1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 #include "xfs_health.h" 33 34 35 /* 36 * xfs_attr_leaf.c 37 * 38 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 39 */ 40 41 /*======================================================================== 42 * Function prototypes for the kernel. 43 *========================================================================*/ 44 45 /* 46 * Routines used for growing the Btree. 47 */ 48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 49 xfs_dablk_t which_block, struct xfs_buf **bpp); 50 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 51 struct xfs_attr3_icleaf_hdr *ichdr, 52 struct xfs_da_args *args, int freemap_index); 53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 54 struct xfs_attr3_icleaf_hdr *ichdr, 55 struct xfs_buf *leaf_buffer); 56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 57 xfs_da_state_blk_t *blk1, 58 xfs_da_state_blk_t *blk2); 59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 60 xfs_da_state_blk_t *leaf_blk_1, 61 struct xfs_attr3_icleaf_hdr *ichdr1, 62 xfs_da_state_blk_t *leaf_blk_2, 63 struct xfs_attr3_icleaf_hdr *ichdr2, 64 int *number_entries_in_blk1, 65 int *number_usedbytes_in_blk1); 66 67 /* 68 * Utility routines. 69 */ 70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 71 struct xfs_attr_leafblock *src_leaf, 72 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 73 struct xfs_attr_leafblock *dst_leaf, 74 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 75 int move_count); 76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 77 78 /* 79 * attr3 block 'firstused' conversion helpers. 80 * 81 * firstused refers to the offset of the first used byte of the nameval region 82 * of an attr leaf block. The region starts at the tail of the block and expands 83 * backwards towards the middle. As such, firstused is initialized to the block 84 * size for an empty leaf block and is reduced from there. 85 * 86 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 87 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 88 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 89 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 90 * the attr block size. The following helpers manage the conversion between the 91 * in-core and on-disk formats. 92 */ 93 94 static void 95 xfs_attr3_leaf_firstused_from_disk( 96 struct xfs_da_geometry *geo, 97 struct xfs_attr3_icleaf_hdr *to, 98 struct xfs_attr_leafblock *from) 99 { 100 struct xfs_attr3_leaf_hdr *hdr3; 101 102 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 103 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 104 to->firstused = be16_to_cpu(hdr3->firstused); 105 } else { 106 to->firstused = be16_to_cpu(from->hdr.firstused); 107 } 108 109 /* 110 * Convert from the magic fsb size value to actual blocksize. This 111 * should only occur for empty blocks when the block size overflows 112 * 16-bits. 113 */ 114 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 115 ASSERT(!to->count && !to->usedbytes); 116 ASSERT(geo->blksize > USHRT_MAX); 117 to->firstused = geo->blksize; 118 } 119 } 120 121 static void 122 xfs_attr3_leaf_firstused_to_disk( 123 struct xfs_da_geometry *geo, 124 struct xfs_attr_leafblock *to, 125 struct xfs_attr3_icleaf_hdr *from) 126 { 127 struct xfs_attr3_leaf_hdr *hdr3; 128 uint32_t firstused; 129 130 /* magic value should only be seen on disk */ 131 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 132 133 /* 134 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 135 * value. This only overflows at the max supported value of 64k. Use the 136 * magic on-disk value to represent block size in this case. 137 */ 138 firstused = from->firstused; 139 if (firstused > USHRT_MAX) { 140 ASSERT(from->firstused == geo->blksize); 141 firstused = XFS_ATTR3_LEAF_NULLOFF; 142 } 143 144 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 145 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 146 hdr3->firstused = cpu_to_be16(firstused); 147 } else { 148 to->hdr.firstused = cpu_to_be16(firstused); 149 } 150 } 151 152 void 153 xfs_attr3_leaf_hdr_from_disk( 154 struct xfs_da_geometry *geo, 155 struct xfs_attr3_icleaf_hdr *to, 156 struct xfs_attr_leafblock *from) 157 { 158 int i; 159 160 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 161 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 162 163 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 164 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 165 166 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 167 to->back = be32_to_cpu(hdr3->info.hdr.back); 168 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 169 to->count = be16_to_cpu(hdr3->count); 170 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 171 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 172 to->holes = hdr3->holes; 173 174 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 175 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 176 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 177 } 178 return; 179 } 180 to->forw = be32_to_cpu(from->hdr.info.forw); 181 to->back = be32_to_cpu(from->hdr.info.back); 182 to->magic = be16_to_cpu(from->hdr.info.magic); 183 to->count = be16_to_cpu(from->hdr.count); 184 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 185 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 186 to->holes = from->hdr.holes; 187 188 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 189 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 190 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 191 } 192 } 193 194 void 195 xfs_attr3_leaf_hdr_to_disk( 196 struct xfs_da_geometry *geo, 197 struct xfs_attr_leafblock *to, 198 struct xfs_attr3_icleaf_hdr *from) 199 { 200 int i; 201 202 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 203 from->magic == XFS_ATTR3_LEAF_MAGIC); 204 205 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 206 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 207 208 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 209 hdr3->info.hdr.back = cpu_to_be32(from->back); 210 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 211 hdr3->count = cpu_to_be16(from->count); 212 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 213 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 214 hdr3->holes = from->holes; 215 hdr3->pad1 = 0; 216 217 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 218 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 219 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 220 } 221 return; 222 } 223 to->hdr.info.forw = cpu_to_be32(from->forw); 224 to->hdr.info.back = cpu_to_be32(from->back); 225 to->hdr.info.magic = cpu_to_be16(from->magic); 226 to->hdr.count = cpu_to_be16(from->count); 227 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 228 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 229 to->hdr.holes = from->holes; 230 to->hdr.pad1 = 0; 231 232 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 233 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 234 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 235 } 236 } 237 238 static xfs_failaddr_t 239 xfs_attr3_leaf_verify_entry( 240 struct xfs_mount *mp, 241 char *buf_end, 242 struct xfs_attr_leafblock *leaf, 243 struct xfs_attr3_icleaf_hdr *leafhdr, 244 struct xfs_attr_leaf_entry *ent, 245 int idx, 246 __u32 *last_hashval) 247 { 248 struct xfs_attr_leaf_name_local *lentry; 249 struct xfs_attr_leaf_name_remote *rentry; 250 char *name_end; 251 unsigned int nameidx; 252 unsigned int namesize; 253 __u32 hashval; 254 255 /* hash order check */ 256 hashval = be32_to_cpu(ent->hashval); 257 if (hashval < *last_hashval) 258 return __this_address; 259 *last_hashval = hashval; 260 261 nameidx = be16_to_cpu(ent->nameidx); 262 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 263 return __this_address; 264 265 /* 266 * Check the name information. The namelen fields are u8 so we can't 267 * possibly exceed the maximum name length of 255 bytes. 268 */ 269 if (ent->flags & XFS_ATTR_LOCAL) { 270 lentry = xfs_attr3_leaf_name_local(leaf, idx); 271 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 272 be16_to_cpu(lentry->valuelen)); 273 name_end = (char *)lentry + namesize; 274 if (lentry->namelen == 0) 275 return __this_address; 276 } else { 277 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 278 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 279 name_end = (char *)rentry + namesize; 280 if (rentry->namelen == 0) 281 return __this_address; 282 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 283 rentry->valueblk == 0) 284 return __this_address; 285 } 286 287 if (name_end > buf_end) 288 return __this_address; 289 290 return NULL; 291 } 292 293 /* 294 * Validate an attribute leaf block. 295 * 296 * Empty leaf blocks can occur under the following circumstances: 297 * 298 * 1. setxattr adds a new extended attribute to a file; 299 * 2. The file has zero existing attributes; 300 * 3. The attribute is too large to fit in the attribute fork; 301 * 4. The attribute is small enough to fit in a leaf block; 302 * 5. A log flush occurs after committing the transaction that creates 303 * the (empty) leaf block; and 304 * 6. The filesystem goes down after the log flush but before the new 305 * attribute can be committed to the leaf block. 306 * 307 * Hence we need to ensure that we don't fail the validation purely 308 * because the leaf is empty. 309 */ 310 static xfs_failaddr_t 311 xfs_attr3_leaf_verify( 312 struct xfs_buf *bp) 313 { 314 struct xfs_attr3_icleaf_hdr ichdr; 315 struct xfs_mount *mp = bp->b_mount; 316 struct xfs_attr_leafblock *leaf = bp->b_addr; 317 struct xfs_attr_leaf_entry *entries; 318 struct xfs_attr_leaf_entry *ent; 319 char *buf_end; 320 uint32_t end; /* must be 32bit - see below */ 321 __u32 last_hashval = 0; 322 int i; 323 xfs_failaddr_t fa; 324 325 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 326 327 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 328 if (fa) 329 return fa; 330 331 /* 332 * firstused is the block offset of the first name info structure. 333 * Make sure it doesn't go off the block or crash into the header. 334 */ 335 if (ichdr.firstused > mp->m_attr_geo->blksize) 336 return __this_address; 337 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 338 return __this_address; 339 340 /* Make sure the entries array doesn't crash into the name info. */ 341 entries = xfs_attr3_leaf_entryp(bp->b_addr); 342 if ((char *)&entries[ichdr.count] > 343 (char *)bp->b_addr + ichdr.firstused) 344 return __this_address; 345 346 /* 347 * NOTE: This verifier historically failed empty leaf buffers because 348 * we expect the fork to be in another format. Empty attr fork format 349 * conversions are possible during xattr set, however, and format 350 * conversion is not atomic with the xattr set that triggers it. We 351 * cannot assume leaf blocks are non-empty until that is addressed. 352 */ 353 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 354 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 355 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 356 ent, i, &last_hashval); 357 if (fa) 358 return fa; 359 } 360 361 /* 362 * Quickly check the freemap information. Attribute data has to be 363 * aligned to 4-byte boundaries, and likewise for the free space. 364 * 365 * Note that for 64k block size filesystems, the freemap entries cannot 366 * overflow as they are only be16 fields. However, when checking end 367 * pointer of the freemap, we have to be careful to detect overflows and 368 * so use uint32_t for those checks. 