1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 #include "xfs_health.h" 33 34 35 /* 36 * xfs_attr_leaf.c 37 * 38 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 39 */ 40 41 /*======================================================================== 42 * Function prototypes for the kernel. 43 *========================================================================*/ 44 45 /* 46 * Routines used for growing the Btree. 47 */ 48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 49 xfs_dablk_t which_block, struct xfs_buf **bpp); 50 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 51 struct xfs_attr3_icleaf_hdr *ichdr, 52 struct xfs_da_args *args, int freemap_index); 53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 54 struct xfs_attr3_icleaf_hdr *ichdr, 55 struct xfs_buf *leaf_buffer); 56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 57 xfs_da_state_blk_t *blk1, 58 xfs_da_state_blk_t *blk2); 59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 60 xfs_da_state_blk_t *leaf_blk_1, 61 struct xfs_attr3_icleaf_hdr *ichdr1, 62 xfs_da_state_blk_t *leaf_blk_2, 63 struct xfs_attr3_icleaf_hdr *ichdr2, 64 int *number_entries_in_blk1, 65 int *number_usedbytes_in_blk1); 66 67 /* 68 * Utility routines. 69 */ 70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 71 struct xfs_attr_leafblock *src_leaf, 72 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 73 struct xfs_attr_leafblock *dst_leaf, 74 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 75 int move_count); 76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 77 78 /* 79 * attr3 block 'firstused' conversion helpers. 80 * 81 * firstused refers to the offset of the first used byte of the nameval region 82 * of an attr leaf block. The region starts at the tail of the block and expands 83 * backwards towards the middle. As such, firstused is initialized to the block 84 * size for an empty leaf block and is reduced from there. 85 * 86 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 87 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 88 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 89 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 90 * the attr block size. The following helpers manage the conversion between the 91 * in-core and on-disk formats. 92 */ 93 94 static void 95 xfs_attr3_leaf_firstused_from_disk( 96 struct xfs_da_geometry *geo, 97 struct xfs_attr3_icleaf_hdr *to, 98 struct xfs_attr_leafblock *from) 99 { 100 struct xfs_attr3_leaf_hdr *hdr3; 101 102 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 103 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 104 to->firstused = be16_to_cpu(hdr3->firstused); 105 } else { 106 to->firstused = be16_to_cpu(from->hdr.firstused); 107 } 108 109 /* 110 * Convert from the magic fsb size value to actual blocksize. This 111 * should only occur for empty blocks when the block size overflows 112 * 16-bits. 113 */ 114 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 115 ASSERT(!to->count && !to->usedbytes); 116 ASSERT(geo->blksize > USHRT_MAX); 117 to->firstused = geo->blksize; 118 } 119 } 120 121 static void 122 xfs_attr3_leaf_firstused_to_disk( 123 struct xfs_da_geometry *geo, 124 struct xfs_attr_leafblock *to, 125 struct xfs_attr3_icleaf_hdr *from) 126 { 127 struct xfs_attr3_leaf_hdr *hdr3; 128 uint32_t firstused; 129 130 /* magic value should only be seen on disk */ 131 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 132 133 /* 134 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 135 * value. This only overflows at the max supported value of 64k. Use the 136 * magic on-disk value to represent block size in this case. 137 */ 138 firstused = from->firstused; 139 if (firstused > USHRT_MAX) { 140 ASSERT(from->firstused == geo->blksize); 141 firstused = XFS_ATTR3_LEAF_NULLOFF; 142 } 143 144 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 145 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 146 hdr3->firstused = cpu_to_be16(firstused); 147 } else { 148 to->hdr.firstused = cpu_to_be16(firstused); 149 } 150 } 151 152 void 153 xfs_attr3_leaf_hdr_from_disk( 154 struct xfs_da_geometry *geo, 155 struct xfs_attr3_icleaf_hdr *to, 156 struct xfs_attr_leafblock *from) 157 { 158 int i; 159 160 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 161 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 162 163 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 164 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 165 166 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 167 to->back = be32_to_cpu(hdr3->info.hdr.back); 168 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 169 to->count = be16_to_cpu(hdr3->count); 170 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 171 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 172 to->holes = hdr3->holes; 173 174 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 175 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 176 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 177 } 178 return; 179 } 180 to->forw = be32_to_cpu(from->hdr.info.forw); 181 to->back = be32_to_cpu(from->hdr.info.back); 182 to->magic = be16_to_cpu(from->hdr.info.magic); 183 to->count = be16_to_cpu(from->hdr.count); 184 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 185 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 186 to->holes = from->hdr.holes; 187 188 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 189 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 190 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 191 } 192 } 193 194 void 195 xfs_attr3_leaf_hdr_to_disk( 196 struct xfs_da_geometry *geo, 197 struct xfs_attr_leafblock *to, 198 struct xfs_attr3_icleaf_hdr *from) 199 { 200 int i; 201 202 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 203 from->magic == XFS_ATTR3_LEAF_MAGIC); 204 205 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 206 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 207 208 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 209 hdr3->info.hdr.back = cpu_to_be32(from->back); 210 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 211 hdr3->count = cpu_to_be16(from->count); 212 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 213 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 214 hdr3->holes = from->holes; 215 hdr3->pad1 = 0; 216 217 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 218 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 219 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 220 } 221 return; 222 } 223 to->hdr.info.forw = cpu_to_be32(from->forw); 224 to->hdr.info.back = cpu_to_be32(from->back); 225 to->hdr.info.magic = cpu_to_be16(from->magic); 226 to->hdr.count = cpu_to_be16(from->count); 227 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 228 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 229 to->hdr.holes = from->holes; 230 to->hdr.pad1 = 0; 231 232 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 233 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 234 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 235 } 236 } 237 238 static xfs_failaddr_t 239 xfs_attr3_leaf_verify_entry( 240 struct xfs_mount *mp, 241 char *buf_end, 242 struct xfs_attr_leafblock *leaf, 243 struct xfs_attr3_icleaf_hdr *leafhdr, 244 struct xfs_attr_leaf_entry *ent, 245 int idx, 246 __u32 *last_hashval) 247 { 248 struct xfs_attr_leaf_name_local *lentry; 249 struct xfs_attr_leaf_name_remote *rentry; 250 char *name_end; 251 unsigned int nameidx; 252 unsigned int namesize; 253 __u32 hashval; 254 255 /* hash order check */ 256 hashval = be32_to_cpu(ent->hashval); 257 if (hashval < *last_hashval) 258 return __this_address; 259 *last_hashval = hashval; 260 261 nameidx = be16_to_cpu(ent->nameidx); 262 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 263 return __this_address; 264 265 /* 266 * Check the name information. The namelen fields are u8 so we can't 267 * possibly exceed the maximum name length of 255 bytes. 268 */ 269 if (ent->flags & XFS_ATTR_LOCAL) { 270 lentry = xfs_attr3_leaf_name_local(leaf, idx); 271 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 272 be16_to_cpu(lentry->valuelen)); 273 name_end = (char *)lentry + namesize; 274 if (lentry->namelen == 0) 275 return __this_address; 276 } else { 277 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 278 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 279 name_end = (char *)rentry + namesize; 280 if (rentry->namelen == 0) 281 return __this_address; 282 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 283 rentry->valueblk == 0) 284 return __this_address; 285 } 286 287 if (name_end > buf_end) 288 return __this_address; 289 290 return NULL; 291 } 292 293 /* 294 * Validate an attribute leaf block. 295 * 296 * Empty leaf blocks can occur under the following circumstances: 297 * 298 * 1. setxattr adds a new extended attribute to a file; 299 * 2. The file has zero existing attributes; 300 * 3. The attribute is too large to fit in the attribute fork; 301 * 4. The attribute is small enough to fit in a leaf block; 302 * 5. A log flush occurs after committing the transaction that creates 303 * the (empty) leaf block; and 304 * 6. The filesystem goes down after the log flush but before the new 305 * attribute can be committed to the leaf block. 306 * 307 * Hence we need to ensure that we don't fail the validation purely 308 * because the leaf is empty. 309 */ 310 static xfs_failaddr_t 311 xfs_attr3_leaf_verify( 312 struct xfs_buf *bp) 313 { 314 struct xfs_attr3_icleaf_hdr ichdr; 315 struct xfs_mount *mp = bp->b_mount; 316 struct xfs_attr_leafblock *leaf = bp->b_addr; 317 struct xfs_attr_leaf_entry *entries; 318 struct xfs_attr_leaf_entry *ent; 319 char *buf_end; 320 uint32_t end; /* must be 32bit - see below */ 321 __u32 last_hashval = 0; 322 int i; 323 xfs_failaddr_t fa; 324 325 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 326 327 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 328 if (fa) 329 return fa; 330 331 /* 332 * firstused is the block offset of the first name info structure. 333 * Make sure it doesn't go off the block or crash into the header. 334 */ 335 if (ichdr.firstused > mp->m_attr_geo->blksize) 336 return __this_address; 337 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 338 return __this_address; 339 340 /* Make sure the entries array doesn't crash into the name info. */ 341 entries = xfs_attr3_leaf_entryp(bp->b_addr); 342 if ((char *)&entries[ichdr.count] > 343 (char *)bp->b_addr + ichdr.firstused) 344 return __this_address; 345 346 /* 347 * NOTE: This verifier historically failed empty leaf buffers because 348 * we expect the fork to be in another format. Empty attr fork format 349 * conversions are possible during xattr set, however, and format 350 * conversion is not atomic with the xattr set that triggers it. We 351 * cannot assume leaf blocks are non-empty until that is addressed. 352 */ 353 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 354 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 355 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 356 ent, i, &last_hashval); 357 if (fa) 358 return fa; 359 } 360 361 /* 362 * Quickly check the freemap information. Attribute data has to be 363 * aligned to 4-byte boundaries, and likewise for the free space. 