1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 33 34 /* 35 * xfs_attr_leaf.c 36 * 37 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 38 */ 39 40 /*======================================================================== 41 * Function prototypes for the kernel. 42 *========================================================================*/ 43 44 /* 45 * Routines used for growing the Btree. 46 */ 47 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 48 xfs_dablk_t which_block, struct xfs_buf **bpp); 49 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 50 struct xfs_attr3_icleaf_hdr *ichdr, 51 struct xfs_da_args *args, int freemap_index); 52 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 53 struct xfs_attr3_icleaf_hdr *ichdr, 54 struct xfs_buf *leaf_buffer); 55 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 56 xfs_da_state_blk_t *blk1, 57 xfs_da_state_blk_t *blk2); 58 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 59 xfs_da_state_blk_t *leaf_blk_1, 60 struct xfs_attr3_icleaf_hdr *ichdr1, 61 xfs_da_state_blk_t *leaf_blk_2, 62 struct xfs_attr3_icleaf_hdr *ichdr2, 63 int *number_entries_in_blk1, 64 int *number_usedbytes_in_blk1); 65 66 /* 67 * Utility routines. 68 */ 69 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 70 struct xfs_attr_leafblock *src_leaf, 71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 72 struct xfs_attr_leafblock *dst_leaf, 73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 74 int move_count); 75 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 76 77 /* 78 * attr3 block 'firstused' conversion helpers. 79 * 80 * firstused refers to the offset of the first used byte of the nameval region 81 * of an attr leaf block. The region starts at the tail of the block and expands 82 * backwards towards the middle. As such, firstused is initialized to the block 83 * size for an empty leaf block and is reduced from there. 84 * 85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 89 * the attr block size. The following helpers manage the conversion between the 90 * in-core and on-disk formats. 91 */ 92 93 static void 94 xfs_attr3_leaf_firstused_from_disk( 95 struct xfs_da_geometry *geo, 96 struct xfs_attr3_icleaf_hdr *to, 97 struct xfs_attr_leafblock *from) 98 { 99 struct xfs_attr3_leaf_hdr *hdr3; 100 101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 102 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 103 to->firstused = be16_to_cpu(hdr3->firstused); 104 } else { 105 to->firstused = be16_to_cpu(from->hdr.firstused); 106 } 107 108 /* 109 * Convert from the magic fsb size value to actual blocksize. This 110 * should only occur for empty blocks when the block size overflows 111 * 16-bits. 112 */ 113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 114 ASSERT(!to->count && !to->usedbytes); 115 ASSERT(geo->blksize > USHRT_MAX); 116 to->firstused = geo->blksize; 117 } 118 } 119 120 static void 121 xfs_attr3_leaf_firstused_to_disk( 122 struct xfs_da_geometry *geo, 123 struct xfs_attr_leafblock *to, 124 struct xfs_attr3_icleaf_hdr *from) 125 { 126 struct xfs_attr3_leaf_hdr *hdr3; 127 uint32_t firstused; 128 129 /* magic value should only be seen on disk */ 130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 131 132 /* 133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 134 * value. This only overflows at the max supported value of 64k. Use the 135 * magic on-disk value to represent block size in this case. 136 */ 137 firstused = from->firstused; 138 if (firstused > USHRT_MAX) { 139 ASSERT(from->firstused == geo->blksize); 140 firstused = XFS_ATTR3_LEAF_NULLOFF; 141 } 142 143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 144 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 145 hdr3->firstused = cpu_to_be16(firstused); 146 } else { 147 to->hdr.firstused = cpu_to_be16(firstused); 148 } 149 } 150 151 void 152 xfs_attr3_leaf_hdr_from_disk( 153 struct xfs_da_geometry *geo, 154 struct xfs_attr3_icleaf_hdr *to, 155 struct xfs_attr_leafblock *from) 156 { 157 int i; 158 159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 161 162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 164 165 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 166 to->back = be32_to_cpu(hdr3->info.hdr.back); 167 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 168 to->count = be16_to_cpu(hdr3->count); 169 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 170 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 171 to->holes = hdr3->holes; 172 173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 176 } 177 return; 178 } 179 to->forw = be32_to_cpu(from->hdr.info.forw); 180 to->back = be32_to_cpu(from->hdr.info.back); 181 to->magic = be16_to_cpu(from->hdr.info.magic); 182 to->count = be16_to_cpu(from->hdr.count); 183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 184 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 185 to->holes = from->hdr.holes; 186 187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 190 } 191 } 192 193 void 194 xfs_attr3_leaf_hdr_to_disk( 195 struct xfs_da_geometry *geo, 196 struct xfs_attr_leafblock *to, 197 struct xfs_attr3_icleaf_hdr *from) 198 { 199 int i; 200 201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 202 from->magic == XFS_ATTR3_LEAF_MAGIC); 203 204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 206 207 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 208 hdr3->info.hdr.back = cpu_to_be32(from->back); 209 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 210 hdr3->count = cpu_to_be16(from->count); 211 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 212 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 213 hdr3->holes = from->holes; 214 hdr3->pad1 = 0; 215 216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 219 } 220 return; 221 } 222 to->hdr.info.forw = cpu_to_be32(from->forw); 223 to->hdr.info.back = cpu_to_be32(from->back); 224 to->hdr.info.magic = cpu_to_be16(from->magic); 225 to->hdr.count = cpu_to_be16(from->count); 226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 227 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 228 to->hdr.holes = from->holes; 229 to->hdr.pad1 = 0; 230 231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 234 } 235 } 236 237 static xfs_failaddr_t 238 xfs_attr3_leaf_verify_entry( 239 struct xfs_mount *mp, 240 char *buf_end, 241 struct xfs_attr_leafblock *leaf, 242 struct xfs_attr3_icleaf_hdr *leafhdr, 243 struct xfs_attr_leaf_entry *ent, 244 int idx, 245 __u32 *last_hashval) 246 { 247 struct xfs_attr_leaf_name_local *lentry; 248 struct xfs_attr_leaf_name_remote *rentry; 249 char *name_end; 250 unsigned int nameidx; 251 unsigned int namesize; 252 __u32 hashval; 253 254 /* hash order check */ 255 hashval = be32_to_cpu(ent->hashval); 256 if (hashval < *last_hashval) 257 return __this_address; 258 *last_hashval = hashval; 259 260 nameidx = be16_to_cpu(ent->nameidx); 261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 262 return __this_address; 263 264 /* 265 * Check the name information. The namelen fields are u8 so we can't 266 * possibly exceed the maximum name length of 255 bytes. 267 */ 268 if (ent->flags & XFS_ATTR_LOCAL) { 269 lentry = xfs_attr3_leaf_name_local(leaf, idx); 270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 271 be16_to_cpu(lentry->valuelen)); 272 name_end = (char *)lentry + namesize; 273 if (lentry->namelen == 0) 274 return __this_address; 275 } else { 276 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 278 name_end = (char *)rentry + namesize; 279 if (rentry->namelen == 0) 280 return __this_address; 281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 282 rentry->valueblk == 0) 283 return __this_address; 284 } 285 286 if (name_end > buf_end) 287 return __this_address; 288 289 return NULL; 290 } 291 292 /* 293 * Validate an attribute leaf block. 294 * 295 * Empty leaf blocks can occur under the following circumstances: 296 * 297 * 1. setxattr adds a new extended attribute to a file; 298 * 2. The file has zero existing attributes; 299 * 3. The attribute is too large to fit in the attribute fork; 300 * 4. The attribute is small enough to fit in a leaf block; 301 * 5. A log flush occurs after committing the transaction that creates 302 * the (empty) leaf block; and 303 * 6. The filesystem goes down after the log flush but before the new 304 * attribute can be committed to the leaf block. 305 * 306 * Hence we need to ensure that we don't fail the validation purely 307 * because the leaf is empty. 308 */ 309 static xfs_failaddr_t 310 xfs_attr3_leaf_verify( 311 struct xfs_buf *bp) 312 { 313 struct xfs_attr3_icleaf_hdr ichdr; 314 struct xfs_mount *mp = bp->b_mount; 315 struct xfs_attr_leafblock *leaf = bp->b_addr; 316 struct xfs_attr_leaf_entry *entries; 317 struct xfs_attr_leaf_entry *ent; 318 char *buf_end; 319 uint32_t end; /* must be 32bit - see below */ 320 __u32 last_hashval = 0; 321 int i; 322 xfs_failaddr_t fa; 323 324 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 325 326 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 327 if (fa) 328 return fa; 329 330 /* 331 * firstused is the block offset of the first name info structure. 332 * Make sure it doesn't go off the block or crash into the header. 333 */ 334 if (ichdr.firstused > mp->m_attr_geo->blksize) 335 return __this_address; 336 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 337 return __this_address; 338 339 /* Make sure the entries array doesn't crash into the name info. */ 340 entries = xfs_attr3_leaf_entryp(bp->b_addr); 341 if ((char *)&entries[ichdr.count] > 342 (char *)bp->b_addr + ichdr.firstused) 343 return __this_address; 344 345 /* 346 * NOTE: This verifier historically failed empty leaf buffers because 347 * we expect the fork to be in another format. Empty attr fork format 348 * conversions are possible during xattr set, however, and format 349 * conversion is not atomic with the xattr set that triggers it. We 350 * cannot assume leaf blocks are non-empty until that is addressed. 351 */ 352 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 353 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 354 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 355 ent, i, &last_hashval); 356 if (fa) 357 return fa; 358 } 359 360 /* 361 * Quickly check the freemap information. Attribute data has to be 362 * aligned to 4-byte boundaries, and likewise for the free space. 363 * 364 * Note that for 64k block size filesystems, the freemap entries cannot 365 * overflow as they are only be16 fields. However, when checking end 366 * pointer of the freemap, we have to be careful to detect overflows and 367 * so use uint32_t for those checks. 