1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 33 34 /* 35 * xfs_attr_leaf.c 36 * 37 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 38 */ 39 40 /*======================================================================== 41 * Function prototypes for the kernel. 42 *========================================================================*/ 43 44 /* 45 * Routines used for growing the Btree. 46 */ 47 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 48 xfs_dablk_t which_block, struct xfs_buf **bpp); 49 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 50 struct xfs_attr3_icleaf_hdr *ichdr, 51 struct xfs_da_args *args, int freemap_index); 52 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 53 struct xfs_attr3_icleaf_hdr *ichdr, 54 struct xfs_buf *leaf_buffer); 55 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 56 xfs_da_state_blk_t *blk1, 57 xfs_da_state_blk_t *blk2); 58 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 59 xfs_da_state_blk_t *leaf_blk_1, 60 struct xfs_attr3_icleaf_hdr *ichdr1, 61 xfs_da_state_blk_t *leaf_blk_2, 62 struct xfs_attr3_icleaf_hdr *ichdr2, 63 int *number_entries_in_blk1, 64 int *number_usedbytes_in_blk1); 65 66 /* 67 * Utility routines. 68 */ 69 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 70 struct xfs_attr_leafblock *src_leaf, 71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 72 struct xfs_attr_leafblock *dst_leaf, 73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 74 int move_count); 75 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 76 77 /* 78 * attr3 block 'firstused' conversion helpers. 79 * 80 * firstused refers to the offset of the first used byte of the nameval region 81 * of an attr leaf block. The region starts at the tail of the block and expands 82 * backwards towards the middle. As such, firstused is initialized to the block 83 * size for an empty leaf block and is reduced from there. 84 * 85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 89 * the attr block size. The following helpers manage the conversion between the 90 * in-core and on-disk formats. 91 */ 92 93 static void 94 xfs_attr3_leaf_firstused_from_disk( 95 struct xfs_da_geometry *geo, 96 struct xfs_attr3_icleaf_hdr *to, 97 struct xfs_attr_leafblock *from) 98 { 99 struct xfs_attr3_leaf_hdr *hdr3; 100 101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 102 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 103 to->firstused = be16_to_cpu(hdr3->firstused); 104 } else { 105 to->firstused = be16_to_cpu(from->hdr.firstused); 106 } 107 108 /* 109 * Convert from the magic fsb size value to actual blocksize. This 110 * should only occur for empty blocks when the block size overflows 111 * 16-bits. 112 */ 113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 114 ASSERT(!to->count && !to->usedbytes); 115 ASSERT(geo->blksize > USHRT_MAX); 116 to->firstused = geo->blksize; 117 } 118 } 119 120 static void 121 xfs_attr3_leaf_firstused_to_disk( 122 struct xfs_da_geometry *geo, 123 struct xfs_attr_leafblock *to, 124 struct xfs_attr3_icleaf_hdr *from) 125 { 126 struct xfs_attr3_leaf_hdr *hdr3; 127 uint32_t firstused; 128 129 /* magic value should only be seen on disk */ 130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 131 132 /* 133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 134 * value. This only overflows at the max supported value of 64k. Use the 135 * magic on-disk value to represent block size in this case. 136 */ 137 firstused = from->firstused; 138 if (firstused > USHRT_MAX) { 139 ASSERT(from->firstused == geo->blksize); 140 firstused = XFS_ATTR3_LEAF_NULLOFF; 141 } 142 143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 144 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 145 hdr3->firstused = cpu_to_be16(firstused); 146 } else { 147 to->hdr.firstused = cpu_to_be16(firstused); 148 } 149 } 150 151 void 152 xfs_attr3_leaf_hdr_from_disk( 153 struct xfs_da_geometry *geo, 154 struct xfs_attr3_icleaf_hdr *to, 155 struct xfs_attr_leafblock *from) 156 { 157 int i; 158 159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 161 162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 164 165 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 166 to->back = be32_to_cpu(hdr3->info.hdr.back); 167 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 168 to->count = be16_to_cpu(hdr3->count); 169 