369 */ 370 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 371 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 372 return __this_address; 373 if (ichdr.freemap[i].base & 0x3) 374 return __this_address; 375 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 376 return __this_address; 377 if (ichdr.freemap[i].size & 0x3) 378 return __this_address; 379 380 /* be care of 16 bit overflows here */ 381 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 382 if (end < ichdr.freemap[i].base) 383 return __this_address; 384 if (end > mp->m_attr_geo->blksize) 385 return __this_address; 386 } 387 388 return NULL; 389 } 390 391 xfs_failaddr_t 392 xfs_attr3_leaf_header_check( 393 struct xfs_buf *bp, 394 xfs_ino_t owner) 395 { 396 struct xfs_mount *mp = bp->b_mount; 397 398 if (xfs_has_crc(mp)) { 399 struct xfs_attr3_leafblock *hdr3 = bp->b_addr; 400 401 if (hdr3->hdr.info.hdr.magic != 402 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) 403 return __this_address; 404 405 if (be64_to_cpu(hdr3->hdr.info.owner) != owner) 406 return __this_address; 407 } 408 409 return NULL; 410 } 411 412 static void 413 xfs_attr3_leaf_write_verify( 414 struct xfs_buf *bp) 415 { 416 struct xfs_mount *mp = bp->b_mount; 417 struct xfs_buf_log_item *bip = bp->b_log_item; 418 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 419 xfs_failaddr_t fa; 420 421 fa = xfs_attr3_leaf_verify(bp); 422 if (fa) { 423 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 424 return; 425 } 426 427 if (!xfs_has_crc(mp)) 428 return; 429 430 if (bip) 431 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 432 433 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 434 } 435 436 /* 437 * leaf/node format detection on trees is sketchy, so a node read can be done on 438 * leaf level blocks when detection identifies the tree as a node format tree 439 * incorrectly. In this case, we need to swap the verifier to match the correct 440 * format of the block being read. 441 */ 442 static void 443 xfs_attr3_leaf_read_verify( 444 struct xfs_buf *bp) 445 { 446 struct xfs_mount *mp = bp->b_mount; 447 xfs_failaddr_t fa; 448 449 if (xfs_has_crc(mp) && 450 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 451 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 452 else { 453 fa = xfs_attr3_leaf_verify(bp); 454 if (fa) 455 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 456 } 457 } 458 459 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 460 .name = "xfs_attr3_leaf", 461 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 462 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 463 .verify_read = xfs_attr3_leaf_read_verify, 464 .verify_write = xfs_attr3_leaf_write_verify, 465 .verify_struct = xfs_attr3_leaf_verify, 466 }; 467 468 int 469 xfs_attr3_leaf_read( 470 struct xfs_trans *tp, 471 struct xfs_inode *dp, 472 xfs_ino_t owner, 473 xfs_dablk_t bno, 474 struct xfs_buf **bpp) 475 { 476 xfs_failaddr_t fa; 477 int err; 478 479 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 480 &xfs_attr3_leaf_buf_ops); 481 if (err || !(*bpp)) 482 return err; 483 484 fa = xfs_attr3_leaf_header_check(*bpp, owner); 485 if (fa) { 486 __xfs_buf_mark_corrupt(*bpp, fa); 487 xfs_trans_brelse(tp, *bpp); 488 *bpp = NULL; 489 xfs_dirattr_mark_sick(dp, XFS_ATTR_FORK); 490 return -EFSCORRUPTED; 491 } 492 493 if (tp) 494 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 495 return 0; 496 } 497 498 /*======================================================================== 499 * Namespace helper routines 500 *========================================================================*/ 501 502 /* 503 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 504 * flag on disk - if there's an incomplete attr then recovery needs to tear it 505 * down. If there's no incomplete attr, then recovery needs to tear that attr 506 * down to replace it with the attr that has been logged. In this case, the 507 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 508 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 509 */ 510 static inline unsigned int xfs_attr_match_mask(const struct xfs_da_args *args) 511 { 512 if (args->op_flags & XFS_DA_OP_RECOVERY) 513 return XFS_ATTR_NSP_ONDISK_MASK; 514 return XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE; 515 } 516 517 static inline bool 518 xfs_attr_parent_match( 519 const struct xfs_da_args *args, 520 const void *value, 521 unsigned int valuelen) 522 { 523 ASSERT(args->value != NULL); 524 525 /* Parent pointers do not use remote values */ 526 if (!value) 527 return false; 528 529 /* 530 * The only value we support is a parent rec. However, we'll accept 531 * any valuelen so that offline repair can delete ATTR_PARENT values 532 * that are not parent pointers. 533 */ 534 if (valuelen != args->valuelen) 535 return false; 536 537 return memcmp(args->value, value, valuelen) == 0; 538 } 539 540 static bool 541 xfs_attr_match( 542 struct xfs_da_args *args, 543 unsigned int attr_flags, 544 const unsigned char *name, 545 unsigned int namelen, 546 const void *value, 547 unsigned int valuelen) 548 { 549 unsigned int mask = xfs_attr_match_mask(args); 550 551 if (args->namelen != namelen) 552 return false; 553 if ((args->attr_filter & mask) != (attr_flags & mask)) 554 return false; 555 if (memcmp(args->name, name, namelen) != 0) 556 return false; 557 558 if (attr_flags & XFS_ATTR_PARENT) 559 return xfs_attr_parent_match(args, value, valuelen); 560 561 return true; 562 } 563 564 static int 565 xfs_attr_copy_value( 566 struct xfs_da_args *args, 567 unsigned char *value, 568 int valuelen) 569 { 570 /* 571 * Parent pointer lookups require the caller to specify the name and 572 * value, so don't copy anything. 573 */ 574 if (args->attr_filter & XFS_ATTR_PARENT) 575 return 0; 576 577 /* 578 * No copy if all we have to do is get the length 579 */ 580 if (!args->valuelen) { 581 args->valuelen = valuelen; 582 return 0; 583 } 584 585 /* 586 * No copy if the length of the existing buffer is too small 587 */ 588 if (args->valuelen < valuelen) { 589 args->valuelen = valuelen; 590 return -ERANGE; 591 } 592 593 if (!args->value) { 594 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 595 if (!args->value) 596 return -ENOMEM; 597 } 598 args->valuelen = valuelen; 599 600 /* remote block xattr requires IO for copy-in */ 601 if (args->rmtblkno) 602 return xfs_attr_rmtval_get(args); 603 604 /* 605 * This is to prevent a GCC warning because the remote xattr case 606 * doesn't have a value to pass in. In that case, we never reach here, 607 * but GCC can't work that out and so throws a "passing NULL to 608 * memcpy" warning. 609 */ 610 if (!value) 611 return -EINVAL; 612 memcpy(args->value, value, valuelen); 613 return 0; 614 } 615 616 /*======================================================================== 617 * External routines when attribute fork size < XFS_LITINO(mp). 618 *========================================================================*/ 619 620 /* 621 * Query whether the total requested number of attr fork bytes of extended 622 * attribute space will be able to fit inline. 623 * 624 * Returns zero if not, else the i_forkoff fork offset to be used in the 625 * literal area for attribute data once the new bytes have been added. 626 * 627 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 628 * special case for dev/uuid inodes, they have fixed size data forks. 629 */ 630 int 631 xfs_attr_shortform_bytesfit( 632 struct xfs_inode *dp, 633 int bytes) 634 { 635 struct xfs_mount *mp = dp->i_mount; 636 int64_t dsize; 637 int minforkoff; 638 int maxforkoff; 639 int offset; 640 641 /* 642 * Check if the new size could fit at all first: 643 */ 644 if (bytes > XFS_LITINO(mp)) 645 return 0; 646 647 /* rounded down */ 648 offset = (XFS_LITINO(mp) - bytes) >> 3; 649 650 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 651 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 652 return (offset >= minforkoff) ? minforkoff : 0; 653 } 654 655 /* 656 * If the requested numbers of bytes is smaller or equal to the 657 * current attribute fork size we can always proceed. 658 * 659 * Note that if_bytes in the data fork might actually be larger than 660 * the current data fork size is due to delalloc extents. In that 661 * case either the extent count will go down when they are converted 662 * to real extents, or the delalloc conversion will take care of the 663 * literal area rebalancing. 664 */ 665 if (bytes <= xfs_inode_attr_fork_size(dp)) 666 return dp->i_forkoff; 667 668 /* 669 * For attr2 we can try to move the forkoff if there is space in the 670 * literal area, but for the old format we are done if there is no 671 * space in the fixed attribute fork. 672 */ 673 if (!xfs_has_attr2(mp)) 674 return 0; 675 676 dsize = dp->i_df.if_bytes; 677 678 switch (dp->i_df.if_format) { 679 case XFS_DINODE_FMT_EXTENTS: 680 /* 681 * If there is no attr fork and the data fork is extents, 682 * determine if creating the default attr fork will result 683 * in the extents form migrating to btree. If so, the 684 * minimum offset only needs to be the space required for 685 * the btree root. 686 */ 687 if (!dp->i_forkoff && dp->i_df.if_bytes > 688 xfs_default_attroffset(dp)) 689 dsize = xfs_bmdr_space_calc(MINDBTPTRS); 690 break; 691 case XFS_DINODE_FMT_BTREE: 692 /* 693 * If we have a data btree then keep forkoff if we have one, 694 * otherwise we are adding a new attr, so then we set 695 * minforkoff to where the btree root can finish so we have 696 * plenty of room for attrs 697 */ 698 if (dp->i_forkoff) { 699 if (offset < dp->i_forkoff) 700 return 0; 701 return dp->i_forkoff; 702 } 703 dsize = xfs_bmap_bmdr_space(dp->i_df.if_broot); 704 break; 705 } 706 707 /* 708 * A data fork btree root must have space for at least 709 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 710 */ 711 minforkoff = max_t(int64_t, dsize, xfs_bmdr_space_calc(MINDBTPTRS)); 712 minforkoff = roundup(minforkoff, 8) >> 3; 713 714 /* attr fork btree root can have at least this many key/ptr pairs */ 715 maxforkoff = XFS_LITINO(mp) - xfs_bmdr_space_calc(MINABTPTRS); 716 maxforkoff = maxforkoff >> 3; /* rounded down */ 717 718 if (offset >= maxforkoff) 719 return maxforkoff; 720 if (offset >= minforkoff) 721 return offset; 722 return 0; 723 } 724 725 /* 726 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 727 * - noattr2 mount option is set, 728 * - on-disk version bit says it is already set, or 729 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 730 */ 731 STATIC void 732 xfs_sbversion_add_attr2( 733 struct xfs_mount *mp, 734 struct xfs_trans *tp) 735 { 736 if (xfs_has_noattr2(mp)) 737 return; 738 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 739 return; 740 if (!xfs_has_attr2(mp)) 741 return; 742 743 spin_lock(&mp->m_sb_lock); 744 xfs_add_attr2(mp); 745 spin_unlock(&mp->m_sb_lock); 746 xfs_log_sb(tp); 747 } 748 749 /* 750 * Create the initial contents of a shortform attribute list. 751 */ 752 void 753 xfs_attr_shortform_create( 754 struct xfs_da_args *args) 755 { 756 struct xfs_inode *dp = args->dp; 757 struct xfs_ifork *ifp = &dp->i_af; 758 struct xfs_attr_sf_hdr *hdr; 759 760 trace_xfs_attr_sf_create(args); 761 762 ASSERT(ifp->if_bytes == 0); 763 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 764 ifp->if_format = XFS_DINODE_FMT_LOCAL; 765 766 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 767 memset(hdr, 0, sizeof(*hdr)); 768 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 769 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 770 } 771 772 /* 773 * Return the entry if the attr in args is found, or NULL if not. 774 */ 775 struct xfs_attr_sf_entry * 776 xfs_attr_sf_findname( 777 struct xfs_da_args *args) 778 { 779 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data; 780 struct xfs_attr_sf_entry *sfe; 781 782 for (sfe = xfs_attr_sf_firstentry(sf); 