xref: /linux/fs/xfs/libxfs/xfs_bmap_btree.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_btree_staging.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_error.h"
22 #include "xfs_quota.h"
23 #include "xfs_trace.h"
24 #include "xfs_rmap.h"
25 #include "xfs_ag.h"
26 
27 static struct kmem_cache	*xfs_bmbt_cur_cache;
28 
29 /*
30  * Convert on-disk form of btree root to in-memory form.
31  */
32 void
33 xfs_bmdr_to_bmbt(
34 	struct xfs_inode	*ip,
35 	xfs_bmdr_block_t	*dblock,
36 	int			dblocklen,
37 	struct xfs_btree_block	*rblock,
38 	int			rblocklen)
39 {
40 	struct xfs_mount	*mp = ip->i_mount;
41 	int			dmxr;
42 	xfs_bmbt_key_t		*fkp;
43 	__be64			*fpp;
44 	xfs_bmbt_key_t		*tkp;
45 	__be64			*tpp;
46 
47 	xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
48 				 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
49 				 XFS_BTREE_LONG_PTRS);
50 	rblock->bb_level = dblock->bb_level;
51 	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
52 	rblock->bb_numrecs = dblock->bb_numrecs;
53 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
54 	fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
55 	tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
56 	fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
57 	tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
58 	dmxr = be16_to_cpu(dblock->bb_numrecs);
59 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
60 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
61 }
62 
63 void
64 xfs_bmbt_disk_get_all(
65 	const struct xfs_bmbt_rec *rec,
66 	struct xfs_bmbt_irec	*irec)
67 {
68 	uint64_t		l0 = get_unaligned_be64(&rec->l0);
69 	uint64_t		l1 = get_unaligned_be64(&rec->l1);
70 
71 	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
72 	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
73 	irec->br_blockcount = l1 & xfs_mask64lo(21);
74 	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
75 		irec->br_state = XFS_EXT_UNWRITTEN;
76 	else
77 		irec->br_state = XFS_EXT_NORM;
78 }
79 
80 /*
81  * Extract the blockcount field from an on disk bmap extent record.
82  */
83 xfs_filblks_t
84 xfs_bmbt_disk_get_blockcount(
85 	const struct xfs_bmbt_rec	*r)
86 {
87 	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
88 }
89 
90 /*
91  * Extract the startoff field from a disk format bmap extent record.
92  */
93 xfs_fileoff_t
94 xfs_bmbt_disk_get_startoff(
95 	const struct xfs_bmbt_rec	*r)
96 {
97 	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
98 		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
99 }
100 
101 /*
102  * Set all the fields in a bmap extent record from the uncompressed form.
103  */
104 void
105 xfs_bmbt_disk_set_all(
106 	struct xfs_bmbt_rec	*r,
107 	struct xfs_bmbt_irec	*s)
108 {
109 	int			extent_flag = (s->br_state != XFS_EXT_NORM);
110 
111 	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
112 	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
113 	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
114 	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
115 
116 	put_unaligned_be64(
117 		((xfs_bmbt_rec_base_t)extent_flag << 63) |
118 		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
119 		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
120 	put_unaligned_be64(
121 		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
122 		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
123 		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
124 }
125 
126 /*
127  * Convert in-memory form of btree root to on-disk form.
128  */
129 void
130 xfs_bmbt_to_bmdr(
131 	struct xfs_mount	*mp,
132 	struct xfs_btree_block	*rblock,
133 	int			rblocklen,
134 	xfs_bmdr_block_t	*dblock,
135 	int			dblocklen)
136 {
137 	int			dmxr;
138 	xfs_bmbt_key_t		*fkp;
139 	__be64			*fpp;
140 	xfs_bmbt_key_t		*tkp;
141 	__be64			*tpp;
142 
143 	if (xfs_has_crc(mp)) {
144 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
145 		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
146 		       &mp->m_sb.sb_meta_uuid));
147 		ASSERT(rblock->bb_u.l.bb_blkno ==
148 		       cpu_to_be64(XFS_BUF_DADDR_NULL));
149 	} else
150 		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
151 	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
152 	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
153 	ASSERT(rblock->bb_level != 0);
154 	dblock->bb_level = rblock->bb_level;
155 	dblock->bb_numrecs = rblock->bb_numrecs;
156 	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
157 	fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
158 	tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
159 	fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
160 	tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
161 	dmxr = be16_to_cpu(dblock->bb_numrecs);
162 	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
163 	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
164 }
165 
166 STATIC struct xfs_btree_cur *
167 xfs_bmbt_dup_cursor(
168 	struct xfs_btree_cur	*cur)
169 {
170 	struct xfs_btree_cur	*new;
171 
172 	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
173 			cur->bc_ino.ip, cur->bc_ino.whichfork);
174 
175 	/*
176 	 * Copy the firstblock, dfops, and flags values,
177 	 * since init cursor doesn't get them.
