1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_alloc.h" 17 #include "xfs_btree.h" 18 #include "xfs_btree_staging.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_error.h" 22 #include "xfs_quota.h" 23 #include "xfs_trace.h" 24 #include "xfs_rmap.h" 25 #include "xfs_ag.h" 26 27 static struct kmem_cache *xfs_bmbt_cur_cache; 28 29 /* 30 * Convert on-disk form of btree root to in-memory form. 31 */ 32 void 33 xfs_bmdr_to_bmbt( 34 struct xfs_inode *ip, 35 xfs_bmdr_block_t *dblock, 36 int dblocklen, 37 struct xfs_btree_block *rblock, 38 int rblocklen) 39 { 40 struct xfs_mount *mp = ip->i_mount; 41 int dmxr; 42 xfs_bmbt_key_t *fkp; 43 __be64 *fpp; 44 xfs_bmbt_key_t *tkp; 45 __be64 *tpp; 46 47 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, 48 XFS_BTNUM_BMAP, 0, 0, ip->i_ino, 49 XFS_BTREE_LONG_PTRS); 50 rblock->bb_level = dblock->bb_level; 51 ASSERT(be16_to_cpu(rblock->bb_level) > 0); 52 rblock->bb_numrecs = dblock->bb_numrecs; 53 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 54 fkp = XFS_BMDR_KEY_ADDR(dblock, 1); 55 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 56 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 57 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 58 dmxr = be16_to_cpu(dblock->bb_numrecs); 59 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 60 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 61 } 62 63 void 64 xfs_bmbt_disk_get_all( 65 const struct xfs_bmbt_rec *rec, 66 struct xfs_bmbt_irec *irec) 67 { 68 uint64_t l0 = get_unaligned_be64(&rec->l0); 69 uint64_t l1 = get_unaligned_be64(&rec->l1); 70 71 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 72 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); 73 irec->br_blockcount = l1 & xfs_mask64lo(21); 74 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) 75 irec->br_state = XFS_EXT_UNWRITTEN; 76 else 77 irec->br_state = XFS_EXT_NORM; 78 } 79 80 /* 81 * Extract the blockcount field from an on disk bmap extent record. 82 */ 83 xfs_filblks_t 84 xfs_bmbt_disk_get_blockcount( 85 const struct xfs_bmbt_rec *r) 86 { 87 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); 88 } 89 90 /* 91 * Extract the startoff field from a disk format bmap extent record. 92 */ 93 xfs_fileoff_t 94 xfs_bmbt_disk_get_startoff( 95 const struct xfs_bmbt_rec *r) 96 { 97 return ((xfs_fileoff_t)be64_to_cpu(r->l0) & 98 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; 99 } 100 101 /* 102 * Set all the fields in a bmap extent record from the uncompressed form. 103 */ 104 void 105 xfs_bmbt_disk_set_all( 106 struct xfs_bmbt_rec *r, 107 struct xfs_bmbt_irec *s) 108 { 109 int extent_flag = (s->br_state != XFS_EXT_NORM); 110 111 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); 112 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); 113 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); 114 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); 115 116 put_unaligned_be64( 117 ((xfs_bmbt_rec_base_t)extent_flag << 63) | 118 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | 119 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); 120 put_unaligned_be64( 121 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | 122 ((xfs_bmbt_rec_base_t)s->br_blockcount & 123 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); 124 } 125 126 /* 127 * Convert in-memory form of btree root to on-disk form. 128 */ 129 void 130 xfs_bmbt_to_bmdr( 131 struct xfs_mount *mp, 132 struct xfs_btree_block *rblock, 133 int rblocklen, 134 xfs_bmdr_block_t *dblock, 135 int dblocklen) 136 { 137 int dmxr; 138 xfs_bmbt_key_t *fkp; 139 __be64 *fpp; 140 xfs_bmbt_key_t *tkp; 141 __be64 *tpp; 142 143 if (xfs_has_crc(mp)) { 144 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); 145 