxblocks > 1; level++) 4525 maxblocks = (maxblocks + limits[1] - 1) / limits[1]; 4526 return level; 4527 } 4528 4529 /* 4530 * Query a regular btree for all records overlapping a given interval. 4531 * Start with a LE lookup of the key of low_rec and return all records 4532 * until we find a record with a key greater than the key of high_rec. 4533 */ 4534 STATIC int 4535 xfs_btree_simple_query_range( 4536 struct xfs_btree_cur *cur, 4537 union xfs_btree_key *low_key, 4538 union xfs_btree_key *high_key, 4539 xfs_btree_query_range_fn fn, 4540 void *priv) 4541 { 4542 union xfs_btree_rec *recp; 4543 union xfs_btree_key rec_key; 4544 int64_t diff; 4545 int stat; 4546 bool firstrec = true; 4547 int error; 4548 4549 ASSERT(cur->bc_ops->init_high_key_from_rec); 4550 ASSERT(cur->bc_ops->diff_two_keys); 4551 4552 /* 4553 * Find the leftmost record. The btree cursor must be set 4554 * to the low record used to generate low_key. 4555 */ 4556 stat = 0; 4557 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4558 if (error) 4559 goto out; 4560 4561 /* Nothing? See if there's anything to the right. */ 4562 if (!stat) { 4563 error = xfs_btree_increment(cur, 0, &stat); 4564 if (error) 4565 goto out; 4566 } 4567 4568 while (stat) { 4569 /* Find the record. */ 4570 error = xfs_btree_get_rec(cur, &recp, &stat); 4571 if (error || !stat) 4572 break; 4573 4574 /* Skip if high_key(rec) < low_key. */ 4575 if (firstrec) { 4576 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4577 firstrec = false; 4578 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4579 &rec_key); 4580 if (diff > 0) 4581 goto advloop; 4582 } 4583 4584 /* Stop if high_key < low_key(rec). */ 4585 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4586 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4587 if (diff > 0) 4588 break; 4589 4590 /* Callback */ 4591 error = fn(cur, recp, priv); 4592 if (error) 4593 break; 4594 4595 advloop: 4596 /* Move on to the next record. */ 4597 error = xfs_btree_increment(cur, 0, &stat); 4598 if (error) 4599 break; 4600 } 4601 4602 out: 4603 return error; 4604 } 4605 4606 /* 4607 * Query an overlapped interval btree for all records overlapping a given 4608 * interval. This function roughly follows the algorithm given in 4609 * "Interval Trees" of _Introduction to Algorithms_, which is section 4610 * 14.3 in the 2nd and 3rd editions. 4611 * 4612 * First, generate keys for the low and high records passed in. 4613 * 4614 * For any leaf node, generate the high and low keys for the record. 4615 * If the record keys overlap with the query low/high keys, pass the 4616 * record to the function iterator. 4617 * 4618 * For any internal node, compare the low and high keys of each 4619 * pointer against the query low/high keys. If there's an overlap, 4620 * follow the pointer. 4621 * 4622 * As an optimization, we stop scanning a block when we find a low key 4623 * that is greater than the query's high key. 4624 */ 4625 STATIC int 4626 xfs_btree_overlapped_query_range( 4627 struct xfs_btree_cur *cur, 4628 union xfs_btree_key *low_key, 4629 union xfs_btree_key *high_key, 4630 xfs_btree_query_range_fn fn, 4631 void *priv) 4632 { 4633 union xfs_btree_ptr ptr; 4634 union xfs_btree_ptr *pp; 4635 union xfs_btree_key rec_key; 4636 union xfs_btree_key rec_hkey; 4637 union xfs_btree_key *lkp; 4638 union xfs_btree_key *hkp; 4639 union xfs_btree_rec *recp; 4640 struct xfs_btree_block *block; 4641 int64_t ldiff; 4642 int64_t hdiff; 4643 int level; 4644 struct xfs_buf *bp; 4645 int i; 4646 int error; 4647 4648 /* Load the root of the btree. */ 4649 level = cur->bc_nlevels - 1; 4650 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4651 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4652 if (error) 4653 return error; 4654 xfs_btree_get_block(cur, level, &bp); 4655 