364 * 365 * Note that for 64k block size filesystems, the freemap entries cannot 366 * overflow as they are only be16 fields. However, when checking end 367 * pointer of the freemap, we have to be careful to detect overflows and 368 * so use uint32_t for those checks. 369 */ 370 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 371 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 372 return __this_address; 373 if (ichdr.freemap[i].base & 0x3) 374 return __this_address; 375 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 376 return __this_address; 377 if (ichdr.freemap[i].size & 0x3) 378 return __this_address; 379 380 /* be care of 16 bit overflows here */ 381 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 382 if (end < ichdr.freemap[i].base) 383 return __this_address; 384 if (end > mp->m_attr_geo->blksize) 385 return __this_address; 386 } 387 388 return NULL; 389 } 390 391 static void 392 xfs_attr3_leaf_write_verify( 393 struct xfs_buf *bp) 394 { 395 struct xfs_mount *mp = bp->b_mount; 396 struct xfs_buf_log_item *bip = bp->b_log_item; 397 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 398 xfs_failaddr_t fa; 399 400 fa = xfs_attr3_leaf_verify(bp); 401 if (fa) { 402 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 403 return; 404 } 405 406 if (!xfs_has_crc(mp)) 407 return; 408 409 if (bip) 410 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 411 412 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 413 } 414 415 /* 416 * leaf/node format detection on trees is sketchy, so a node read can be done on 417 * leaf level blocks when detection identifies the tree as a node format tree 418 * incorrectly. In this case, we need to swap the verifier to match the correct 419 * format of the block being read. 420 */ 421 static void 422 xfs_attr3_leaf_read_verify( 423 struct xfs_buf *bp) 424 { 425 struct xfs_mount *mp = bp->b_mount; 426 xfs_failaddr_t fa; 427 428 if (xfs_has_crc(mp) && 429 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 430 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 431 else { 432 fa = xfs_attr3_leaf_verify(bp); 433 if (fa) 434 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 435 } 436 } 437 438 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 439 .name = "xfs_attr3_leaf", 440 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 441 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 442 .verify_read = xfs_attr3_leaf_read_verify, 443 .verify_write = xfs_attr3_leaf_write_verify, 444 .verify_struct = xfs_attr3_leaf_verify, 445 }; 446 447 int 448 xfs_attr3_leaf_read( 449 struct xfs_trans *tp, 450 struct xfs_inode *dp, 451 xfs_dablk_t bno, 452 struct xfs_buf **bpp) 453 { 454 int err; 455 456 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 457 &xfs_attr3_leaf_buf_ops); 458 if (!err && tp && *bpp) 459 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 460 return err; 461 } 462 463 /*======================================================================== 464 * Namespace helper routines 465 *========================================================================*/ 466 467 /* 468 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 469 * flag on disk - if there's an incomplete attr then recovery needs to tear it 470 * down. If there's no incomplete attr, then recovery needs to tear that attr 471 * down to replace it with the attr that has been logged. In this case, the 472 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 473 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 474 */ 475 static bool 476 xfs_attr_match( 477 struct xfs_da_args *args, 478 uint8_t namelen, 479 unsigned char *name, 480 int flags) 481 { 482 483 if (args->namelen != namelen) 484 return false; 485 if (memcmp(args->name, name, namelen) != 0) 486 return false; 487 488 /* Recovery ignores the INCOMPLETE flag. */ 489 if ((args->op_flags & XFS_DA_OP_RECOVERY) && 490 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK)) 491 return true; 492 493 /* All remaining matches need to be filtered by INCOMPLETE state. */ 494 if (args->attr_filter != 495 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 496 return false; 497 return true; 498 } 499 500 static int 501 xfs_attr_copy_value( 502 struct xfs_da_args *args, 503 unsigned char *value, 504 int valuelen) 505 { 506 /* 507 * No copy if all we have to do is get the length 508 */ 509 if (!args->valuelen) { 510 args->valuelen = valuelen; 511 return 0; 512 } 513 514 /* 515 * No copy if the length of the existing buffer is too small 516 */ 517 if (args->valuelen < valuelen) { 518 args->valuelen = valuelen; 519 return -ERANGE; 520 } 521 522 if (!args->value) { 523 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 524 if (!args->value) 525 return -ENOMEM; 526 } 527 args->valuelen = valuelen; 528 529 /* remote block xattr requires IO for copy-in */ 530 if (args->rmtblkno) 531 return xfs_attr_rmtval_get(args); 532 533 /* 534 * This is to prevent a GCC warning because the remote xattr case 535 * doesn't have a value to pass in. In that case, we never reach here, 536 * but GCC can't work that out and so throws a "passing NULL to 537 * memcpy" warning. 538 */ 539 if (!value) 540 return -EINVAL; 541 memcpy(args->value, value, valuelen); 542 return 0; 543 } 544 545 /*======================================================================== 546 * External routines when attribute fork size < XFS_LITINO(mp). 547 *========================================================================*/ 548 549 /* 550 * Query whether the total requested number of attr fork bytes of extended 551 * attribute space will be able to fit inline. 552 * 553 * Returns zero if not, else the i_forkoff fork offset to be used in the 554 * literal area for attribute data once the new bytes have been added. 555 * 556 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 557 * special case for dev/uuid inodes, they have fixed size data forks. 558 */ 559 int 560 xfs_attr_shortform_bytesfit( 561 struct xfs_inode *dp, 562 int bytes) 563 { 564 struct xfs_mount *mp = dp->i_mount; 565 int64_t dsize; 566 int minforkoff; 567 int maxforkoff; 568 int offset; 569 570 /* 571 * Check if the new size could fit at all first: 572 */ 573 if (bytes > XFS_LITINO(mp)) 574 return 0; 575 576 /* rounded down */ 577 offset = (XFS_LITINO(mp) - bytes) >> 3; 578 579 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 580 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 581 return (offset >= minforkoff) ? minforkoff : 0; 582 } 583 584 /* 585 * If the requested numbers of bytes is smaller or equal to the 586 * current attribute fork size we can always proceed. 587 * 588 * Note that if_bytes in the data fork might actually be larger than 589 * the current data fork size is due to delalloc extents. In that 590 * case either the extent count will go down when they are converted 591 * to real extents, or the delalloc conversion will take care of the 592 * literal area rebalancing. 593 */ 594 if (bytes <= xfs_inode_attr_fork_size(dp)) 595 return dp->i_forkoff; 596 597 /* 598 * For attr2 we can try to move the forkoff if there is space in the 599 * literal area, but for the old format we are done if there is no 600 * space in the fixed attribute fork. 601 */ 602 if (!xfs_has_attr2(mp)) 603 return 0; 604 605 dsize = dp->i_df.if_bytes; 606 607 switch (dp->i_df.if_format) { 608 case XFS_DINODE_FMT_EXTENTS: 609 /* 610 * If there is no attr fork and the data fork is extents, 611 * determine if creating the default attr fork will result 612 * in the extents form migrating to btree. If so, the 613 * minimum offset only needs to be the space required for 614 * the btree root. 615 */ 616 if (!dp->i_forkoff && dp->i_df.if_bytes > 617 xfs_default_attroffset(dp)) 618 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 619 break; 620 case XFS_DINODE_FMT_BTREE: 621 /* 622 * If we have a data btree then keep forkoff if we have one, 623 * otherwise we are adding a new attr, so then we set 624 * minforkoff to where the btree root can finish so we have 625 * plenty of room for attrs 626 */ 627 if (dp->i_forkoff) { 628 if (offset < dp->i_forkoff) 629 return 0; 630 return dp->i_forkoff; 631 } 632 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 633 break; 634 } 635 636 /* 637 * A data fork btree root must have space for at least 638 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 639 */ 640 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 641 minforkoff = roundup(minforkoff, 8) >> 3; 642 643 /* attr fork btree root can have at least this many key/ptr pairs */ 644 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 645 maxforkoff = maxforkoff >> 3; /* rounded down */ 646 647 if (offset >= maxforkoff) 648 return maxforkoff; 649 if (offset >= minforkoff) 650 return offset; 651 return 0; 652 } 653 654 /* 655 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 656 * - noattr2 mount option is set, 657 * - on-disk version bit says it is already set, or 658 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 659 */ 660 STATIC void 661 xfs_sbversion_add_attr2( 662 struct xfs_mount *mp, 663 struct xfs_trans *tp) 664 { 665 if (xfs_has_noattr2(mp)) 666 return; 667 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 668 return; 669 if (!xfs_has_attr2(mp)) 670 return; 671 672 spin_lock(&mp->m_sb_lock); 673 xfs_add_attr2(mp); 674 spin_unlock(&mp->m_sb_lock); 675 xfs_log_sb(tp); 676 } 677 678 /* 679 * Create the initial contents of a shortform attribute list. 680 */ 681 void 682 xfs_attr_shortform_create( 683 struct xfs_da_args *args) 684 { 685 struct xfs_inode *dp = args->dp; 686 struct xfs_ifork *ifp = &dp->i_af; 687 struct xfs_attr_sf_hdr *hdr; 688 689 trace_xfs_attr_sf_create(args); 690 691 ASSERT(ifp->if_bytes == 0); 692 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 693 ifp->if_format = XFS_DINODE_FMT_LOCAL; 694 695 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 696 memset(hdr, 0, sizeof(*hdr)); 697 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 698 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 699 } 700 701 /* 702 * Return the entry if the attr in args is found, or NULL if not. 703 */ 704 struct xfs_attr_sf_entry * 705 xfs_attr_sf_findname( 706 struct xfs_da_args *args) 707 { 708 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data; 709 struct xfs_attr_sf_entry *sfe; 710 711 for (sfe = xfs_attr_sf_firstentry(sf); 712 sfe < xfs_attr_sf_endptr(sf); 713 sfe = xfs_attr_sf_nextentry(sfe)) { 714 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 715 sfe->flags)) 716 return sfe; 717 } 718 719 return NULL; 720 } 721 722 /* 723 * Add a name/value pair to the shortform attribute list. 724 * Overflow from the inode has already been checked for. 725 */ 726 void 727 xfs_attr_shortform_add( 728 struct xfs_da_args *args, 729 int forkoff) 730 { 731 struct xfs_inode *dp = args->dp; 732 struct xfs_mount *mp = dp->i_mount; 733 struct xfs_ifork *ifp = &dp->i_af; 734 struct xfs_attr_sf_hdr *sf = ifp->if_data; 735 struct xfs_attr_sf_entry *sfe; 736 int size; 737 738 trace_xfs_attr_sf_add(args); 739 740 dp->i_forkoff = forkoff; 741 742 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 743 ASSERT(!xfs_attr_sf_findname(args)); 744 745 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 746 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 747 748 sfe = xfs_attr_sf_endptr(sf); 749 sfe->namelen = args->namelen; 750 sfe->valuelen = args->valuelen; 751 sfe->flags = args->attr_filter; 752 memcpy(sfe->nameval, args->name, args->namelen); 753 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 754 sf->count++; 755 be16_add_cpu(&sf->totsize, size); 756 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 757 758 xfs_sbversion_add_attr2(mp, args->trans); 759 } 760 761 /* 762 * After the last attribute is removed revert to original inode format, 763 * making all literal area available to the data fork once more. 764 */ 765 void 766 xfs_attr_fork_remove( 767 struct xfs_inode *ip, 768 struct xfs_trans *tp) 769 { 770 ASSERT(ip->i_af.if_nextents == 0); 771 772 xfs_ifork_zap_attr(ip); 773 ip->i_forkoff = 0; 774 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 775 } 776 777 /* 778 * Remove an attribute from the shortform attribute list structure. 