368 */ 369 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 370 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 371 return __this_address; 372 if (ichdr.freemap[i].base & 0x3) 373 return __this_address; 374 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 375 return __this_address; 376 if (ichdr.freemap[i].size & 0x3) 377 return __this_address; 378 379 /* be care of 16 bit overflows here */ 380 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 381 if (end < ichdr.freemap[i].base) 382 return __this_address; 383 if (end > mp->m_attr_geo->blksize) 384 return __this_address; 385 } 386 387 return NULL; 388 } 389 390 static void 391 xfs_attr3_leaf_write_verify( 392 struct xfs_buf *bp) 393 { 394 struct xfs_mount *mp = bp->b_mount; 395 struct xfs_buf_log_item *bip = bp->b_log_item; 396 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 397 xfs_failaddr_t fa; 398 399 fa = xfs_attr3_leaf_verify(bp); 400 if (fa) { 401 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 402 return; 403 } 404 405 if (!xfs_has_crc(mp)) 406 return; 407 408 if (bip) 409 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 410 411 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 412 } 413 414 /* 415 * leaf/node format detection on trees is sketchy, so a node read can be done on 416 * leaf level blocks when detection identifies the tree as a node format tree 417 * incorrectly. In this case, we need to swap the verifier to match the correct 418 * format of the block being read. 419 */ 420 static void 421 xfs_attr3_leaf_read_verify( 422 struct xfs_buf *bp) 423 { 424 struct xfs_mount *mp = bp->b_mount; 425 xfs_failaddr_t fa; 426 427 if (xfs_has_crc(mp) && 428 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 429 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 430 else { 431 fa = xfs_attr3_leaf_verify(bp); 432 if (fa) 433 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 434 } 435 } 436 437 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 438 .name = "xfs_attr3_leaf", 439 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 440 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 441 .verify_read = xfs_attr3_leaf_read_verify, 442 .verify_write = xfs_attr3_leaf_write_verify, 443 .verify_struct = xfs_attr3_leaf_verify, 444 }; 445 446 int 447 xfs_attr3_leaf_read( 448 struct xfs_trans *tp, 449 struct xfs_inode *dp, 450 xfs_dablk_t bno, 451 struct xfs_buf **bpp) 452 { 453 int err; 454 455 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 456 &xfs_attr3_leaf_buf_ops); 457 if (!err && tp && *bpp) 458 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 459 return err; 460 } 461 462 /*======================================================================== 463 * Namespace helper routines 464 *========================================================================*/ 465 466 /* 467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 468 * flag on disk - if there's an incomplete attr then recovery needs to tear it 469 * down. If there's no incomplete attr, then recovery needs to tear that attr 470 * down to replace it with the attr that has been logged. In this case, the 471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 472 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 473 */ 474 static bool 475 xfs_attr_match( 476 struct xfs_da_args *args, 477 uint8_t namelen, 478 unsigned char *name, 479 int flags) 480 { 481 482 if (args->namelen != namelen) 483 return false; 484 if (memcmp(args->name, name, namelen) != 0) 485 return false; 486 487 /* Recovery ignores the INCOMPLETE flag. */ 488 if ((args->op_flags & XFS_DA_OP_RECOVERY) && 489 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK)) 490 return true; 491 492 /* All remaining matches need to be filtered by INCOMPLETE state. */ 493 if (args->attr_filter != 494 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 495 return false; 496 return true; 497 } 498 499 static int 500 xfs_attr_copy_value( 501 struct xfs_da_args *args, 502 unsigned char *value, 503 int valuelen) 504 { 505 /* 506 * No copy if all we have to do is get the length 507 */ 508 if (!args->valuelen) { 509 args->valuelen = valuelen; 510 return 0; 511 } 512 513 /* 514 * No copy if the length of the existing buffer is too small 515 */ 516 if (args->valuelen < valuelen) { 517 args->valuelen = valuelen; 518 return -ERANGE; 519 } 520 521 if (!args->value) { 522 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 523 if (!args->value) 524 return -ENOMEM; 525 } 526 args->valuelen = valuelen; 527 528 /* remote block xattr requires IO for copy-in */ 529 if (args->rmtblkno) 530 return xfs_attr_rmtval_get(args); 531 532 /* 533 * This is to prevent a GCC warning because the remote xattr case 534 * doesn't have a value to pass in. In that case, we never reach here, 535 * but GCC can't work that out and so throws a "passing NULL to 536 * memcpy" warning. 537 */ 538 if (!value) 539 return -EINVAL; 540 memcpy(args->value, value, valuelen); 541 return 0; 542 } 543 544 /*======================================================================== 545 * External routines when attribute fork size < XFS_LITINO(mp). 546 *========================================================================*/ 547 548 /* 549 * Query whether the total requested number of attr fork bytes of extended 550 * attribute space will be able to fit inline. 551 * 552 * Returns zero if not, else the i_forkoff fork offset to be used in the 553 * literal area for attribute data once the new bytes have been added. 554 * 555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 556 * special case for dev/uuid inodes, they have fixed size data forks. 557 */ 558 int 559 xfs_attr_shortform_bytesfit( 560 struct xfs_inode *dp, 561 int bytes) 562 { 563 struct xfs_mount *mp = dp->i_mount; 564 int64_t dsize; 565 int minforkoff; 566 int maxforkoff; 567 int offset; 568 569 /* 570 * Check if the new size could fit at all first: 571 */ 572 if (bytes > XFS_LITINO(mp)) 573 return 0; 574 575 /* rounded down */ 576 offset = (XFS_LITINO(mp) - bytes) >> 3; 577 578 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 579 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 580 return (offset >= minforkoff) ? minforkoff : 0; 581 } 582 583 /* 584 * If the requested numbers of bytes is smaller or equal to the 585 * current attribute fork size we can always proceed. 586 * 587 * Note that if_bytes in the data fork might actually be larger than 588 * the current data fork size is due to delalloc extents. In that 589 * case either the extent count will go down when they are converted 590 * to real extents, or the delalloc conversion will take care of the 591 * literal area rebalancing. 592 */ 593 if (bytes <= xfs_inode_attr_fork_size(dp)) 594 return dp->i_forkoff; 595 596 /* 597 * For attr2 we can try to move the forkoff if there is space in the 598 * literal area, but for the old format we are done if there is no 599 * space in the fixed attribute fork. 600 */ 601 if (!xfs_has_attr2(mp)) 602 return 0; 603 604 dsize = dp->i_df.if_bytes; 605 606 switch (dp->i_df.if_format) { 607 case XFS_DINODE_FMT_EXTENTS: 608 /* 609 * If there is no attr fork and the data fork is extents, 610 * determine if creating the default attr fork will result 611 * in the extents form migrating to btree. If so, the 612 * minimum offset only needs to be the space required for 613 * the btree root. 614 */ 615 if (!dp->i_forkoff && dp->i_df.if_bytes > 616 xfs_default_attroffset(dp)) 617 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 618 break; 619 case XFS_DINODE_FMT_BTREE: 620 /* 621 * If we have a data btree then keep forkoff if we have one, 622 * otherwise we are adding a new attr, so then we set 623 * minforkoff to where the btree root can finish so we have 624 * plenty of room for attrs 625 */ 626 if (dp->i_forkoff) { 627 if (offset < dp->i_forkoff) 628 return 0; 629 return dp->i_forkoff; 630 } 631 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 632 break; 633 } 634 635 /* 636 * A data fork btree root must have space for at least 637 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 638 */ 639 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 640 minforkoff = roundup(minforkoff, 8) >> 3; 641 642 /* attr fork btree root can have at least this many key/ptr pairs */ 643 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 644 maxforkoff = maxforkoff >> 3; /* rounded down */ 645 646 if (offset >= maxforkoff) 647 return maxforkoff; 648 if (offset >= minforkoff) 649 return offset; 650 return 0; 651 } 652 653 /* 654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 655 * - noattr2 mount option is set, 656 * - on-disk version bit says it is already set, or 657 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 658 */ 659 STATIC void 660 xfs_sbversion_add_attr2( 661 struct xfs_mount *mp, 662 struct xfs_trans *tp) 663 { 664 if (xfs_has_noattr2(mp)) 665 return; 666 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 667 return; 668 if (!xfs_has_attr2(mp)) 669 return; 670 671 spin_lock(&mp->m_sb_lock); 672 xfs_add_attr2(mp); 673 spin_unlock(&mp->m_sb_lock); 674 xfs_log_sb(tp); 675 } 676 677 /* 678 * Create the initial contents of a shortform attribute list. 679 */ 680 void 681 xfs_attr_shortform_create( 682 struct xfs_da_args *args) 683 { 684 struct xfs_inode *dp = args->dp; 685 struct xfs_ifork *ifp = &dp->i_af; 686 struct xfs_attr_sf_hdr *hdr; 687 688 trace_xfs_attr_sf_create(args); 689 690 ASSERT(ifp->if_bytes == 0); 691 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 692 ifp->if_format = XFS_DINODE_FMT_LOCAL; 693 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 694 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data; 695 memset(hdr, 0, sizeof(*hdr)); 696 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 697 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 698 } 699 700 /* 701 * Return -EEXIST if attr is found, or -ENOATTR if not 702 * args: args containing attribute name and namelen 703 * sfep: If not null, pointer will be set to the last attr entry found on 704 -EEXIST. On -ENOATTR pointer is left at the last entry in the list 705 * basep: If not null, pointer is set to the byte offset of the entry in the 706 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of 707 * the last entry in the list 708 */ 709 int 710 xfs_attr_sf_findname( 711 struct xfs_da_args *args, 712 struct xfs_attr_sf_entry **sfep, 713 unsigned int *basep) 714 { 715 struct xfs_attr_shortform *sf; 716 struct xfs_attr_sf_entry *sfe; 717 unsigned int base = sizeof(struct xfs_attr_sf_hdr); 718 int size = 0; 719 int end; 720 int i; 721 722 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data; 723 sfe = &sf->list[0]; 724 end = sf->hdr.count; 725 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe), 726 base += size, i++) { 727 size = xfs_attr_sf_entsize(sfe); 728 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval, 729 sfe->flags)) 730 continue; 731 break; 732 } 733 734 if (sfep != NULL) 735 *sfep = sfe; 736 737 if (basep != NULL) 738 *basep = base; 739 740 if (i == end) 741 return -ENOATTR; 742 return -EEXIST; 743 } 744 745 /* 746 * Add a name/value pair to the shortform attribute list. 747 * Overflow from the inode has already been checked for. 748 */ 749 void 750 xfs_attr_shortform_add( 751 struct xfs_da_args *args, 752 int forkoff) 753 { 754 struct xfs_attr_shortform *sf; 755 struct xfs_attr_sf_entry *sfe; 756 int offset, size; 757 struct xfs_mount *mp; 758 struct xfs_inode *dp; 759 struct xfs_ifork *ifp; 760 761 trace_xfs_attr_sf_add(args); 762 763 dp = args->dp; 764 mp = dp->i_mount; 765 dp->i_forkoff = forkoff; 766 767 ifp = &dp->i_af; 768 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 769 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 770 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST) 771 ASSERT(0); 772 773 offset = (char *)sfe - (char *)sf; 774 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 775 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 776 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 777 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset); 778 779 sfe->namelen = args->namelen; 780 sfe->valuelen = args->valuelen; 781 sfe->flags = args->attr_filter; 782 memcpy(sfe->nameval, args->name, args->namelen); 783 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 784 sf->hdr.count++; 785 be16_add_cpu(&sf->hdr.totsize, size); 786 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 787 788 xfs_sbversion_add_attr2(mp, args->trans); 789 } 790 791 /* 792 * After the last attribute is removed revert to original inode format, 793 * making all literal area available to the data fork once more. 794 */ 795 void 796 xfs_attr_fork_remove( 797 struct xfs_inode *ip, 798 struct xfs_trans *tp) 799 { 800 ASSERT(ip->i_af.if_nextents == 0); 801 802 xfs_ifork_zap_attr(ip); 803 ip->i_forkoff = 0; 804 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 805 } 806 807 /* 808 * Remove an attribute from the shortform attribute list structure. 