783 sfe < xfs_attr_sf_endptr(sf); 784 sfe = xfs_attr_sf_nextentry(sfe)) { 785 if (xfs_attr_match(args, sfe->flags, sfe->nameval, 786 sfe->namelen, &sfe->nameval[sfe->namelen], 787 sfe->valuelen)) 788 return sfe; 789 } 790 791 return NULL; 792 } 793 794 /* 795 * Add a name/value pair to the shortform attribute list. 796 * Overflow from the inode has already been checked for. 797 */ 798 void 799 xfs_attr_shortform_add( 800 struct xfs_da_args *args, 801 int forkoff) 802 { 803 struct xfs_inode *dp = args->dp; 804 struct xfs_mount *mp = dp->i_mount; 805 struct xfs_ifork *ifp = &dp->i_af; 806 struct xfs_attr_sf_hdr *sf = ifp->if_data; 807 struct xfs_attr_sf_entry *sfe; 808 int size; 809 810 trace_xfs_attr_sf_add(args); 811 812 dp->i_forkoff = forkoff; 813 814 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 815 ASSERT(!xfs_attr_sf_findname(args)); 816 817 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 818 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 819 820 sfe = xfs_attr_sf_endptr(sf); 821 sfe->namelen = args->namelen; 822 sfe->valuelen = args->valuelen; 823 sfe->flags = args->attr_filter; 824 memcpy(sfe->nameval, args->name, args->namelen); 825 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 826 sf->count++; 827 be16_add_cpu(&sf->totsize, size); 828 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 829 830 xfs_sbversion_add_attr2(mp, args->trans); 831 } 832 833 /* 834 * After the last attribute is removed revert to original inode format, 835 * making all literal area available to the data fork once more. 836 */ 837 void 838 xfs_attr_fork_remove( 839 struct xfs_inode *ip, 840 struct xfs_trans *tp) 841 { 842 ASSERT(ip->i_af.if_nextents == 0); 843 844 xfs_ifork_zap_attr(ip); 845 ip->i_forkoff = 0; 846 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 847 } 848 849 /* 850 * Remove an attribute from the shortform attribute list structure. 851 */ 852 int 853 xfs_attr_sf_removename( 854 struct xfs_da_args *args) 855 { 856 struct xfs_inode *dp = args->dp; 857 struct xfs_mount *mp = dp->i_mount; 858 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data; 859 struct xfs_attr_sf_entry *sfe; 860 uint16_t totsize = be16_to_cpu(sf->totsize); 861 void *next, *end; 862 int size = 0; 863 864 trace_xfs_attr_sf_remove(args); 865 866 sfe = xfs_attr_sf_findname(args); 867 if (!sfe) { 868 /* 869 * If we are recovering an operation, finding nothing to remove 870 * is not an error, it just means there was nothing to clean up. 871 */ 872 if (args->op_flags & XFS_DA_OP_RECOVERY) 873 return 0; 874 return -ENOATTR; 875 } 876 877 /* 878 * Fix up the attribute fork data, covering the hole 879 */ 880 size = xfs_attr_sf_entsize(sfe); 881 next = xfs_attr_sf_nextentry(sfe); 882 end = xfs_attr_sf_endptr(sf); 883 if (next < end) 884 memmove(sfe, next, end - next); 885 sf->count--; 886 totsize -= size; 887 sf->totsize = cpu_to_be16(totsize); 888 889 /* 890 * Fix up the start offset of the attribute fork 891 */ 892 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) && 893 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 894 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE)) && 895 !xfs_has_parent(mp)) { 896 xfs_attr_fork_remove(dp, args->trans); 897 } else { 898 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 899 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 900 ASSERT(dp->i_forkoff); 901 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) || 902 (args->op_flags & XFS_DA_OP_ADDNAME) || 903 !xfs_has_attr2(mp) || 904 dp->i_df.if_format == XFS_DINODE_FMT_BTREE || 905 xfs_has_parent(mp)); 906 xfs_trans_log_inode(args->trans, dp, 907 XFS_ILOG_CORE | XFS_ILOG_ADATA); 908 } 909 910 xfs_sbversion_add_attr2(mp, args->trans); 911 912 return 0; 913 } 914 915 /* 916 * Retrieve the attribute value and length. 917 * 918 * If args->valuelen is zero, only the length needs to be returned. Unlike a 919 * lookup, we only return an error if the attribute does not exist or we can't 920 * retrieve the value. 921 */ 922 int 923 xfs_attr_shortform_getvalue( 924 struct xfs_da_args *args) 925 { 926 struct xfs_attr_sf_entry *sfe; 927 928 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL); 929 930 trace_xfs_attr_sf_lookup(args); 931 932 sfe = xfs_attr_sf_findname(args); 933 if (!sfe) 934 return -ENOATTR; 935 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen], 936 sfe->valuelen); 937 } 938 939 /* Convert from using the shortform to the leaf format. */ 940 int 941 xfs_attr_shortform_to_leaf( 942 struct xfs_da_args *args) 943 { 944 struct xfs_inode *dp = args->dp; 945 struct xfs_ifork *ifp = &dp->i_af; 946 struct xfs_attr_sf_hdr *sf = ifp->if_data; 947 struct xfs_attr_sf_entry *sfe; 948 int size = be16_to_cpu(sf->totsize); 949 struct xfs_da_args nargs; 950 char *tmpbuffer; 951 int error, i; 952 xfs_dablk_t blkno; 953 struct xfs_buf *bp; 954 955 trace_xfs_attr_sf_to_leaf(args); 956 957 tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL); 958 memcpy(tmpbuffer, ifp->if_data, size); 959 sf = (struct xfs_attr_sf_hdr *)tmpbuffer; 960 961 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 962 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 963 964 bp = NULL; 965 error = xfs_da_grow_inode(args, &blkno); 966 if (error) 967 goto out; 968 969 ASSERT(blkno == 0); 970 error = xfs_attr3_leaf_create(args, blkno, &bp); 971 if (error) 972 goto out; 973 974 memset((char *)&nargs, 0, sizeof(nargs)); 975 nargs.dp = dp; 976 nargs.geo = args->geo; 977 nargs.total = args->total; 978 nargs.whichfork = XFS_ATTR_FORK; 979 nargs.trans = args->trans; 980 nargs.op_flags = XFS_DA_OP_OKNOENT; 981 nargs.owner = args->owner; 982 983 sfe = xfs_attr_sf_firstentry(sf); 984 for (i = 0; i < sf->count; i++) { 985 nargs.name = sfe->nameval; 986 nargs.namelen = sfe->namelen; 987 nargs.value = &sfe->nameval[nargs.namelen]; 988 nargs.valuelen = sfe->valuelen; 989 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 990 if (!xfs_attr_check_namespace(sfe->flags)) { 991 xfs_da_mark_sick(args); 992 error = -EFSCORRUPTED; 993 goto out; 994 } 995 xfs_attr_sethash(&nargs); 996 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 997 ASSERT(error == -ENOATTR); 998 error = xfs_attr3_leaf_add(bp, &nargs); 999 ASSERT(error != -ENOSPC); 1000 if (error) 1001 goto out; 1002 sfe = xfs_attr_sf_nextentry(sfe); 1003 } 1004 error = 0; 1005 out: 1006 kfree(tmpbuffer); 1007 return error; 1008 } 1009 1010 /* 1011 * Check a leaf attribute block to see if all the entries would fit into 1012 * a shortform attribute list. 1013 */ 1014 int 1015 xfs_attr_shortform_allfit( 1016 struct xfs_buf *bp, 1017 struct xfs_inode *dp) 1018 { 1019 struct xfs_attr_leafblock *leaf; 1020 struct xfs_attr_leaf_entry *entry; 1021 xfs_attr_leaf_name_local_t *name_loc; 1022 struct xfs_attr3_icleaf_hdr leafhdr; 1023 int bytes; 1024 int i; 1025 struct xfs_mount *mp = bp->b_mount; 1026 1027 leaf = bp->b_addr; 1028 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 1029 entry = xfs_attr3_leaf_entryp(leaf); 1030 1031 bytes = sizeof(struct xfs_attr_sf_hdr); 1032 for (i = 0; i < leafhdr.count; entry++, i++) { 1033 if (entry->flags & XFS_ATTR_INCOMPLETE) 1034 continue; /* don't copy partial entries */ 1035 if (!(entry->flags & XFS_ATTR_LOCAL)) 1036 return 0; 1037 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1038 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 1039 return 0; 1040 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 1041 return 0; 1042 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 1043 be16_to_cpu(name_loc->valuelen)); 1044 } 1045 if (xfs_has_attr2(dp->i_mount) && 1046 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1047 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1048 return -1; 1049 return xfs_attr_shortform_bytesfit(dp, bytes); 1050 } 1051 1052 /* Verify the consistency of a raw inline attribute fork. */ 1053 xfs_failaddr_t 1054 xfs_attr_shortform_verify( 1055 struct xfs_attr_sf_hdr *sfp, 1056 size_t size) 1057 { 1058 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp); 1059 struct xfs_attr_sf_entry *next_sfep; 1060 char *endp; 1061 int i; 1062 1063 /* 1064 * Give up if the attribute is way too short. 1065 */ 1066 if (size < sizeof(struct xfs_attr_sf_hdr)) 1067 return __this_address; 1068 1069 endp = (char *)sfp + size; 1070 1071 /* Check all reported entries */ 1072 for (i = 0; i < sfp->count; i++) { 1073 /* 1074 * struct xfs_attr_sf_entry has a variable length. 1075 * Check the fixed-offset parts of the structure are 1076 * within the data buffer. 1077 * xfs_attr_sf_entry is defined with a 1-byte variable 1078 * array at the end, so we must subtract that off. 1079 */ 1080 if (((char *)sfep + sizeof(*sfep)) >= endp) 1081 return __this_address; 1082 1083 /* Don't allow names with known bad length. */ 1084 if (sfep->namelen == 0) 1085 return __this_address; 1086 1087 /* 1088 * Check that the variable-length part of the structure is 1089 * within the data buffer. The next entry starts after the 1090 * name component, so nextentry is an acceptable test. 1091 */ 1092 next_sfep = xfs_attr_sf_nextentry(sfep); 1093 if ((char *)next_sfep > endp) 1094 return __this_address; 1095 1096 /* 1097 * Check for unknown flags. Short form doesn't support 1098 * the incomplete or local bits, so we can use the namespace 1099 * mask here. 1100 */ 1101 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1102 return __this_address; 1103 1104 /* 1105 * Check for invalid namespace combinations. We only allow 1106 * one namespace flag per xattr, so we can just count the 1107 * bits (i.e. hweight) here. 1108 */ 1109 if (!xfs_attr_check_namespace(sfep->flags)) 1110 return __this_address; 1111 1112 sfep = next_sfep; 1113 } 1114 if ((void *)sfep != (void *)endp) 1115 return __this_address; 1116 1117 return NULL; 1118 } 1119 1120 /* 1121 * Convert a leaf attribute list to shortform attribute list 1122 */ 1123 int 1124 xfs_attr3_leaf_to_shortform( 1125 struct xfs_buf *bp, 1126 struct xfs_da_args *args, 1127 int forkoff) 1128 { 1129 struct xfs_attr_leafblock *leaf; 1130 struct xfs_attr3_icleaf_hdr ichdr; 1131 struct xfs_attr_leaf_entry *entry; 1132 struct xfs_attr_leaf_name_local *name_loc; 1133 struct xfs_da_args nargs; 1134 struct xfs_inode *dp = args->dp; 1135 char *tmpbuffer; 1136 int error; 1137 int i; 1138 1139 trace_xfs_attr_leaf_to_sf(args); 1140 1141 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1142 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1143 1144 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1145 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1146 entry = xfs_attr3_leaf_entryp(leaf); 1147 1148 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1149 memset(bp->b_addr, 0, args->geo->blksize); 1150 1151 /* 1152 * Clean out the prior contents of the attribute list. 1153 */ 1154 error = xfs_da_shrink_inode(args, 0, bp); 1155 if (error) 1156 goto out; 1157 1158 if (forkoff == -1) { 1159 /* 1160 * Don't remove the attr fork if this operation is the first 1161 * part of a attr replace operations. We're going to add a new 1162 * attr immediately, so we need to keep the attr fork around in 1163 * this case. 1164 */ 1165 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1166 ASSERT(xfs_has_attr2(dp->i_mount)); 1167 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1168 xfs_attr_fork_remove(dp, args->trans); 1169 } 1170 goto out; 1171 } 1172 1173 xfs_attr_shortform_create(args); 1174 1175 /* 1176 * Copy the attributes 1177 */ 1178 memset((char *)&nargs, 0, sizeof(nargs)); 1179 nargs.geo = args->geo; 1180 nargs.dp = dp; 1181 nargs.total = args->total; 1182 nargs.whichfork = XFS_ATTR_FORK; 1183 nargs.trans = args->trans; 1184 nargs.op_flags = XFS_DA_OP_OKNOENT; 1185 nargs.owner = args->owner; 