779 */ 780 int 781 xfs_attr_sf_removename( 782 struct xfs_da_args *args) 783 { 784 struct xfs_inode *dp = args->dp; 785 struct xfs_mount *mp = dp->i_mount; 786 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data; 787 struct xfs_attr_sf_entry *sfe; 788 uint16_t totsize = be16_to_cpu(sf->totsize); 789 void *next, *end; 790 int size = 0; 791 792 trace_xfs_attr_sf_remove(args); 793 794 sfe = xfs_attr_sf_findname(args); 795 if (!sfe) { 796 /* 797 * If we are recovering an operation, finding nothing to remove 798 * is not an error, it just means there was nothing to clean up. 799 */ 800 if (args->op_flags & XFS_DA_OP_RECOVERY) 801 return 0; 802 return -ENOATTR; 803 } 804 805 /* 806 * Fix up the attribute fork data, covering the hole 807 */ 808 size = xfs_attr_sf_entsize(sfe); 809 next = xfs_attr_sf_nextentry(sfe); 810 end = xfs_attr_sf_endptr(sf); 811 if (next < end) 812 memmove(sfe, next, end - next); 813 sf->count--; 814 totsize -= size; 815 sf->totsize = cpu_to_be16(totsize); 816 817 /* 818 * Fix up the start offset of the attribute fork 819 */ 820 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) && 821 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 822 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) { 823 xfs_attr_fork_remove(dp, args->trans); 824 } else { 825 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 826 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 827 ASSERT(dp->i_forkoff); 828 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) || 829 (args->op_flags & XFS_DA_OP_ADDNAME) || 830 !xfs_has_attr2(mp) || 831 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 832 xfs_trans_log_inode(args->trans, dp, 833 XFS_ILOG_CORE | XFS_ILOG_ADATA); 834 } 835 836 xfs_sbversion_add_attr2(mp, args->trans); 837 838 return 0; 839 } 840 841 /* 842 * Retrieve the attribute value and length. 843 * 844 * If args->valuelen is zero, only the length needs to be returned. Unlike a 845 * lookup, we only return an error if the attribute does not exist or we can't 846 * retrieve the value. 847 */ 848 int 849 xfs_attr_shortform_getvalue( 850 struct xfs_da_args *args) 851 { 852 struct xfs_attr_sf_entry *sfe; 853 854 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL); 855 856 trace_xfs_attr_sf_lookup(args); 857 858 sfe = xfs_attr_sf_findname(args); 859 if (!sfe) 860 return -ENOATTR; 861 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen], 862 sfe->valuelen); 863 } 864 865 /* Convert from using the shortform to the leaf format. */ 866 int 867 xfs_attr_shortform_to_leaf( 868 struct xfs_da_args *args) 869 { 870 struct xfs_inode *dp = args->dp; 871 struct xfs_ifork *ifp = &dp->i_af; 872 struct xfs_attr_sf_hdr *sf = ifp->if_data; 873 struct xfs_attr_sf_entry *sfe; 874 int size = be16_to_cpu(sf->totsize); 875 struct xfs_da_args nargs; 876 char *tmpbuffer; 877 int error, i; 878 xfs_dablk_t blkno; 879 struct xfs_buf *bp; 880 881 trace_xfs_attr_sf_to_leaf(args); 882 883 tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL); 884 memcpy(tmpbuffer, ifp->if_data, size); 885 sf = (struct xfs_attr_sf_hdr *)tmpbuffer; 886 887 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 888 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 889 890 bp = NULL; 891 error = xfs_da_grow_inode(args, &blkno); 892 if (error) 893 goto out; 894 895 ASSERT(blkno == 0); 896 error = xfs_attr3_leaf_create(args, blkno, &bp); 897 if (error) 898 goto out; 899 900 memset((char *)&nargs, 0, sizeof(nargs)); 901 nargs.dp = dp; 902 nargs.geo = args->geo; 903 nargs.total = args->total; 904 nargs.whichfork = XFS_ATTR_FORK; 905 nargs.trans = args->trans; 906 nargs.op_flags = XFS_DA_OP_OKNOENT; 907 908 sfe = xfs_attr_sf_firstentry(sf); 909 for (i = 0; i < sf->count; i++) { 910 nargs.name = sfe->nameval; 911 nargs.namelen = sfe->namelen; 912 nargs.value = &sfe->nameval[nargs.namelen]; 913 nargs.valuelen = sfe->valuelen; 914 nargs.hashval = xfs_da_hashname(sfe->nameval, 915 sfe->namelen); 916 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 917 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 918 ASSERT(error == -ENOATTR); 919 error = xfs_attr3_leaf_add(bp, &nargs); 920 ASSERT(error != -ENOSPC); 921 if (error) 922 goto out; 923 sfe = xfs_attr_sf_nextentry(sfe); 924 } 925 error = 0; 926 out: 927 kfree(tmpbuffer); 928 return error; 929 } 930 931 /* 932 * Check a leaf attribute block to see if all the entries would fit into 933 * a shortform attribute list. 934 */ 935 int 936 xfs_attr_shortform_allfit( 937 struct xfs_buf *bp, 938 struct xfs_inode *dp) 939 { 940 struct xfs_attr_leafblock *leaf; 941 struct xfs_attr_leaf_entry *entry; 942 xfs_attr_leaf_name_local_t *name_loc; 943 struct xfs_attr3_icleaf_hdr leafhdr; 944 int bytes; 945 int i; 946 struct xfs_mount *mp = bp->b_mount; 947 948 leaf = bp->b_addr; 949 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 950 entry = xfs_attr3_leaf_entryp(leaf); 951 952 bytes = sizeof(struct xfs_attr_sf_hdr); 953 for (i = 0; i < leafhdr.count; entry++, i++) { 954 if (entry->flags & XFS_ATTR_INCOMPLETE) 955 continue; /* don't copy partial entries */ 956 if (!(entry->flags & XFS_ATTR_LOCAL)) 957 return 0; 958 name_loc = xfs_attr3_leaf_name_local(leaf, i); 959 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 960 return 0; 961 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 962 return 0; 963 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 964 be16_to_cpu(name_loc->valuelen)); 965 } 966 if (xfs_has_attr2(dp->i_mount) && 967 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 968 (bytes == sizeof(struct xfs_attr_sf_hdr))) 969 return -1; 970 return xfs_attr_shortform_bytesfit(dp, bytes); 971 } 972 973 /* Verify the consistency of a raw inline attribute fork. */ 974 xfs_failaddr_t 975 xfs_attr_shortform_verify( 976 struct xfs_attr_sf_hdr *sfp, 977 size_t size) 978 { 979 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp); 980 struct xfs_attr_sf_entry *next_sfep; 981 char *endp; 982 int i; 983 984 /* 985 * Give up if the attribute is way too short. 986 */ 987 if (size < sizeof(struct xfs_attr_sf_hdr)) 988 return __this_address; 989 990 endp = (char *)sfp + size; 991 992 /* Check all reported entries */ 993 for (i = 0; i < sfp->count; i++) { 994 /* 995 * struct xfs_attr_sf_entry has a variable length. 996 * Check the fixed-offset parts of the structure are 997 * within the data buffer. 998 * xfs_attr_sf_entry is defined with a 1-byte variable 999 * array at the end, so we must subtract that off. 1000 */ 1001 if (((char *)sfep + sizeof(*sfep)) >= endp) 1002 return __this_address; 1003 1004 /* Don't allow names with known bad length. */ 1005 if (sfep->namelen == 0) 1006 return __this_address; 1007 1008 /* 1009 * Check that the variable-length part of the structure is 1010 * within the data buffer. The next entry starts after the 1011 * name component, so nextentry is an acceptable test. 1012 */ 1013 next_sfep = xfs_attr_sf_nextentry(sfep); 1014 if ((char *)next_sfep > endp) 1015 return __this_address; 1016 1017 /* 1018 * Check for unknown flags. Short form doesn't support 1019 * the incomplete or local bits, so we can use the namespace 1020 * mask here. 1021 */ 1022 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1023 return __this_address; 1024 1025 /* 1026 * Check for invalid namespace combinations. We only allow 1027 * one namespace flag per xattr, so we can just count the 1028 * bits (i.e. hweight) here. 1029 */ 1030 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1031 return __this_address; 1032 1033 sfep = next_sfep; 1034 } 1035 if ((void *)sfep != (void *)endp) 1036 return __this_address; 1037 1038 return NULL; 1039 } 1040 1041 /* 1042 * Convert a leaf attribute list to shortform attribute list 1043 */ 1044 int 1045 xfs_attr3_leaf_to_shortform( 1046 struct xfs_buf *bp, 1047 struct xfs_da_args *args, 1048 int forkoff) 1049 { 1050 struct xfs_attr_leafblock *leaf; 1051 struct xfs_attr3_icleaf_hdr ichdr; 1052 struct xfs_attr_leaf_entry *entry; 1053 struct xfs_attr_leaf_name_local *name_loc; 1054 struct xfs_da_args nargs; 1055 struct xfs_inode *dp = args->dp; 1056 char *tmpbuffer; 1057 int error; 1058 int i; 1059 1060 trace_xfs_attr_leaf_to_sf(args); 1061 1062 tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1063 if (!tmpbuffer) 1064 return -ENOMEM; 1065 1066 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1067 1068 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1069 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1070 entry = xfs_attr3_leaf_entryp(leaf); 1071 1072 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1073 memset(bp->b_addr, 0, args->geo->blksize); 1074 1075 /* 1076 * Clean out the prior contents of the attribute list. 1077 */ 1078 error = xfs_da_shrink_inode(args, 0, bp); 1079 if (error) 1080 goto out; 1081 1082 if (forkoff == -1) { 1083 /* 1084 * Don't remove the attr fork if this operation is the first 1085 * part of a attr replace operations. We're going to add a new 1086 * attr immediately, so we need to keep the attr fork around in 1087 * this case. 1088 */ 1089 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1090 ASSERT(xfs_has_attr2(dp->i_mount)); 1091 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1092 xfs_attr_fork_remove(dp, args->trans); 1093 } 1094 goto out; 1095 } 1096 1097 xfs_attr_shortform_create(args); 1098 1099 /* 1100 * Copy the attributes 1101 */ 1102 memset((char *)&nargs, 0, sizeof(nargs)); 1103 nargs.geo = args->geo; 1104 nargs.dp = dp; 1105 nargs.total = args->total; 1106 nargs.whichfork = XFS_ATTR_FORK; 1107 nargs.trans = args->trans; 1108 nargs.op_flags = XFS_DA_OP_OKNOENT; 1109 1110 for (i = 0; i < ichdr.count; entry++, i++) { 1111 if (entry->flags & XFS_ATTR_INCOMPLETE) 1112 continue; /* don't copy partial entries */ 1113 if (!entry->nameidx) 1114 continue; 1115 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1116 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1117 nargs.name = name_loc->nameval; 1118 nargs.namelen = name_loc->namelen; 1119 nargs.value = &name_loc->nameval[nargs.namelen]; 1120 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1121 nargs.hashval = be32_to_cpu(entry->hashval); 1122 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1123 xfs_attr_shortform_add(&nargs, forkoff); 1124 } 1125 error = 0; 1126 1127 out: 1128 kfree(tmpbuffer); 1129 return error; 1130 } 1131 1132 /* 1133 * Convert from using a single leaf to a root node and a leaf. 1134 */ 1135 int 1136 xfs_attr3_leaf_to_node( 1137 struct xfs_da_args *args) 1138 { 1139 struct xfs_attr_leafblock *leaf; 1140 struct xfs_attr3_icleaf_hdr icleafhdr; 1141 struct xfs_attr_leaf_entry *entries; 1142 struct xfs_da3_icnode_hdr icnodehdr; 1143 struct xfs_da_intnode *node; 1144 struct xfs_inode *dp = args->dp; 1145 struct xfs_mount *mp = dp->i_mount; 1146 struct xfs_buf *bp1 = NULL; 1147 struct xfs_buf *bp2 = NULL; 1148 xfs_dablk_t blkno; 1149 int error; 1150 1151 trace_xfs_attr_leaf_to_node(args); 1152 1153 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1154 error = -EIO; 1155 goto out; 1156 } 1157 1158 error = xfs_da_grow_inode(args, &blkno); 1159 if (error) 1160 goto out; 1161 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1162 if (error) 1163 goto out; 1164 1165 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1166 if (error) 1167 goto out; 1168 1169 /* 1170 * Copy leaf to new buffer and log it. 1171 */ 1172 xfs_da_buf_copy(bp2, bp1, args->geo->blksize); 1173 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1174 1175 /* 1176 * Set up the new root node. 1177 */ 1178 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1179 if (error) 1180 goto out; 1181 node = bp1->b_addr; 1182 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1183 1184 leaf = bp2->b_addr; 1185 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1186 entries = xfs_attr3_leaf_entryp(leaf); 1187 1188 /* both on-disk, don't endian-flip twice */ 1189 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1190 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1191 icnodehdr.count = 1; 1192 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1193 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1194 error = 0; 1195 out: 1196 return error; 1197 } 1198 1199 /*======================================================================== 1200 * Routines used for growing the Btree. 