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, 146 &mp->m_sb.sb_meta_uuid)); 147 ASSERT(rblock->bb_u.l.bb_blkno == 148 cpu_to_be64(XFS_BUF_DADDR_NULL)); 149 } else 150 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); 151 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); 152 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); 153 ASSERT(rblock->bb_level != 0); 154 dblock->bb_level = rblock->bb_level; 155 dblock->bb_numrecs = rblock->bb_numrecs; 156 dmxr = xfs_bmdr_maxrecs(dblocklen, 0); 157 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); 158 tkp = XFS_BMDR_KEY_ADDR(dblock, 1); 159 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); 160 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); 161 dmxr = be16_to_cpu(dblock->bb_numrecs); 162 memcpy(tkp, fkp, sizeof(*fkp) * dmxr); 163 memcpy(tpp, fpp, sizeof(*fpp) * dmxr); 164 } 165 166 STATIC struct xfs_btree_cur * 167 xfs_bmbt_dup_cursor( 168 struct xfs_btree_cur *cur) 169 { 170 struct xfs_btree_cur *new; 171 172 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, 173 cur->bc_ino.ip, cur->bc_ino.whichfork); 174 175 /* 176 * Copy the firstblock, dfops, and flags values, 177 * since init cursor doesn't get them. 178 */ 179 new->bc_ino.flags = cur->bc_ino.flags; 180 181 return new; 182 } 183 184 STATIC void 185 xfs_bmbt_update_cursor( 186 struct xfs_btree_cur *src, 187 struct xfs_btree_cur *dst) 188 { 189 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) || 190 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); 191 192 dst->bc_ino.allocated += src->bc_ino.allocated; 193 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno; 194 195 src->bc_ino.allocated = 0; 196 } 197 198 STATIC int 199 xfs_bmbt_alloc_block( 200 struct xfs_btree_cur *cur, 201 const union xfs_btree_ptr *start, 202 union xfs_btree_ptr *new, 203 int *stat) 204 { 205 struct xfs_alloc_arg args; 206 int error; 207 208 memset(&args, 0, sizeof(args)); 209 args.tp = cur->bc_tp; 210 args.mp = cur->bc_mp; 211 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, 212 cur->bc_ino.whichfork); 213 args.minlen = args.maxlen = args.prod = 1; 214 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL; 215 if (!args.wasdel && args.tp->t_blk_res == 0) 216 return -ENOSPC; 217 218 /* 219 * If we are coming here from something like unwritten extent 220 * conversion, there has been no data extent allocation already done, so 221 * we have to ensure that we attempt to locate the entire set of bmbt 222 * allocations in the same AG, as xfs_bmapi_write() would have reserved. 223 */ 224 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER) 225 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip, 226 cur->bc_ino.whichfork); 227 228 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l)); 229 if (error) 230 return error; 231 232 if (args.fsbno == NULLFSBLOCK && args.minleft) { 233 /* 234 * Could not find an AG with enough free space to satisfy 235 * a full btree split. Try again and if 236 * successful activate the lowspace algorithm. 237 */ 238 args.minleft = 0; 239 error = xfs_alloc_vextent_start_ag(&args, 0); 240 if (error) 241 return error; 242 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; 243 } 244 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { 245 *stat = 0; 246 return 0; 247 } 248 249 ASSERT(args.len == 1); 250 cur->bc_ino.allocated++; 251 cur->bc_ino.ip->i_nblocks++; 252 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); 253 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, 254 XFS_TRANS_DQ_BCOUNT, 1L); 255 256 new->l = cpu_to_be64(args.fsbno); 257 258 *stat = 1; 259 return 0; 260 } 261 262 STATIC int 263 xfs_bmbt_free_block( 264 struct xfs_btree_cur *cur, 265 struct xfs_buf *bp) 266 { 267 struct xfs_mount *mp = cur->bc_mp; 268 struct xfs_inode *ip = cur->bc_ino.ip; 269 struct xfs_trans *tp = cur->bc_tp; 270 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 271 struct xfs_owner_info oinfo; 272 int error; 273 274 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); 275 error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo, 276 XFS_AG_RESV_NONE, false); 277 if (error) 278 return error; 279 280 ip->i_nblocks--; 281 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 282 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); 283 return 0; 284 } 285 286 STATIC int 287 xfs_bmbt_get_minrecs( 288 struct xfs_btree_cur *cur, 289 int level) 290 { 291 if (level == cur->bc_nlevels - 1) { 292 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 293 294 return xfs_bmbt_maxrecs(cur->bc_mp, 295 ifp->if_broot_bytes, level == 0) / 2; 296 } 297 298 return cur->bc_mp->m_bmap_dmnr[level != 0]; 299 } 300 301 int 302 xfs_bmbt_get_maxrecs( 303 struct xfs_btree_cur *cur, 304 int level) 305 { 306 if (level == cur->bc_nlevels - 1) { 307 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 308 309 return xfs_bmbt_maxrecs(cur->bc_mp, 310 ifp->if_broot_bytes, level == 0); 311 } 312 313 return cur->bc_mp->m_bmap_dmxr[level != 0]; 314 315 } 316 317 /* 318 * Get the maximum records we could store in the on-disk format. 319 * 320 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but 321 * for the root node this checks the available space in the dinode fork 322 * so that we can resize the in-memory buffer to match it. After a 323 * resize to the maximum size this function returns the same value 324 * as xfs_bmbt_get_maxrecs for the root node, too. 325 */ 326 STATIC int 327 xfs_bmbt_get_dmaxrecs( 328 struct xfs_btree_cur *cur, 329 int level) 330 { 331 if (level != cur->bc_nlevels - 1) 332 return cur->bc_mp->m_bmap_dmxr[level != 0]; 333 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); 334 } 335 336 STATIC void 337 xfs_bmbt_init_key_from_rec( 338 union xfs_btree_key *key, 339 const union xfs_btree_rec *rec) 340 { 341 key->bmbt.br_startoff = 342 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); 343 } 344 345 STATIC void 346 xfs_bmbt_init_high_key_from_rec( 347 union xfs_btree_key *key, 348 const union xfs_btree_rec *rec) 349 { 350 key->bmbt.br_startoff = cpu_to_be64( 351 xfs_bmbt_disk_get_startoff(&rec->bmbt) + 352 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); 353 } 354 355 STATIC void 356 xfs_bmbt_init_rec_from_cur( 357 struct xfs_btree_cur *cur, 358 union xfs_btree_rec *rec) 359 { 360 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); 361 } 362 363 STATIC void 364 xfs_bmbt_init_ptr_from_cur( 365 struct xfs_btree_cur *cur, 366 union xfs_btree_ptr *ptr) 367 { 368 ptr->l = 0; 369 } 370 371 STATIC int64_t 372 xfs_bmbt_key_diff( 373 struct xfs_btree_cur *cur, 374 const union xfs_btree_key *key) 375 { 376 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - 377 cur->bc_rec.b.br_startoff; 378 } 379 380 STATIC int64_t 381 xfs_bmbt_diff_two_keys( 382 struct xfs_btree_cur *cur, 383 const union xfs_btree_key *k1, 384 const union xfs_btree_key *k2, 385 const union xfs_btree_key *mask) 386 { 387 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); 388 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); 389 390 ASSERT(!mask || mask->bmbt.br_startoff); 391 392 /* 393 * Note: This routine previously casted a and b to int64 and subtracted 394 * them to generate a result. This lead to problems if b was the 395 * "maximum" key value (all ones) being signed incorrectly, hence this 396 * somewhat less efficient version. 