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 170 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 171 to->holes = hdr3->holes; 172 173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 176 } 177 return; 178 } 179 to->forw = be32_to_cpu(from->hdr.info.forw); 180 to->back = be32_to_cpu(from->hdr.info.back); 181 to->magic = be16_to_cpu(from->hdr.info.magic); 182 to->count = be16_to_cpu(from->hdr.count); 183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 184 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 185 to->holes = from->hdr.holes; 186 187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 190 } 191 } 192 193 void 194 xfs_attr3_leaf_hdr_to_disk( 195 struct xfs_da_geometry *geo, 196 struct xfs_attr_leafblock *to, 197 struct xfs_attr3_icleaf_hdr *from) 198 { 199 int i; 200 201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 202 from->magic == XFS_ATTR3_LEAF_MAGIC); 203 204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 206 207 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 208 hdr3->info.hdr.back = cpu_to_be32(from->back); 209 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 210 hdr3->count = cpu_to_be16(from->count); 211 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 212 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 213 hdr3->holes = from->holes; 214 hdr3->pad1 = 0; 215 216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 219 } 220 return; 221 } 222 to->hdr.info.forw = cpu_to_be32(from->forw); 223 to->hdr.info.back = cpu_to_be32(from->back); 224 to->hdr.info.magic = cpu_to_be16(from->magic); 225 to->hdr.count = cpu_to_be16(from->count); 226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 227 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 228 to->hdr.holes = from->holes; 229 to->hdr.pad1 = 0; 230 231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 234 } 235 } 236 237 static xfs_failaddr_t 238 xfs_attr3_leaf_verify_entry( 239 struct xfs_mount *mp, 240 char *buf_end, 241 struct xfs_attr_leafblock *leaf, 242 struct xfs_attr3_icleaf_hdr *leafhdr, 243 struct xfs_attr_leaf_entry *ent, 244 int idx, 245 __u32 *last_hashval) 246 { 247 struct xfs_attr_leaf_name_local *lentry; 248 struct xfs_attr_leaf_name_remote *rentry; 249 char *name_end; 250 unsigned int nameidx; 251 unsigned int namesize; 252 __u32 hashval; 253 254 /* hash order check */ 255 hashval = be32_to_cpu(ent->hashval); 256 if (hashval < *last_hashval) 257 return __this_address; 258 *last_hashval = hashval; 259 260 nameidx = be16_to_cpu(ent->nameidx); 261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 262 return __this_address; 263 264 /* 265 * Check the name information. The namelen fields are u8 so we can't 266 * possibly exceed the maximum name length of 255 bytes. 267 */ 268 if (ent->flags & XFS_ATTR_LOCAL) { 269 lentry = xfs_attr3_leaf_name_local(leaf, idx); 270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 271 be16_to_cpu(lentry->valuelen)); 272 name_end = (char *)lentry + namesize; 273 if (lentry->namelen == 0) 274 return __this_address; 275 } else { 276 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 278 name_end = (char *)rentry + namesize; 279 if (rentry->namelen == 0) 280 return __this_address; 281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 282 rentry->valueblk == 0) 283 return __this_address; 284 } 285 286 if (name_end > buf_end) 287 return __this_address; 288 289 return NULL; 290 } 291 292 /* 293 * Validate an attribute leaf block. 294 * 295 * Empty leaf blocks can occur under the following circumstances: 296 * 297 * 1. setxattr adds a new extended attribute to a file; 298 * 2. The file has zero existing attributes; 299 * 3. The attribute is too large to fit in the attribute fork; 300 * 4. The attribute is small enough to fit in a leaf block; 301 * 5. A log flush occurs after committing the transaction that creates 302 * the (empty) leaf block; and 303 * 6. The filesystem goes down after the log flush but before the new 304 * attribute can be committed to the leaf block. 305 * 306 * Hence we need to ensure that we don't fail the validation purely 307 * because the leaf is empty. 