1201 *========================================================================*/ 1202 1203 /* 1204 * Create the initial contents of a leaf attribute list 1205 * or a leaf in a node attribute list. 1206 */ 1207 STATIC int 1208 xfs_attr3_leaf_create( 1209 struct xfs_da_args *args, 1210 xfs_dablk_t blkno, 1211 struct xfs_buf **bpp) 1212 { 1213 struct xfs_attr_leafblock *leaf; 1214 struct xfs_attr3_icleaf_hdr ichdr; 1215 struct xfs_inode *dp = args->dp; 1216 struct xfs_mount *mp = dp->i_mount; 1217 struct xfs_buf *bp; 1218 int error; 1219 1220 trace_xfs_attr_leaf_create(args); 1221 1222 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1223 XFS_ATTR_FORK); 1224 if (error) 1225 return error; 1226 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1227 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1228 leaf = bp->b_addr; 1229 memset(leaf, 0, args->geo->blksize); 1230 1231 memset(&ichdr, 0, sizeof(ichdr)); 1232 ichdr.firstused = args->geo->blksize; 1233 1234 if (xfs_has_crc(mp)) { 1235 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1236 1237 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1238 1239 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1240 hdr3->owner = cpu_to_be64(dp->i_ino); 1241 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1242 1243 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1244 } else { 1245 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1246 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1247 } 1248 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1249 1250 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1251 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1252 1253 *bpp = bp; 1254 return 0; 1255 } 1256 1257 /* 1258 * Split the leaf node, rebalance, then add the new entry. 1259 */ 1260 int 1261 xfs_attr3_leaf_split( 1262 struct xfs_da_state *state, 1263 struct xfs_da_state_blk *oldblk, 1264 struct xfs_da_state_blk *newblk) 1265 { 1266 xfs_dablk_t blkno; 1267 int error; 1268 1269 trace_xfs_attr_leaf_split(state->args); 1270 1271 /* 1272 * Allocate space for a new leaf node. 1273 */ 1274 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1275 error = xfs_da_grow_inode(state->args, &blkno); 1276 if (error) 1277 return error; 1278 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1279 if (error) 1280 return error; 1281 newblk->blkno = blkno; 1282 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1283 1284 /* 1285 * Rebalance the entries across the two leaves. 1286 * NOTE: rebalance() currently depends on the 2nd block being empty. 1287 */ 1288 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1289 error = xfs_da3_blk_link(state, oldblk, newblk); 1290 if (error) 1291 return error; 1292 1293 /* 1294 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1295 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1296 * "new" attrs info. Will need the "old" info to remove it later. 1297 * 1298 * Insert the "new" entry in the correct block. 1299 */ 1300 if (state->inleaf) { 1301 trace_xfs_attr_leaf_add_old(state->args); 1302 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1303 } else { 1304 trace_xfs_attr_leaf_add_new(state->args); 1305 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1306 } 1307 1308 /* 1309 * Update last hashval in each block since we added the name. 1310 */ 1311 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1312 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1313 return error; 1314 } 1315 1316 /* 1317 * Add a name to the leaf attribute list structure. 1318 */ 1319 int 1320 xfs_attr3_leaf_add( 1321 struct xfs_buf *bp, 1322 struct xfs_da_args *args) 1323 { 1324 struct xfs_attr_leafblock *leaf; 1325 struct xfs_attr3_icleaf_hdr ichdr; 1326 int tablesize; 1327 int entsize; 1328 int sum; 1329 int tmp; 1330 int i; 1331 1332 trace_xfs_attr_leaf_add(args); 1333 1334 leaf = bp->b_addr; 1335 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1336 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1337 entsize = xfs_attr_leaf_newentsize(args, NULL); 1338 1339 /* 1340 * Search through freemap for first-fit on new name length. 1341 * (may need to figure in size of entry struct too) 1342 */ 1343 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1344 + xfs_attr3_leaf_hdr_size(leaf); 1345 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1346 if (tablesize > ichdr.firstused) { 1347 sum += ichdr.freemap[i].size; 1348 continue; 1349 } 1350 if (!ichdr.freemap[i].size) 1351 continue; /* no space in this map */ 1352 tmp = entsize; 1353 if (ichdr.freemap[i].base < ichdr.firstused) 1354 tmp += sizeof(xfs_attr_leaf_entry_t); 1355 if (ichdr.freemap[i].size >= tmp) { 1356 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1357 goto out_log_hdr; 1358 } 1359 sum += ichdr.freemap[i].size; 1360 } 1361 1362 /* 1363 * If there are no holes in the address space of the block, 1364 * and we don't have enough freespace, then compaction will do us 1365 * no good and we should just give up. 1366 */ 1367 if (!ichdr.holes && sum < entsize) 1368 return -ENOSPC; 1369 1370 /* 1371 * Compact the entries to coalesce free space. 1372 * This may change the hdr->count via dropping INCOMPLETE entries. 1373 */ 1374 xfs_attr3_leaf_compact(args, &ichdr, bp); 1375 1376 /* 1377 * After compaction, the block is guaranteed to have only one 1378 * free region, in freemap[0]. If it is not big enough, give up. 1379 */ 1380 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1381 tmp = -ENOSPC; 1382 goto out_log_hdr; 1383 } 1384 1385 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1386 1387 out_log_hdr: 1388 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1389 xfs_trans_log_buf(args->trans, bp, 1390 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1391 xfs_attr3_leaf_hdr_size(leaf))); 1392 return tmp; 1393 } 1394 1395 /* 1396 * Add a name to a leaf attribute list structure. 1397 */ 1398 STATIC int 1399 xfs_attr3_leaf_add_work( 1400 struct xfs_buf *bp, 1401 struct xfs_attr3_icleaf_hdr *ichdr, 1402 struct xfs_da_args *args, 1403 int mapindex) 1404 { 1405 struct xfs_attr_leafblock *leaf; 1406 struct xfs_attr_leaf_entry *entry; 1407 struct xfs_attr_leaf_name_local *name_loc; 1408 struct xfs_attr_leaf_name_remote *name_rmt; 1409 struct xfs_mount *mp; 1410 int tmp; 1411 int i; 1412 1413 trace_xfs_attr_leaf_add_work(args); 1414 1415 leaf = bp->b_addr; 1416 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1417 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1418 1419 /* 1420 * Force open some space in the entry array and fill it in. 1421 */ 1422 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1423 if (args->index < ichdr->count) { 1424 tmp = ichdr->count - args->index; 1425 tmp *= sizeof(xfs_attr_leaf_entry_t); 1426 memmove(entry + 1, entry, tmp); 1427 xfs_trans_log_buf(args->trans, bp, 1428 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1429 } 1430 ichdr->count++; 1431 1432 /* 1433 * Allocate space for the new string (at the end of the run). 1434 */ 1435 mp = args->trans->t_mountp; 1436 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1437 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1438 ASSERT(ichdr->freemap[mapindex].size >= 1439 xfs_attr_leaf_newentsize(args, NULL)); 1440 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1441 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1442 1443 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1444 1445 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1446 ichdr->freemap[mapindex].size); 1447 entry->hashval = cpu_to_be32(args->hashval); 1448 entry->flags = args->attr_filter; 1449 if (tmp) 1450 entry->flags |= XFS_ATTR_LOCAL; 1451 if (args->op_flags & XFS_DA_OP_REPLACE) { 1452 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1453 entry->flags |= XFS_ATTR_INCOMPLETE; 1454 if ((args->blkno2 == args->blkno) && 1455 (args->index2 <= args->index)) { 1456 args->index2++; 1457 } 1458 } 1459 xfs_trans_log_buf(args->trans, bp, 1460 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1461 ASSERT((args->index == 0) || 1462 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1463 ASSERT((args->index == ichdr->count - 1) || 1464 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1465 1466 /* 1467 * For "remote" attribute values, simply note that we need to 1468 * allocate space for the "remote" value. We can't actually 1469 * allocate the extents in this transaction, and we can't decide 1470 * which blocks they should be as we might allocate more blocks 1471 * as part of this transaction (a split operation for example). 