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4656 #ifdef DEBUG 4657 error = xfs_btree_check_block(cur, block, level, bp); 4658 if (error) 4659 goto out; 4660 #endif 4661 cur->bc_ptrs[level] = 1; 4662 4663 while (level < cur->bc_nlevels) { 4664 block = xfs_btree_get_block(cur, level, &bp); 4665 4666 /* End of node, pop back towards the root. */ 4667 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) { 4668 pop_up: 4669 if (level < cur->bc_nlevels - 1) 4670 cur->bc_ptrs[level + 1]++; 4671 level++; 4672 continue; 4673 } 4674 4675 if (level == 0) { 4676 /* Handle a leaf node. */ 4677 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block); 4678 4679 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4680 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4681 low_key); 4682 4683 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4684 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4685 &rec_key); 4686 4687 /* 4688 * If (record's high key >= query's low key) and 4689 * (query's high key >= record's low key), then 4690 * this record overlaps the query range; callback. 4691 */ 4692 if (ldiff >= 0 && hdiff >= 0) { 4693 error = fn(cur, recp, priv); 4694 if (error) 4695 break; 4696 } else if (hdiff < 0) { 4697 /* Record is larger than high key; pop. */ 4698 goto pop_up; 4699 } 4700 cur->bc_ptrs[level]++; 4701 continue; 4702 } 4703 4704 /* Handle an internal node. */ 4705 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block); 4706 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block); 4707 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block); 4708 4709 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4710 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4711 4712 /* 4713 * If (pointer's high key >= query's low key) and 4714 * (query's high key >= pointer's low key), then 4715 * this record overlaps the query range; follow pointer. 4716 */ 4717 if (ldiff >= 0 && hdiff >= 0) { 4718 level--; 4719 error = xfs_btree_lookup_get_block(cur, level, pp, 4720 &block); 4721 if (error) 4722 goto out; 4723 xfs_btree_get_block(cur, level, &bp); 4724 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4725 #ifdef DEBUG 4726 error = xfs_btree_check_block(cur, block, level, bp); 4727 if (error) 4728 goto out; 4729 #endif 4730 cur->bc_ptrs[level] = 1; 4731 continue; 4732 } else if (hdiff < 0) { 4733 /* The low key is larger than the upper range; pop. */ 4734 goto pop_up; 4735 } 4736 cur->bc_ptrs[level]++; 4737 } 4738 4739 out: 4740 /* 4741 * If we don't end this function with the cursor pointing at a record 4742 * block, a subsequent non-error cursor deletion will not release 4743 * node-level buffers, causing a buffer leak. This is quite possible 4744 * with a zero-results range query, so release the buffers if we 4745 * failed to return any results. 4746 */ 4747 if (cur->bc_bufs[0] == NULL) { 4748 for (i = 0; i < cur->bc_nlevels; i++) { 4749 if (cur->bc_bufs[i]) { 4750 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 4751 cur->bc_bufs[i] = NULL; 4752 cur->bc_ptrs[i] = 0; 4753 cur->bc_ra[i] = 0; 4754 } 4755 } 4756 } 4757 4758 return error; 4759 } 4760 4761 /* 4762 * Query a btree for all records overlapping a given interval of keys. The 4763 * supplied function will be called with each record found; return one of the 4764 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4765 * code. This function returns -ECANCELED, zero, or a negative error code. 4766 */ 4767 int 4768 xfs_btree_query_range( 4769 struct xfs_btree_cur *cur, 4770 union xfs_btree_irec *low_rec, 4771 union xfs_btree_irec *high_rec, 4772 xfs_btree_query_range_fn fn, 4773 void *priv) 4774 { 4775 union xfs_btree_rec rec; 4776 union xfs_btree_key low_key; 4777 union xfs_btree_key high_key; 4778 4779 /* Find the keys of both ends of the interval. */ 4780 