308 */ 309 static xfs_failaddr_t 310 xfs_attr3_leaf_verify( 311 struct xfs_buf *bp) 312 { 313 struct xfs_attr3_icleaf_hdr ichdr; 314 struct xfs_mount *mp = bp->b_mount; 315 struct xfs_attr_leafblock *leaf = bp->b_addr; 316 struct xfs_attr_leaf_entry *entries; 317 struct xfs_attr_leaf_entry *ent; 318 char *buf_end; 319 uint32_t end; /* must be 32bit - see below */ 320 __u32 last_hashval = 0; 321 int i; 322 xfs_failaddr_t fa; 323 324 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 325 326 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 327 if (fa) 328 return fa; 329 330 /* 331 * firstused is the block offset of the first name info structure. 332 * Make sure it doesn't go off the block or crash into the header. 333 */ 334 if (ichdr.firstused > mp->m_attr_geo->blksize) 335 return __this_address; 336 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 337 return __this_address; 338 339 /* Make sure the entries array doesn't crash into the name info. */ 340 entries = xfs_attr3_leaf_entryp(bp->b_addr); 341 if ((char *)&entries[ichdr.count] > 342 (char *)bp->b_addr + ichdr.firstused) 343 return __this_address; 344 345 /* 346 * NOTE: This verifier historically failed empty leaf buffers because 347 * we expect the fork to be in another format. Empty attr fork format 348 * conversions are possible during xattr set, however, and format 349 * conversion is not atomic with the xattr set that triggers it. We 350 * cannot assume leaf blocks are non-empty until that is addressed. 351 */ 352 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 353 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 354 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 355 ent, i, &last_hashval); 356 if (fa) 357 return fa; 358 } 359 360 /* 361 * Quickly check the freemap information. Attribute data has to be 362 * aligned to 4-byte boundaries, and likewise for the free space. 363 * 364 * Note that for 64k block size filesystems, the freemap entries cannot 365 * overflow as they are only be16 fields. However, when checking end 366 * pointer of the freemap, we have to be careful to detect overflows and 367 * so use uint32_t for those checks. 368 */ 369 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 370 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 371 return __this_address; 372 if (ichdr.freemap[i].base & 0x3) 373 return __this_address; 374 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 375 return __this_address; 376 if (ichdr.freemap[i].size & 0x3) 377 return __this_address; 378 379 /* be care of 16 bit overflows here */ 380 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 381 if (end < ichdr.freemap[i].base) 382 return __this_address; 383 if (end > mp->m_attr_geo->blksize) 384 return __this_address; 385 } 386 387 return NULL; 388 } 389 390 static void 391 xfs_attr3_leaf_write_verify( 392 struct xfs_buf *bp) 393 { 394 struct xfs_mount *mp = bp->b_mount; 395 struct xfs_buf_log_item *bip = bp->b_log_item; 396 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 397 xfs_failaddr_t fa; 398 399 fa = xfs_attr3_leaf_verify(bp); 400 if (fa) { 401 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 402 return; 403 } 404 405 if (!xfs_has_crc(mp)) 406 return; 407 408 if (bip) 409 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 410 411 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 412 } 413 414 /* 415 * leaf/node format detection on trees is sketchy, so a node read can be done on 416 * leaf level blocks when detection identifies the tree as a node format tree 417 * incorrectly. In this case, we need to swap the verifier to match the correct 418 * format of the block being read. 419 */ 420 static void 421 xfs_attr3_leaf_read_verify( 422 struct xfs_buf *bp) 423 { 424 struct xfs_mount *mp = bp->b_mount; 425 xfs_failaddr_t fa; 426 427 if (xfs_has_crc(mp) && 428 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 429 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 430 else { 431 fa = xfs_attr3_leaf_verify(bp); 432 if (fa) 433 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 434 } 435 } 436 437 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 438 .name = "xfs_attr3_leaf", 439 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 440 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 441 .verify_read = xfs_attr3_leaf_read_verify, 442 .verify_write = xfs_attr3_leaf_write_verify, 443 .verify_struct = xfs_attr3_leaf_verify, 444 }; 445 446 int 447 xfs_attr3_leaf_read( 448 struct xfs_trans *tp, 449 struct xfs_inode *dp, 450 xfs_dablk_t bno, 451 struct xfs_buf **bpp) 452 { 453 int err; 454 455 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 