809 */ 810 int 811 xfs_attr_sf_removename( 812 struct xfs_da_args *args) 813 { 814 struct xfs_attr_shortform *sf; 815 struct xfs_attr_sf_entry *sfe; 816 int size = 0, end, totsize; 817 unsigned int base; 818 struct xfs_mount *mp; 819 struct xfs_inode *dp; 820 int error; 821 822 trace_xfs_attr_sf_remove(args); 823 824 dp = args->dp; 825 mp = dp->i_mount; 826 sf = (struct xfs_attr_shortform *)dp->i_af.if_u1.if_data; 827 828 error = xfs_attr_sf_findname(args, &sfe, &base); 829 830 /* 831 * If we are recovering an operation, finding nothing to 832 * remove is not an error - it just means there was nothing 833 * to clean up. 834 */ 835 if (error == -ENOATTR && (args->op_flags & XFS_DA_OP_RECOVERY)) 836 return 0; 837 if (error != -EEXIST) 838 return error; 839 size = xfs_attr_sf_entsize(sfe); 840 841 /* 842 * Fix up the attribute fork data, covering the hole 843 */ 844 end = base + size; 845 totsize = be16_to_cpu(sf->hdr.totsize); 846 if (end != totsize) 847 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); 848 sf->hdr.count--; 849 be16_add_cpu(&sf->hdr.totsize, -size); 850 851 /* 852 * Fix up the start offset of the attribute fork 853 */ 854 totsize -= size; 855 if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) && 856 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 857 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) { 858 xfs_attr_fork_remove(dp, args->trans); 859 } else { 860 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 861 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 862 ASSERT(dp->i_forkoff); 863 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || 864 (args->op_flags & XFS_DA_OP_ADDNAME) || 865 !xfs_has_attr2(mp) || 866 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 867 xfs_trans_log_inode(args->trans, dp, 868 XFS_ILOG_CORE | XFS_ILOG_ADATA); 869 } 870 871 xfs_sbversion_add_attr2(mp, args->trans); 872 873 return 0; 874 } 875 876 /* 877 * Look up a name in a shortform attribute list structure. 878 */ 879 /*ARGSUSED*/ 880 int 881 xfs_attr_shortform_lookup(xfs_da_args_t *args) 882 { 883 struct xfs_attr_shortform *sf; 884 struct xfs_attr_sf_entry *sfe; 885 int i; 886 struct xfs_ifork *ifp; 887 888 trace_xfs_attr_sf_lookup(args); 889 890 ifp = &args->dp->i_af; 891 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 892 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 893 sfe = &sf->list[0]; 894 for (i = 0; i < sf->hdr.count; 895 sfe = xfs_attr_sf_nextentry(sfe), i++) { 896 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 897 sfe->flags)) 898 return -EEXIST; 899 } 900 return -ENOATTR; 901 } 902 903 /* 904 * Retrieve the attribute value and length. 905 * 906 * If args->valuelen is zero, only the length needs to be returned. Unlike a 907 * lookup, we only return an error if the attribute does not exist or we can't 908 * retrieve the value. 909 */ 910 int 911 xfs_attr_shortform_getvalue( 912 struct xfs_da_args *args) 913 { 914 struct xfs_attr_shortform *sf; 915 struct xfs_attr_sf_entry *sfe; 916 int i; 917 918 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL); 919 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data; 920 sfe = &sf->list[0]; 921 for (i = 0; i < sf->hdr.count; 922 sfe = xfs_attr_sf_nextentry(sfe), i++) { 923 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 924 sfe->flags)) 925 return xfs_attr_copy_value(args, 926 &sfe->nameval[args->namelen], sfe->valuelen); 927 } 928 return -ENOATTR; 929 } 930 931 /* Convert from using the shortform to the leaf format. */ 932 int 933 xfs_attr_shortform_to_leaf( 934 struct xfs_da_args *args) 935 { 936 struct xfs_inode *dp; 937 struct xfs_attr_shortform *sf; 938 struct xfs_attr_sf_entry *sfe; 939 struct xfs_da_args nargs; 940 char *tmpbuffer; 941 int error, i, size; 942 xfs_dablk_t blkno; 943 struct xfs_buf *bp; 944 struct xfs_ifork *ifp; 945 946 trace_xfs_attr_sf_to_leaf(args); 947 948 dp = args->dp; 949 ifp = &dp->i_af; 950 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 951 size = be16_to_cpu(sf->hdr.totsize); 952 tmpbuffer = kmem_alloc(size, 0); 953 ASSERT(tmpbuffer != NULL); 954 memcpy(tmpbuffer, ifp->if_u1.if_data, size); 955 sf = (struct xfs_attr_shortform *)tmpbuffer; 956 957 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 958 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 959 960 bp = NULL; 961 error = xfs_da_grow_inode(args, &blkno); 962 if (error) 963 goto out; 964 965 ASSERT(blkno == 0); 966 error = xfs_attr3_leaf_create(args, blkno, &bp); 967 if (error) 968 goto out; 969 970 memset((char *)&nargs, 0, sizeof(nargs)); 971 nargs.dp = dp; 972 nargs.geo = args->geo; 973 nargs.total = args->total; 974 nargs.whichfork = XFS_ATTR_FORK; 975 nargs.trans = args->trans; 976 nargs.op_flags = XFS_DA_OP_OKNOENT; 977 978 sfe = &sf->list[0]; 979 for (i = 0; i < sf->hdr.count; i++) { 980 nargs.name = sfe->nameval; 981 nargs.namelen = sfe->namelen; 982 nargs.value = &sfe->nameval[nargs.namelen]; 983 nargs.valuelen = sfe->valuelen; 984 nargs.hashval = xfs_da_hashname(sfe->nameval, 985 sfe->namelen); 986 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 987 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 988 ASSERT(error == -ENOATTR); 989 error = xfs_attr3_leaf_add(bp, &nargs); 990 ASSERT(error != -ENOSPC); 991 if (error) 992 goto out; 993 sfe = xfs_attr_sf_nextentry(sfe); 994 } 995 error = 0; 996 out: 997 kmem_free(tmpbuffer); 998 return error; 999 } 1000 1001 /* 1002 * Check a leaf attribute block to see if all the entries would fit into 1003 * a shortform attribute list. 1004 */ 1005 int 1006 xfs_attr_shortform_allfit( 1007 struct xfs_buf *bp, 1008 struct xfs_inode *dp) 1009 { 1010 struct xfs_attr_leafblock *leaf; 1011 struct xfs_attr_leaf_entry *entry; 1012 xfs_attr_leaf_name_local_t *name_loc; 1013 struct xfs_attr3_icleaf_hdr leafhdr; 1014 int bytes; 1015 int i; 1016 struct xfs_mount *mp = bp->b_mount; 1017 1018 leaf = bp->b_addr; 1019 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 1020 entry = xfs_attr3_leaf_entryp(leaf); 1021 1022 bytes = sizeof(struct xfs_attr_sf_hdr); 1023 for (i = 0; i < leafhdr.count; entry++, i++) { 1024 if (entry->flags & XFS_ATTR_INCOMPLETE) 1025 continue; /* don't copy partial entries */ 1026 if (!(entry->flags & XFS_ATTR_LOCAL)) 1027 return 0; 1028 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1029 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 1030 return 0; 1031 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 1032 return 0; 1033 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 1034 be16_to_cpu(name_loc->valuelen)); 1035 } 1036 if (xfs_has_attr2(dp->i_mount) && 1037 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1038 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1039 return -1; 1040 return xfs_attr_shortform_bytesfit(dp, bytes); 1041 } 1042 1043 /* Verify the consistency of an inline attribute fork. */ 1044 xfs_failaddr_t 1045 xfs_attr_shortform_verify( 1046 struct xfs_inode *ip) 1047 { 1048 struct xfs_attr_shortform *sfp; 1049 struct xfs_attr_sf_entry *sfep; 1050 struct xfs_attr_sf_entry *next_sfep; 1051 char *endp; 1052 struct xfs_ifork *ifp; 1053 int i; 1054 int64_t size; 1055 1056 ASSERT(ip->i_af.if_format == XFS_DINODE_FMT_LOCAL); 1057 ifp = xfs_ifork_ptr(ip, XFS_ATTR_FORK); 1058 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; 1059 size = ifp->if_bytes; 1060 1061 /* 1062 * Give up if the attribute is way too short. 1063 */ 1064 if (size < sizeof(struct xfs_attr_sf_hdr)) 1065 return __this_address; 1066 1067 endp = (char *)sfp + size; 1068 1069 /* Check all reported entries */ 1070 sfep = &sfp->list[0]; 1071 for (i = 0; i < sfp->hdr.count; i++) { 1072 /* 1073 * struct xfs_attr_sf_entry has a variable length. 1074 * Check the fixed-offset parts of the structure are 1075 * within the data buffer. 1076 * xfs_attr_sf_entry is defined with a 1-byte variable 1077 * array at the end, so we must subtract that off. 1078 */ 1079 if (((char *)sfep + sizeof(*sfep)) >= endp) 1080 return __this_address; 1081 1082 /* Don't allow names with known bad length. */ 1083 if (sfep->namelen == 0) 1084 return __this_address; 1085 1086 /* 1087 * Check that the variable-length part of the structure is 1088 * within the data buffer. The next entry starts after the 1089 * name component, so nextentry is an acceptable test. 1090 */ 1091 next_sfep = xfs_attr_sf_nextentry(sfep); 1092 if ((char *)next_sfep > endp) 1093 return __this_address; 1094 1095 /* 1096 * Check for unknown flags. Short form doesn't support 1097 * the incomplete or local bits, so we can use the namespace 1098 * mask here. 1099 */ 1100 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1101 return __this_address; 1102 1103 /* 1104 * Check for invalid namespace combinations. We only allow 1105 * one namespace flag per xattr, so we can just count the 1106 * bits (i.e. hweight) here. 1107 */ 1108 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1109 return __this_address; 1110 1111 sfep = next_sfep; 1112 } 1113 if ((void *)sfep != (void *)endp) 1114 return __this_address; 1115 1116 return NULL; 1117 } 1118 1119 /* 1120 * Convert a leaf attribute list to shortform attribute list 1121 */ 1122 int 1123 xfs_attr3_leaf_to_shortform( 1124 struct xfs_buf *bp, 1125 struct xfs_da_args *args, 1126 int forkoff) 1127 { 1128 struct xfs_attr_leafblock *leaf; 1129 struct xfs_attr3_icleaf_hdr ichdr; 1130 struct xfs_attr_leaf_entry *entry; 1131 struct xfs_attr_leaf_name_local *name_loc; 1132 struct xfs_da_args nargs; 1133 struct xfs_inode *dp = args->dp; 1134 char *tmpbuffer; 1135 int error; 1136 int i; 1137 1138 trace_xfs_attr_leaf_to_sf(args); 1139 1140 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1141 if (!tmpbuffer) 1142 return -ENOMEM; 1143 1144 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1145 1146 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1147 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1148 entry = xfs_attr3_leaf_entryp(leaf); 1149 1150 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1151 memset(bp->b_addr, 0, args->geo->blksize); 1152 1153 /* 1154 * Clean out the prior contents of the attribute list. 1155 */ 1156 error = xfs_da_shrink_inode(args, 0, bp); 1157 if (error) 1158 goto out; 1159 1160 if (forkoff == -1) { 1161 /* 1162 * Don't remove the attr fork if this operation is the first 1163 * part of a attr replace operations. We're going to add a new 1164 * attr immediately, so we need to keep the attr fork around in 1165 * this case. 1166 */ 1167 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1168 ASSERT(xfs_has_attr2(dp->i_mount)); 1169 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1170 xfs_attr_fork_remove(dp, args->trans); 1171 } 1172 goto out; 1173 } 1174 1175 xfs_attr_shortform_create(args); 1176 1177 /* 1178 * Copy the attributes 1179 */ 1180 memset((char *)&nargs, 0, sizeof(nargs)); 1181 nargs.geo = args->geo; 1182 nargs.dp = dp; 1183 nargs.total = args->total; 1184 nargs.whichfork = XFS_ATTR_FORK; 1185 nargs.trans = args->trans; 1186 nargs.op_flags = XFS_DA_OP_OKNOENT; 1187 1188 for (i = 0; i < ichdr.count; entry++, i++) { 1189 if (entry->flags & XFS_ATTR_INCOMPLETE) 1190 continue; /* don't copy partial entries */ 1191 if (!entry->nameidx) 1192 continue; 1193 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1194 