1186 1187 for (i = 0; i < ichdr.count; entry++, i++) { 1188 if (entry->flags & XFS_ATTR_INCOMPLETE) 1189 continue; /* don't copy partial entries */ 1190 if (!entry->nameidx) 1191 continue; 1192 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1193 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1194 nargs.name = name_loc->nameval; 1195 nargs.namelen = name_loc->namelen; 1196 nargs.value = &name_loc->nameval[nargs.namelen]; 1197 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1198 nargs.hashval = be32_to_cpu(entry->hashval); 1199 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1200 xfs_attr_shortform_add(&nargs, forkoff); 1201 } 1202 error = 0; 1203 1204 out: 1205 kvfree(tmpbuffer); 1206 return error; 1207 } 1208 1209 /* 1210 * Convert from using a single leaf to a root node and a leaf. 1211 */ 1212 int 1213 xfs_attr3_leaf_to_node( 1214 struct xfs_da_args *args) 1215 { 1216 struct xfs_attr_leafblock *leaf; 1217 struct xfs_attr3_icleaf_hdr icleafhdr; 1218 struct xfs_attr_leaf_entry *entries; 1219 struct xfs_da3_icnode_hdr icnodehdr; 1220 struct xfs_da_intnode *node; 1221 struct xfs_inode *dp = args->dp; 1222 struct xfs_mount *mp = dp->i_mount; 1223 struct xfs_buf *bp1 = NULL; 1224 struct xfs_buf *bp2 = NULL; 1225 xfs_dablk_t blkno; 1226 int error; 1227 1228 trace_xfs_attr_leaf_to_node(args); 1229 1230 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1231 error = -EIO; 1232 goto out; 1233 } 1234 1235 error = xfs_da_grow_inode(args, &blkno); 1236 if (error) 1237 goto out; 1238 error = xfs_attr3_leaf_read(args->trans, dp, args->owner, 0, &bp1); 1239 if (error) 1240 goto out; 1241 1242 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1243 if (error) 1244 goto out; 1245 1246 /* 1247 * Copy leaf to new buffer and log it. 1248 */ 1249 xfs_da_buf_copy(bp2, bp1, args->geo->blksize); 1250 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1251 1252 /* 1253 * Set up the new root node. 1254 */ 1255 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1256 if (error) 1257 goto out; 1258 node = bp1->b_addr; 1259 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1260 1261 leaf = bp2->b_addr; 1262 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1263 entries = xfs_attr3_leaf_entryp(leaf); 1264 1265 /* both on-disk, don't endian-flip twice */ 1266 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1267 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1268 icnodehdr.count = 1; 1269 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1270 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1271 error = 0; 1272 out: 1273 return error; 1274 } 1275 1276 /*======================================================================== 1277 * Routines used for growing the Btree. 1278 *========================================================================*/ 1279 1280 /* 1281 * Create the initial contents of a leaf attribute list 1282 * or a leaf in a node attribute list. 1283 */ 1284 STATIC int 1285 xfs_attr3_leaf_create( 1286 struct xfs_da_args *args, 1287 xfs_dablk_t blkno, 1288 struct xfs_buf **bpp) 1289 { 1290 struct xfs_attr_leafblock *leaf; 1291 struct xfs_attr3_icleaf_hdr ichdr; 1292 struct xfs_inode *dp = args->dp; 1293 struct xfs_mount *mp = dp->i_mount; 1294 struct xfs_buf *bp; 1295 int error; 1296 1297 trace_xfs_attr_leaf_create(args); 1298 1299 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1300 XFS_ATTR_FORK); 1301 if (error) 1302 return error; 1303 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1304 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1305 leaf = bp->b_addr; 1306 memset(leaf, 0, args->geo->blksize); 1307 1308 memset(&ichdr, 0, sizeof(ichdr)); 1309 ichdr.firstused = args->geo->blksize; 1310 1311 if (xfs_has_crc(mp)) { 1312 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1313 1314 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1315 1316 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1317 hdr3->owner = cpu_to_be64(args->owner); 1318 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1319 1320 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1321 } else { 1322 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1323 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1324 } 1325 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1326 1327 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1328 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1329 1330 *bpp = bp; 1331 return 0; 1332 } 1333 1334 /* 1335 * Split the leaf node, rebalance, then add the new entry. 1336 */ 1337 int 1338 xfs_attr3_leaf_split( 1339 struct xfs_da_state *state, 1340 struct xfs_da_state_blk *oldblk, 1341 struct xfs_da_state_blk *newblk) 1342 { 1343 xfs_dablk_t blkno; 1344 int error; 1345 1346 trace_xfs_attr_leaf_split(state->args); 1347 1348 /* 1349 * Allocate space for a new leaf node. 1350 */ 1351 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1352 error = xfs_da_grow_inode(state->args, &blkno); 1353 if (error) 1354 return error; 1355 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1356 if (error) 1357 return error; 1358 newblk->blkno = blkno; 1359 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1360 1361 /* 1362 * Rebalance the entries across the two leaves. 1363 * NOTE: rebalance() currently depends on the 2nd block being empty. 1364 */ 1365 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1366 error = xfs_da3_blk_link(state, oldblk, newblk); 1367 if (error) 1368 return error; 1369 1370 /* 1371 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1372 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1373 * "new" attrs info. Will need the "old" info to remove it later. 1374 * 1375 * Insert the "new" entry in the correct block. 1376 */ 1377 if (state->inleaf) { 1378 trace_xfs_attr_leaf_add_old(state->args); 1379 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1380 } else { 1381 trace_xfs_attr_leaf_add_new(state->args); 1382 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1383 } 1384 1385 /* 1386 * Update last hashval in each block since we added the name. 1387 */ 1388 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1389 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1390 return error; 1391 } 1392 1393 /* 1394 * Add a name to the leaf attribute list structure. 1395 */ 1396 int 1397 xfs_attr3_leaf_add( 1398 struct xfs_buf *bp, 1399 struct xfs_da_args *args) 1400 { 1401 struct xfs_attr_leafblock *leaf; 1402 struct xfs_attr3_icleaf_hdr ichdr; 1403 int tablesize; 1404 int entsize; 1405 int sum; 1406 int tmp; 1407 int i; 1408 1409 trace_xfs_attr_leaf_add(args); 1410 1411 leaf = bp->b_addr; 1412 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1413 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1414 entsize = xfs_attr_leaf_newentsize(args, NULL); 1415 1416 /* 1417 * Search through freemap for first-fit on new name length. 1418 * (may need to figure in size of entry struct too) 1419 */ 1420 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1421 + xfs_attr3_leaf_hdr_size(leaf); 1422 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1423 if (tablesize > ichdr.firstused) { 1424 sum += ichdr.freemap[i].size; 1425 continue; 1426 } 1427 if (!ichdr.freemap[i].size) 1428 continue; /* no space in this map */ 1429 tmp = entsize; 1430 if (ichdr.freemap[i].base < ichdr.firstused) 1431 tmp += sizeof(xfs_attr_leaf_entry_t); 1432 if (ichdr.freemap[i].size >= tmp) { 1433 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1434 goto out_log_hdr; 1435 } 1436 sum += ichdr.freemap[i].size; 1437 } 1438 1439 /* 1440 * If there are no holes in the address space of the block, 1441 * and we don't have enough freespace, then compaction will do us 1442 * no good and we should just give up. 1443 */ 1444 if (!ichdr.holes && sum < entsize) 1445 return -ENOSPC; 1446 1447 /* 1448 * Compact the entries to coalesce free space. 1449 * This may change the hdr->count via dropping INCOMPLETE entries. 1450 */ 1451 xfs_attr3_leaf_compact(args, &ichdr, bp); 1452 1453 /* 1454 * After compaction, the block is guaranteed to have only one 1455 * free region, in freemap[0]. If it is not big enough, give up. 1456 */ 1457 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1458 tmp = -ENOSPC; 1459 goto out_log_hdr; 1460 } 1461 1462 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1463 1464 out_log_hdr: 1465 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1466 xfs_trans_log_buf(args->trans, bp, 1467 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1468 xfs_attr3_leaf_hdr_size(leaf))); 1469 return tmp; 1470 } 1471 1472 /* 1473 * Add a name to a leaf attribute list structure. 1474 */ 1475 STATIC int 1476 xfs_attr3_leaf_add_work( 1477 struct xfs_buf *bp, 1478 struct xfs_attr3_icleaf_hdr *ichdr, 1479 struct xfs_da_args *args, 1480 int mapindex) 1481 { 1482 struct xfs_attr_leafblock *leaf; 1483 struct xfs_attr_leaf_entry *entry; 1484 struct xfs_attr_leaf_name_local *name_loc; 1485 struct xfs_attr_leaf_name_remote *name_rmt; 1486 struct xfs_mount *mp; 1487 int tmp; 1488 int i; 1489 1490 trace_xfs_attr_leaf_add_work(args); 1491 1492 leaf = bp->b_addr; 1493 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1494 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1495 1496 /* 1497 * Force open some space in the entry array and fill it in. 1498 */ 1499 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1500 if (args->index < ichdr->count) { 1501 tmp = ichdr->count - args->index; 1502 tmp *= sizeof(xfs_attr_leaf_entry_t); 1503 memmove(entry + 1, entry, tmp); 1504 xfs_trans_log_buf(args->trans, bp, 1505 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1506 } 1507 ichdr->count++; 1508 1509 /* 1510 * Allocate space for the new string (at the end of the run). 1511 */ 1512 mp = args->trans->t_mountp; 1513 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1514 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1515 ASSERT(ichdr->freemap[mapindex].size >= 1516 xfs_attr_leaf_newentsize(args, NULL)); 1517 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1518 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1519 1520 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1521 1522 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1523 ichdr->freemap[mapindex].size); 1524 entry->hashval = cpu_to_be32(args->hashval); 1525 entry->flags = args->attr_filter; 1526 if (tmp) 1527 entry->flags |= XFS_ATTR_LOCAL; 1528 if (args->op_flags & XFS_DA_OP_REPLACE) { 1529 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1530 entry->flags |= XFS_ATTR_INCOMPLETE; 1531 if ((args->blkno2 == args->blkno) && 1532 (args->index2 <= args->index)) { 1533 args->index2++; 1534 } 1535 } 1536 xfs_trans_log_buf(args->trans, bp, 1537 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1538 ASSERT((args->index == 0) || 1539 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1540 ASSERT((args->index == ichdr->count - 1) || 1541 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1542 1543 /* 1544 * For "remote" attribute values, simply note that we need to 1545 * allocate space for the "remote" value. We can't actually 1546 * allocate the extents in this transaction, and we can't decide 1547 * which blocks they should be as we might allocate more blocks 1548 * as part of this transaction (a split operation for example). 