456 &xfs_attr3_leaf_buf_ops); 457 if (!err && tp && *bpp) 458 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 459 return err; 460 } 461 462 /*======================================================================== 463 * Namespace helper routines 464 *========================================================================*/ 465 466 /* 467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 468 * flag on disk - if there's an incomplete attr then recovery needs to tear it 469 * down. If there's no incomplete attr, then recovery needs to tear that attr 470 * down to replace it with the attr that has been logged. In this case, the 471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 472 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 473 */ 474 static bool 475 xfs_attr_match( 476 struct xfs_da_args *args, 477 uint8_t namelen, 478 unsigned char *name, 479 int flags) 480 { 481 482 if (args->namelen != namelen) 483 return false; 484 if (memcmp(args->name, name, namelen) != 0) 485 return false; 486 487 /* Recovery ignores the INCOMPLETE flag. */ 488 if ((args->op_flags & XFS_DA_OP_RECOVERY) && 489 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK)) 490 return true; 491 492 /* All remaining matches need to be filtered by INCOMPLETE state. */ 493 if (args->attr_filter != 494 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) 495 return false; 496 return true; 497 } 498 499 static int 500 xfs_attr_copy_value( 501 struct xfs_da_args *args, 502 unsigned char *value, 503 int valuelen) 504 { 505 /* 506 * No copy if all we have to do is get the length 507 */ 508 if (!args->valuelen) { 509 args->valuelen = valuelen; 510 return 0; 511 } 512 513 /* 514 * No copy if the length of the existing buffer is too small 515 */ 516 if (args->valuelen < valuelen) { 517 args->valuelen = valuelen; 518 return -ERANGE; 519 } 520 521 if (!args->value) { 522 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 523 if (!args->value) 524 return -ENOMEM; 525 } 526 args->valuelen = valuelen; 527 528 /* remote block xattr requires IO for copy-in */ 529 if (args->rmtblkno) 530 return xfs_attr_rmtval_get(args); 531 532 /* 533 * This is to prevent a GCC warning because the remote xattr case 534 * doesn't have a value to pass in. In that case, we never reach here, 535 * but GCC can't work that out and so throws a "passing NULL to 536 * memcpy" warning. 537 */ 538 if (!value) 539 return -EINVAL; 540 memcpy(args->value, value, valuelen); 541 return 0; 542 } 543 544 /*======================================================================== 545 * External routines when attribute fork size < XFS_LITINO(mp). 546 *========================================================================*/ 547 548 /* 549 * Query whether the total requested number of attr fork bytes of extended 550 * attribute space will be able to fit inline. 551 * 552 * Returns zero if not, else the i_forkoff fork offset to be used in the 553 * literal area for attribute data once the new bytes have been added. 554 * 555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 556 * special case for dev/uuid inodes, they have fixed size data forks. 557 */ 558 int 559 xfs_attr_shortform_bytesfit( 560 struct xfs_inode *dp, 561 int bytes) 562 { 563 struct xfs_mount *mp = dp->i_mount; 564 int64_t dsize; 565 int minforkoff; 566 int maxforkoff; 567 int offset; 568 569 /* 570 * Check if the new size could fit at all first: 571 */ 572 if (bytes > XFS_LITINO(mp)) 573 return 0; 574 575 /* rounded down */ 576 offset = (XFS_LITINO(mp) - bytes) >> 3; 577 578 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 579 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 580 return (offset >= minforkoff) ? minforkoff : 0; 581 } 582 583 /* 584 * If the requested numbers of bytes is smaller or equal to the 585 * current attribute fork size we can always proceed. 586 * 587 * Note that if_bytes in the data fork might actually be larger than 588 * the current data fork size is due to delalloc extents. In that 589 * case either the extent count will go down when they are converted 590 * to real extents, or the delalloc conversion will take care of the 591 * literal area rebalancing. 