397 */ 398 if (a > b) 399 return 1; 400 if (b > a) 401 return -1; 402 return 0; 403 } 404 405 static xfs_failaddr_t 406 xfs_bmbt_verify( 407 struct xfs_buf *bp) 408 { 409 struct xfs_mount *mp = bp->b_mount; 410 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 411 xfs_failaddr_t fa; 412 unsigned int level; 413 414 if (!xfs_verify_magic(bp, block->bb_magic)) 415 return __this_address; 416 417 if (xfs_has_crc(mp)) { 418 /* 419 * XXX: need a better way of verifying the owner here. Right now 420 * just make sure there has been one set. 421 */ 422 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); 423 if (fa) 424 return fa; 425 } 426 427 /* 428 * numrecs and level verification. 429 * 430 * We don't know what fork we belong to, so just verify that the level 431 * is less than the maximum of the two. Later checks will be more 432 * precise. 433 */ 434 level = be16_to_cpu(block->bb_level); 435 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) 436 return __this_address; 437 438 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]); 439 } 440 441 static void 442 xfs_bmbt_read_verify( 443 struct xfs_buf *bp) 444 { 445 xfs_failaddr_t fa; 446 447 if (!xfs_btree_lblock_verify_crc(bp)) 448 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 449 else { 450 fa = xfs_bmbt_verify(bp); 451 if (fa) 452 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 453 } 454 455 if (bp->b_error) 456 trace_xfs_btree_corrupt(bp, _RET_IP_); 457 } 458 459 static void 460 xfs_bmbt_write_verify( 461 struct xfs_buf *bp) 462 { 463 xfs_failaddr_t fa; 464 465 fa = xfs_bmbt_verify(bp); 466 if (fa) { 467 trace_xfs_btree_corrupt(bp, _RET_IP_); 468 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 469 return; 470 } 471 xfs_btree_lblock_calc_crc(bp); 472 } 473 474 const struct xfs_buf_ops xfs_bmbt_buf_ops = { 475 .name = "xfs_bmbt", 476 .magic = { cpu_to_be32(XFS_BMAP_MAGIC), 477 cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, 478 .verify_read = xfs_bmbt_read_verify, 479 .verify_write = xfs_bmbt_write_verify, 480 .verify_struct = xfs_bmbt_verify, 481 }; 482 483 484 STATIC int 485 xfs_bmbt_keys_inorder( 486 struct xfs_btree_cur *cur, 487 const union xfs_btree_key *k1, 488 const union xfs_btree_key *k2) 489 { 490 return be64_to_cpu(k1->bmbt.br_startoff) < 491 be64_to_cpu(k2->bmbt.br_startoff); 492 } 493 494 STATIC int 495 xfs_bmbt_recs_inorder( 496 struct xfs_btree_cur *cur, 497 const union xfs_btree_rec *r1, 498 const union xfs_btree_rec *r2) 499 { 500 return xfs_bmbt_disk_get_startoff(&r1->bmbt) + 501 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= 502 xfs_bmbt_disk_get_startoff(&r2->bmbt); 503 } 504 505 STATIC enum xbtree_key_contig 506 xfs_bmbt_keys_contiguous( 507 struct xfs_btree_cur *cur, 508 const union xfs_btree_key *key1, 509 const union xfs_btree_key *key2, 510 const union xfs_btree_key *mask) 511 { 512 ASSERT(!mask || mask->bmbt.br_startoff); 513 514 return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff), 515 be64_to_cpu(key2->bmbt.br_startoff)); 516 } 517 518 static const struct xfs_btree_ops xfs_bmbt_ops = { 519 .rec_len = sizeof(xfs_bmbt_rec_t), 520 .key_len = sizeof(xfs_bmbt_key_t), 521 522 .dup_cursor = xfs_bmbt_dup_cursor, 523 .update_cursor = xfs_bmbt_update_cursor, 524 .alloc_block = xfs_bmbt_alloc_block, 525 .free_block = xfs_bmbt_free_block, 526 .get_maxrecs = xfs_bmbt_get_maxrecs, 527 .get_minrecs = xfs_bmbt_get_minrecs, 528 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, 529 .init_key_from_rec = xfs_bmbt_init_key_from_rec, 530 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, 531 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, 532 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, 533 .key_diff = xfs_bmbt_key_diff, 534 .diff_two_keys = xfs_bmbt_diff_two_keys, 535 .buf_ops = &xfs_bmbt_buf_ops, 536 .keys_inorder = xfs_bmbt_keys_inorder, 537 .recs_inorder = xfs_bmbt_recs_inorder, 538 .keys_contiguous = xfs_bmbt_keys_contiguous, 539 }; 540 541 static struct xfs_btree_cur * 542 xfs_bmbt_init_common( 543 struct xfs_mount *mp, 544 struct xfs_trans *tp, 545 struct xfs_inode *ip, 546 int whichfork) 547 { 548 struct xfs_btree_cur *cur; 549 550 ASSERT(whichfork != XFS_COW_FORK); 551 552 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP, 553 mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache); 554 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2); 555 556 cur->bc_ops = &xfs_bmbt_ops; 557 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; 558 if (xfs_has_crc(mp)) 559 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 560 561 cur->bc_ino.ip = ip; 562 cur->bc_ino.allocated = 0; 563 cur->bc_ino.flags = 0; 564 565 return cur; 566 } 567 568 /* 569 * Allocate a new bmap btree cursor. 570 */ 571 struct xfs_btree_cur * 572 xfs_bmbt_init_cursor( 573 struct xfs_mount *mp, 574 struct xfs_trans *tp, 575 struct xfs_inode *ip, 576 int whichfork) 577 { 578 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 579 struct xfs_btree_cur *cur; 580 581 cur = xfs_bmbt_init_common(mp, tp, ip, whichfork); 582 583 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; 584 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork); 585 cur->bc_ino.whichfork = whichfork; 586 587 return cur; 588 } 589 590 /* Calculate number of records in a block mapping btree block. */ 591 static inline unsigned int 592 xfs_bmbt_block_maxrecs( 593 unsigned int blocklen, 594 bool leaf) 595 { 596 if (leaf) 597 return blocklen / sizeof(xfs_bmbt_rec_t); 598 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); 599 } 600 601 /* 602 * Allocate a new bmap btree cursor for reloading an inode block mapping data 603 * structure. Note that callers can use the staged cursor to reload extents 604 * format inode forks if they rebuild the iext tree and commit the staged 605 * cursor immediately. 606 */ 607 struct xfs_btree_cur * 608 xfs_bmbt_stage_cursor( 609 struct xfs_mount *mp, 610 struct xfs_inode *ip, 611 struct xbtree_ifakeroot *ifake) 612 { 613 struct xfs_btree_cur *cur; 614 struct xfs_btree_ops *ops; 615 616 /* data fork always has larger maxheight */ 617 cur = xfs_bmbt_init_common(mp, NULL, ip, XFS_DATA_FORK); 618 cur->bc_nlevels = ifake->if_levels; 619 cur->bc_ino.forksize = ifake->if_fork_size; 620 621 /* Don't let anyone think we're attached to the real fork yet. */ 622 cur->bc_ino.whichfork = -1; 623 xfs_btree_stage_ifakeroot(cur, ifake, &ops); 624 ops->update_cursor = NULL; 625 return cur; 626 } 627 628 /* 629 * Swap in the new inode fork root. Once we pass this point the newly rebuilt 630 * mappings are in place and we have to kill off any old btree blocks. 631 */ 632 void 633 xfs_bmbt_commit_staged_btree( 634 struct xfs_btree_cur *cur, 635 struct xfs_trans *tp, 636 int whichfork) 637 { 638 struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake; 639 struct xfs_ifork *ifp; 640 static const short brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT}; 641 static const short extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT}; 642 int flags = XFS_ILOG_CORE; 643 644 ASSERT(cur->bc_flags & XFS_BTREE_STAGING); 645 ASSERT(whichfork != XFS_COW_FORK); 646 647 /* 648 * Free any resources hanging off the real fork, then shallow-copy the 649 * staging fork's contents into the real fork to transfer everything 650 * we just built. 651 */ 652 ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork); 653 xfs_idestroy_fork(ifp); 654 memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork)); 655 656 switch (ifp->if_format) { 657 case XFS_DINODE_FMT_EXTENTS: 658 flags |= extflag[whichfork]; 659 break; 660 case XFS_DINODE_FMT_BTREE: 661 flags |= brootflag[whichfork]; 662 break; 663 default: 664 ASSERT(0); 665 break; 666 } 667 xfs_trans_log_inode(tp, cur->bc_ino.ip, flags); 668 xfs_btree_commit_ifakeroot(cur, tp, whichfork, &xfs_bmbt_ops); 669 } 670 671 /* 672 * Calculate number of records in a bmap btree block. 