1549 */ 1550 if (entry->flags & XFS_ATTR_LOCAL) { 1551 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1552 name_loc->namelen = args->namelen; 1553 name_loc->valuelen = cpu_to_be16(args->valuelen); 1554 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1555 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1556 be16_to_cpu(name_loc->valuelen)); 1557 } else { 1558 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1559 name_rmt->namelen = args->namelen; 1560 memcpy((char *)name_rmt->name, args->name, args->namelen); 1561 entry->flags |= XFS_ATTR_INCOMPLETE; 1562 /* just in case */ 1563 name_rmt->valuelen = 0; 1564 name_rmt->valueblk = 0; 1565 args->rmtblkno = 1; 1566 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1567 args->rmtvaluelen = args->valuelen; 1568 } 1569 xfs_trans_log_buf(args->trans, bp, 1570 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1571 xfs_attr_leaf_entsize(leaf, args->index))); 1572 1573 /* 1574 * Update the control info for this leaf node 1575 */ 1576 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1577 ichdr->firstused = be16_to_cpu(entry->nameidx); 1578 1579 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1580 + xfs_attr3_leaf_hdr_size(leaf)); 1581 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1582 + xfs_attr3_leaf_hdr_size(leaf); 1583 1584 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1585 if (ichdr->freemap[i].base == tmp) { 1586 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1587 ichdr->freemap[i].size -= 1588 min_t(uint16_t, ichdr->freemap[i].size, 1589 sizeof(xfs_attr_leaf_entry_t)); 1590 } 1591 } 1592 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1593 return 0; 1594 } 1595 1596 /* 1597 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1598 */ 1599 STATIC void 1600 xfs_attr3_leaf_compact( 1601 struct xfs_da_args *args, 1602 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1603 struct xfs_buf *bp) 1604 { 1605 struct xfs_attr_leafblock *leaf_src; 1606 struct xfs_attr_leafblock *leaf_dst; 1607 struct xfs_attr3_icleaf_hdr ichdr_src; 1608 struct xfs_trans *trans = args->trans; 1609 char *tmpbuffer; 1610 1611 trace_xfs_attr_leaf_compact(args); 1612 1613 tmpbuffer = kvmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1614 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1615 memset(bp->b_addr, 0, args->geo->blksize); 1616 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1617 leaf_dst = bp->b_addr; 1618 1619 /* 1620 * Copy the on-disk header back into the destination buffer to ensure 1621 * all the information in the header that is not part of the incore 1622 * header structure is preserved. 1623 */ 1624 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1625 1626 /* Initialise the incore headers */ 1627 ichdr_src = *ichdr_dst; /* struct copy */ 1628 ichdr_dst->firstused = args->geo->blksize; 1629 ichdr_dst->usedbytes = 0; 1630 ichdr_dst->count = 0; 1631 ichdr_dst->holes = 0; 1632 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1633 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1634 ichdr_dst->freemap[0].base; 1635 1636 /* write the header back to initialise the underlying buffer */ 1637 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1638 1639 /* 1640 * Copy all entry's in the same (sorted) order, 1641 * but allocate name/value pairs packed and in sequence. 1642 */ 1643 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1644 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1645 /* 1646 * this logs the entire buffer, but the caller must write the header 1647 * back to the buffer when it is finished modifying it. 1648 */ 1649 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1650 1651 kvfree(tmpbuffer); 1652 } 1653 1654 /* 1655 * Compare two leaf blocks "order". 1656 * Return 0 unless leaf2 should go before leaf1. 1657 */ 1658 static int 1659 xfs_attr3_leaf_order( 1660 struct xfs_buf *leaf1_bp, 1661 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1662 struct xfs_buf *leaf2_bp, 1663 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1664 { 1665 struct xfs_attr_leaf_entry *entries1; 1666 struct xfs_attr_leaf_entry *entries2; 1667 1668 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1669 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1670 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1671 ((be32_to_cpu(entries2[0].hashval) < 1672 be32_to_cpu(entries1[0].hashval)) || 1673 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1674 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1675 return 1; 1676 } 1677 return 0; 1678 } 1679 1680 int 1681 xfs_attr_leaf_order( 1682 struct xfs_buf *leaf1_bp, 1683 struct xfs_buf *leaf2_bp) 1684 { 1685 struct xfs_attr3_icleaf_hdr ichdr1; 1686 struct xfs_attr3_icleaf_hdr ichdr2; 1687 struct xfs_mount *mp = leaf1_bp->b_mount; 1688 1689 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1690 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1691 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1692 } 1693 1694 /* 1695 * Redistribute the attribute list entries between two leaf nodes, 1696 * taking into account the size of the new entry. 1697 * 1698 * NOTE: if new block is empty, then it will get the upper half of the 1699 * old block. At present, all (one) callers pass in an empty second block. 1700 * 1701 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1702 * to match what it is doing in splitting the attribute leaf block. Those 1703 * values are used in "atomic rename" operations on attributes. Note that 1704 * the "new" and "old" values can end up in different blocks. 1705 */ 1706 STATIC void 1707 xfs_attr3_leaf_rebalance( 1708 struct xfs_da_state *state, 1709 struct xfs_da_state_blk *blk1, 1710 struct xfs_da_state_blk *blk2) 1711 { 1712 struct xfs_da_args *args; 1713 struct xfs_attr_leafblock *leaf1; 1714 struct xfs_attr_leafblock *leaf2; 1715 struct xfs_attr3_icleaf_hdr ichdr1; 1716 struct xfs_attr3_icleaf_hdr ichdr2; 1717 struct xfs_attr_leaf_entry *entries1; 1718 struct xfs_attr_leaf_entry *entries2; 1719 int count; 1720 int totallen; 1721 int max; 1722 int space; 1723 int swap; 1724 1725 /* 1726 * Set up environment. 1727 */ 1728 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1729 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1730 leaf1 = blk1->bp->b_addr; 1731 leaf2 = blk2->bp->b_addr; 1732 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1733 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1734 ASSERT(ichdr2.count == 0); 1735 args = state->args; 1736 1737 trace_xfs_attr_leaf_rebalance(args); 1738 1739 /* 1740 * Check ordering of blocks, reverse if it makes things simpler. 1741 * 1742 * NOTE: Given that all (current) callers pass in an empty 1743 * second block, this code should never set "swap". 1744 */ 1745 swap = 0; 1746 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1747 swap(blk1, blk2); 1748 1749 /* swap structures rather than reconverting them */ 1750 swap(ichdr1, ichdr2); 1751 1752 leaf1 = blk1->bp->b_addr; 1753 leaf2 = blk2->bp->b_addr; 1754 swap = 1; 1755 } 1756 1757 /* 1758 * Examine entries until we reduce the absolute difference in 1759 * byte usage between the two blocks to a minimum. Then get 1760 * the direction to copy and the number of elements to move. 1761 * 1762 * "inleaf" is true if the new entry should be inserted into blk1. 1763 * If "swap" is also true, then reverse the sense of "inleaf". 1764 */ 1765 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1766 blk2, &ichdr2, 1767 &count, &totallen); 1768 if (swap) 1769 state->inleaf = !state->inleaf; 1770 1771 /* 1772 * Move any entries required from leaf to leaf: 1773 */ 1774 if (count < ichdr1.count) { 1775 /* 1776 * Figure the total bytes to be added to the destination leaf. 1777 */ 1778 /* number entries being moved */ 1779 count = ichdr1.count - count; 1780 space = ichdr1.usedbytes - totallen; 1781 space += count * sizeof(xfs_attr_leaf_entry_t); 1782 1783 /* 1784 * leaf2 is the destination, compact it if it looks tight. 1785 */ 1786 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1787 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1788 if (space > max) 1789 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1790 1791 /* 1792 * Move high entries from leaf1 to low end of leaf2. 1793 */ 1794 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1795 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1796 1797 } else if (count > ichdr1.count) { 1798 /* 1799 * I assert that since all callers pass in an empty 1800 * second buffer, this code should never execute. 1801 */ 1802 ASSERT(0); 1803 1804 /* 1805 * Figure the total bytes to be added to the destination leaf. 1806 */ 1807 /* number entries being moved */ 1808 count -= ichdr1.count; 1809 space = totallen - ichdr1.usedbytes; 1810 space += count * sizeof(xfs_attr_leaf_entry_t); 1811 1812 /* 1813 * leaf1 is the destination, compact it if it looks tight. 1814 */ 1815 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1816 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1817 if (space > max) 1818 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1819 1820 /* 1821 * Move low entries from leaf2 to high end of leaf1. 1822 */ 1823 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1824 ichdr1.count, count); 1825 } 1826 1827 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1828 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1829 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1830 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1831 1832 /* 1833 * Copy out last hashval in each block for B-tree code. 1834 */ 1835 entries1 = xfs_attr3_leaf_entryp(leaf1); 1836 entries2 = xfs_attr3_leaf_entryp(leaf2); 1837 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1838 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1839 1840 /* 1841 * Adjust the expected index for insertion. 1842 * NOTE: this code depends on the (current) situation that the 1843 * second block was originally empty. 1844 * 1845 * If the insertion point moved to the 2nd block, we must adjust 1846 * the index. We must also track the entry just following the 1847 * new entry for use in an "atomic rename" operation, that entry 1848 * is always the "old" entry and the "new" entry is what we are 1849 * inserting. The index/blkno fields refer to the "old" entry, 1850 * while the index2/blkno2 fields refer to the "new" entry. 1851 */ 1852 if (blk1->index > ichdr1.count) { 1853 ASSERT(state->inleaf == 0); 1854 blk2->index = blk1->index - ichdr1.count; 1855 args->index = args->index2 = blk2->index; 1856 args->blkno = args->blkno2 = blk2->blkno; 1857 } else if (blk1->index == ichdr1.count) { 1858 if (state->inleaf) { 1859 args->index = blk1->index; 1860 args->blkno = blk1->blkno; 1861 args->index2 = 0; 1862 args->blkno2 = blk2->blkno; 1863 } else { 1864 /* 1865 * On a double leaf split, the original attr location 1866 * is already stored in blkno2/index2, so don't 1867 * overwrite it overwise we corrupt the tree. 1868 */ 1869 blk2->index = blk1->index - ichdr1.count; 1870 args->index = blk2->index; 1871 args->blkno = blk2->blkno; 1872 if (!state->extravalid) { 1873 /* 1874 * set the new attr location to match the old 1875 * one and let the higher level split code 1876 * decide where in the leaf to place it. 1877 */ 1878 args->index2 = blk2->index; 1879 args->blkno2 = blk2->blkno; 1880 } 1881 } 1882 } else { 1883 ASSERT(state->inleaf == 1); 1884 args->index = args->index2 = blk1->index; 1885 args->blkno = args->blkno2 = blk1->blkno; 1886 } 1887 } 1888 1889 /* 1890 * Examine entries until we reduce the absolute difference in 1891 * byte usage between the two blocks to a minimum. 1892 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1893 * GROT: there will always be enough room in either block for a new entry. 