178 	 */
179 	new->bc_ino.flags = cur->bc_ino.flags;
180 
181 	return new;
182 }
183 
184 STATIC void
185 xfs_bmbt_update_cursor(
186 	struct xfs_btree_cur	*src,
187 	struct xfs_btree_cur	*dst)
188 {
189 	ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
190 	       (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
191 
192 	dst->bc_ino.allocated += src->bc_ino.allocated;
193 	dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
194 
195 	src->bc_ino.allocated = 0;
196 }
197 
198 STATIC int
199 xfs_bmbt_alloc_block(
200 	struct xfs_btree_cur		*cur,
201 	const union xfs_btree_ptr	*start,
202 	union xfs_btree_ptr		*new,
203 	int				*stat)
204 {
205 	struct xfs_alloc_arg	args;
206 	int			error;
207 
208 	memset(&args, 0, sizeof(args));
209 	args.tp = cur->bc_tp;
210 	args.mp = cur->bc_mp;
211 	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
212 			cur->bc_ino.whichfork);
213 	args.minlen = args.maxlen = args.prod = 1;
214 	args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
215 	if (!args.wasdel && args.tp->t_blk_res == 0)
216 		return -ENOSPC;
217 
218 	/*
219 	 * If we are coming here from something like unwritten extent
220 	 * conversion, there has been no data extent allocation already done, so
221 	 * we have to ensure that we attempt to locate the entire set of bmbt
222 	 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
223 	 */
224 	if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
225 		args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
226 					cur->bc_ino.whichfork);
227 
228 	error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
229 	if (error)
230 		return error;
231 
232 	if (args.fsbno == NULLFSBLOCK && args.minleft) {
233 		/*
234 		 * Could not find an AG with enough free space to satisfy
235 		 * a full btree split.  Try again and if
236 		 * successful activate the lowspace algorithm.
237 		 */
238 		args.minleft = 0;
239 		error = xfs_alloc_vextent_start_ag(&args, 0);
240 		if (error)
241 			return error;
242 		cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
243 	}
244 	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
245 		*stat = 0;
246 		return 0;
247 	}
248 
249 	ASSERT(args.len == 1);
250 	cur->bc_ino.allocated++;
251 	cur->bc_ino.ip->i_nblocks++;
252 	xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
253 	xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
254 			XFS_TRANS_DQ_BCOUNT, 1L);
255 
256 	new->l = cpu_to_be64(args.fsbno);
257 
258 	*stat = 1;
259 	return 0;
260 }
261 
262 STATIC int
263 xfs_bmbt_free_block(
264 	struct xfs_btree_cur	*cur,
265 	struct xfs_buf		*bp)
266 {
267 	struct xfs_mount	*mp = cur->bc_mp;
268 	struct xfs_inode	*ip = cur->bc_ino.ip;
269 	struct xfs_trans	*tp = cur->bc_tp;
270 	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
271 	struct xfs_owner_info	oinfo;
272 	int			error;
273 
274 	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
275 	error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
276 			XFS_AG_RESV_NONE, false);
277 	if (error)
278 		return error;
279 
280 	ip->i_nblocks--;
281 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
282 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
283 	return 0;
284 }
285 
286 STATIC int
287 xfs_bmbt_get_minrecs(
288 	struct xfs_btree_cur	*cur,
289 	int			level)
290 {
291 	if (level == cur->bc_nlevels - 1) {
292 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
293 
294 		return xfs_bmbt_maxrecs(cur->bc_mp,
295 					ifp->if_broot_bytes, level == 0) / 2;
296 	}
297 
298 	return cur->bc_mp->m_bmap_dmnr[level != 0];
299 }
300 
301 int
302 xfs_bmbt_get_maxrecs(
303 	struct xfs_btree_cur	*cur,
304 	int			level)
305 {
306 	if (level == cur->bc_nlevels - 1) {
307 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
308 
309 		return xfs_bmbt_maxrecs(cur->bc_mp,
310 					ifp->if_broot_bytes, level == 0);
311 	}
312 
313 	return cur->bc_mp->m_bmap_dmxr[level != 0];
314 
315 }
316 
317 /*
318  * Get the maximum records we could store in the on-disk format.