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1195 nargs.name = name_loc->nameval; 1196 nargs.namelen = name_loc->namelen; 1197 nargs.value = &name_loc->nameval[nargs.namelen]; 1198 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1199 nargs.hashval = be32_to_cpu(entry->hashval); 1200 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1201 xfs_attr_shortform_add(&nargs, forkoff); 1202 } 1203 error = 0; 1204 1205 out: 1206 kmem_free(tmpbuffer); 1207 return error; 1208 } 1209 1210 /* 1211 * Convert from using a single leaf to a root node and a leaf. 1212 */ 1213 int 1214 xfs_attr3_leaf_to_node( 1215 struct xfs_da_args *args) 1216 { 1217 struct xfs_attr_leafblock *leaf; 1218 struct xfs_attr3_icleaf_hdr icleafhdr; 1219 struct xfs_attr_leaf_entry *entries; 1220 struct xfs_da3_icnode_hdr icnodehdr; 1221 struct xfs_da_intnode *node; 1222 struct xfs_inode *dp = args->dp; 1223 struct xfs_mount *mp = dp->i_mount; 1224 struct xfs_buf *bp1 = NULL; 1225 struct xfs_buf *bp2 = NULL; 1226 xfs_dablk_t blkno; 1227 int error; 1228 1229 trace_xfs_attr_leaf_to_node(args); 1230 1231 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1232 error = -EIO; 1233 goto out; 1234 } 1235 1236 error = xfs_da_grow_inode(args, &blkno); 1237 if (error) 1238 goto out; 1239 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1240 if (error) 1241 goto out; 1242 1243 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1244 if (error) 1245 goto out; 1246 1247 /* copy leaf to new buffer, update identifiers */ 1248 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); 1249 bp2->b_ops = bp1->b_ops; 1250 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); 1251 if (xfs_has_crc(mp)) { 1252 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; 1253 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2)); 1254 } 1255 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1256 1257 /* 1258 * Set up the new root node. 1259 */ 1260 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1261 if (error) 1262 goto out; 1263 node = bp1->b_addr; 1264 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1265 1266 leaf = bp2->b_addr; 1267 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1268 entries = xfs_attr3_leaf_entryp(leaf); 1269 1270 /* both on-disk, don't endian-flip twice */ 1271 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1272 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1273 icnodehdr.count = 1; 1274 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1275 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1276 error = 0; 1277 out: 1278 return error; 1279 } 1280 1281 /*======================================================================== 1282 * Routines used for growing the Btree. 1283 *========================================================================*/ 1284 1285 /* 1286 * Create the initial contents of a leaf attribute list 1287 * or a leaf in a node attribute list. 1288 */ 1289 STATIC int 1290 xfs_attr3_leaf_create( 1291 struct xfs_da_args *args, 1292 xfs_dablk_t blkno, 1293 struct xfs_buf **bpp) 1294 { 1295 struct xfs_attr_leafblock *leaf; 1296 struct xfs_attr3_icleaf_hdr ichdr; 1297 struct xfs_inode *dp = args->dp; 1298 struct xfs_mount *mp = dp->i_mount; 1299 struct xfs_buf *bp; 1300 int error; 1301 1302 trace_xfs_attr_leaf_create(args); 1303 1304 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1305 XFS_ATTR_FORK); 1306 if (error) 1307 return error; 1308 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1309 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1310 leaf = bp->b_addr; 1311 memset(leaf, 0, args->geo->blksize); 1312 1313 memset(&ichdr, 0, sizeof(ichdr)); 1314 ichdr.firstused = args->geo->blksize; 1315 1316 if (xfs_has_crc(mp)) { 1317 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1318 1319 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1320 1321 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1322 hdr3->owner = cpu_to_be64(dp->i_ino); 1323 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1324 1325 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1326 } else { 1327 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1328 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1329 } 1330 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1331 1332 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1333 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1334 1335 *bpp = bp; 1336 return 0; 1337 } 1338 1339 /* 1340 * Split the leaf node, rebalance, then add the new entry. 1341 */ 1342 int 1343 xfs_attr3_leaf_split( 1344 struct xfs_da_state *state, 1345 struct xfs_da_state_blk *oldblk, 1346 struct xfs_da_state_blk *newblk) 1347 { 1348 xfs_dablk_t blkno; 1349 int error; 1350 1351 trace_xfs_attr_leaf_split(state->args); 1352 1353 /* 1354 * Allocate space for a new leaf node. 1355 */ 1356 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1357 error = xfs_da_grow_inode(state->args, &blkno); 1358 if (error) 1359 return error; 1360 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1361 if (error) 1362 return error; 1363 newblk->blkno = blkno; 1364 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1365 1366 /* 1367 * Rebalance the entries across the two leaves. 1368 * NOTE: rebalance() currently depends on the 2nd block being empty. 1369 */ 1370 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1371 error = xfs_da3_blk_link(state, oldblk, newblk); 1372 if (error) 1373 return error; 1374 1375 /* 1376 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1377 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1378 * "new" attrs info. Will need the "old" info to remove it later. 1379 * 1380 * Insert the "new" entry in the correct block. 1381 */ 1382 if (state->inleaf) { 1383 trace_xfs_attr_leaf_add_old(state->args); 1384 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1385 } else { 1386 trace_xfs_attr_leaf_add_new(state->args); 1387 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1388 } 1389 1390 /* 1391 * Update last hashval in each block since we added the name. 1392 */ 1393 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1394 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1395 return error; 1396 } 1397 1398 /* 1399 * Add a name to the leaf attribute list structure. 1400 */ 1401 int 1402 xfs_attr3_leaf_add( 1403 struct xfs_buf *bp, 1404 struct xfs_da_args *args) 1405 { 1406 struct xfs_attr_leafblock *leaf; 1407 struct xfs_attr3_icleaf_hdr ichdr; 1408 int tablesize; 1409 int entsize; 1410 int sum; 1411 int tmp; 1412 int i; 1413 1414 trace_xfs_attr_leaf_add(args); 1415 1416 leaf = bp->b_addr; 1417 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1418 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1419 entsize = xfs_attr_leaf_newentsize(args, NULL); 1420 1421 /* 1422 * Search through freemap for first-fit on new name length. 1423 * (may need to figure in size of entry struct too) 1424 */ 1425 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1426 + xfs_attr3_leaf_hdr_size(leaf); 1427 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1428 if (tablesize > ichdr.firstused) { 1429 sum += ichdr.freemap[i].size; 1430 continue; 1431 } 1432 if (!ichdr.freemap[i].size) 1433 continue; /* no space in this map */ 1434 tmp = entsize; 1435 if (ichdr.freemap[i].base < ichdr.firstused) 1436 tmp += sizeof(xfs_attr_leaf_entry_t); 1437 if (ichdr.freemap[i].size >= tmp) { 1438 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1439 goto out_log_hdr; 1440 } 1441 sum += ichdr.freemap[i].size; 1442 } 1443 1444 /* 1445 * If there are no holes in the address space of the block, 1446 * and we don't have enough freespace, then compaction will do us 1447 * no good and we should just give up. 1448 */ 1449 if (!ichdr.holes && sum < entsize) 1450 return -ENOSPC; 1451 1452 /* 1453 * Compact the entries to coalesce free space. 1454 * This may change the hdr->count via dropping INCOMPLETE entries. 1455 */ 1456 xfs_attr3_leaf_compact(args, &ichdr, bp); 1457 1458 /* 1459 * After compaction, the block is guaranteed to have only one 1460 * free region, in freemap[0]. If it is not big enough, give up. 1461 */ 1462 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1463 tmp = -ENOSPC; 1464 goto out_log_hdr; 1465 } 1466 1467 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1468 1469 out_log_hdr: 1470 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1471 xfs_trans_log_buf(args->trans, bp, 1472 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1473 xfs_attr3_leaf_hdr_size(leaf))); 1474 return tmp; 1475 } 1476 1477 /* 1478 * Add a name to a leaf attribute list structure. 1479 */ 1480 STATIC int 1481 xfs_attr3_leaf_add_work( 1482 struct xfs_buf *bp, 1483 struct xfs_attr3_icleaf_hdr *ichdr, 1484 struct xfs_da_args *args, 1485 int mapindex) 1486 { 1487 struct xfs_attr_leafblock *leaf; 1488 struct xfs_attr_leaf_entry *entry; 1489 struct xfs_attr_leaf_name_local *name_loc; 1490 struct xfs_attr_leaf_name_remote *name_rmt; 1491 struct xfs_mount *mp; 1492 int tmp; 1493 int i; 1494 1495 trace_xfs_attr_leaf_add_work(args); 1496 1497 leaf = bp->b_addr; 1498 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1499 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1500 1501 /* 1502 * Force open some space in the entry array and fill it in. 1503 */ 1504 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1505 if (args->index < ichdr->count) { 1506 tmp = ichdr->count - args->index; 1507 tmp *= sizeof(xfs_attr_leaf_entry_t); 1508 memmove(entry + 1, entry, tmp); 1509 xfs_trans_log_buf(args->trans, bp, 1510 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1511 } 1512 ichdr->count++; 1513 1514 /* 1515 * Allocate space for the new string (at the end of the run). 1516 */ 1517 mp = args->trans->t_mountp; 1518 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1519 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1520 ASSERT(ichdr->freemap[mapindex].size >= 1521 xfs_attr_leaf_newentsize(args, NULL)); 1522 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1523 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1524 1525 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1526 1527 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1528 ichdr->freemap[mapindex].size); 1529 entry->hashval = cpu_to_be32(args->hashval); 1530 entry->flags = args->attr_filter; 1531 if (tmp) 1532 entry->flags |= XFS_ATTR_LOCAL; 1533 if (args->op_flags & XFS_DA_OP_REPLACE) { 1534 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1535 entry->flags |= XFS_ATTR_INCOMPLETE; 1536 if ((args->blkno2 == args->blkno) && 1537 (args->index2 <= args->index)) { 1538 args->index2++; 1539 } 1540 } 1541 xfs_trans_log_buf(args->trans, bp, 1542 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1543 ASSERT((args->index == 0) || 1544 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1545 ASSERT((args->index == ichdr->count - 1) || 1546 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1547 1548 /* 1549 * For "remote" attribute values, simply note that we need to 1550 * allocate space for the "remote" value. We can't actually 1551 * allocate the extents in this transaction, and we can't decide 1552 * which blocks they should be as we might allocate more blocks 1553 * as part of this transaction (a split operation for example). 