1472 */ 1473 if (entry->flags & XFS_ATTR_LOCAL) { 1474 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1475 name_loc->namelen = args->namelen; 1476 name_loc->valuelen = cpu_to_be16(args->valuelen); 1477 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1478 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1479 be16_to_cpu(name_loc->valuelen)); 1480 } else { 1481 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1482 name_rmt->namelen = args->namelen; 1483 memcpy((char *)name_rmt->name, args->name, args->namelen); 1484 entry->flags |= XFS_ATTR_INCOMPLETE; 1485 /* just in case */ 1486 name_rmt->valuelen = 0; 1487 name_rmt->valueblk = 0; 1488 args->rmtblkno = 1; 1489 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1490 args->rmtvaluelen = args->valuelen; 1491 } 1492 xfs_trans_log_buf(args->trans, bp, 1493 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1494 xfs_attr_leaf_entsize(leaf, args->index))); 1495 1496 /* 1497 * Update the control info for this leaf node 1498 */ 1499 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1500 ichdr->firstused = be16_to_cpu(entry->nameidx); 1501 1502 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1503 + xfs_attr3_leaf_hdr_size(leaf)); 1504 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1505 + xfs_attr3_leaf_hdr_size(leaf); 1506 1507 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1508 if (ichdr->freemap[i].base == tmp) { 1509 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1510 ichdr->freemap[i].size -= 1511 min_t(uint16_t, ichdr->freemap[i].size, 1512 sizeof(xfs_attr_leaf_entry_t)); 1513 } 1514 } 1515 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1516 return 0; 1517 } 1518 1519 /* 1520 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1521 */ 1522 STATIC void 1523 xfs_attr3_leaf_compact( 1524 struct xfs_da_args *args, 1525 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1526 struct xfs_buf *bp) 1527 { 1528 struct xfs_attr_leafblock *leaf_src; 1529 struct xfs_attr_leafblock *leaf_dst; 1530 struct xfs_attr3_icleaf_hdr ichdr_src; 1531 struct xfs_trans *trans = args->trans; 1532 char *tmpbuffer; 1533 1534 trace_xfs_attr_leaf_compact(args); 1535 1536 tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1537 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1538 memset(bp->b_addr, 0, args->geo->blksize); 1539 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1540 leaf_dst = bp->b_addr; 1541 1542 /* 1543 * Copy the on-disk header back into the destination buffer to ensure 1544 * all the information in the header that is not part of the incore 1545 * header structure is preserved. 1546 */ 1547 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1548 1549 /* Initialise the incore headers */ 1550 ichdr_src = *ichdr_dst; /* struct copy */ 1551 ichdr_dst->firstused = args->geo->blksize; 1552 ichdr_dst->usedbytes = 0; 1553 ichdr_dst->count = 0; 1554 ichdr_dst->holes = 0; 1555 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1556 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1557 ichdr_dst->freemap[0].base; 1558 1559 /* write the header back to initialise the underlying buffer */ 1560 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1561 1562 /* 1563 * Copy all entry's in the same (sorted) order, 1564 * but allocate name/value pairs packed and in sequence. 1565 */ 1566 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1567 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1568 /* 1569 * this logs the entire buffer, but the caller must write the header 1570 * back to the buffer when it is finished modifying it. 1571 */ 1572 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1573 1574 kfree(tmpbuffer); 1575 } 1576 1577 /* 1578 * Compare two leaf blocks "order". 1579 * Return 0 unless leaf2 should go before leaf1. 1580 */ 1581 static int 1582 xfs_attr3_leaf_order( 1583 struct xfs_buf *leaf1_bp, 1584 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1585 struct xfs_buf *leaf2_bp, 1586 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1587 { 1588 struct xfs_attr_leaf_entry *entries1; 1589 struct xfs_attr_leaf_entry *entries2; 1590 1591 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1592 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1593 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1594 ((be32_to_cpu(entries2[0].hashval) < 1595 be32_to_cpu(entries1[0].hashval)) || 1596 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1597 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1598 return 1; 1599 } 1600 return 0; 1601 } 1602 1603 int 1604 xfs_attr_leaf_order( 1605 struct xfs_buf *leaf1_bp, 1606 struct xfs_buf *leaf2_bp) 1607 { 1608 struct xfs_attr3_icleaf_hdr ichdr1; 1609 struct xfs_attr3_icleaf_hdr ichdr2; 1610 struct xfs_mount *mp = leaf1_bp->b_mount; 1611 1612 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1613 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1614 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1615 } 1616 1617 /* 1618 * Redistribute the attribute list entries between two leaf nodes, 1619 * taking into account the size of the new entry. 1620 * 1621 * NOTE: if new block is empty, then it will get the upper half of the 1622 * old block. At present, all (one) callers pass in an empty second block. 1623 * 1624 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1625 * to match what it is doing in splitting the attribute leaf block. Those 1626 * values are used in "atomic rename" operations on attributes. Note that 1627 * the "new" and "old" values can end up in different blocks. 1628 */ 1629 STATIC void 1630 xfs_attr3_leaf_rebalance( 1631 struct xfs_da_state *state, 1632 struct xfs_da_state_blk *blk1, 1633 struct xfs_da_state_blk *blk2) 1634 { 1635 struct xfs_da_args *args; 1636 struct xfs_attr_leafblock *leaf1; 1637 struct xfs_attr_leafblock *leaf2; 1638 struct xfs_attr3_icleaf_hdr ichdr1; 1639 struct xfs_attr3_icleaf_hdr ichdr2; 1640 struct xfs_attr_leaf_entry *entries1; 1641 struct xfs_attr_leaf_entry *entries2; 1642 int count; 1643 int totallen; 1644 int max; 1645 int space; 1646 int swap; 1647 1648 /* 1649 * Set up environment. 1650 */ 1651 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1652 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1653 leaf1 = blk1->bp->b_addr; 1654 leaf2 = blk2->bp->b_addr; 1655 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1656 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1657 ASSERT(ichdr2.count == 0); 1658 args = state->args; 1659 1660 trace_xfs_attr_leaf_rebalance(args); 1661 1662 /* 1663 * Check ordering of blocks, reverse if it makes things simpler. 1664 * 1665 * NOTE: Given that all (current) callers pass in an empty 1666 * second block, this code should never set "swap". 1667 */ 1668 swap = 0; 1669 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1670 swap(blk1, blk2); 1671 1672 /* swap structures rather than reconverting them */ 1673 swap(ichdr1, ichdr2); 1674 1675 leaf1 = blk1->bp->b_addr; 1676 leaf2 = blk2->bp->b_addr; 1677 swap = 1; 1678 } 1679 1680 /* 1681 * Examine entries until we reduce the absolute difference in 1682 * byte usage between the two blocks to a minimum. Then get 1683 * the direction to copy and the number of elements to move. 1684 * 1685 * "inleaf" is true if the new entry should be inserted into blk1. 1686 * If "swap" is also true, then reverse the sense of "inleaf". 1687 */ 1688 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1689 blk2, &ichdr2, 1690 &count, &totallen); 1691 if (swap) 1692 state->inleaf = !state->inleaf; 1693 1694 /* 1695 * Move any entries required from leaf to leaf: 1696 */ 1697 if (count < ichdr1.count) { 1698 /* 1699 * Figure the total bytes to be added to the destination leaf. 1700 */ 1701 /* number entries being moved */ 1702 count = ichdr1.count - count; 1703 space = ichdr1.usedbytes - totallen; 1704 space += count * sizeof(xfs_attr_leaf_entry_t); 1705 1706 /* 1707 * leaf2 is the destination, compact it if it looks tight. 1708 */ 1709 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1710 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1711 if (space > max) 1712 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1713 1714 /* 1715 * Move high entries from leaf1 to low end of leaf2. 1716 */ 1717 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1718 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1719 1720 } else if (count > ichdr1.count) { 1721 /* 1722 * I assert that since all callers pass in an empty 1723 * second buffer, this code should never execute. 1724 */ 1725 ASSERT(0); 1726 1727 /* 1728 * Figure the total bytes to be added to the destination leaf. 1729 */ 1730 /* number entries being moved */ 1731 count -= ichdr1.count; 1732 space = totallen - ichdr1.usedbytes; 1733 space += count * sizeof(xfs_attr_leaf_entry_t); 1734 1735 /* 1736 * leaf1 is the destination, compact it if it looks tight. 1737 */ 1738 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1739 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1740 if (space > max) 1741 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1742 1743 /* 1744 * Move low entries from leaf2 to high end of leaf1. 1745 */ 1746 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1747 ichdr1.count, count); 1748 } 1749 1750 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1751 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1752 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1753 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1754 1755 /* 1756 * Copy out last hashval in each block for B-tree code. 1757 */ 1758 entries1 = xfs_attr3_leaf_entryp(leaf1); 1759 entries2 = xfs_attr3_leaf_entryp(leaf2); 1760 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1761 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1762 1763 /* 1764 * Adjust the expected index for insertion. 1765 * NOTE: this code depends on the (current) situation that the 1766 * second block was originally empty. 1767 * 1768 * If the insertion point moved to the 2nd block, we must adjust 1769 * the index. We must also track the entry just following the 1770 * new entry for use in an "atomic rename" operation, that entry 1771 * is always the "old" entry and the "new" entry is what we are 1772 * inserting. The index/blkno fields refer to the "old" entry, 1773 * while the index2/blkno2 fields refer to the "new" entry. 1774 */ 1775 if (blk1->index > ichdr1.count) { 1776 ASSERT(state->inleaf == 0); 1777 blk2->index = blk1->index - ichdr1.count; 1778 args->index = args->index2 = blk2->index; 1779 args->blkno = args->blkno2 = blk2->blkno; 1780 } else if (blk1->index == ichdr1.count) { 1781 if (state->inleaf) { 1782 args->index = blk1->index; 1783 args->blkno = blk1->blkno; 1784 args->index2 = 0; 1785 args->blkno2 = blk2->blkno; 1786 } else { 1787 /* 1788 * On a double leaf split, the original attr location 1789 * is already stored in blkno2/index2, so don't 1790 * overwrite it overwise we corrupt the tree. 1791 */ 1792 blk2->index = blk1->index - ichdr1.count; 1793 args->index = blk2->index; 1794 args->blkno = blk2->blkno; 1795 if (!state->extravalid) { 1796 /* 1797 * set the new attr location to match the old 1798 * one and let the higher level split code 1799 * decide where in the leaf to place it. 1800 */ 1801 args->index2 = blk2->index; 1802 args->blkno2 = blk2->blkno; 1803 } 1804 } 1805 } else { 1806 ASSERT(state->inleaf == 1); 1807 args->index = args->index2 = blk1->index; 1808 args->blkno = args->blkno2 = blk1->blkno; 1809 } 1810 } 1811 1812 /* 1813 * Examine entries until we reduce the absolute difference in 1814 * byte usage between the two blocks to a minimum. 1815 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1816 * GROT: there will always be enough room in either block for a new entry. 1817 * GROT: Do a double-split for this case? 1818 */ 1819 STATIC int 1820 xfs_attr3_leaf_figure_balance( 1821 struct xfs_da_state *state, 1822 struct xfs_da_state_blk *blk1, 1823 struct xfs_attr3_icleaf_hdr *ichdr1, 1824 struct xfs_da_state_blk *blk2, 1825 struct xfs_attr3_icleaf_hdr *ichdr2, 1826 int *countarg, 1827 int *usedbytesarg) 1828 { 1829 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1830 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1831 struct xfs_attr_leaf_entry *entry; 1832 int count; 1833 int max; 1834 int index; 1835 int totallen = 0; 1836 int half; 1837 int lastdelta; 1838 int foundit = 0; 1839 int tmp; 1840 1841 /* 1842 * Examine entries until we reduce the absolute difference in 1843 * byte usage between the two blocks to a minimum. 