1894 * GROT: Do a double-split for this case? 1895 */ 1896 STATIC int 1897 xfs_attr3_leaf_figure_balance( 1898 struct xfs_da_state *state, 1899 struct xfs_da_state_blk *blk1, 1900 struct xfs_attr3_icleaf_hdr *ichdr1, 1901 struct xfs_da_state_blk *blk2, 1902 struct xfs_attr3_icleaf_hdr *ichdr2, 1903 int *countarg, 1904 int *usedbytesarg) 1905 { 1906 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1907 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1908 struct xfs_attr_leaf_entry *entry; 1909 int count; 1910 int max; 1911 int index; 1912 int totallen = 0; 1913 int half; 1914 int lastdelta; 1915 int foundit = 0; 1916 int tmp; 1917 1918 /* 1919 * Examine entries until we reduce the absolute difference in 1920 * byte usage between the two blocks to a minimum. 1921 */ 1922 max = ichdr1->count + ichdr2->count; 1923 half = (max + 1) * sizeof(*entry); 1924 half += ichdr1->usedbytes + ichdr2->usedbytes + 1925 xfs_attr_leaf_newentsize(state->args, NULL); 1926 half /= 2; 1927 lastdelta = state->args->geo->blksize; 1928 entry = xfs_attr3_leaf_entryp(leaf1); 1929 for (count = index = 0; count < max; entry++, index++, count++) { 1930 1931 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1932 /* 1933 * The new entry is in the first block, account for it. 1934 */ 1935 if (count == blk1->index) { 1936 tmp = totallen + sizeof(*entry) + 1937 xfs_attr_leaf_newentsize(state->args, NULL); 1938 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1939 break; 1940 lastdelta = XFS_ATTR_ABS(half - tmp); 1941 totallen = tmp; 1942 foundit = 1; 1943 } 1944 1945 /* 1946 * Wrap around into the second block if necessary. 1947 */ 1948 if (count == ichdr1->count) { 1949 leaf1 = leaf2; 1950 entry = xfs_attr3_leaf_entryp(leaf1); 1951 index = 0; 1952 } 1953 1954 /* 1955 * Figure out if next leaf entry would be too much. 1956 */ 1957 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1958 index); 1959 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1960 break; 1961 lastdelta = XFS_ATTR_ABS(half - tmp); 1962 totallen = tmp; 1963 #undef XFS_ATTR_ABS 1964 } 1965 1966 /* 1967 * Calculate the number of usedbytes that will end up in lower block. 1968 * If new entry not in lower block, fix up the count. 1969 */ 1970 totallen -= count * sizeof(*entry); 1971 if (foundit) { 1972 totallen -= sizeof(*entry) + 1973 xfs_attr_leaf_newentsize(state->args, NULL); 1974 } 1975 1976 *countarg = count; 1977 *usedbytesarg = totallen; 1978 return foundit; 1979 } 1980 1981 /*======================================================================== 1982 * Routines used for shrinking the Btree. 1983 *========================================================================*/ 1984 1985 /* 1986 * Check a leaf block and its neighbors to see if the block should be 1987 * collapsed into one or the other neighbor. Always keep the block 1988 * with the smaller block number. 1989 * If the current block is over 50% full, don't try to join it, return 0. 1990 * If the block is empty, fill in the state structure and return 2. 1991 * If it can be collapsed, fill in the state structure and return 1. 1992 * If nothing can be done, return 0. 1993 * 1994 * GROT: allow for INCOMPLETE entries in calculation. 1995 */ 1996 int 1997 xfs_attr3_leaf_toosmall( 1998 struct xfs_da_state *state, 1999 int *action) 2000 { 2001 struct xfs_attr_leafblock *leaf; 2002 struct xfs_da_state_blk *blk; 2003 struct xfs_attr3_icleaf_hdr ichdr; 2004 struct xfs_buf *bp; 2005 xfs_dablk_t blkno; 2006 int bytes; 2007 int forward; 2008 int error; 2009 int retval; 2010 int i; 2011 2012 trace_xfs_attr_leaf_toosmall(state->args); 2013 2014 /* 2015 * Check for the degenerate case of the block being over 50% full. 2016 * If so, it's not worth even looking to see if we might be able 2017 * to coalesce with a sibling. 2018 */ 2019 blk = &state->path.blk[ state->path.active-1 ]; 2020 leaf = blk->bp->b_addr; 2021 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 2022 bytes = xfs_attr3_leaf_hdr_size(leaf) + 2023 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 2024 ichdr.usedbytes; 2025 if (bytes > (state->args->geo->blksize >> 1)) { 2026 *action = 0; /* blk over 50%, don't try to join */ 2027 return 0; 2028 } 2029 2030 /* 2031 * Check for the degenerate case of the block being empty. 2032 * If the block is empty, we'll simply delete it, no need to 2033 * coalesce it with a sibling block. We choose (arbitrarily) 2034 * to merge with the forward block unless it is NULL. 2035 */ 2036 if (ichdr.count == 0) { 2037 /* 2038 * Make altpath point to the block we want to keep and 2039 * path point to the block we want to drop (this one). 2040 */ 2041 forward = (ichdr.forw != 0); 2042 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2043 error = xfs_da3_path_shift(state, &state->altpath, forward, 2044 0, &retval); 2045 if (error) 2046 return error; 2047 if (retval) { 2048 *action = 0; 2049 } else { 2050 *action = 2; 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 * Examine each sibling block to see if we can coalesce with 2057 * at least 25% free space to spare. We need to figure out 2058 * whether to merge with the forward or the backward block. 2059 * We prefer coalescing with the lower numbered sibling so as 2060 * to shrink an attribute list over time. 2061 */ 2062 /* start with smaller blk num */ 2063 forward = ichdr.forw < ichdr.back; 2064 for (i = 0; i < 2; forward = !forward, i++) { 2065 struct xfs_attr3_icleaf_hdr ichdr2; 2066 if (forward) 2067 blkno = ichdr.forw; 2068 else 2069 blkno = ichdr.back; 2070 if (blkno == 0) 2071 continue; 2072 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2073 state->args->owner, blkno, &bp); 2074 if (error) 2075 return error; 2076 2077 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2078 2079 bytes = state->args->geo->blksize - 2080 (state->args->geo->blksize >> 2) - 2081 ichdr.usedbytes - ichdr2.usedbytes - 2082 ((ichdr.count + ichdr2.count) * 2083 sizeof(xfs_attr_leaf_entry_t)) - 2084 xfs_attr3_leaf_hdr_size(leaf); 2085 2086 xfs_trans_brelse(state->args->trans, bp); 2087 if (bytes >= 0) 2088 break; /* fits with at least 25% to spare */ 2089 } 2090 if (i >= 2) { 2091 *action = 0; 2092 return 0; 2093 } 2094 2095 /* 2096 * Make altpath point to the block we want to keep (the lower 2097 * numbered block) and path point to the block we want to drop. 2098 */ 2099 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2100 if (blkno < blk->blkno) { 2101 error = xfs_da3_path_shift(state, &state->altpath, forward, 2102 0, &retval); 2103 } else { 2104 error = xfs_da3_path_shift(state, &state->path, forward, 2105 0, &retval); 2106 } 2107 if (error) 2108 return error; 2109 if (retval) { 2110 *action = 0; 2111 } else { 2112 *action = 1; 2113 } 2114 return 0; 2115 } 2116 2117 /* 2118 * Remove a name from the leaf attribute list structure. 2119 * 2120 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2121 * If two leaves are 37% full, when combined they will leave 25% free. 2122 */ 2123 int 2124 xfs_attr3_leaf_remove( 2125 struct xfs_buf *bp, 2126 struct xfs_da_args *args) 2127 { 2128 struct xfs_attr_leafblock *leaf; 2129 struct xfs_attr3_icleaf_hdr ichdr; 2130 struct xfs_attr_leaf_entry *entry; 2131 int before; 2132 int after; 2133 int smallest; 2134 int entsize; 2135 int tablesize; 2136 int tmp; 2137 int i; 2138 2139 trace_xfs_attr_leaf_remove(args); 2140 2141 leaf = bp->b_addr; 2142 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2143 2144 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2145 ASSERT(args->index >= 0 && args->index < ichdr.count); 2146 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2147 xfs_attr3_leaf_hdr_size(leaf)); 2148 2149 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2150 2151 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2152 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2153 2154 /* 2155 * Scan through free region table: 2156 * check for adjacency of free'd entry with an existing one, 2157 * find smallest free region in case we need to replace it, 2158 * adjust any map that borders the entry table, 2159 */ 2160 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2161 + xfs_attr3_leaf_hdr_size(leaf); 2162 tmp = ichdr.freemap[0].size; 2163 before = after = -1; 2164 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2165 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2166 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2167 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2168 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2169 if (ichdr.freemap[i].base == tablesize) { 2170 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2171 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2172 } 2173 2174 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2175 be16_to_cpu(entry->nameidx)) { 2176 before = i; 2177 } else if (ichdr.freemap[i].base == 2178 (be16_to_cpu(entry->nameidx) + entsize)) { 2179 after = i; 2180 } else if (ichdr.freemap[i].size < tmp) { 2181 tmp = ichdr.freemap[i].size; 2182 smallest = i; 2183 } 2184 } 2185 2186 /* 2187 * Coalesce adjacent freemap regions, 2188 * or replace the smallest region. 2189 */ 2190 if ((before >= 0) || (after >= 0)) { 2191 if ((before >= 0) && (after >= 0)) { 2192 ichdr.freemap[before].size += entsize; 2193 ichdr.freemap[before].size += ichdr.freemap[after].size; 2194 ichdr.freemap[after].base = 0; 2195 ichdr.freemap[after].size = 0; 2196 } else if (before >= 0) { 2197 ichdr.freemap[before].size += entsize; 2198 } else { 2199 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2200 ichdr.freemap[after].size += entsize; 2201 } 2202 } else { 2203 /* 2204 * Replace smallest region (if it is smaller than free'd entry) 2205 */ 2206 if (ichdr.freemap[smallest].size < entsize) { 2207 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2208 ichdr.freemap[smallest].size = entsize; 2209 } 2210 } 2211 2212 /* 2213 * Did we remove the first entry? 2214 */ 2215 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2216 smallest = 1; 2217 else 2218 smallest = 0; 2219 2220 /* 2221 * Compress the remaining entries and zero out the removed stuff. 2222 */ 2223 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2224 ichdr.usedbytes -= entsize; 2225 xfs_trans_log_buf(args->trans, bp, 2226 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2227 entsize)); 2228 2229 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2230 memmove(entry, entry + 1, tmp); 2231 ichdr.count--; 2232 xfs_trans_log_buf(args->trans, bp, 2233 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2234 2235 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2236 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2237 2238 /* 2239 * If we removed the first entry, re-find the first used byte 2240 * in the name area. Note that if the entry was the "firstused", 2241 * then we don't have a "hole" in our block resulting from 2242 * removing the name. 2243 */ 2244 if (smallest) { 2245 tmp = args->geo->blksize; 2246 entry = xfs_attr3_leaf_entryp(leaf); 2247 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2248 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2249 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2250 2251 if (be16_to_cpu(entry->nameidx) < tmp) 2252 tmp = be16_to_cpu(entry->nameidx); 2253 } 2254 ichdr.firstused = tmp; 2255 ASSERT(ichdr.firstused != 0); 2256 } else { 2257 ichdr.holes = 1; /* mark as needing compaction */ 2258 } 2259 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2260 xfs_trans_log_buf(args->trans, bp, 2261 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2262 xfs_attr3_leaf_hdr_size(leaf))); 2263 2264 /* 2265 * Check if leaf is less than 50% full, caller may want to 2266 * "join" the leaf with a sibling if so. 2267 */ 2268 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2269 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2270 2271 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2272 } 2273 2274 /* 2275 * Move all the attribute list entries from drop_leaf into save_leaf. 2276 */ 2277 void 2278 xfs_attr3_leaf_unbalance( 2279 struct xfs_da_state *state, 2280 struct xfs_da_state_blk *drop_blk, 2281 struct xfs_da_state_blk *save_blk) 2282 { 2283 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2284 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2285 struct xfs_attr3_icleaf_hdr drophdr; 2286 struct xfs_attr3_icleaf_hdr savehdr; 2287 struct xfs_attr_leaf_entry *entry; 2288 2289 trace_xfs_attr_leaf_unbalance(state->args); 2290 2291 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2292 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2293 entry = xfs_attr3_leaf_entryp(drop_leaf); 2294 2295 /* 2296 * Save last hashval from dying block for later Btree fixup. 