1554 */ 1555 if (entry->flags & XFS_ATTR_LOCAL) { 1556 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1557 name_loc->namelen = args->namelen; 1558 name_loc->valuelen = cpu_to_be16(args->valuelen); 1559 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1560 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1561 be16_to_cpu(name_loc->valuelen)); 1562 } else { 1563 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1564 name_rmt->namelen = args->namelen; 1565 memcpy((char *)name_rmt->name, args->name, args->namelen); 1566 entry->flags |= XFS_ATTR_INCOMPLETE; 1567 /* just in case */ 1568 name_rmt->valuelen = 0; 1569 name_rmt->valueblk = 0; 1570 args->rmtblkno = 1; 1571 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1572 args->rmtvaluelen = args->valuelen; 1573 } 1574 xfs_trans_log_buf(args->trans, bp, 1575 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1576 xfs_attr_leaf_entsize(leaf, args->index))); 1577 1578 /* 1579 * Update the control info for this leaf node 1580 */ 1581 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1582 ichdr->firstused = be16_to_cpu(entry->nameidx); 1583 1584 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1585 + xfs_attr3_leaf_hdr_size(leaf)); 1586 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1587 + xfs_attr3_leaf_hdr_size(leaf); 1588 1589 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1590 if (ichdr->freemap[i].base == tmp) { 1591 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1592 ichdr->freemap[i].size -= 1593 min_t(uint16_t, ichdr->freemap[i].size, 1594 sizeof(xfs_attr_leaf_entry_t)); 1595 } 1596 } 1597 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1598 return 0; 1599 } 1600 1601 /* 1602 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1603 */ 1604 STATIC void 1605 xfs_attr3_leaf_compact( 1606 struct xfs_da_args *args, 1607 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1608 struct xfs_buf *bp) 1609 { 1610 struct xfs_attr_leafblock *leaf_src; 1611 struct xfs_attr_leafblock *leaf_dst; 1612 struct xfs_attr3_icleaf_hdr ichdr_src; 1613 struct xfs_trans *trans = args->trans; 1614 char *tmpbuffer; 1615 1616 trace_xfs_attr_leaf_compact(args); 1617 1618 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1619 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1620 memset(bp->b_addr, 0, args->geo->blksize); 1621 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1622 leaf_dst = bp->b_addr; 1623 1624 /* 1625 * Copy the on-disk header back into the destination buffer to ensure 1626 * all the information in the header that is not part of the incore 1627 * header structure is preserved. 1628 */ 1629 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1630 1631 /* Initialise the incore headers */ 1632 ichdr_src = *ichdr_dst; /* struct copy */ 1633 ichdr_dst->firstused = args->geo->blksize; 1634 ichdr_dst->usedbytes = 0; 1635 ichdr_dst->count = 0; 1636 ichdr_dst->holes = 0; 1637 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1638 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1639 ichdr_dst->freemap[0].base; 1640 1641 /* write the header back to initialise the underlying buffer */ 1642 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1643 1644 /* 1645 * Copy all entry's in the same (sorted) order, 1646 * but allocate name/value pairs packed and in sequence. 1647 */ 1648 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1649 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1650 /* 1651 * this logs the entire buffer, but the caller must write the header 1652 * back to the buffer when it is finished modifying it. 1653 */ 1654 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1655 1656 kmem_free(tmpbuffer); 1657 } 1658 1659 /* 1660 * Compare two leaf blocks "order". 1661 * Return 0 unless leaf2 should go before leaf1. 1662 */ 1663 static int 1664 xfs_attr3_leaf_order( 1665 struct xfs_buf *leaf1_bp, 1666 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1667 struct xfs_buf *leaf2_bp, 1668 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1669 { 1670 struct xfs_attr_leaf_entry *entries1; 1671 struct xfs_attr_leaf_entry *entries2; 1672 1673 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1674 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1675 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1676 ((be32_to_cpu(entries2[0].hashval) < 1677 be32_to_cpu(entries1[0].hashval)) || 1678 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1679 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1680 return 1; 1681 } 1682 return 0; 1683 } 1684 1685 int 1686 xfs_attr_leaf_order( 1687 struct xfs_buf *leaf1_bp, 1688 struct xfs_buf *leaf2_bp) 1689 { 1690 struct xfs_attr3_icleaf_hdr ichdr1; 1691 struct xfs_attr3_icleaf_hdr ichdr2; 1692 struct xfs_mount *mp = leaf1_bp->b_mount; 1693 1694 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1695 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1696 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1697 } 1698 1699 /* 1700 * Redistribute the attribute list entries between two leaf nodes, 1701 * taking into account the size of the new entry. 1702 * 1703 * NOTE: if new block is empty, then it will get the upper half of the 1704 * old block. At present, all (one) callers pass in an empty second block. 1705 * 1706 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1707 * to match what it is doing in splitting the attribute leaf block. Those 1708 * values are used in "atomic rename" operations on attributes. Note that 1709 * the "new" and "old" values can end up in different blocks. 1710 */ 1711 STATIC void 1712 xfs_attr3_leaf_rebalance( 1713 struct xfs_da_state *state, 1714 struct xfs_da_state_blk *blk1, 1715 struct xfs_da_state_blk *blk2) 1716 { 1717 struct xfs_da_args *args; 1718 struct xfs_attr_leafblock *leaf1; 1719 struct xfs_attr_leafblock *leaf2; 1720 struct xfs_attr3_icleaf_hdr ichdr1; 1721 struct xfs_attr3_icleaf_hdr ichdr2; 1722 struct xfs_attr_leaf_entry *entries1; 1723 struct xfs_attr_leaf_entry *entries2; 1724 int count; 1725 int totallen; 1726 int max; 1727 int space; 1728 int swap; 1729 1730 /* 1731 * Set up environment. 1732 */ 1733 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1734 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1735 leaf1 = blk1->bp->b_addr; 1736 leaf2 = blk2->bp->b_addr; 1737 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1738 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1739 ASSERT(ichdr2.count == 0); 1740 args = state->args; 1741 1742 trace_xfs_attr_leaf_rebalance(args); 1743 1744 /* 1745 * Check ordering of blocks, reverse if it makes things simpler. 1746 * 1747 * NOTE: Given that all (current) callers pass in an empty 1748 * second block, this code should never set "swap". 1749 */ 1750 swap = 0; 1751 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1752 swap(blk1, blk2); 1753 1754 /* swap structures rather than reconverting them */ 1755 swap(ichdr1, ichdr2); 1756 1757 leaf1 = blk1->bp->b_addr; 1758 leaf2 = blk2->bp->b_addr; 1759 swap = 1; 1760 } 1761 1762 /* 1763 * Examine entries until we reduce the absolute difference in 1764 * byte usage between the two blocks to a minimum. Then get 1765 * the direction to copy and the number of elements to move. 1766 * 1767 * "inleaf" is true if the new entry should be inserted into blk1. 1768 * If "swap" is also true, then reverse the sense of "inleaf". 1769 */ 1770 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1771 blk2, &ichdr2, 1772 &count, &totallen); 1773 if (swap) 1774 state->inleaf = !state->inleaf; 1775 1776 /* 1777 * Move any entries required from leaf to leaf: 1778 */ 1779 if (count < ichdr1.count) { 1780 /* 1781 * Figure the total bytes to be added to the destination leaf. 1782 */ 1783 /* number entries being moved */ 1784 count = ichdr1.count - count; 1785 space = ichdr1.usedbytes - totallen; 1786 space += count * sizeof(xfs_attr_leaf_entry_t); 1787 1788 /* 1789 * leaf2 is the destination, compact it if it looks tight. 1790 */ 1791 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1792 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1793 if (space > max) 1794 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1795 1796 /* 1797 * Move high entries from leaf1 to low end of leaf2. 1798 */ 1799 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1800 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1801 1802 } else if (count > ichdr1.count) { 1803 /* 1804 * I assert that since all callers pass in an empty 1805 * second buffer, this code should never execute. 1806 */ 1807 ASSERT(0); 1808 1809 /* 1810 * Figure the total bytes to be added to the destination leaf. 1811 */ 1812 /* number entries being moved */ 1813 count -= ichdr1.count; 1814 space = totallen - ichdr1.usedbytes; 1815 space += count * sizeof(xfs_attr_leaf_entry_t); 1816 1817 /* 1818 * leaf1 is the destination, compact it if it looks tight. 1819 */ 1820 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1821 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1822 if (space > max) 1823 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1824 1825 /* 1826 * Move low entries from leaf2 to high end of leaf1. 1827 */ 1828 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1829 ichdr1.count, count); 1830 } 1831 1832 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1833 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1834 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1835 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1836 1837 /* 1838 * Copy out last hashval in each block for B-tree code. 1839 */ 1840 entries1 = xfs_attr3_leaf_entryp(leaf1); 1841 entries2 = xfs_attr3_leaf_entryp(leaf2); 1842 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1843 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1844 1845 /* 1846 * Adjust the expected index for insertion. 1847 * NOTE: this code depends on the (current) situation that the 1848 * second block was originally empty. 1849 * 1850 * If the insertion point moved to the 2nd block, we must adjust 1851 * the index. We must also track the entry just following the 1852 * new entry for use in an "atomic rename" operation, that entry 1853 * is always the "old" entry and the "new" entry is what we are 1854 * inserting. The index/blkno fields refer to the "old" entry, 1855 * while the index2/blkno2 fields refer to the "new" entry. 1856 */ 1857 if (blk1->index > ichdr1.count) { 1858 ASSERT(state->inleaf == 0); 1859 blk2->index = blk1->index - ichdr1.count; 1860 args->index = args->index2 = blk2->index; 1861 args->blkno = args->blkno2 = blk2->blkno; 1862 } else if (blk1->index == ichdr1.count) { 1863 if (state->inleaf) { 1864 args->index = blk1->index; 1865 args->blkno = blk1->blkno; 1866 args->index2 = 0; 1867 args->blkno2 = blk2->blkno; 1868 } else { 1869 /* 1870 * On a double leaf split, the original attr location 1871 * is already stored in blkno2/index2, so don't 1872 * overwrite it overwise we corrupt the tree. 1873 */ 1874 blk2->index = blk1->index - ichdr1.count; 1875 args->index = blk2->index; 1876 args->blkno = blk2->blkno; 1877 if (!state->extravalid) { 1878 /* 1879 * set the new attr location to match the old 1880 * one and let the higher level split code 1881 * decide where in the leaf to place it. 1882 */ 1883 args->index2 = blk2->index; 1884 args->blkno2 = blk2->blkno; 1885 } 1886 } 1887 } else { 1888 ASSERT(state->inleaf == 1); 1889 args->index = args->index2 = blk1->index; 1890 args->blkno = args->blkno2 = blk1->blkno; 1891 } 1892 } 1893 1894 /* 1895 * Examine entries until we reduce the absolute difference in 1896 * byte usage between the two blocks to a minimum. 1897 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1898 * GROT: there will always be enough room in either block for a new entry. 