319  *
320  * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
321  * for the root node this checks the available space in the dinode fork
322  * so that we can resize the in-memory buffer to match it.  After a
323  * resize to the maximum size this function returns the same value
324  * as xfs_bmbt_get_maxrecs for the root node, too.
325  */
326 STATIC int
327 xfs_bmbt_get_dmaxrecs(
328 	struct xfs_btree_cur	*cur,
329 	int			level)
330 {
331 	if (level != cur->bc_nlevels - 1)
332 		return cur->bc_mp->m_bmap_dmxr[level != 0];
333 	return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
334 }
335 
336 STATIC void
337 xfs_bmbt_init_key_from_rec(
338 	union xfs_btree_key		*key,
339 	const union xfs_btree_rec	*rec)
340 {
341 	key->bmbt.br_startoff =
342 		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
343 }
344 
345 STATIC void
346 xfs_bmbt_init_high_key_from_rec(
347 	union xfs_btree_key		*key,
348 	const union xfs_btree_rec	*rec)
349 {
350 	key->bmbt.br_startoff = cpu_to_be64(
351 			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
352 			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
353 }
354 
355 STATIC void
356 xfs_bmbt_init_rec_from_cur(
357 	struct xfs_btree_cur	*cur,
358 	union xfs_btree_rec	*rec)
359 {
360 	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
361 }
362 
363 STATIC void
364 xfs_bmbt_init_ptr_from_cur(
365 	struct xfs_btree_cur	*cur,
366 	union xfs_btree_ptr	*ptr)
367 {
368 	ptr->l = 0;
369 }
370 
371 STATIC int64_t
372 xfs_bmbt_key_diff(
373 	struct xfs_btree_cur		*cur,
374 	const union xfs_btree_key	*key)
375 {
376 	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
377 				      cur->bc_rec.b.br_startoff;
378 }
379 
380 STATIC int64_t
381 xfs_bmbt_diff_two_keys(
382 	struct xfs_btree_cur		*cur,
383 	const union xfs_btree_key	*k1,
384 	const union xfs_btree_key	*k2,
385 	const union xfs_btree_key	*mask)
386 {
387 	uint64_t			a = be64_to_cpu(k1->bmbt.br_startoff);
388 	uint64_t			b = be64_to_cpu(k2->bmbt.br_startoff);
389 
390 	ASSERT(!mask || mask->bmbt.br_startoff);
391 
392 	/*
393 	 * Note: This routine previously casted a and b to int64 and subtracted
394 	 * them to generate a result.  This lead to problems if b was the
395 	 * "maximum" key value (all ones) being signed incorrectly, hence this
396 	 * somewhat less efficient version.
397 	 */
398 	if (a > b)
399 		return 1;
400 	if (b > a)
401 		return -1;
402 	return 0;
403 }
404 
405 static xfs_failaddr_t
406 xfs_bmbt_verify(
407 	struct xfs_buf		*bp)
408 {
409 	struct xfs_mount	*mp = bp->b_mount;
410 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
411 	xfs_failaddr_t		fa;
412 	unsigned int		level;
413 
414 	if (!xfs_verify_magic(bp, block->bb_magic))
415 		return __this_address;
416 
417 	if (xfs_has_crc(mp)) {
418 		/*
419 		 * XXX: need a better way of verifying the owner here. Right now
420 		 * just make sure there has been one set.