1844 */ 1845 max = ichdr1->count + ichdr2->count; 1846 half = (max + 1) * sizeof(*entry); 1847 half += ichdr1->usedbytes + ichdr2->usedbytes + 1848 xfs_attr_leaf_newentsize(state->args, NULL); 1849 half /= 2; 1850 lastdelta = state->args->geo->blksize; 1851 entry = xfs_attr3_leaf_entryp(leaf1); 1852 for (count = index = 0; count < max; entry++, index++, count++) { 1853 1854 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1855 /* 1856 * The new entry is in the first block, account for it. 1857 */ 1858 if (count == blk1->index) { 1859 tmp = totallen + sizeof(*entry) + 1860 xfs_attr_leaf_newentsize(state->args, NULL); 1861 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1862 break; 1863 lastdelta = XFS_ATTR_ABS(half - tmp); 1864 totallen = tmp; 1865 foundit = 1; 1866 } 1867 1868 /* 1869 * Wrap around into the second block if necessary. 1870 */ 1871 if (count == ichdr1->count) { 1872 leaf1 = leaf2; 1873 entry = xfs_attr3_leaf_entryp(leaf1); 1874 index = 0; 1875 } 1876 1877 /* 1878 * Figure out if next leaf entry would be too much. 1879 */ 1880 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1881 index); 1882 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1883 break; 1884 lastdelta = XFS_ATTR_ABS(half - tmp); 1885 totallen = tmp; 1886 #undef XFS_ATTR_ABS 1887 } 1888 1889 /* 1890 * Calculate the number of usedbytes that will end up in lower block. 1891 * If new entry not in lower block, fix up the count. 1892 */ 1893 totallen -= count * sizeof(*entry); 1894 if (foundit) { 1895 totallen -= sizeof(*entry) + 1896 xfs_attr_leaf_newentsize(state->args, NULL); 1897 } 1898 1899 *countarg = count; 1900 *usedbytesarg = totallen; 1901 return foundit; 1902 } 1903 1904 /*======================================================================== 1905 * Routines used for shrinking the Btree. 1906 *========================================================================*/ 1907 1908 /* 1909 * Check a leaf block and its neighbors to see if the block should be 1910 * collapsed into one or the other neighbor. Always keep the block 1911 * with the smaller block number. 1912 * If the current block is over 50% full, don't try to join it, return 0. 1913 * If the block is empty, fill in the state structure and return 2. 1914 * If it can be collapsed, fill in the state structure and return 1. 1915 * If nothing can be done, return 0. 1916 * 1917 * GROT: allow for INCOMPLETE entries in calculation. 1918 */ 1919 int 1920 xfs_attr3_leaf_toosmall( 1921 struct xfs_da_state *state, 1922 int *action) 1923 { 1924 struct xfs_attr_leafblock *leaf; 1925 struct xfs_da_state_blk *blk; 1926 struct xfs_attr3_icleaf_hdr ichdr; 1927 struct xfs_buf *bp; 1928 xfs_dablk_t blkno; 1929 int bytes; 1930 int forward; 1931 int error; 1932 int retval; 1933 int i; 1934 1935 trace_xfs_attr_leaf_toosmall(state->args); 1936 1937 /* 1938 * Check for the degenerate case of the block being over 50% full. 1939 * If so, it's not worth even looking to see if we might be able 1940 * to coalesce with a sibling. 1941 */ 1942 blk = &state->path.blk[ state->path.active-1 ]; 1943 leaf = blk->bp->b_addr; 1944 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 1945 bytes = xfs_attr3_leaf_hdr_size(leaf) + 1946 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 1947 ichdr.usedbytes; 1948 if (bytes > (state->args->geo->blksize >> 1)) { 1949 *action = 0; /* blk over 50%, don't try to join */ 1950 return 0; 1951 } 1952 1953 /* 1954 * Check for the degenerate case of the block being empty. 1955 * If the block is empty, we'll simply delete it, no need to 1956 * coalesce it with a sibling block. We choose (arbitrarily) 1957 * to merge with the forward block unless it is NULL. 1958 */ 1959 if (ichdr.count == 0) { 1960 /* 1961 * Make altpath point to the block we want to keep and 1962 * path point to the block we want to drop (this one). 1963 */ 1964 forward = (ichdr.forw != 0); 1965 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1966 error = xfs_da3_path_shift(state, &state->altpath, forward, 1967 0, &retval); 1968 if (error) 1969 return error; 1970 if (retval) { 1971 *action = 0; 1972 } else { 1973 *action = 2; 1974 } 1975 return 0; 1976 } 1977 1978 /* 1979 * Examine each sibling block to see if we can coalesce with 1980 * at least 25% free space to spare. We need to figure out 1981 * whether to merge with the forward or the backward block. 1982 * We prefer coalescing with the lower numbered sibling so as 1983 * to shrink an attribute list over time. 1984 */ 1985 /* start with smaller blk num */ 1986 forward = ichdr.forw < ichdr.back; 1987 for (i = 0; i < 2; forward = !forward, i++) { 1988 struct xfs_attr3_icleaf_hdr ichdr2; 1989 if (forward) 1990 blkno = ichdr.forw; 1991 else 1992 blkno = ichdr.back; 1993 if (blkno == 0) 1994 continue; 1995 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 1996 blkno, &bp); 1997 if (error) 1998 return error; 1999 2000 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2001 2002 bytes = state->args->geo->blksize - 2003 (state->args->geo->blksize >> 2) - 2004 ichdr.usedbytes - ichdr2.usedbytes - 2005 ((ichdr.count + ichdr2.count) * 2006 sizeof(xfs_attr_leaf_entry_t)) - 2007 xfs_attr3_leaf_hdr_size(leaf); 2008 2009 xfs_trans_brelse(state->args->trans, bp); 2010 if (bytes >= 0) 2011 break; /* fits with at least 25% to spare */ 2012 } 2013 if (i >= 2) { 2014 *action = 0; 2015 return 0; 2016 } 2017 2018 /* 2019 * Make altpath point to the block we want to keep (the lower 2020 * numbered block) and path point to the block we want to drop. 2021 */ 2022 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2023 if (blkno < blk->blkno) { 2024 error = xfs_da3_path_shift(state, &state->altpath, forward, 2025 0, &retval); 2026 } else { 2027 error = xfs_da3_path_shift(state, &state->path, forward, 2028 0, &retval); 2029 } 2030 if (error) 2031 return error; 2032 if (retval) { 2033 *action = 0; 2034 } else { 2035 *action = 1; 2036 } 2037 return 0; 2038 } 2039 2040 /* 2041 * Remove a name from the leaf attribute list structure. 2042 * 2043 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2044 * If two leaves are 37% full, when combined they will leave 25% free. 2045 */ 2046 int 2047 xfs_attr3_leaf_remove( 2048 struct xfs_buf *bp, 2049 struct xfs_da_args *args) 2050 { 2051 struct xfs_attr_leafblock *leaf; 2052 struct xfs_attr3_icleaf_hdr ichdr; 2053 struct xfs_attr_leaf_entry *entry; 2054 int before; 2055 int after; 2056 int smallest; 2057 int entsize; 2058 int tablesize; 2059 int tmp; 2060 int i; 2061 2062 trace_xfs_attr_leaf_remove(args); 2063 2064 leaf = bp->b_addr; 2065 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2066 2067 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2068 ASSERT(args->index >= 0 && args->index < ichdr.count); 2069 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2070 xfs_attr3_leaf_hdr_size(leaf)); 2071 2072 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2073 2074 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2075 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2076 2077 /* 2078 * Scan through free region table: 2079 * check for adjacency of free'd entry with an existing one, 2080 * find smallest free region in case we need to replace it, 2081 * adjust any map that borders the entry table, 2082 */ 2083 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2084 + xfs_attr3_leaf_hdr_size(leaf); 2085 tmp = ichdr.freemap[0].size; 2086 before = after = -1; 2087 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2088 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2089 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2090 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2091 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2092 if (ichdr.freemap[i].base == tablesize) { 2093 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2094 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2095 } 2096 2097 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2098 be16_to_cpu(entry->nameidx)) { 2099 before = i; 2100 } else if (ichdr.freemap[i].base == 2101 (be16_to_cpu(entry->nameidx) + entsize)) { 2102 after = i; 2103 } else if (ichdr.freemap[i].size < tmp) { 2104 tmp = ichdr.freemap[i].size; 2105 smallest = i; 2106 } 2107 } 2108 2109 /* 2110 * Coalesce adjacent freemap regions, 2111 * or replace the smallest region. 2112 */ 2113 if ((before >= 0) || (after >= 0)) { 2114 if ((before >= 0) && (after >= 0)) { 2115 ichdr.freemap[before].size += entsize; 2116 ichdr.freemap[before].size += ichdr.freemap[after].size; 2117 ichdr.freemap[after].base = 0; 2118 ichdr.freemap[after].size = 0; 2119 } else if (before >= 0) { 2120 ichdr.freemap[before].size += entsize; 2121 } else { 2122 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2123 ichdr.freemap[after].size += entsize; 2124 } 2125 } else { 2126 /* 2127 * Replace smallest region (if it is smaller than free'd entry) 2128 */ 2129 if (ichdr.freemap[smallest].size < entsize) { 2130 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2131 ichdr.freemap[smallest].size = entsize; 2132 } 2133 } 2134 2135 /* 2136 * Did we remove the first entry? 2137 */ 2138 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2139 smallest = 1; 2140 else 2141 smallest = 0; 2142 2143 /* 2144 * Compress the remaining entries and zero out the removed stuff. 2145 */ 2146 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2147 ichdr.usedbytes -= entsize; 2148 xfs_trans_log_buf(args->trans, bp, 2149 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2150 entsize)); 2151 2152 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2153 memmove(entry, entry + 1, tmp); 2154 ichdr.count--; 2155 xfs_trans_log_buf(args->trans, bp, 2156 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2157 2158 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2159 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2160 2161 /* 2162 * If we removed the first entry, re-find the first used byte 2163 * in the name area. Note that if the entry was the "firstused", 2164 * then we don't have a "hole" in our block resulting from 2165 * removing the name. 2166 */ 2167 if (smallest) { 2168 tmp = args->geo->blksize; 2169 entry = xfs_attr3_leaf_entryp(leaf); 2170 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2171 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2172 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2173 2174 if (be16_to_cpu(entry->nameidx) < tmp) 2175 tmp = be16_to_cpu(entry->nameidx); 2176 } 2177 ichdr.firstused = tmp; 2178 ASSERT(ichdr.firstused != 0); 2179 } else { 2180 ichdr.holes = 1; /* mark as needing compaction */ 2181 } 2182 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2183 xfs_trans_log_buf(args->trans, bp, 2184 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2185 xfs_attr3_leaf_hdr_size(leaf))); 2186 2187 /* 2188 * Check if leaf is less than 50% full, caller may want to 2189 * "join" the leaf with a sibling if so. 2190 */ 2191 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2192 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2193 2194 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2195 } 2196 2197 /* 2198 * Move all the attribute list entries from drop_leaf into save_leaf. 2199 */ 2200 void 2201 xfs_attr3_leaf_unbalance( 2202 struct xfs_da_state *state, 2203 struct xfs_da_state_blk *drop_blk, 2204 struct xfs_da_state_blk *save_blk) 2205 { 2206 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2207 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2208 struct xfs_attr3_icleaf_hdr drophdr; 2209 struct xfs_attr3_icleaf_hdr savehdr; 2210 struct xfs_attr_leaf_entry *entry; 2211 2212 trace_xfs_attr_leaf_unbalance(state->args); 2213 2214 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2215 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2216 entry = xfs_attr3_leaf_entryp(drop_leaf); 2217 2218 /* 2219 * Save last hashval from dying block for later Btree fixup. 