1899 * GROT: Do a double-split for this case? 1900 */ 1901 STATIC int 1902 xfs_attr3_leaf_figure_balance( 1903 struct xfs_da_state *state, 1904 struct xfs_da_state_blk *blk1, 1905 struct xfs_attr3_icleaf_hdr *ichdr1, 1906 struct xfs_da_state_blk *blk2, 1907 struct xfs_attr3_icleaf_hdr *ichdr2, 1908 int *countarg, 1909 int *usedbytesarg) 1910 { 1911 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1912 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1913 struct xfs_attr_leaf_entry *entry; 1914 int count; 1915 int max; 1916 int index; 1917 int totallen = 0; 1918 int half; 1919 int lastdelta; 1920 int foundit = 0; 1921 int tmp; 1922 1923 /* 1924 * Examine entries until we reduce the absolute difference in 1925 * byte usage between the two blocks to a minimum. 1926 */ 1927 max = ichdr1->count + ichdr2->count; 1928 half = (max + 1) * sizeof(*entry); 1929 half += ichdr1->usedbytes + ichdr2->usedbytes + 1930 xfs_attr_leaf_newentsize(state->args, NULL); 1931 half /= 2; 1932 lastdelta = state->args->geo->blksize; 1933 entry = xfs_attr3_leaf_entryp(leaf1); 1934 for (count = index = 0; count < max; entry++, index++, count++) { 1935 1936 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1937 /* 1938 * The new entry is in the first block, account for it. 1939 */ 1940 if (count == blk1->index) { 1941 tmp = totallen + sizeof(*entry) + 1942 xfs_attr_leaf_newentsize(state->args, NULL); 1943 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1944 break; 1945 lastdelta = XFS_ATTR_ABS(half - tmp); 1946 totallen = tmp; 1947 foundit = 1; 1948 } 1949 1950 /* 1951 * Wrap around into the second block if necessary. 1952 */ 1953 if (count == ichdr1->count) { 1954 leaf1 = leaf2; 1955 entry = xfs_attr3_leaf_entryp(leaf1); 1956 index = 0; 1957 } 1958 1959 /* 1960 * Figure out if next leaf entry would be too much. 1961 */ 1962 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1963 index); 1964 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1965 break; 1966 lastdelta = XFS_ATTR_ABS(half - tmp); 1967 totallen = tmp; 1968 #undef XFS_ATTR_ABS 1969 } 1970 1971 /* 1972 * Calculate the number of usedbytes that will end up in lower block. 1973 * If new entry not in lower block, fix up the count. 1974 */ 1975 totallen -= count * sizeof(*entry); 1976 if (foundit) { 1977 totallen -= sizeof(*entry) + 1978 xfs_attr_leaf_newentsize(state->args, NULL); 1979 } 1980 1981 *countarg = count; 1982 *usedbytesarg = totallen; 1983 return foundit; 1984 } 1985 1986 /*======================================================================== 1987 * Routines used for shrinking the Btree. 1988 *========================================================================*/ 1989 1990 /* 1991 * Check a leaf block and its neighbors to see if the block should be 1992 * collapsed into one or the other neighbor. Always keep the block 1993 * with the smaller block number. 1994 * If the current block is over 50% full, don't try to join it, return 0. 1995 * If the block is empty, fill in the state structure and return 2. 1996 * If it can be collapsed, fill in the state structure and return 1. 1997 * If nothing can be done, return 0. 1998 * 1999 * GROT: allow for INCOMPLETE entries in calculation. 2000 */ 2001 int 2002 xfs_attr3_leaf_toosmall( 2003 struct xfs_da_state *state, 2004 int *action) 2005 { 2006 struct xfs_attr_leafblock *leaf; 2007 struct xfs_da_state_blk *blk; 2008 struct xfs_attr3_icleaf_hdr ichdr; 2009 struct xfs_buf *bp; 2010 xfs_dablk_t blkno; 2011 int bytes; 2012 int forward; 2013 int error; 2014 int retval; 2015 int i; 2016 2017 trace_xfs_attr_leaf_toosmall(state->args); 2018 2019 /* 2020 * Check for the degenerate case of the block being over 50% full. 2021 * If so, it's not worth even looking to see if we might be able 2022 * to coalesce with a sibling. 2023 */ 2024 blk = &state->path.blk[ state->path.active-1 ]; 2025 leaf = blk->bp->b_addr; 2026 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 2027 bytes = xfs_attr3_leaf_hdr_size(leaf) + 2028 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 2029 ichdr.usedbytes; 2030 if (bytes > (state->args->geo->blksize >> 1)) { 2031 *action = 0; /* blk over 50%, don't try to join */ 2032 return 0; 2033 } 2034 2035 /* 2036 * Check for the degenerate case of the block being empty. 2037 * If the block is empty, we'll simply delete it, no need to 2038 * coalesce it with a sibling block. We choose (arbitrarily) 2039 * to merge with the forward block unless it is NULL. 2040 */ 2041 if (ichdr.count == 0) { 2042 /* 2043 * Make altpath point to the block we want to keep and 2044 * path point to the block we want to drop (this one). 2045 */ 2046 forward = (ichdr.forw != 0); 2047 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2048 error = xfs_da3_path_shift(state, &state->altpath, forward, 2049 0, &retval); 2050 if (error) 2051 return error; 2052 if (retval) { 2053 *action = 0; 2054 } else { 2055 *action = 2; 2056 } 2057 return 0; 2058 } 2059 2060 /* 2061 * Examine each sibling block to see if we can coalesce with 2062 * at least 25% free space to spare. We need to figure out 2063 * whether to merge with the forward or the backward block. 2064 * We prefer coalescing with the lower numbered sibling so as 2065 * to shrink an attribute list over time. 2066 */ 2067 /* start with smaller blk num */ 2068 forward = ichdr.forw < ichdr.back; 2069 for (i = 0; i < 2; forward = !forward, i++) { 2070 struct xfs_attr3_icleaf_hdr ichdr2; 2071 if (forward) 2072 blkno = ichdr.forw; 2073 else 2074 blkno = ichdr.back; 2075 if (blkno == 0) 2076 continue; 2077 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2078 blkno, &bp); 2079 if (error) 2080 return error; 2081 2082 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2083 2084 bytes = state->args->geo->blksize - 2085 (state->args->geo->blksize >> 2) - 2086 ichdr.usedbytes - ichdr2.usedbytes - 2087 ((ichdr.count + ichdr2.count) * 2088 sizeof(xfs_attr_leaf_entry_t)) - 2089 xfs_attr3_leaf_hdr_size(leaf); 2090 2091 xfs_trans_brelse(state->args->trans, bp); 2092 if (bytes >= 0) 2093 break; /* fits with at least 25% to spare */ 2094 } 2095 if (i >= 2) { 2096 *action = 0; 2097 return 0; 2098 } 2099 2100 /* 2101 * Make altpath point to the block we want to keep (the lower 2102 * numbered block) and path point to the block we want to drop. 2103 */ 2104 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2105 if (blkno < blk->blkno) { 2106 error = xfs_da3_path_shift(state, &state->altpath, forward, 2107 0, &retval); 2108 } else { 2109 error = xfs_da3_path_shift(state, &state->path, forward, 2110 0, &retval); 2111 } 2112 if (error) 2113 return error; 2114 if (retval) { 2115 *action = 0; 2116 } else { 2117 *action = 1; 2118 } 2119 return 0; 2120 } 2121 2122 /* 2123 * Remove a name from the leaf attribute list structure. 2124 * 2125 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2126 * If two leaves are 37% full, when combined they will leave 25% free. 2127 */ 2128 int 2129 xfs_attr3_leaf_remove( 2130 struct xfs_buf *bp, 2131 struct xfs_da_args *args) 2132 { 2133 struct xfs_attr_leafblock *leaf; 2134 struct xfs_attr3_icleaf_hdr ichdr; 2135 struct xfs_attr_leaf_entry *entry; 2136 int before; 2137 int after; 2138 int smallest; 2139 int entsize; 2140 int tablesize; 2141 int tmp; 2142 int i; 2143 2144 trace_xfs_attr_leaf_remove(args); 2145 2146 leaf = bp->b_addr; 2147 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2148 2149 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2150 ASSERT(args->index >= 0 && args->index < ichdr.count); 2151 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2152 xfs_attr3_leaf_hdr_size(leaf)); 2153 2154 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2155 2156 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2157 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2158 2159 /* 2160 * Scan through free region table: 2161 * check for adjacency of free'd entry with an existing one, 2162 * find smallest free region in case we need to replace it, 2163 * adjust any map that borders the entry table, 2164 */ 2165 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2166 + xfs_attr3_leaf_hdr_size(leaf); 2167 tmp = ichdr.freemap[0].size; 2168 before = after = -1; 2169 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2170 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2171 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2172 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2173 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2174 if (ichdr.freemap[i].base == tablesize) { 2175 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2176 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2177 } 2178 2179 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2180 be16_to_cpu(entry->nameidx)) { 2181 before = i; 2182 } else if (ichdr.freemap[i].base == 2183 (be16_to_cpu(entry->nameidx) + entsize)) { 2184 after = i; 2185 } else if (ichdr.freemap[i].size < tmp) { 2186 tmp = ichdr.freemap[i].size; 2187 smallest = i; 2188 } 2189 } 2190 2191 /* 2192 * Coalesce adjacent freemap regions, 2193 * or replace the smallest region. 2194 */ 2195 if ((before >= 0) || (after >= 0)) { 2196 if ((before >= 0) && (after >= 0)) { 2197 ichdr.freemap[before].size += entsize; 2198 ichdr.freemap[before].size += ichdr.freemap[after].size; 2199 ichdr.freemap[after].base = 0; 2200 ichdr.freemap[after].size = 0; 2201 } else if (before >= 0) { 2202 ichdr.freemap[before].size += entsize; 2203 } else { 2204 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2205 ichdr.freemap[after].size += entsize; 2206 } 2207 } else { 2208 /* 2209 * Replace smallest region (if it is smaller than free'd entry) 2210 */ 2211 if (ichdr.freemap[smallest].size < entsize) { 2212 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2213 ichdr.freemap[smallest].size = entsize; 2214 } 2215 } 2216 2217 /* 2218 * Did we remove the first entry? 2219 */ 2220 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2221 smallest = 1; 2222 else 2223 smallest = 0; 2224 2225 /* 2226 * Compress the remaining entries and zero out the removed stuff. 2227 */ 2228 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2229 ichdr.usedbytes -= entsize; 2230 xfs_trans_log_buf(args->trans, bp, 2231 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2232 entsize)); 2233 2234 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2235 memmove(entry, entry + 1, tmp); 2236 ichdr.count--; 2237 xfs_trans_log_buf(args->trans, bp, 2238 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2239 2240 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2241 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2242 2243 /* 2244 * If we removed the first entry, re-find the first used byte 2245 * in the name area. Note that if the entry was the "firstused", 2246 * then we don't have a "hole" in our block resulting from 2247 * removing the name. 2248 */ 2249 if (smallest) { 2250 tmp = args->geo->blksize; 2251 entry = xfs_attr3_leaf_entryp(leaf); 2252 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2253 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2254 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2255 2256 if (be16_to_cpu(entry->nameidx) < tmp) 2257 tmp = be16_to_cpu(entry->nameidx); 2258 } 2259 ichdr.firstused = tmp; 2260 ASSERT(ichdr.firstused != 0); 2261 } else { 2262 ichdr.holes = 1; /* mark as needing compaction */ 2263 } 2264 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2265 xfs_trans_log_buf(args->trans, bp, 2266 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2267 xfs_attr3_leaf_hdr_size(leaf))); 2268 2269 /* 2270 * Check if leaf is less than 50% full, caller may want to 2271 * "join" the leaf with a sibling if so. 2272 */ 2273 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2274 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2275 2276 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2277 } 2278 2279 /* 2280 * Move all the attribute list entries from drop_leaf into save_leaf. 2281 */ 2282 void 2283 xfs_attr3_leaf_unbalance( 2284 struct xfs_da_state *state, 2285 struct xfs_da_state_blk *drop_blk, 2286 struct xfs_da_state_blk *save_blk) 2287 { 2288 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2289 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2290 struct xfs_attr3_icleaf_hdr drophdr; 2291 struct xfs_attr3_icleaf_hdr savehdr; 2292 struct xfs_attr_leaf_entry *entry; 2293 2294 trace_xfs_attr_leaf_unbalance(state->args); 2295 2296 drop_leaf = drop_blk->bp->b_addr; 2297 save_leaf = save_blk->bp->b_addr; 2298 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2299 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2300 entry = xfs_attr3_leaf_entryp(drop_leaf); 2301 2302 /* 2303 * Save last hashval from dying block for later Btree fixup. 