421 		 */
422 		fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
423 		if (fa)
424 			return fa;
425 	}
426 
427 	/*
428 	 * numrecs and level verification.
429 	 *
430 	 * We don't know what fork we belong to, so just verify that the level
431 	 * is less than the maximum of the two. Later checks will be more
432 	 * precise.
433 	 */
434 	level = be16_to_cpu(block->bb_level);
435 	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
436 		return __this_address;
437 
438 	return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
439 }
440 
441 static void
442 xfs_bmbt_read_verify(
443 	struct xfs_buf	*bp)
444 {
445 	xfs_failaddr_t	fa;
446 
447 	if (!xfs_btree_lblock_verify_crc(bp))
448 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
449 	else {
450 		fa = xfs_bmbt_verify(bp);
451 		if (fa)
452 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
453 	}
454 
455 	if (bp->b_error)
456 		trace_xfs_btree_corrupt(bp, _RET_IP_);
457 }
458 
459 static void
460 xfs_bmbt_write_verify(
461 	struct xfs_buf	*bp)
462 {
463 	xfs_failaddr_t	fa;
464 
465 	fa = xfs_bmbt_verify(bp);
466 	if (fa) {
467 		trace_xfs_btree_corrupt(bp, _RET_IP_);
468 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
469 		return;
470 	}
471 	xfs_btree_lblock_calc_crc(bp);
472 }
473 
474 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
475 	.name = "xfs_bmbt",
476 	.magic = { cpu_to_be32(XFS_BMAP_MAGIC),
477 		   cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
478 	.verify_read = xfs_bmbt_read_verify,
479 	.verify_write = xfs_bmbt_write_verify,
480 	.verify_struct = xfs_bmbt_verify,
481 };
482 
483 
484 STATIC int
485 xfs_bmbt_keys_inorder(
486 	struct xfs_btree_cur		*cur,
487 	const union xfs_btree_key	*k1,
488 	const union xfs_btree_key	*k2)
489 {
490 	return be64_to_cpu(k1->bmbt.br_startoff) <
491 		be64_to_cpu(k2->bmbt.br_startoff);
492 }
493 
494 STATIC int
495 xfs_bmbt_recs_inorder(
496 	struct xfs_btree_cur		*cur,
497 	const union xfs_btree_rec	*r1,
498 	const union xfs_btree_rec	*r2)
499 {
500 	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
501 		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
502 		xfs_bmbt_disk_get_startoff(&r2->bmbt);
503 }
504 
505 STATIC enum xbtree_key_contig
506 xfs_bmbt_keys_contiguous(
507 	struct xfs_btree_cur		*cur,
508 	const union xfs_btree_key	*key1,
509 	const union xfs_btree_key	*key2,
510 	const union xfs_btree_key	*mask)
511 {
512 	ASSERT(!mask || mask->bmbt.br_startoff);
513 
514 	return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
515 				 be64_to_cpu(key2->bmbt.br_startoff));
516 }
517 
518 static const struct xfs_btree_ops xfs_bmbt_ops = {
519 	.rec_len		= sizeof(xfs_bmbt_rec_t),
520 	.key_len		= sizeof(xfs_bmbt_key_t),
521 
522 	.dup_cursor		= xfs_bmbt_dup_cursor,
523 	.update_cursor		= xfs_bmbt_update_cursor,
524 	.alloc_block		= xfs_bmbt_alloc_block,
525 	.free_block		= xfs_bmbt_free_block,
526 	.get_maxrecs		= xfs_bmbt_get_maxrecs,
527 	.get_minrecs		= xfs_bmbt_get_minrecs,
528 	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
529 	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
530 	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
531 	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
532 	.init_ptr_from_cur	= xfs_bmbt_init_ptr_from_cur,
533 	.key_diff		= xfs_bmbt_key_diff,
534 	.diff_two_keys		= xfs_bmbt_diff_two_keys,
535 	.buf_ops		= &xfs_bmbt_buf_ops,
536 	.keys_inorder		= xfs_bmbt_keys_inorder,
537 	.recs_inorder		= xfs_bmbt_recs_inorder,
538 	.keys_contiguous	= xfs_bmbt_keys_contiguous,
539 };
540 
541 static struct xfs_btree_cur *
542 xfs_bmbt_init_common(
543 	struct xfs_mount	*mp,
544 	struct xfs_trans	*tp,
545 	struct xfs_inode	*ip,
546 	int			whichfork)
547 {
548 	struct xfs_btree_cur	*cur;
549 
550 	ASSERT(whichfork != XFS_COW_FORK);
551 
552 	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
553 			mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
554 	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
555 
556 	cur->bc_ops = &xfs_bmbt_ops;
557 	cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
558 	if (xfs_has_crc(mp))
559 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
560 
561 	cur->bc_ino.ip = ip;
562 	cur->bc_ino.allocated = 0;
563 	cur->bc_ino.flags = 0;
564 
565 	return cur;
566 }
567 
568 /*
569  * Allocate a new bmap btree cursor.