592 */ 593 if (bytes <= xfs_inode_attr_fork_size(dp)) 594 return dp->i_forkoff; 595 596 /* 597 * For attr2 we can try to move the forkoff if there is space in the 598 * literal area, but for the old format we are done if there is no 599 * space in the fixed attribute fork. 600 */ 601 if (!xfs_has_attr2(mp)) 602 return 0; 603 604 dsize = dp->i_df.if_bytes; 605 606 switch (dp->i_df.if_format) { 607 case XFS_DINODE_FMT_EXTENTS: 608 /* 609 * If there is no attr fork and the data fork is extents, 610 * determine if creating the default attr fork will result 611 * in the extents form migrating to btree. If so, the 612 * minimum offset only needs to be the space required for 613 * the btree root. 614 */ 615 if (!dp->i_forkoff && dp->i_df.if_bytes > 616 xfs_default_attroffset(dp)) 617 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 618 break; 619 case XFS_DINODE_FMT_BTREE: 620 /* 621 * If we have a data btree then keep forkoff if we have one, 622 * otherwise we are adding a new attr, so then we set 623 * minforkoff to where the btree root can finish so we have 624 * plenty of room for attrs 625 */ 626 if (dp->i_forkoff) { 627 if (offset < dp->i_forkoff) 628 return 0; 629 return dp->i_forkoff; 630 } 631 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 632 break; 633 } 634 635 /* 636 * A data fork btree root must have space for at least 637 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 638 */ 639 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 640 minforkoff = roundup(minforkoff, 8) >> 3; 641 642 /* attr fork btree root can have at least this many key/ptr pairs */ 643 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 644 maxforkoff = maxforkoff >> 3; /* rounded down */ 645 646 if (offset >= maxforkoff) 647 return maxforkoff; 648 if (offset >= minforkoff) 649 return offset; 650 return 0; 651 } 652 653 /* 654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 655 * - noattr2 mount option is set, 656 * - on-disk version bit says it is already set, or 657 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 658 */ 659 STATIC void 660 xfs_sbversion_add_attr2( 661 struct xfs_mount *mp, 662 struct xfs_trans *tp) 663 { 664 if (xfs_has_noattr2(mp)) 665 return; 666 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 667 return; 668 if (!xfs_has_attr2(mp)) 669 return; 670 671 spin_lock(&mp->m_sb_lock); 672 xfs_add_attr2(mp); 673 spin_unlock(&mp->m_sb_lock); 674 xfs_log_sb(tp); 675 } 676 677 /* 678 * Create the initial contents of a shortform attribute list. 679 */ 680 void 681 xfs_attr_shortform_create( 682 struct xfs_da_args *args) 683 { 684 struct xfs_inode *dp = args->dp; 685 struct xfs_ifork *ifp = &dp->i_af; 686 struct xfs_attr_sf_hdr *hdr; 687 688 trace_xfs_attr_sf_create(args); 689 690 ASSERT(ifp->if_bytes == 0); 691 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 692 ifp->if_format = XFS_DINODE_FMT_LOCAL; 693 694 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 695 memset(hdr, 0, sizeof(*hdr)); 696 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 697 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 698 } 699 700 /* 701 * Return the entry if the attr in args is found, or NULL if not. 702 */ 703 struct xfs_attr_sf_entry * 704 xfs_attr_sf_findname( 705 struct xfs_da_args *args) 706 { 707 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data; 708 struct xfs_attr_sf_entry *sfe; 709 710 for (sfe = xfs_attr_sf_firstentry(sf); 711 sfe < xfs_attr_sf_endptr(sf); 712 sfe = xfs_attr_sf_nextentry(sfe)) { 713 if (xfs_attr_match(args, sfe->namelen, sfe->nameval, 714 sfe->flags)) 715 return sfe; 716 } 717 718 return NULL; 719 } 720 721 /* 722 * Add a name/value pair to the shortform attribute list. 723 * Overflow from the inode has already been checked for. 724 */ 725 void 726 xfs_attr_shortform_add( 727 struct xfs_da_args *args, 728 int forkoff) 729 { 730 struct xfs_inode *dp = args->dp; 731 struct xfs_mount *mp = dp->i_mount; 732 struct xfs_ifork *ifp = &dp->i_af; 733 struct xfs_attr_sf_hdr *sf = ifp->if_data; 734 struct xfs_attr_sf_entry *sfe; 735 int size; 736 737 trace_xfs_attr_sf_add(args); 738 739 dp->i_forkoff = forkoff; 740 741 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 742 ASSERT(!xfs_attr_sf_findname(args)); 743 744 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 745 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 746 747 sfe = xfs_attr_sf_endptr(sf); 748 sfe->namelen = args->namelen; 749 sfe->valuelen = args->valuelen; 750 sfe->flags = args->attr_filter; 751 memcpy(sfe->nameval, args->name, args->namelen); 752 