2304 */ 2305 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2306 2307 /* 2308 * Check if we need a temp buffer, or can we do it in place. 2309 * Note that we don't check "leaf" for holes because we will 2310 * always be dropping it, toosmall() decided that for us already. 2311 */ 2312 if (savehdr.holes == 0) { 2313 /* 2314 * dest leaf has no holes, so we add there. May need 2315 * to make some room in the entry array. 2316 */ 2317 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2318 drop_blk->bp, &drophdr)) { 2319 xfs_attr3_leaf_moveents(state->args, 2320 drop_leaf, &drophdr, 0, 2321 save_leaf, &savehdr, 0, 2322 drophdr.count); 2323 } else { 2324 xfs_attr3_leaf_moveents(state->args, 2325 drop_leaf, &drophdr, 0, 2326 save_leaf, &savehdr, 2327 savehdr.count, drophdr.count); 2328 } 2329 } else { 2330 /* 2331 * Destination has holes, so we make a temporary copy 2332 * of the leaf and add them both to that. 2333 */ 2334 struct xfs_attr_leafblock *tmp_leaf; 2335 struct xfs_attr3_icleaf_hdr tmphdr; 2336 2337 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2338 2339 /* 2340 * Copy the header into the temp leaf so that all the stuff 2341 * not in the incore header is present and gets copied back in 2342 * once we've moved all the entries. 2343 */ 2344 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2345 2346 memset(&tmphdr, 0, sizeof(tmphdr)); 2347 tmphdr.magic = savehdr.magic; 2348 tmphdr.forw = savehdr.forw; 2349 tmphdr.back = savehdr.back; 2350 tmphdr.firstused = state->args->geo->blksize; 2351 2352 /* write the header to the temp buffer to initialise it */ 2353 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2354 2355 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2356 drop_blk->bp, &drophdr)) { 2357 xfs_attr3_leaf_moveents(state->args, 2358 drop_leaf, &drophdr, 0, 2359 tmp_leaf, &tmphdr, 0, 2360 drophdr.count); 2361 xfs_attr3_leaf_moveents(state->args, 2362 save_leaf, &savehdr, 0, 2363 tmp_leaf, &tmphdr, tmphdr.count, 2364 savehdr.count); 2365 } else { 2366 xfs_attr3_leaf_moveents(state->args, 2367 save_leaf, &savehdr, 0, 2368 tmp_leaf, &tmphdr, 0, 2369 savehdr.count); 2370 xfs_attr3_leaf_moveents(state->args, 2371 drop_leaf, &drophdr, 0, 2372 tmp_leaf, &tmphdr, tmphdr.count, 2373 drophdr.count); 2374 } 2375 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2376 savehdr = tmphdr; /* struct copy */ 2377 kmem_free(tmp_leaf); 2378 } 2379 2380 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2381 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2382 state->args->geo->blksize - 1); 2383 2384 /* 2385 * Copy out last hashval in each block for B-tree code. 2386 */ 2387 entry = xfs_attr3_leaf_entryp(save_leaf); 2388 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2389 } 2390 2391 /*======================================================================== 2392 * Routines used for finding things in the Btree. 2393 *========================================================================*/ 2394 2395 /* 2396 * Look up a name in a leaf attribute list structure. 2397 * This is the internal routine, it uses the caller's buffer. 2398 * 2399 * Note that duplicate keys are allowed, but only check within the 2400 * current leaf node. The Btree code must check in adjacent leaf nodes. 2401 * 2402 * Return in args->index the index into the entry[] array of either 2403 * the found entry, or where the entry should have been (insert before 2404 * that entry). 2405 * 2406 * Don't change the args->value unless we find the attribute. 2407 */ 2408 int 2409 xfs_attr3_leaf_lookup_int( 2410 struct xfs_buf *bp, 2411 struct xfs_da_args *args) 2412 { 2413 struct xfs_attr_leafblock *leaf; 2414 struct xfs_attr3_icleaf_hdr ichdr; 2415 struct xfs_attr_leaf_entry *entry; 2416 struct xfs_attr_leaf_entry *entries; 2417 struct xfs_attr_leaf_name_local *name_loc; 2418 struct xfs_attr_leaf_name_remote *name_rmt; 2419 xfs_dahash_t hashval; 2420 int probe; 2421 int span; 2422 2423 trace_xfs_attr_leaf_lookup(args); 2424 2425 leaf = bp->b_addr; 2426 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2427 entries = xfs_attr3_leaf_entryp(leaf); 2428 if (ichdr.count >= args->geo->blksize / 8) { 2429 xfs_buf_mark_corrupt(bp); 2430 return -EFSCORRUPTED; 2431 } 2432 2433 /* 2434 * Binary search. (note: small blocks will skip this loop) 2435 */ 2436 hashval = args->hashval; 2437 probe = span = ichdr.count / 2; 2438 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2439 span /= 2; 2440 if (be32_to_cpu(entry->hashval) < hashval) 2441 probe += span; 2442 else if (be32_to_cpu(entry->hashval) > hashval) 2443 probe -= span; 2444 else 2445 break; 2446 } 2447 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2448 xfs_buf_mark_corrupt(bp); 2449 return -EFSCORRUPTED; 2450 } 2451 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2452 xfs_buf_mark_corrupt(bp); 2453 return -EFSCORRUPTED; 2454 } 2455 2456 /* 2457 * Since we may have duplicate hashval's, find the first matching 2458 * hashval in the leaf. 2459 */ 2460 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2461 entry--; 2462 probe--; 2463 } 2464 while (probe < ichdr.count && 2465 be32_to_cpu(entry->hashval) < hashval) { 2466 entry++; 2467 probe++; 2468 } 2469 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2470 args->index = probe; 2471 return -ENOATTR; 2472 } 2473 2474 /* 2475 * Duplicate keys may be present, so search all of them for a match. 2476 */ 2477 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2478 entry++, probe++) { 2479 /* 2480 * GROT: Add code to remove incomplete entries. 2481 */ 2482 if (entry->flags & XFS_ATTR_LOCAL) { 2483 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2484 if (!xfs_attr_match(args, name_loc->namelen, 2485 name_loc->nameval, entry->flags)) 2486 continue; 2487 args->index = probe; 2488 return -EEXIST; 2489 } else { 2490 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2491 if (!xfs_attr_match(args, name_rmt->namelen, 2492 name_rmt->name, entry->flags)) 2493 continue; 2494 args->index = probe; 2495 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2496 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2497 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2498 args->dp->i_mount, 2499 args->rmtvaluelen); 2500 return -EEXIST; 2501 } 2502 } 2503 args->index = probe; 2504 return -ENOATTR; 2505 } 2506 2507 /* 2508 * Get the value associated with an attribute name from a leaf attribute 2509 * list structure. 2510 * 2511 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2512 * lookup, we only return an error if the attribute does not exist or we can't 2513 * retrieve the value. 2514 */ 2515 int 2516 xfs_attr3_leaf_getvalue( 2517 struct xfs_buf *bp, 2518 struct xfs_da_args *args) 2519 { 2520 struct xfs_attr_leafblock *leaf; 2521 struct xfs_attr3_icleaf_hdr ichdr; 2522 struct xfs_attr_leaf_entry *entry; 2523 struct xfs_attr_leaf_name_local *name_loc; 2524 struct xfs_attr_leaf_name_remote *name_rmt; 2525 2526 leaf = bp->b_addr; 2527 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2528 ASSERT(ichdr.count < args->geo->blksize / 8); 2529 ASSERT(args->index < ichdr.count); 2530 2531 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2532 if (entry->flags & XFS_ATTR_LOCAL) { 2533 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2534 ASSERT(name_loc->namelen == args->namelen); 2535 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2536 return xfs_attr_copy_value(args, 2537 &name_loc->nameval[args->namelen], 2538 be16_to_cpu(name_loc->valuelen)); 2539 } 2540 2541 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2542 ASSERT(name_rmt->namelen == args->namelen); 2543 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2544 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2545 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2546 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2547 args->rmtvaluelen); 2548 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2549 } 2550 2551 /*======================================================================== 2552 * Utility routines. 2553 *========================================================================*/ 2554 2555 /* 2556 * Move the indicated entries from one leaf to another. 2557 * NOTE: this routine modifies both source and destination leaves. 2558 */ 2559 /*ARGSUSED*/ 2560 STATIC void 2561 xfs_attr3_leaf_moveents( 2562 struct xfs_da_args *args, 2563 struct xfs_attr_leafblock *leaf_s, 2564 struct xfs_attr3_icleaf_hdr *ichdr_s, 2565 int start_s, 2566 struct xfs_attr_leafblock *leaf_d, 2567 struct xfs_attr3_icleaf_hdr *ichdr_d, 2568 int start_d, 2569 int count) 2570 { 2571 struct xfs_attr_leaf_entry *entry_s; 2572 struct xfs_attr_leaf_entry *entry_d; 2573 int desti; 2574 int tmp; 2575 int i; 2576 2577 /* 2578 * Check for nothing to do. 2579 */ 2580 if (count == 0) 2581 return; 2582 2583 /* 2584 * Set up environment. 2585 */ 2586 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2587 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2588 ASSERT(ichdr_s->magic == ichdr_d->magic); 2589 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2590 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2591 + xfs_attr3_leaf_hdr_size(leaf_s)); 2592 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2593 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2594 + xfs_attr3_leaf_hdr_size(leaf_d)); 2595 2596 ASSERT(start_s < ichdr_s->count); 2597 ASSERT(start_d <= ichdr_d->count); 2598 ASSERT(count <= ichdr_s->count); 2599 2600 2601 /* 2602 * Move the entries in the destination leaf up to make a hole? 2603 */ 2604 if (start_d < ichdr_d->count) { 2605 tmp = ichdr_d->count - start_d; 2606 tmp *= sizeof(xfs_attr_leaf_entry_t); 2607 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2608 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2609 memmove(entry_d, entry_s, tmp); 2610 } 2611 2612 /* 2613 * Copy all entry's in the same (sorted) order, 2614 * but allocate attribute info packed and in sequence. 2615 */ 2616 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2617 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2618 desti = start_d; 2619 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2620 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2621 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2622 #ifdef GROT 2623 /* 2624 * Code to drop INCOMPLETE entries. Difficult to use as we 2625 * may also need to change the insertion index. Code turned 2626 * off for 6.2, should be revisited later. 