673 */ 674 int 675 xfs_bmbt_maxrecs( 676 struct xfs_mount *mp, 677 int blocklen, 678 int leaf) 679 { 680 blocklen -= XFS_BMBT_BLOCK_LEN(mp); 681 return xfs_bmbt_block_maxrecs(blocklen, leaf); 682 } 683 684 /* 685 * Calculate the maximum possible height of the btree that the on-disk format 686 * supports. This is used for sizing structures large enough to support every 687 * possible configuration of a filesystem that might get mounted. 688 */ 689 unsigned int 690 xfs_bmbt_maxlevels_ondisk(void) 691 { 692 unsigned int minrecs[2]; 693 unsigned int blocklen; 694 695 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, 696 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); 697 698 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2; 699 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2; 700 701 /* One extra level for the inode root. */ 702 return xfs_btree_compute_maxlevels(minrecs, 703 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1; 704 } 705 706 /* 707 * Calculate number of records in a bmap btree inode root. 708 */ 709 int 710 xfs_bmdr_maxrecs( 711 int blocklen, 712 int leaf) 713 { 714 blocklen -= sizeof(xfs_bmdr_block_t); 715 716 if (leaf) 717 return blocklen / sizeof(xfs_bmdr_rec_t); 718 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); 719 } 720 721 /* 722 * Change the owner of a btree format fork fo the inode passed in. Change it to 723 * the owner of that is passed in so that we can change owners before or after 724 * we switch forks between inodes. The operation that the caller is doing will 725 * determine whether is needs to change owner before or after the switch. 726 * 727 * For demand paged transactional modification, the fork switch should be done 728 * after reading in all the blocks, modifying them and pinning them in the 729 * transaction. For modification when the buffers are already pinned in memory, 730 * the fork switch can be done before changing the owner as we won't need to 731 * validate the owner until the btree buffers are unpinned and writes can occur 732 * again. 733 * 734 * For recovery based ownership change, there is no transactional context and 735 * so a buffer list must be supplied so that we can record the buffers that we 736 * modified for the caller to issue IO on. 737 */ 738 int 739 xfs_bmbt_change_owner( 740 struct xfs_trans *tp, 741 struct xfs_inode *ip, 742 int whichfork, 743 xfs_ino_t new_owner, 744 struct list_head *buffer_list) 745 { 746 struct xfs_btree_cur *cur; 747 int error; 748 749 ASSERT(tp || buffer_list); 750 ASSERT(!(tp && buffer_list)); 751 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); 752 753 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); 754 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER; 755 756 error = xfs_btree_change_owner(cur, new_owner, buffer_list); 757 xfs_btree_del_cursor(cur, error); 758 return error; 759 } 760 761 /* Calculate the bmap btree size for some records. */ 762 unsigned long long 763 xfs_bmbt_calc_size( 764 struct xfs_mount *mp, 765 unsigned long long len) 766 { 767 return xfs_btree_calc_size(mp->m_bmap_dmnr, len); 768 } 769 770 int __init 771 xfs_bmbt_init_cur_cache(void) 772 { 773 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur", 774 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()), 775 0, 0, NULL); 776 777 if (!xfs_bmbt_cur_cache) 778 return -ENOMEM; 779 return 0; 780 } 781 782 void 783 xfs_bmbt_destroy_cur_cache(void) 784 { 785 kmem_cache_destroy(xfs_bmbt_cur_cache); 786 xfs_bmbt_cur_cache = NULL; 787 } 788