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 753 sf->count++; 754 be16_add_cpu(&sf->totsize, size); 755 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 756 757 xfs_sbversion_add_attr2(mp, args->trans); 758 } 759 760 /* 761 * After the last attribute is removed revert to original inode format, 762 * making all literal area available to the data fork once more. 763 */ 764 void 765 xfs_attr_fork_remove( 766 struct xfs_inode *ip, 767 struct xfs_trans *tp) 768 { 769 ASSERT(ip->i_af.if_nextents == 0); 770 771 xfs_ifork_zap_attr(ip); 772 ip->i_forkoff = 0; 773 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 774 } 775 776 /* 777 * Remove an attribute from the shortform attribute list structure. 778 */ 779 int 780 xfs_attr_sf_removename( 781 struct xfs_da_args *args) 782 { 783 struct xfs_inode *dp = args->dp; 784 struct xfs_mount *mp = dp->i_mount; 785 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data; 786 struct xfs_attr_sf_entry *sfe; 787 uint16_t totsize = be16_to_cpu(sf->totsize); 788 void *next, *end; 789 int size = 0; 790 791 trace_xfs_attr_sf_remove(args); 792 793 sfe = xfs_attr_sf_findname(args); 794 if (!sfe) { 795 /* 796 * If we are recovering an operation, finding nothing to remove 797 * is not an error, it just means there was nothing to clean up. 798 */ 799 if (args->op_flags & XFS_DA_OP_RECOVERY) 800 return 0; 801 return -ENOATTR; 802 } 803 804 /* 805 * Fix up the attribute fork data, covering the hole 806 */ 807 size = xfs_attr_sf_entsize(sfe); 808 next = xfs_attr_sf_nextentry(sfe); 809 end = xfs_attr_sf_endptr(sf); 810 if (next < end) 811 memmove(sfe, next, end - next); 812 sf->count--; 813 totsize -= size; 814 sf->totsize = cpu_to_be16(totsize); 815 816 /* 817 * Fix up the start offset of the attribute fork 818 */ 819 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) && 820 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 821 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) { 822 xfs_attr_fork_remove(dp, args->trans); 823 } else { 824 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 825 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 826 ASSERT(dp->i_forkoff); 827 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) || 828 (args->op_flags & XFS_DA_OP_ADDNAME) || 829 !xfs_has_attr2(mp) || 830 dp->i_df.if_format == XFS_DINODE_FMT_BTREE); 831 xfs_trans_log_inode(args->trans, dp, 832 XFS_ILOG_CORE | XFS_ILOG_ADATA); 833 } 834 835 xfs_sbversion_add_attr2(mp, args->trans); 836 837 return 0; 838 } 839 840 /* 841 * Retrieve the attribute value and length. 842 * 843 * If args->valuelen is zero, only the length needs to be returned. Unlike a 844 * lookup, we only return an error if the attribute does not exist or we can't 845 * retrieve the value. 846 */ 847 int 848 xfs_attr_shortform_getvalue( 849 struct xfs_da_args *args) 850 { 851 struct xfs_attr_sf_entry *sfe; 852 853 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL); 854 855 trace_xfs_attr_sf_lookup(args); 856 857 sfe = xfs_attr_sf_findname(args); 858 if (!sfe) 859 return -ENOATTR; 860 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen], 861 sfe->valuelen); 862 } 863 864 /* Convert from using the shortform to the leaf format. */ 865 int 866 xfs_attr_shortform_to_leaf( 867 struct xfs_da_args *args) 868 { 869 struct xfs_inode *dp = args->dp; 870 struct xfs_ifork *ifp = &dp->i_af; 871 struct xfs_attr_sf_hdr *sf = ifp->if_data; 872 struct xfs_attr_sf_entry *sfe; 873 int size = be16_to_cpu(sf->totsize); 874 struct xfs_da_args nargs; 875 char *tmpbuffer; 876 int error, i; 877 xfs_dablk_t blkno; 878 struct xfs_buf *bp; 879 880 trace_xfs_attr_sf_to_leaf(args); 881 882 tmpbuffer = kmem_alloc(size, 0); 883 ASSERT(tmpbuffer != NULL); 884 memcpy(tmpbuffer, ifp->if_data, size); 885 sf = (struct xfs_attr_sf_hdr *)tmpbuffer; 886 887 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 888 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 889 890 bp = NULL; 891 error = xfs_da_grow_inode(args, &blkno); 892 if (error) 893 goto out; 894 895 ASSERT(blkno == 0); 896 error = xfs_attr3_leaf_create(args, blkno, &bp); 897 if (error) 898 goto out; 899 900 memset((char *)&nargs, 0, sizeof(nargs)); 901 nargs.dp = dp; 902 nargs.geo = args->geo; 903 nargs.total = args->total; 904 nargs.whichfork = XFS_ATTR_FORK; 905 nargs.trans = args->trans; 906 nargs.op_flags = XFS_DA_OP_OKNOENT; 907 908 sfe = xfs_attr_sf_firstentry(sf); 909 