cur->bc_rec = *high_rec; 4781 cur->bc_ops->init_rec_from_cur(cur, &rec); 4782 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4783 4784 cur->bc_rec = *low_rec; 4785 cur->bc_ops->init_rec_from_cur(cur, &rec); 4786 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4787 4788 /* Enforce low key < high key. */ 4789 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4790 return -EINVAL; 4791 4792 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4793 return xfs_btree_simple_query_range(cur, &low_key, 4794 &high_key, fn, priv); 4795 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4796 fn, priv); 4797 } 4798 4799 /* Query a btree for all records. */ 4800 int 4801 xfs_btree_query_all( 4802 struct xfs_btree_cur *cur, 4803 xfs_btree_query_range_fn fn, 4804 void *priv) 4805 { 4806 union xfs_btree_key low_key; 4807 union xfs_btree_key high_key; 4808 4809 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4810 memset(&low_key, 0, sizeof(low_key)); 4811 memset(&high_key, 0xFF, sizeof(high_key)); 4812 4813 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4814 } 4815 4816 /* 4817 * Calculate the number of blocks needed to store a given number of records 4818 * in a short-format (per-AG metadata) btree. 4819 */ 4820 unsigned long long 4821 xfs_btree_calc_size( 4822 uint *limits, 4823 unsigned long long len) 4824 { 4825 int level; 4826 int maxrecs; 4827 unsigned long long rval; 4828 4829 maxrecs = limits[0]; 4830 for (level = 0, rval = 0; len > 1; level++) { 4831 len += maxrecs - 1; 4832 do_div(len, maxrecs); 4833 maxrecs = limits[1]; 4834 rval += len; 4835 } 4836 return rval; 4837 } 4838 4839 static int 4840 xfs_btree_count_blocks_helper( 4841 struct xfs_btree_cur *cur, 4842 int level, 4843 void *data) 4844 { 4845 xfs_extlen_t *blocks = data; 4846 (*blocks)++; 4847 4848 return 0; 4849 } 4850 4851 /* Count the blocks in a btree and return the result in *blocks. */ 4852 int 4853 xfs_btree_count_blocks( 4854 struct xfs_btree_cur *cur, 4855 xfs_extlen_t *blocks) 4856 { 4857 *blocks = 0; 4858 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4859 XFS_BTREE_VISIT_ALL, blocks); 4860 } 4861 4862 /* Compare two btree pointers. */ 4863 int64_t 4864 xfs_btree_diff_two_ptrs( 4865 struct xfs_btree_cur *cur, 4866 const union xfs_btree_ptr *a, 4867 const union xfs_btree_ptr *b) 4868 { 4869 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4870 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 4871 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 4872 } 4873 4874 /* If there's an extent, we're done. */ 4875 STATIC int 4876 xfs_btree_has_record_helper( 4877 struct xfs_btree_cur *cur, 4878 union xfs_btree_rec *rec, 4879 void *priv) 4880 { 4881 return -ECANCELED; 4882 } 4883 4884 /* Is there a record covering a given range of keys? */ 4885 int 4886 xfs_btree_has_record( 4887 struct xfs_btree_cur *cur, 4888 union xfs_btree_irec *low, 4889 union xfs_btree_irec *high, 4890 bool *exists) 4891 { 4892 int error; 4893 4894 error = xfs_btree_query_range(cur, low, high, 4895 &xfs_btree_has_record_helper, NULL); 4896 if (error == -ECANCELED) { 4897 *exists = true; 4898 return 0; 4899 } 4900 *exists = false; 4901 return error; 4902 } 4903 4904 /* Are there more records in this btree? */ 4905 bool 4906 xfs_btree_has_more_records( 4907 struct xfs_btree_cur *cur) 4908 { 4909 struct xfs_btree_block *block; 4910 struct xfs_buf *bp; 4911 4912 block = xfs_btree_get_block(cur, 0, &bp); 4913 4914 /* There are still records in this block. */ 4915 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block)) 4916 return true; 4917 4918 /* There are more record blocks. */ 4919 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4920 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 4921 else 4922 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 4923 } 4924