2297 */ 2298 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2299 2300 /* 2301 * Check if we need a temp buffer, or can we do it in place. 2302 * Note that we don't check "leaf" for holes because we will 2303 * always be dropping it, toosmall() decided that for us already. 2304 */ 2305 if (savehdr.holes == 0) { 2306 /* 2307 * dest leaf has no holes, so we add there. May need 2308 * to make some room in the entry array. 2309 */ 2310 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2311 drop_blk->bp, &drophdr)) { 2312 xfs_attr3_leaf_moveents(state->args, 2313 drop_leaf, &drophdr, 0, 2314 save_leaf, &savehdr, 0, 2315 drophdr.count); 2316 } else { 2317 xfs_attr3_leaf_moveents(state->args, 2318 drop_leaf, &drophdr, 0, 2319 save_leaf, &savehdr, 2320 savehdr.count, drophdr.count); 2321 } 2322 } else { 2323 /* 2324 * Destination has holes, so we make a temporary copy 2325 * of the leaf and add them both to that. 2326 */ 2327 struct xfs_attr_leafblock *tmp_leaf; 2328 struct xfs_attr3_icleaf_hdr tmphdr; 2329 2330 tmp_leaf = kvzalloc(state->args->geo->blksize, 2331 GFP_KERNEL | __GFP_NOFAIL); 2332 2333 /* 2334 * Copy the header into the temp leaf so that all the stuff 2335 * not in the incore header is present and gets copied back in 2336 * once we've moved all the entries. 2337 */ 2338 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2339 2340 memset(&tmphdr, 0, sizeof(tmphdr)); 2341 tmphdr.magic = savehdr.magic; 2342 tmphdr.forw = savehdr.forw; 2343 tmphdr.back = savehdr.back; 2344 tmphdr.firstused = state->args->geo->blksize; 2345 2346 /* write the header to the temp buffer to initialise it */ 2347 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2348 2349 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2350 drop_blk->bp, &drophdr)) { 2351 xfs_attr3_leaf_moveents(state->args, 2352 drop_leaf, &drophdr, 0, 2353 tmp_leaf, &tmphdr, 0, 2354 drophdr.count); 2355 xfs_attr3_leaf_moveents(state->args, 2356 save_leaf, &savehdr, 0, 2357 tmp_leaf, &tmphdr, tmphdr.count, 2358 savehdr.count); 2359 } else { 2360 xfs_attr3_leaf_moveents(state->args, 2361 save_leaf, &savehdr, 0, 2362 tmp_leaf, &tmphdr, 0, 2363 savehdr.count); 2364 xfs_attr3_leaf_moveents(state->args, 2365 drop_leaf, &drophdr, 0, 2366 tmp_leaf, &tmphdr, tmphdr.count, 2367 drophdr.count); 2368 } 2369 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2370 savehdr = tmphdr; /* struct copy */ 2371 kvfree(tmp_leaf); 2372 } 2373 2374 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2375 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2376 state->args->geo->blksize - 1); 2377 2378 /* 2379 * Copy out last hashval in each block for B-tree code. 2380 */ 2381 entry = xfs_attr3_leaf_entryp(save_leaf); 2382 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2383 } 2384 2385 /*======================================================================== 2386 * Routines used for finding things in the Btree. 2387 *========================================================================*/ 2388 2389 /* 2390 * Look up a name in a leaf attribute list structure. 2391 * This is the internal routine, it uses the caller's buffer. 2392 * 2393 * Note that duplicate keys are allowed, but only check within the 2394 * current leaf node. The Btree code must check in adjacent leaf nodes. 2395 * 2396 * Return in args->index the index into the entry[] array of either 2397 * the found entry, or where the entry should have been (insert before 2398 * that entry). 2399 * 2400 * Don't change the args->value unless we find the attribute. 2401 */ 2402 int 2403 xfs_attr3_leaf_lookup_int( 2404 struct xfs_buf *bp, 2405 struct xfs_da_args *args) 2406 { 2407 struct xfs_attr_leafblock *leaf; 2408 struct xfs_attr3_icleaf_hdr ichdr; 2409 struct xfs_attr_leaf_entry *entry; 2410 struct xfs_attr_leaf_entry *entries; 2411 struct xfs_attr_leaf_name_local *name_loc; 2412 struct xfs_attr_leaf_name_remote *name_rmt; 2413 xfs_dahash_t hashval; 2414 int probe; 2415 int span; 2416 2417 trace_xfs_attr_leaf_lookup(args); 2418 2419 leaf = bp->b_addr; 2420 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2421 entries = xfs_attr3_leaf_entryp(leaf); 2422 if (ichdr.count >= args->geo->blksize / 8) { 2423 xfs_buf_mark_corrupt(bp); 2424 xfs_da_mark_sick(args); 2425 return -EFSCORRUPTED; 2426 } 2427 2428 /* 2429 * Binary search. (note: small blocks will skip this loop) 2430 */ 2431 hashval = args->hashval; 2432 probe = span = ichdr.count / 2; 2433 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2434 span /= 2; 2435 if (be32_to_cpu(entry->hashval) < hashval) 2436 probe += span; 2437 else if (be32_to_cpu(entry->hashval) > hashval) 2438 probe -= span; 2439 else 2440 break; 2441 } 2442 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2443 xfs_buf_mark_corrupt(bp); 2444 xfs_da_mark_sick(args); 2445 return -EFSCORRUPTED; 2446 } 2447 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2448 xfs_buf_mark_corrupt(bp); 2449 xfs_da_mark_sick(args); 2450 return -EFSCORRUPTED; 2451 } 2452 2453 /* 2454 * Since we may have duplicate hashval's, find the first matching 2455 * hashval in the leaf. 2456 */ 2457 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2458 entry--; 2459 probe--; 2460 } 2461 while (probe < ichdr.count && 2462 be32_to_cpu(entry->hashval) < hashval) { 2463 entry++; 2464 probe++; 2465 } 2466 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2467 args->index = probe; 2468 return -ENOATTR; 2469 } 2470 2471 /* 2472 * Duplicate keys may be present, so search all of them for a match. 2473 */ 2474 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2475 entry++, probe++) { 2476 /* 2477 * GROT: Add code to remove incomplete entries. 2478 */ 2479 if (entry->flags & XFS_ATTR_LOCAL) { 2480 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2481 if (!xfs_attr_match(args, entry->flags, 2482 name_loc->nameval, name_loc->namelen, 2483 &name_loc->nameval[name_loc->namelen], 2484 be16_to_cpu(name_loc->valuelen))) 2485 continue; 2486 args->index = probe; 2487 return -EEXIST; 2488 } else { 2489 unsigned int valuelen; 2490 2491 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2492 valuelen = be32_to_cpu(name_rmt->valuelen); 2493 if (!xfs_attr_match(args, entry->flags, name_rmt->name, 2494 name_rmt->namelen, NULL, valuelen)) 2495 continue; 2496 args->index = probe; 2497 args->rmtvaluelen = valuelen; 2498 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2499 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2500 args->dp->i_mount, 2501 args->rmtvaluelen); 2502 return -EEXIST; 2503 } 2504 } 2505 args->index = probe; 2506 return -ENOATTR; 2507 } 2508 2509 /* 2510 * Get the value associated with an attribute name from a leaf attribute 2511 * list structure. 2512 * 2513 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2514 * lookup, we only return an error if the attribute does not exist or we can't 2515 * retrieve the value. 2516 */ 2517 int 2518 xfs_attr3_leaf_getvalue( 2519 struct xfs_buf *bp, 2520 struct xfs_da_args *args) 2521 { 2522 struct xfs_attr_leafblock *leaf; 2523 struct xfs_attr3_icleaf_hdr ichdr; 2524 struct xfs_attr_leaf_entry *entry; 2525 struct xfs_attr_leaf_name_local *name_loc; 2526 struct xfs_attr_leaf_name_remote *name_rmt; 2527 2528 leaf = bp->b_addr; 2529 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2530 ASSERT(ichdr.count < args->geo->blksize / 8); 2531 ASSERT(args->index < ichdr.count); 2532 2533 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2534 if (entry->flags & XFS_ATTR_LOCAL) { 2535 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2536 ASSERT(name_loc->namelen == args->namelen); 2537 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2538 return xfs_attr_copy_value(args, 2539 &name_loc->nameval[args->namelen], 2540 be16_to_cpu(name_loc->valuelen)); 2541 } 2542 2543 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2544 ASSERT(name_rmt->namelen == args->namelen); 2545 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2546 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2547 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2548 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2549 args->rmtvaluelen); 2550 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2551 } 2552 2553 /*======================================================================== 2554 * Utility routines. 2555 *========================================================================*/ 2556 2557 /* 2558 * Move the indicated entries from one leaf to another. 2559 * NOTE: this routine modifies both source and destination leaves. 2560 */ 2561 /*ARGSUSED*/ 2562 STATIC void 2563 xfs_attr3_leaf_moveents( 2564 struct xfs_da_args *args, 2565 struct xfs_attr_leafblock *leaf_s, 2566 struct xfs_attr3_icleaf_hdr *ichdr_s, 2567 int start_s, 2568 struct xfs_attr_leafblock *leaf_d, 2569 struct xfs_attr3_icleaf_hdr *ichdr_d, 2570 int start_d, 2571 int count) 2572 { 2573 struct xfs_attr_leaf_entry *entry_s; 2574 struct xfs_attr_leaf_entry *entry_d; 2575 int desti; 2576 int tmp; 2577 int i; 2578 2579 /* 2580 * Check for nothing to do. 2581 */ 2582 if (count == 0) 2583 return; 2584 2585 /* 2586 * Set up environment. 2587 */ 2588 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2589 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2590 ASSERT(ichdr_s->magic == ichdr_d->magic); 2591 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2592 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2593 + xfs_attr3_leaf_hdr_size(leaf_s)); 2594 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2595 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2596 + xfs_attr3_leaf_hdr_size(leaf_d)); 2597 2598 ASSERT(start_s < ichdr_s->count); 2599 ASSERT(start_d <= ichdr_d->count); 2600 ASSERT(count <= ichdr_s->count); 2601 2602 2603 /* 2604 * Move the entries in the destination leaf up to make a hole? 2605 */ 2606 if (start_d < ichdr_d->count) { 2607 tmp = ichdr_d->count - start_d; 2608 tmp *= sizeof(xfs_attr_leaf_entry_t); 2609 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2610 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2611 memmove(entry_d, entry_s, tmp); 2612 } 2613 2614 /* 2615 * Copy all entry's in the same (sorted) order, 2616 * but allocate attribute info packed and in sequence. 2617 */ 2618 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2619 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2620 desti = start_d; 2621 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2622 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2623 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2624 #ifdef GROT 2625 /* 2626 * Code to drop INCOMPLETE entries. Difficult to use as we 2627 * may also need to change the insertion index. Code turned 2628 * off for 6.2, should be revisited later. 