570  */
571 struct xfs_btree_cur *
572 xfs_bmbt_init_cursor(
573 	struct xfs_mount	*mp,
574 	struct xfs_trans	*tp,
575 	struct xfs_inode	*ip,
576 	int			whichfork)
577 {
578 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
579 	struct xfs_btree_cur	*cur;
580 
581 	cur = xfs_bmbt_init_common(mp, tp, ip, whichfork);
582 
583 	cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
584 	cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
585 	cur->bc_ino.whichfork = whichfork;
586 
587 	return cur;
588 }
589 
590 /* Calculate number of records in a block mapping btree block. */
591 static inline unsigned int
592 xfs_bmbt_block_maxrecs(
593 	unsigned int		blocklen,
594 	bool			leaf)
595 {
596 	if (leaf)
597 		return blocklen / sizeof(xfs_bmbt_rec_t);
598 	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
599 }
600 
601 /*
602  * Allocate a new bmap btree cursor for reloading an inode block mapping data
603  * structure.  Note that callers can use the staged cursor to reload extents
604  * format inode forks if they rebuild the iext tree and commit the staged
605  * cursor immediately.
606  */
607 struct xfs_btree_cur *
608 xfs_bmbt_stage_cursor(
609 	struct xfs_mount	*mp,
610 	struct xfs_inode	*ip,
611 	struct xbtree_ifakeroot	*ifake)
612 {
613 	struct xfs_btree_cur	*cur;
614 	struct xfs_btree_ops	*ops;
615 
616 	/* data fork always has larger maxheight */
617 	cur = xfs_bmbt_init_common(mp, NULL, ip, XFS_DATA_FORK);
618 	cur->bc_nlevels = ifake->if_levels;
619 	cur->bc_ino.forksize = ifake->if_fork_size;
620 
621 	/* Don't let anyone think we're attached to the real fork yet. */
622 	cur->bc_ino.whichfork = -1;
623 	xfs_btree_stage_ifakeroot(cur, ifake, &ops);
624 	ops->update_cursor = NULL;
625 	return cur;
626 }
627 
628 /*
629  * Swap in the new inode fork root.  Once we pass this point the newly rebuilt
630  * mappings are in place and we have to kill off any old btree blocks.
631  */
632 void
633 xfs_bmbt_commit_staged_btree(
634 	struct xfs_btree_cur	*cur,
635 	struct xfs_trans	*tp,
636 	int			whichfork)
637 {
638 	struct xbtree_ifakeroot	*ifake = cur->bc_ino.ifake;
639 	struct xfs_ifork	*ifp;
640 	static const short	brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT};
641 	static const short	extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT};
642 	int			flags = XFS_ILOG_CORE;
643 
644 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
645 	ASSERT(whichfork != XFS_COW_FORK);
646 
647 	/*
648 	 * Free any resources hanging off the real fork, then shallow-copy the
649 	 * staging fork's contents into the real fork to transfer everything
650 	 * we just built.