2627 */ 2628 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2629 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2630 ichdr_s->usedbytes -= tmp; 2631 ichdr_s->count -= 1; 2632 entry_d--; /* to compensate for ++ in loop hdr */ 2633 desti--; 2634 if ((start_s + i) < offset) 2635 result++; /* insertion index adjustment */ 2636 } else { 2637 #endif /* GROT */ 2638 ichdr_d->firstused -= tmp; 2639 /* both on-disk, don't endian flip twice */ 2640 entry_d->hashval = entry_s->hashval; 2641 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2642 entry_d->flags = entry_s->flags; 2643 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2644 <= args->geo->blksize); 2645 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2646 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2647 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2648 <= args->geo->blksize); 2649 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2650 ichdr_s->usedbytes -= tmp; 2651 ichdr_d->usedbytes += tmp; 2652 ichdr_s->count -= 1; 2653 ichdr_d->count += 1; 2654 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2655 + xfs_attr3_leaf_hdr_size(leaf_d); 2656 ASSERT(ichdr_d->firstused >= tmp); 2657 #ifdef GROT 2658 } 2659 #endif /* GROT */ 2660 } 2661 2662 /* 2663 * Zero out the entries we just copied. 2664 */ 2665 if (start_s == ichdr_s->count) { 2666 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2667 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2668 ASSERT(((char *)entry_s + tmp) <= 2669 ((char *)leaf_s + args->geo->blksize)); 2670 memset(entry_s, 0, tmp); 2671 } else { 2672 /* 2673 * Move the remaining entries down to fill the hole, 2674 * then zero the entries at the top. 2675 */ 2676 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2677 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2678 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2679 memmove(entry_d, entry_s, tmp); 2680 2681 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2682 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2683 ASSERT(((char *)entry_s + tmp) <= 2684 ((char *)leaf_s + args->geo->blksize)); 2685 memset(entry_s, 0, tmp); 2686 } 2687 2688 /* 2689 * Fill in the freemap information 2690 */ 2691 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2692 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2693 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2694 ichdr_d->freemap[1].base = 0; 2695 ichdr_d->freemap[2].base = 0; 2696 ichdr_d->freemap[1].size = 0; 2697 ichdr_d->freemap[2].size = 0; 2698 ichdr_s->holes = 1; /* leaf may not be compact */ 2699 } 2700 2701 /* 2702 * Pick up the last hashvalue from a leaf block. 2703 */ 2704 xfs_dahash_t 2705 xfs_attr_leaf_lasthash( 2706 struct xfs_buf *bp, 2707 int *count) 2708 { 2709 struct xfs_attr3_icleaf_hdr ichdr; 2710 struct xfs_attr_leaf_entry *entries; 2711 struct xfs_mount *mp = bp->b_mount; 2712 2713 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2714 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2715 if (count) 2716 *count = ichdr.count; 2717 if (!ichdr.count) 2718 return 0; 2719 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2720 } 2721 2722 /* 2723 * Calculate the number of bytes used to store the indicated attribute 2724 * (whether local or remote only calculate bytes in this block). 2725 */ 2726 STATIC int 2727 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2728 { 2729 struct xfs_attr_leaf_entry *entries; 2730 xfs_attr_leaf_name_local_t *name_loc; 2731 xfs_attr_leaf_name_remote_t *name_rmt; 2732 int size; 2733 2734 entries = xfs_attr3_leaf_entryp(leaf); 2735 if (entries[index].flags & XFS_ATTR_LOCAL) { 2736 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2737 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2738 be16_to_cpu(name_loc->valuelen)); 2739 } else { 2740 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2741 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2742 } 2743 return size; 2744 } 2745 2746 /* 2747 * Calculate the number of bytes that would be required to store the new 2748 * attribute (whether local or remote only calculate bytes in this block). 2749 * This routine decides as a side effect whether the attribute will be 2750 * a "local" or a "remote" attribute. 2751 */ 2752 int 2753 xfs_attr_leaf_newentsize( 2754 struct xfs_da_args *args, 2755 int *local) 2756 { 2757 int size; 2758 2759 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2760 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2761 if (local) 2762 *local = 1; 2763 return size; 2764 } 2765 if (local) 2766 *local = 0; 2767 return xfs_attr_leaf_entsize_remote(args->namelen); 2768 } 2769 2770 2771 /*======================================================================== 2772 * Manage the INCOMPLETE flag in a leaf entry 2773 *========================================================================*/ 2774 2775 /* 2776 * Clear the INCOMPLETE flag on an entry in a leaf block. 2777 */ 2778 int 2779 xfs_attr3_leaf_clearflag( 2780 struct xfs_da_args *args) 2781 { 2782 struct xfs_attr_leafblock *leaf; 2783 struct xfs_attr_leaf_entry *entry; 2784 struct xfs_attr_leaf_name_remote *name_rmt; 2785 struct xfs_buf *bp; 2786 int error; 2787 #ifdef DEBUG 2788 struct xfs_attr3_icleaf_hdr ichdr; 2789 xfs_attr_leaf_name_local_t *name_loc; 2790 int namelen; 2791 char *name; 2792 #endif /* DEBUG */ 2793 2794 trace_xfs_attr_leaf_clearflag(args); 2795 /* 2796 * Set up the operation. 2797 */ 2798 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2799 if (error) 2800 return error; 2801 2802 leaf = bp->b_addr; 2803 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2804 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2805 2806 #ifdef DEBUG 2807 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2808 ASSERT(args->index < ichdr.count); 2809 ASSERT(args->index >= 0); 2810 2811 if (entry->flags & XFS_ATTR_LOCAL) { 2812 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2813 namelen = name_loc->namelen; 2814 name = (char *)name_loc->nameval; 2815 } else { 2816 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2817 namelen = name_rmt->namelen; 2818 name = (char *)name_rmt->name; 2819 } 2820 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2821 ASSERT(namelen == args->namelen); 2822 ASSERT(memcmp(name, args->name, namelen) == 0); 2823 #endif /* DEBUG */ 2824 2825 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2826 xfs_trans_log_buf(args->trans, bp, 2827 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2828 2829 if (args->rmtblkno) { 2830 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2831 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2832 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2833 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2834 xfs_trans_log_buf(args->trans, bp, 2835 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2836 } 2837 2838 return 0; 2839 } 2840 2841 /* 2842 * Set the INCOMPLETE flag on an entry in a leaf block. 2843 */ 2844 int 2845 xfs_attr3_leaf_setflag( 2846 struct xfs_da_args *args) 2847 { 2848 struct xfs_attr_leafblock *leaf; 2849 struct xfs_attr_leaf_entry *entry; 2850 struct xfs_attr_leaf_name_remote *name_rmt; 2851 struct xfs_buf *bp; 2852 int error; 2853 #ifdef DEBUG 2854 struct xfs_attr3_icleaf_hdr ichdr; 2855 #endif 2856 2857 trace_xfs_attr_leaf_setflag(args); 2858 2859 /* 2860 * Set up the operation. 2861 */ 2862 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2863 if (error) 2864 return error; 2865 2866 leaf = bp->b_addr; 2867 #ifdef DEBUG 2868 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2869 ASSERT(args->index < ichdr.count); 2870 ASSERT(args->index >= 0); 2871 #endif 2872 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2873 2874 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2875 entry->flags |= XFS_ATTR_INCOMPLETE; 2876 xfs_trans_log_buf(args->trans, bp, 2877 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2878 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2879 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2880 name_rmt->valueblk = 0; 2881 name_rmt->valuelen = 0; 2882 xfs_trans_log_buf(args->trans, bp, 2883 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2884 } 2885 2886 return 0; 2887 } 2888 2889 /* 2890 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2891 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2892 * entry given by args->blkno2/index2. 2893 * 2894 * Note that they could be in different blocks, or in the same block. 2895 */ 2896 int 2897 xfs_attr3_leaf_flipflags( 2898 struct xfs_da_args *args) 2899 { 2900 struct xfs_attr_leafblock *leaf1; 2901 struct xfs_attr_leafblock *leaf2; 2902 struct xfs_attr_leaf_entry *entry1; 2903 struct xfs_attr_leaf_entry *entry2; 2904 struct xfs_attr_leaf_name_remote *name_rmt; 2905 struct xfs_buf *bp1; 2906 struct xfs_buf *bp2; 2907 int error; 2908 #ifdef DEBUG 2909 struct xfs_attr3_icleaf_hdr ichdr1; 2910 struct xfs_attr3_icleaf_hdr ichdr2; 2911 xfs_attr_leaf_name_local_t *name_loc; 2912 int namelen1, namelen2; 2913 char *name1, *name2; 2914 #endif /* DEBUG */ 2915 2916 trace_xfs_attr_leaf_flipflags(args); 2917 2918 /* 2919 * Read the block containing the "old" attr 2920 */ 2921 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2922 if (error) 2923 return error; 2924 2925 /* 2926 * Read the block containing the "new" attr, if it is different 2927 */ 2928 if (args->blkno2 != args->blkno) { 2929 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2930 &bp2); 2931 if (error) 2932 return error; 2933 } else { 2934 bp2 = bp1; 2935 } 2936 2937 leaf1 = bp1->b_addr; 2938 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2939 2940 leaf2 = bp2->b_addr; 2941 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2942 2943 #ifdef DEBUG 2944 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2945 ASSERT(args->index < ichdr1.count); 2946 ASSERT(args->index >= 0); 2947 2948 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2949 ASSERT(args->index2 < ichdr2.count); 2950 ASSERT(args->index2 >= 0); 2951 2952 if (entry1->flags & XFS_ATTR_LOCAL) { 2953 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2954 namelen1 = name_loc->namelen; 2955 name1 = (char *)name_loc->nameval; 2956 } else { 2957 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2958 namelen1 = name_rmt->namelen; 2959 name1 = (char *)name_rmt->name; 2960 } 2961 if (entry2->flags & XFS_ATTR_LOCAL) { 2962 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2963 namelen2 = name_loc->namelen; 2964 name2 = (char *)name_loc->nameval; 2965 } else { 2966 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2967 namelen2 = name_rmt->namelen; 2968 name2 = (char *)name_rmt->name; 2969 } 2970 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2971 ASSERT(namelen1 == namelen2); 2972 ASSERT(memcmp(name1, name2, namelen1) == 0); 2973 #endif /* DEBUG */ 2974 2975 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2976 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2977 2978 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2979 xfs_trans_log_buf(args->trans, bp1, 2980 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2981 if (args->rmtblkno) { 2982 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2983 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2984 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2985 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2986 xfs_trans_log_buf(args->trans, bp1, 2987 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2988 } 2989 2990 entry2->flags |= XFS_ATTR_INCOMPLETE; 2991 xfs_trans_log_buf(args->trans, bp2, 2992 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2993 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2994 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2995 name_rmt->valueblk = 0; 2996 name_rmt->valuelen = 0; 2997 xfs_trans_log_buf(args->trans, bp2, 2998 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2999 } 3000 3001 return 0; 3002 } 3003