2220 */ 2221 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2222 2223 /* 2224 * Check if we need a temp buffer, or can we do it in place. 2225 * Note that we don't check "leaf" for holes because we will 2226 * always be dropping it, toosmall() decided that for us already. 2227 */ 2228 if (savehdr.holes == 0) { 2229 /* 2230 * dest leaf has no holes, so we add there. May need 2231 * to make some room in the entry array. 2232 */ 2233 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2234 drop_blk->bp, &drophdr)) { 2235 xfs_attr3_leaf_moveents(state->args, 2236 drop_leaf, &drophdr, 0, 2237 save_leaf, &savehdr, 0, 2238 drophdr.count); 2239 } else { 2240 xfs_attr3_leaf_moveents(state->args, 2241 drop_leaf, &drophdr, 0, 2242 save_leaf, &savehdr, 2243 savehdr.count, drophdr.count); 2244 } 2245 } else { 2246 /* 2247 * Destination has holes, so we make a temporary copy 2248 * of the leaf and add them both to that. 2249 */ 2250 struct xfs_attr_leafblock *tmp_leaf; 2251 struct xfs_attr3_icleaf_hdr tmphdr; 2252 2253 tmp_leaf = kzalloc(state->args->geo->blksize, 2254 GFP_KERNEL | __GFP_NOFAIL); 2255 2256 /* 2257 * Copy the header into the temp leaf so that all the stuff 2258 * not in the incore header is present and gets copied back in 2259 * once we've moved all the entries. 2260 */ 2261 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2262 2263 memset(&tmphdr, 0, sizeof(tmphdr)); 2264 tmphdr.magic = savehdr.magic; 2265 tmphdr.forw = savehdr.forw; 2266 tmphdr.back = savehdr.back; 2267 tmphdr.firstused = state->args->geo->blksize; 2268 2269 /* write the header to the temp buffer to initialise it */ 2270 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2271 2272 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2273 drop_blk->bp, &drophdr)) { 2274 xfs_attr3_leaf_moveents(state->args, 2275 drop_leaf, &drophdr, 0, 2276 tmp_leaf, &tmphdr, 0, 2277 drophdr.count); 2278 xfs_attr3_leaf_moveents(state->args, 2279 save_leaf, &savehdr, 0, 2280 tmp_leaf, &tmphdr, tmphdr.count, 2281 savehdr.count); 2282 } else { 2283 xfs_attr3_leaf_moveents(state->args, 2284 save_leaf, &savehdr, 0, 2285 tmp_leaf, &tmphdr, 0, 2286 savehdr.count); 2287 xfs_attr3_leaf_moveents(state->args, 2288 drop_leaf, &drophdr, 0, 2289 tmp_leaf, &tmphdr, tmphdr.count, 2290 drophdr.count); 2291 } 2292 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2293 savehdr = tmphdr; /* struct copy */ 2294 kfree(tmp_leaf); 2295 } 2296 2297 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2298 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2299 state->args->geo->blksize - 1); 2300 2301 /* 2302 * Copy out last hashval in each block for B-tree code. 2303 */ 2304 entry = xfs_attr3_leaf_entryp(save_leaf); 2305 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2306 } 2307 2308 /*======================================================================== 2309 * Routines used for finding things in the Btree. 2310 *========================================================================*/ 2311 2312 /* 2313 * Look up a name in a leaf attribute list structure. 2314 * This is the internal routine, it uses the caller's buffer. 2315 * 2316 * Note that duplicate keys are allowed, but only check within the 2317 * current leaf node. The Btree code must check in adjacent leaf nodes. 2318 * 2319 * Return in args->index the index into the entry[] array of either 2320 * the found entry, or where the entry should have been (insert before 2321 * that entry). 2322 * 2323 * Don't change the args->value unless we find the attribute. 2324 */ 2325 int 2326 xfs_attr3_leaf_lookup_int( 2327 struct xfs_buf *bp, 2328 struct xfs_da_args *args) 2329 { 2330 struct xfs_attr_leafblock *leaf; 2331 struct xfs_attr3_icleaf_hdr ichdr; 2332 struct xfs_attr_leaf_entry *entry; 2333 struct xfs_attr_leaf_entry *entries; 2334 struct xfs_attr_leaf_name_local *name_loc; 2335 struct xfs_attr_leaf_name_remote *name_rmt; 2336 xfs_dahash_t hashval; 2337 int probe; 2338 int span; 2339 2340 trace_xfs_attr_leaf_lookup(args); 2341 2342 leaf = bp->b_addr; 2343 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2344 entries = xfs_attr3_leaf_entryp(leaf); 2345 if (ichdr.count >= args->geo->blksize / 8) { 2346 xfs_buf_mark_corrupt(bp); 2347 xfs_da_mark_sick(args); 2348 return -EFSCORRUPTED; 2349 } 2350 2351 /* 2352 * Binary search. (note: small blocks will skip this loop) 2353 */ 2354 hashval = args->hashval; 2355 probe = span = ichdr.count / 2; 2356 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2357 span /= 2; 2358 if (be32_to_cpu(entry->hashval) < hashval) 2359 probe += span; 2360 else if (be32_to_cpu(entry->hashval) > hashval) 2361 probe -= span; 2362 else 2363 break; 2364 } 2365 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2366 xfs_buf_mark_corrupt(bp); 2367 xfs_da_mark_sick(args); 2368 return -EFSCORRUPTED; 2369 } 2370 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2371 xfs_buf_mark_corrupt(bp); 2372 xfs_da_mark_sick(args); 2373 return -EFSCORRUPTED; 2374 } 2375 2376 /* 2377 * Since we may have duplicate hashval's, find the first matching 2378 * hashval in the leaf. 2379 */ 2380 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2381 entry--; 2382 probe--; 2383 } 2384 while (probe < ichdr.count && 2385 be32_to_cpu(entry->hashval) < hashval) { 2386 entry++; 2387 probe++; 2388 } 2389 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2390 args->index = probe; 2391 return -ENOATTR; 2392 } 2393 2394 /* 2395 * Duplicate keys may be present, so search all of them for a match. 2396 */ 2397 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2398 entry++, probe++) { 2399 /* 2400 * GROT: Add code to remove incomplete entries. 2401 */ 2402 if (entry->flags & XFS_ATTR_LOCAL) { 2403 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2404 if (!xfs_attr_match(args, name_loc->namelen, 2405 name_loc->nameval, entry->flags)) 2406 continue; 2407 args->index = probe; 2408 return -EEXIST; 2409 } else { 2410 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2411 if (!xfs_attr_match(args, name_rmt->namelen, 2412 name_rmt->name, entry->flags)) 2413 continue; 2414 args->index = probe; 2415 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2416 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2417 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2418 args->dp->i_mount, 2419 args->rmtvaluelen); 2420 return -EEXIST; 2421 } 2422 } 2423 args->index = probe; 2424 return -ENOATTR; 2425 } 2426 2427 /* 2428 * Get the value associated with an attribute name from a leaf attribute 2429 * list structure. 2430 * 2431 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2432 * lookup, we only return an error if the attribute does not exist or we can't 2433 * retrieve the value. 2434 */ 2435 int 2436 xfs_attr3_leaf_getvalue( 2437 struct xfs_buf *bp, 2438 struct xfs_da_args *args) 2439 { 2440 struct xfs_attr_leafblock *leaf; 2441 struct xfs_attr3_icleaf_hdr ichdr; 2442 struct xfs_attr_leaf_entry *entry; 2443 struct xfs_attr_leaf_name_local *name_loc; 2444 struct xfs_attr_leaf_name_remote *name_rmt; 2445 2446 leaf = bp->b_addr; 2447 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2448 ASSERT(ichdr.count < args->geo->blksize / 8); 2449 ASSERT(args->index < ichdr.count); 2450 2451 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2452 if (entry->flags & XFS_ATTR_LOCAL) { 2453 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2454 ASSERT(name_loc->namelen == args->namelen); 2455 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2456 return xfs_attr_copy_value(args, 2457 &name_loc->nameval[args->namelen], 2458 be16_to_cpu(name_loc->valuelen)); 2459 } 2460 2461 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2462 ASSERT(name_rmt->namelen == args->namelen); 2463 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2464 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2465 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2466 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2467 args->rmtvaluelen); 2468 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2469 } 2470 2471 /*======================================================================== 2472 * Utility routines. 2473 *========================================================================*/ 2474 2475 /* 2476 * Move the indicated entries from one leaf to another. 2477 * NOTE: this routine modifies both source and destination leaves. 2478 */ 2479 /*ARGSUSED*/ 2480 STATIC void 2481 xfs_attr3_leaf_moveents( 2482 struct xfs_da_args *args, 2483 struct xfs_attr_leafblock *leaf_s, 2484 struct xfs_attr3_icleaf_hdr *ichdr_s, 2485 int start_s, 2486 struct xfs_attr_leafblock *leaf_d, 2487 struct xfs_attr3_icleaf_hdr *ichdr_d, 2488 int start_d, 2489 int count) 2490 { 2491 struct xfs_attr_leaf_entry *entry_s; 2492 struct xfs_attr_leaf_entry *entry_d; 2493 int desti; 2494 int tmp; 2495 int i; 2496 2497 /* 2498 * Check for nothing to do. 2499 */ 2500 if (count == 0) 2501 return; 2502 2503 /* 2504 * Set up environment. 2505 */ 2506 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2507 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2508 ASSERT(ichdr_s->magic == ichdr_d->magic); 2509 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2510 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2511 + xfs_attr3_leaf_hdr_size(leaf_s)); 2512 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2513 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2514 + xfs_attr3_leaf_hdr_size(leaf_d)); 2515 2516 ASSERT(start_s < ichdr_s->count); 2517 ASSERT(start_d <= ichdr_d->count); 2518 ASSERT(count <= ichdr_s->count); 2519 2520 2521 /* 2522 * Move the entries in the destination leaf up to make a hole? 2523 */ 2524 if (start_d < ichdr_d->count) { 2525 tmp = ichdr_d->count - start_d; 2526 tmp *= sizeof(xfs_attr_leaf_entry_t); 2527 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2528 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2529 memmove(entry_d, entry_s, tmp); 2530 } 2531 2532 /* 2533 * Copy all entry's in the same (sorted) order, 2534 * but allocate attribute info packed and in sequence. 2535 */ 2536 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2537 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2538 desti = start_d; 2539 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2540 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2541 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2542 #ifdef GROT 2543 /* 2544 * Code to drop INCOMPLETE entries. Difficult to use as we 2545 * may also need to change the insertion index. Code turned 2546 * off for 6.2, should be revisited later. 