for (i = 0; i < sf->count; i++) { 910 nargs.name = sfe->nameval; 911 nargs.namelen = sfe->namelen; 912 nargs.value = &sfe->nameval[nargs.namelen]; 913 nargs.valuelen = sfe->valuelen; 914 nargs.hashval = xfs_da_hashname(sfe->nameval, 915 sfe->namelen); 916 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 917 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 918 ASSERT(error == -ENOATTR); 919 error = xfs_attr3_leaf_add(bp, &nargs); 920 ASSERT(error != -ENOSPC); 921 if (error) 922 goto out; 923 sfe = xfs_attr_sf_nextentry(sfe); 924 } 925 error = 0; 926 out: 927 kmem_free(tmpbuffer); 928 return error; 929 } 930 931 /* 932 * Check a leaf attribute block to see if all the entries would fit into 933 * a shortform attribute list. 934 */ 935 int 936 xfs_attr_shortform_allfit( 937 struct xfs_buf *bp, 938 struct xfs_inode *dp) 939 { 940 struct xfs_attr_leafblock *leaf; 941 struct xfs_attr_leaf_entry *entry; 942 xfs_attr_leaf_name_local_t *name_loc; 943 struct xfs_attr3_icleaf_hdr leafhdr; 944 int bytes; 945 int i; 946 struct xfs_mount *mp = bp->b_mount; 947 948 leaf = bp->b_addr; 949 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 950 entry = xfs_attr3_leaf_entryp(leaf); 951 952 bytes = sizeof(struct xfs_attr_sf_hdr); 953 for (i = 0; i < leafhdr.count; entry++, i++) { 954 if (entry->flags & XFS_ATTR_INCOMPLETE) 955 continue; /* don't copy partial entries */ 956 if (!(entry->flags & XFS_ATTR_LOCAL)) 957 return 0; 958 name_loc = xfs_attr3_leaf_name_local(leaf, i); 959 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 960 return 0; 961 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 962 return 0; 963 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 964 be16_to_cpu(name_loc->valuelen)); 965 } 966 if (xfs_has_attr2(dp->i_mount) && 967 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 968 (bytes == sizeof(struct xfs_attr_sf_hdr))) 969 return -1; 970 return xfs_attr_shortform_bytesfit(dp, bytes); 971 } 972 973 /* Verify the consistency of a raw inline attribute fork. */ 974 xfs_failaddr_t 975 xfs_attr_shortform_verify( 976 struct xfs_attr_sf_hdr *sfp, 977 size_t size) 978 { 979 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp); 980 struct xfs_attr_sf_entry *next_sfep; 981 char *endp; 982 int i; 983 984 /* 985 * Give up if the attribute is way too short. 986 */ 987 if (size < sizeof(struct xfs_attr_sf_hdr)) 988 return __this_address; 989 990 endp = (char *)sfp + size; 991 992 /* Check all reported entries */ 993 for (i = 0; i < sfp->count; i++) { 994 /* 995 * struct xfs_attr_sf_entry has a variable length. 996 * Check the fixed-offset parts of the structure are 997 * within the data buffer. 998 * xfs_attr_sf_entry is defined with a 1-byte variable 999 * array at the end, so we must subtract that off. 1000 */ 1001 if (((char *)sfep + sizeof(*sfep)) >= endp) 1002 return __this_address; 1003 1004 /* Don't allow names with known bad length. */ 1005 if (sfep->namelen == 0) 1006 return __this_address; 1007 1008 /* 1009 * Check that the variable-length part of the structure is 1010 * within the data buffer. The next entry starts after the 1011 * name component, so nextentry is an acceptable test. 1012 */ 1013 next_sfep = xfs_attr_sf_nextentry(sfep); 1014 if ((char *)next_sfep > endp) 1015 return __this_address; 1016 1017 /* 1018 * Check for unknown flags. Short form doesn't support 1019 * the incomplete or local bits, so we can use the namespace 1020 * mask here. 1021 */ 1022 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1023 return __this_address; 1024 1025 /* 1026 * Check for invalid namespace combinations. We only allow 1027 * one namespace flag per xattr, so we can just count the 1028 * bits (i.e. hweight) here. 1029 */ 1030 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) 1031 return __this_address; 1032 1033 sfep = next_sfep; 1034 } 1035 if ((void *)sfep != (void *)endp) 1036 return __this_address; 1037 1038 return NULL; 1039 } 1040 1041 /* 1042 * Convert a leaf attribute list to shortform attribute list 1043 */ 1044 int 1045 xfs_attr3_leaf_to_shortform( 1046 struct xfs_buf *bp, 1047 struct xfs_da_args *args, 1048 int forkoff) 1049 { 1050 struct xfs_attr_leafblock *leaf; 1051 struct xfs_attr3_icleaf_hdr ichdr; 1052 struct xfs_attr_leaf_entry *entry; 1053 struct xfs_attr_leaf_name_local *name_loc; 1054 struct xfs_da_args nargs; 1055 struct xfs_inode *dp = args->dp; 1056 