651 	 */
652 	ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork);
653 	xfs_idestroy_fork(ifp);
654 	memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
655 
656 	switch (ifp->if_format) {
657 	case XFS_DINODE_FMT_EXTENTS:
658 		flags |= extflag[whichfork];
659 		break;
660 	case XFS_DINODE_FMT_BTREE:
661 		flags |= brootflag[whichfork];
662 		break;
663 	default:
664 		ASSERT(0);
665 		break;
666 	}
667 	xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
668 	xfs_btree_commit_ifakeroot(cur, tp, whichfork, &xfs_bmbt_ops);
669 }
670 
671 /*
672  * Calculate number of records in a bmap btree block.
673  */
674 int
675 xfs_bmbt_maxrecs(
676 	struct xfs_mount	*mp,
677 	int			blocklen,
678 	int			leaf)
679 {
680 	blocklen -= XFS_BMBT_BLOCK_LEN(mp);
681 	return xfs_bmbt_block_maxrecs(blocklen, leaf);
682 }
683 
684 /*
685  * Calculate the maximum possible height of the btree that the on-disk format
686  * supports. This is used for sizing structures large enough to support every
687  * possible configuration of a filesystem that might get mounted.
688  */
689 unsigned int
690 xfs_bmbt_maxlevels_ondisk(void)
691 {
692 	unsigned int		minrecs[2];
693 	unsigned int		blocklen;
694 
695 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
696 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
697 
698 	minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
699 	minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
700 
701 	/* One extra level for the inode root. */
702 	return xfs_btree_compute_maxlevels(minrecs,
703 			XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
704 }
705 
706 /*
707  * Calculate number of records in a bmap btree inode root.
708  */
709 int
710 xfs_bmdr_maxrecs(
711 	int			blocklen,
712 	int			leaf)
713 {
714 	blocklen -= sizeof(xfs_bmdr_block_t);
715 
716 	if (leaf)
717 		return blocklen / sizeof(xfs_bmdr_rec_t);
718 	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
719 }
720 
721 /*
722  * Change the owner of a btree format fork fo the inode passed in. Change it to
723  * the owner of that is passed in so that we can change owners before or after
724  * we switch forks between inodes. The operation that the caller is doing will
725  * determine whether is needs to change owner before or after the switch.
726  *
727  * For demand paged transactional modification, the fork switch should be done
728  * after reading in all the blocks, modifying them and pinning them in the
729  * transaction. For modification when the buffers are already pinned in memory,
730  * the fork switch can be done before changing the owner as we won't need to
731  * validate the owner until the btree buffers are unpinned and writes can occur
732  * again.
733  *
734  * For recovery based ownership change, there is no transactional context and
735  * so a buffer list must be supplied so that we can record the buffers that we
736  * modified for the caller to issue IO on.
737  */
738 int
739 xfs_bmbt_change_owner(
740 	struct xfs_trans	*tp,
741 	struct xfs_inode	*ip,
742 	int			whichfork,
743 	xfs_ino_t		new_owner,
744 	struct list_head	*buffer_list)
745 {
746 	struct xfs_btree_cur	*cur;
747 	int			error;
748 
749 	ASSERT(tp || buffer_list);
750 	ASSERT(!(tp && buffer_list));
751 	ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
752 
753 	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
754 	cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
755 
756 	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
757 	xfs_btree_del_cursor(cur, error);
758 	return error;
759 }
760 
761 /* Calculate the bmap btree size for some records. */
762 unsigned long long
763 xfs_bmbt_calc_size(
764 	struct xfs_mount	*mp,
765 	unsigned long long	len)
766 {
767 	return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
768 }
769 
770 int __init
771 xfs_bmbt_init_cur_cache(void)
772 {
773 	xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
774 			xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
775 			0, 0, NULL);
776 
777 	if (!xfs_bmbt_cur_cache)
778 		return -ENOMEM;
779 	return 0;
780 }
781 
782 void
783 xfs_bmbt_destroy_cur_cache(void)
784 {
785 	kmem_cache_destroy(xfs_bmbt_cur_cache);
786 	xfs_bmbt_cur_cache = NULL;
787 }
788