2547 */ 2548 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2549 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2550 ichdr_s->usedbytes -= tmp; 2551 ichdr_s->count -= 1; 2552 entry_d--; /* to compensate for ++ in loop hdr */ 2553 desti--; 2554 if ((start_s + i) < offset) 2555 result++; /* insertion index adjustment */ 2556 } else { 2557 #endif /* GROT */ 2558 ichdr_d->firstused -= tmp; 2559 /* both on-disk, don't endian flip twice */ 2560 entry_d->hashval = entry_s->hashval; 2561 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2562 entry_d->flags = entry_s->flags; 2563 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2564 <= args->geo->blksize); 2565 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2566 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2567 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2568 <= args->geo->blksize); 2569 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2570 ichdr_s->usedbytes -= tmp; 2571 ichdr_d->usedbytes += tmp; 2572 ichdr_s->count -= 1; 2573 ichdr_d->count += 1; 2574 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2575 + xfs_attr3_leaf_hdr_size(leaf_d); 2576 ASSERT(ichdr_d->firstused >= tmp); 2577 #ifdef GROT 2578 } 2579 #endif /* GROT */ 2580 } 2581 2582 /* 2583 * Zero out the entries we just copied. 2584 */ 2585 if (start_s == ichdr_s->count) { 2586 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2587 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2588 ASSERT(((char *)entry_s + tmp) <= 2589 ((char *)leaf_s + args->geo->blksize)); 2590 memset(entry_s, 0, tmp); 2591 } else { 2592 /* 2593 * Move the remaining entries down to fill the hole, 2594 * then zero the entries at the top. 2595 */ 2596 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2597 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2598 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2599 memmove(entry_d, entry_s, tmp); 2600 2601 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2602 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2603 ASSERT(((char *)entry_s + tmp) <= 2604 ((char *)leaf_s + args->geo->blksize)); 2605 memset(entry_s, 0, tmp); 2606 } 2607 2608 /* 2609 * Fill in the freemap information 2610 */ 2611 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2612 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2613 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2614 ichdr_d->freemap[1].base = 0; 2615 ichdr_d->freemap[2].base = 0; 2616 ichdr_d->freemap[1].size = 0; 2617 ichdr_d->freemap[2].size = 0; 2618 ichdr_s->holes = 1; /* leaf may not be compact */ 2619 } 2620 2621 /* 2622 * Pick up the last hashvalue from a leaf block. 2623 */ 2624 xfs_dahash_t 2625 xfs_attr_leaf_lasthash( 2626 struct xfs_buf *bp, 2627 int *count) 2628 { 2629 struct xfs_attr3_icleaf_hdr ichdr; 2630 struct xfs_attr_leaf_entry *entries; 2631 struct xfs_mount *mp = bp->b_mount; 2632 2633 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2634 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2635 if (count) 2636 *count = ichdr.count; 2637 if (!ichdr.count) 2638 return 0; 2639 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2640 } 2641 2642 /* 2643 * Calculate the number of bytes used to store the indicated attribute 2644 * (whether local or remote only calculate bytes in this block). 2645 */ 2646 STATIC int 2647 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2648 { 2649 struct xfs_attr_leaf_entry *entries; 2650 xfs_attr_leaf_name_local_t *name_loc; 2651 xfs_attr_leaf_name_remote_t *name_rmt; 2652 int size; 2653 2654 entries = xfs_attr3_leaf_entryp(leaf); 2655 if (entries[index].flags & XFS_ATTR_LOCAL) { 2656 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2657 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2658 be16_to_cpu(name_loc->valuelen)); 2659 } else { 2660 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2661 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2662 } 2663 return size; 2664 } 2665 2666 /* 2667 * Calculate the number of bytes that would be required to store the new 2668 * attribute (whether local or remote only calculate bytes in this block). 2669 * This routine decides as a side effect whether the attribute will be 2670 * a "local" or a "remote" attribute. 2671 */ 2672 int 2673 xfs_attr_leaf_newentsize( 2674 struct xfs_da_args *args, 2675 int *local) 2676 { 2677 int size; 2678 2679 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2680 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2681 if (local) 2682 *local = 1; 2683 return size; 2684 } 2685 if (local) 2686 *local = 0; 2687 return xfs_attr_leaf_entsize_remote(args->namelen); 2688 } 2689 2690 2691 /*======================================================================== 2692 * Manage the INCOMPLETE flag in a leaf entry 2693 *========================================================================*/ 2694 2695 /* 2696 * Clear the INCOMPLETE flag on an entry in a leaf block. 2697 */ 2698 int 2699 xfs_attr3_leaf_clearflag( 2700 struct xfs_da_args *args) 2701 { 2702 struct xfs_attr_leafblock *leaf; 2703 struct xfs_attr_leaf_entry *entry; 2704 struct xfs_attr_leaf_name_remote *name_rmt; 2705 struct xfs_buf *bp; 2706 int error; 2707 #ifdef DEBUG 2708 struct xfs_attr3_icleaf_hdr ichdr; 2709 xfs_attr_leaf_name_local_t *name_loc; 2710 int namelen; 2711 char *name; 2712 #endif /* DEBUG */ 2713 2714 trace_xfs_attr_leaf_clearflag(args); 2715 /* 2716 * Set up the operation. 2717 */ 2718 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2719 if (error) 2720 return error; 2721 2722 leaf = bp->b_addr; 2723 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2724 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2725 2726 #ifdef DEBUG 2727 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2728 ASSERT(args->index < ichdr.count); 2729 ASSERT(args->index >= 0); 2730 2731 if (entry->flags & XFS_ATTR_LOCAL) { 2732 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2733 namelen = name_loc->namelen; 2734 name = (char *)name_loc->nameval; 2735 } else { 2736 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2737 namelen = name_rmt->namelen; 2738 name = (char *)name_rmt->name; 2739 } 2740 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2741 ASSERT(namelen == args->namelen); 2742 ASSERT(memcmp(name, args->name, namelen) == 0); 2743 #endif /* DEBUG */ 2744 2745 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2746 xfs_trans_log_buf(args->trans, bp, 2747 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2748 2749 if (args->rmtblkno) { 2750 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2751 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2752 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2753 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2754 xfs_trans_log_buf(args->trans, bp, 2755 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2756 } 2757 2758 return 0; 2759 } 2760 2761 /* 2762 * Set the INCOMPLETE flag on an entry in a leaf block. 2763 */ 2764 int 2765 xfs_attr3_leaf_setflag( 2766 struct xfs_da_args *args) 2767 { 2768 struct xfs_attr_leafblock *leaf; 2769 struct xfs_attr_leaf_entry *entry; 2770 struct xfs_attr_leaf_name_remote *name_rmt; 2771 struct xfs_buf *bp; 2772 int error; 2773 #ifdef DEBUG 2774 struct xfs_attr3_icleaf_hdr ichdr; 2775 #endif 2776 2777 trace_xfs_attr_leaf_setflag(args); 2778 2779 /* 2780 * Set up the operation. 2781 */ 2782 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2783 if (error) 2784 return error; 2785 2786 leaf = bp->b_addr; 2787 #ifdef DEBUG 2788 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2789 ASSERT(args->index < ichdr.count); 2790 ASSERT(args->index >= 0); 2791 #endif 2792 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2793 2794 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2795 entry->flags |= XFS_ATTR_INCOMPLETE; 2796 xfs_trans_log_buf(args->trans, bp, 2797 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2798 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2799 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2800 name_rmt->valueblk = 0; 2801 name_rmt->valuelen = 0; 2802 xfs_trans_log_buf(args->trans, bp, 2803 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2804 } 2805 2806 return 0; 2807 } 2808 2809 /* 2810 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2811 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2812 * entry given by args->blkno2/index2. 2813 * 2814 * Note that they could be in different blocks, or in the same block. 2815 */ 2816 int 2817 xfs_attr3_leaf_flipflags( 2818 struct xfs_da_args *args) 2819 { 2820 struct xfs_attr_leafblock *leaf1; 2821 struct xfs_attr_leafblock *leaf2; 2822 struct xfs_attr_leaf_entry *entry1; 2823 struct xfs_attr_leaf_entry *entry2; 2824 struct xfs_attr_leaf_name_remote *name_rmt; 2825 struct xfs_buf *bp1; 2826 struct xfs_buf *bp2; 2827 int error; 2828 #ifdef DEBUG 2829 struct xfs_attr3_icleaf_hdr ichdr1; 2830 struct xfs_attr3_icleaf_hdr ichdr2; 2831 xfs_attr_leaf_name_local_t *name_loc; 2832 int namelen1, namelen2; 2833 char *name1, *name2; 2834 #endif /* DEBUG */ 2835 2836 trace_xfs_attr_leaf_flipflags(args); 2837 2838 /* 2839 * Read the block containing the "old" attr 2840 */ 2841 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2842 if (error) 2843 return error; 2844 2845 /* 2846 * Read the block containing the "new" attr, if it is different 2847 */ 2848 if (args->blkno2 != args->blkno) { 2849 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2850 &bp2); 2851 if (error) 2852 return error; 2853 } else { 2854 bp2 = bp1; 2855 } 2856 2857 leaf1 = bp1->b_addr; 2858 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2859 2860 leaf2 = bp2->b_addr; 2861 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2862 2863 #ifdef DEBUG 2864 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2865 ASSERT(args->index < ichdr1.count); 2866 ASSERT(args->index >= 0); 2867 2868 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2869 ASSERT(args->index2 < ichdr2.count); 2870 ASSERT(args->index2 >= 0); 2871 2872 if (entry1->flags & XFS_ATTR_LOCAL) { 2873 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2874 namelen1 = name_loc->namelen; 2875 name1 = (char *)name_loc->nameval; 2876 } else { 2877 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2878 namelen1 = name_rmt->namelen; 2879 name1 = (char *)name_rmt->name; 2880 } 2881 if (entry2->flags & XFS_ATTR_LOCAL) { 2882 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2883 namelen2 = name_loc->namelen; 2884 name2 = (char *)name_loc->nameval; 2885 } else { 2886 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2887 namelen2 = name_rmt->namelen; 2888 name2 = (char *)name_rmt->name; 2889 } 2890 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2891 ASSERT(namelen1 == namelen2); 2892 ASSERT(memcmp(name1, name2, namelen1) == 0); 2893 #endif /* DEBUG */ 2894 2895 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2896 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2897 2898 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2899 xfs_trans_log_buf(args->trans, bp1, 2900 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2901 if (args->rmtblkno) { 2902 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2903 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2904 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2905 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2906 xfs_trans_log_buf(args->trans, bp1, 2907 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2908 } 2909 2910 entry2->flags |= XFS_ATTR_INCOMPLETE; 2911 xfs_trans_log_buf(args->trans, bp2, 2912 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2913 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2914 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2915 name_rmt->valueblk = 0; 2916 name_rmt->valuelen = 0; 2917 xfs_trans_log_buf(args->trans, bp2, 2918 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2919 } 2920 2921 return 0; 2922 } 2923