2629 */ 2630 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2631 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2632 ichdr_s->usedbytes -= tmp; 2633 ichdr_s->count -= 1; 2634 entry_d--; /* to compensate for ++ in loop hdr */ 2635 desti--; 2636 if ((start_s + i) < offset) 2637 result++; /* insertion index adjustment */ 2638 } else { 2639 #endif /* GROT */ 2640 ichdr_d->firstused -= tmp; 2641 /* both on-disk, don't endian flip twice */ 2642 entry_d->hashval = entry_s->hashval; 2643 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2644 entry_d->flags = entry_s->flags; 2645 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2646 <= args->geo->blksize); 2647 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2648 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2649 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2650 <= args->geo->blksize); 2651 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2652 ichdr_s->usedbytes -= tmp; 2653 ichdr_d->usedbytes += tmp; 2654 ichdr_s->count -= 1; 2655 ichdr_d->count += 1; 2656 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2657 + xfs_attr3_leaf_hdr_size(leaf_d); 2658 ASSERT(ichdr_d->firstused >= tmp); 2659 #ifdef GROT 2660 } 2661 #endif /* GROT */ 2662 } 2663 2664 /* 2665 * Zero out the entries we just copied. 2666 */ 2667 if (start_s == ichdr_s->count) { 2668 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2669 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2670 ASSERT(((char *)entry_s + tmp) <= 2671 ((char *)leaf_s + args->geo->blksize)); 2672 memset(entry_s, 0, tmp); 2673 } else { 2674 /* 2675 * Move the remaining entries down to fill the hole, 2676 * then zero the entries at the top. 2677 */ 2678 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2679 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2680 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2681 memmove(entry_d, entry_s, tmp); 2682 2683 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2684 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2685 ASSERT(((char *)entry_s + tmp) <= 2686 ((char *)leaf_s + args->geo->blksize)); 2687 memset(entry_s, 0, tmp); 2688 } 2689 2690 /* 2691 * Fill in the freemap information 2692 */ 2693 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2694 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2695 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2696 ichdr_d->freemap[1].base = 0; 2697 ichdr_d->freemap[2].base = 0; 2698 ichdr_d->freemap[1].size = 0; 2699 ichdr_d->freemap[2].size = 0; 2700 ichdr_s->holes = 1; /* leaf may not be compact */ 2701 } 2702 2703 /* 2704 * Pick up the last hashvalue from a leaf block. 2705 */ 2706 xfs_dahash_t 2707 xfs_attr_leaf_lasthash( 2708 struct xfs_buf *bp, 2709 int *count) 2710 { 2711 struct xfs_attr3_icleaf_hdr ichdr; 2712 struct xfs_attr_leaf_entry *entries; 2713 struct xfs_mount *mp = bp->b_mount; 2714 2715 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2716 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2717 if (count) 2718 *count = ichdr.count; 2719 if (!ichdr.count) 2720 return 0; 2721 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2722 } 2723 2724 /* 2725 * Calculate the number of bytes used to store the indicated attribute 2726 * (whether local or remote only calculate bytes in this block). 2727 */ 2728 STATIC int 2729 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2730 { 2731 struct xfs_attr_leaf_entry *entries; 2732 xfs_attr_leaf_name_local_t *name_loc; 2733 xfs_attr_leaf_name_remote_t *name_rmt; 2734 int size; 2735 2736 entries = xfs_attr3_leaf_entryp(leaf); 2737 if (entries[index].flags & XFS_ATTR_LOCAL) { 2738 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2739 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2740 be16_to_cpu(name_loc->valuelen)); 2741 } else { 2742 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2743 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2744 } 2745 return size; 2746 } 2747 2748 /* 2749 * Calculate the number of bytes that would be required to store the new 2750 * attribute (whether local or remote only calculate bytes in this block). 2751 * This routine decides as a side effect whether the attribute will be 2752 * a "local" or a "remote" attribute. 2753 */ 2754 int 2755 xfs_attr_leaf_newentsize( 2756 struct xfs_da_args *args, 2757 int *local) 2758 { 2759 int size; 2760 2761 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2762 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2763 if (local) 2764 *local = 1; 2765 return size; 2766 } 2767 if (local) 2768 *local = 0; 2769 return xfs_attr_leaf_entsize_remote(args->namelen); 2770 } 2771 2772 2773 /*======================================================================== 2774 * Manage the INCOMPLETE flag in a leaf entry 2775 *========================================================================*/ 2776 2777 /* 2778 * Clear the INCOMPLETE flag on an entry in a leaf block. 2779 */ 2780 int 2781 xfs_attr3_leaf_clearflag( 2782 struct xfs_da_args *args) 2783 { 2784 struct xfs_attr_leafblock *leaf; 2785 struct xfs_attr_leaf_entry *entry; 2786 struct xfs_attr_leaf_name_remote *name_rmt; 2787 struct xfs_buf *bp; 2788 int error; 2789 #ifdef DEBUG 2790 struct xfs_attr3_icleaf_hdr ichdr; 2791 xfs_attr_leaf_name_local_t *name_loc; 2792 int namelen; 2793 char *name; 2794 #endif /* DEBUG */ 2795 2796 trace_xfs_attr_leaf_clearflag(args); 2797 /* 2798 * Set up the operation. 2799 */ 2800 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2801 args->blkno, &bp); 2802 if (error) 2803 return error; 2804 2805 leaf = bp->b_addr; 2806 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2807 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2808 2809 #ifdef DEBUG 2810 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2811 ASSERT(args->index < ichdr.count); 2812 ASSERT(args->index >= 0); 2813 2814 if (entry->flags & XFS_ATTR_LOCAL) { 2815 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2816 namelen = name_loc->namelen; 2817 name = (char *)name_loc->nameval; 2818 } else { 2819 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2820 namelen = name_rmt->namelen; 2821 name = (char *)name_rmt->name; 2822 } 2823 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2824 ASSERT(namelen == args->namelen); 2825 ASSERT(memcmp(name, args->name, namelen) == 0); 2826 #endif /* DEBUG */ 2827 2828 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2829 xfs_trans_log_buf(args->trans, bp, 2830 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2831 2832 if (args->rmtblkno) { 2833 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2834 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2835 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2836 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2837 xfs_trans_log_buf(args->trans, bp, 2838 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2839 } 2840 2841 return 0; 2842 } 2843 2844 /* 2845 * Set the INCOMPLETE flag on an entry in a leaf block. 2846 */ 2847 int 2848 xfs_attr3_leaf_setflag( 2849 struct xfs_da_args *args) 2850 { 2851 struct xfs_attr_leafblock *leaf; 2852 struct xfs_attr_leaf_entry *entry; 2853 struct xfs_attr_leaf_name_remote *name_rmt; 2854 struct xfs_buf *bp; 2855 int error; 2856 #ifdef DEBUG 2857 struct xfs_attr3_icleaf_hdr ichdr; 2858 #endif 2859 2860 trace_xfs_attr_leaf_setflag(args); 2861 2862 /* 2863 * Set up the operation. 2864 */ 2865 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2866 args->blkno, &bp); 2867 if (error) 2868 return error; 2869 2870 leaf = bp->b_addr; 2871 #ifdef DEBUG 2872 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2873 ASSERT(args->index < ichdr.count); 2874 ASSERT(args->index >= 0); 2875 #endif 2876 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2877 2878 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2879 entry->flags |= XFS_ATTR_INCOMPLETE; 2880 xfs_trans_log_buf(args->trans, bp, 2881 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2882 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2883 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2884 name_rmt->valueblk = 0; 2885 name_rmt->valuelen = 0; 2886 xfs_trans_log_buf(args->trans, bp, 2887 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2888 } 2889 2890 return 0; 2891 } 2892 2893 /* 2894 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2895 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2896 * entry given by args->blkno2/index2. 2897 * 2898 * Note that they could be in different blocks, or in the same block. 2899 */ 2900 int 2901 xfs_attr3_leaf_flipflags( 2902 struct xfs_da_args *args) 2903 { 2904 struct xfs_attr_leafblock *leaf1; 2905 struct xfs_attr_leafblock *leaf2; 2906 struct xfs_attr_leaf_entry *entry1; 2907 struct xfs_attr_leaf_entry *entry2; 2908 struct xfs_attr_leaf_name_remote *name_rmt; 2909 struct xfs_buf *bp1; 2910 struct xfs_buf *bp2; 2911 int error; 2912 #ifdef DEBUG 2913 struct xfs_attr3_icleaf_hdr ichdr1; 2914 struct xfs_attr3_icleaf_hdr ichdr2; 2915 xfs_attr_leaf_name_local_t *name_loc; 2916 int namelen1, namelen2; 2917 char *name1, *name2; 2918 #endif /* DEBUG */ 2919 2920 trace_xfs_attr_leaf_flipflags(args); 2921 2922 /* 2923 * Read the block containing the "old" attr 2924 */ 2925 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2926 args->blkno, &bp1); 2927 if (error) 2928 return error; 2929 2930 /* 2931 * Read the block containing the "new" attr, if it is different 2932 */ 2933 if (args->blkno2 != args->blkno) { 2934 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2935 args->blkno2, &bp2); 2936 if (error) 2937 return error; 2938 } else { 2939 bp2 = bp1; 2940 } 2941 2942 leaf1 = bp1->b_addr; 2943 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2944 2945 leaf2 = bp2->b_addr; 2946 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2947 2948 #ifdef DEBUG 2949 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2950 ASSERT(args->index < ichdr1.count); 2951 ASSERT(args->index >= 0); 2952 2953 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2954 ASSERT(args->index2 < ichdr2.count); 2955 ASSERT(args->index2 >= 0); 2956 2957 if (entry1->flags & XFS_ATTR_LOCAL) { 2958 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2959 namelen1 = name_loc->namelen; 2960 name1 = (char *)name_loc->nameval; 2961 } else { 2962 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2963 namelen1 = name_rmt->namelen; 2964 name1 = (char *)name_rmt->name; 2965 } 2966 if (entry2->flags & XFS_ATTR_LOCAL) { 2967 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2968 namelen2 = name_loc->namelen; 2969 name2 = (char *)name_loc->nameval; 2970 } else { 2971 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2972 namelen2 = name_rmt->namelen; 2973 name2 = (char *)name_rmt->name; 2974 } 2975 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2976 ASSERT(namelen1 == namelen2); 2977 ASSERT(memcmp(name1, name2, namelen1) == 0); 2978 #endif /* DEBUG */ 2979 2980 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2981 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2982 2983 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2984 xfs_trans_log_buf(args->trans, bp1, 2985 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2986 if (args->rmtblkno) { 2987 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2988 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2989 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2990 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2991 xfs_trans_log_buf(args->trans, bp1, 2992 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2993 } 2994 2995 entry2->flags |= XFS_ATTR_INCOMPLETE; 2996 xfs_trans_log_buf(args->trans, bp2, 2997 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2998 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2999 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 3000 name_rmt->valueblk = 0; 3001 name_rmt->valuelen = 0; 3002 xfs_trans_log_buf(args->trans, bp2, 3003 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 3004 } 3005 3006 return 0; 3007 } 3008