char *tmpbuffer; 1057 int error; 1058 int i; 1059 1060 trace_xfs_attr_leaf_to_sf(args); 1061 1062 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1063 if (!tmpbuffer) 1064 return -ENOMEM; 1065 1066 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1067 1068 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1069 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1070 entry = xfs_attr3_leaf_entryp(leaf); 1071 1072 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1073 memset(bp->b_addr, 0, args->geo->blksize); 1074 1075 /* 1076 * Clean out the prior contents of the attribute list. 1077 */ 1078 error = xfs_da_shrink_inode(args, 0, bp); 1079 if (error) 1080 goto out; 1081 1082 if (forkoff == -1) { 1083 /* 1084 * Don't remove the attr fork if this operation is the first 1085 * part of a attr replace operations. We're going to add a new 1086 * attr immediately, so we need to keep the attr fork around in 1087 * this case. 1088 */ 1089 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1090 ASSERT(xfs_has_attr2(dp->i_mount)); 1091 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1092 xfs_attr_fork_remove(dp, args->trans); 1093 } 1094 goto out; 1095 } 1096 1097 xfs_attr_shortform_create(args); 1098 1099 /* 1100 * Copy the attributes 1101 */ 1102 memset((char *)&nargs, 0, sizeof(nargs)); 1103 nargs.geo = args->geo; 1104 nargs.dp = dp; 1105 nargs.total = args->total; 1106 nargs.whichfork = XFS_ATTR_FORK; 1107 nargs.trans = args->trans; 1108 nargs.op_flags = XFS_DA_OP_OKNOENT; 1109 1110 for (i = 0; i < ichdr.count; entry++, i++) { 1111 if (entry->flags & XFS_ATTR_INCOMPLETE) 1112 continue; /* don't copy partial entries */ 1113 if (!entry->nameidx) 1114 continue; 1115 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1116 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1117 nargs.name = name_loc->nameval; 1118 nargs.namelen = name_loc->namelen; 1119 nargs.value = &name_loc->nameval[nargs.namelen]; 1120 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1121 nargs.hashval = be32_to_cpu(entry->hashval); 1122 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1123 xfs_attr_shortform_add(&nargs, forkoff); 1124 } 1125 error = 0; 1126 1127 out: 1128 kmem_free(tmpbuffer); 1129 return error; 1130 } 1131 1132 /* 1133 * Convert from using a single leaf to a root node and a leaf. 1134 */ 1135 int 1136 xfs_attr3_leaf_to_node( 1137 struct xfs_da_args *args) 1138 { 1139 struct xfs_attr_leafblock *leaf; 1140 struct xfs_attr3_icleaf_hdr icleafhdr; 1141 struct xfs_attr_leaf_entry *entries; 1142 struct xfs_da3_icnode_hdr icnodehdr; 1143 struct xfs_da_intnode *node; 1144 struct xfs_inode *dp = args->dp; 1145 struct xfs_mount *mp = dp->i_mount; 1146 struct xfs_buf *bp1 = NULL; 1147 struct xfs_buf *bp2 = NULL; 1148 xfs_dablk_t blkno; 1149 int error; 1150 1151 trace_xfs_attr_leaf_to_node(args); 1152 1153 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1154 error = -EIO; 1155 goto out; 1156 } 1157 1158 error = xfs_da_grow_inode(args, &blkno); 1159 if (error) 1160 goto out; 1161 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); 1162 if (error) 1163 goto out; 1164 1165 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1166 if (error) 1167 goto out; 1168 1169 /* 1170 * Copy leaf to new buffer and log it. 1171 */ 1172 xfs_da_buf_copy(bp2, bp1, args->geo->blksize); 1173 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1174 1175 /* 1176 * Set up the new root node. 1177 */ 1178 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1179 if (error) 1180 goto out; 1181 node = bp1->b_addr; 1182 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1183 1184 leaf = bp2->b_addr; 1185 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1186 entries = xfs_attr3_leaf_entryp(leaf); 1187 1188 /* both on-disk, don't endian-flip twice */ 1189 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1190 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1191 icnodehdr.count = 1; 1192 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1193 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1194 error = 0; 1195 out: 1196 return error; 1197 } 1198 1199 /*======================================================================== 1200 * Routines used for growing the Btree. 1201 *========================================================================*/ 1202 1203 /* 1204 * Create the initial contents of a leaf attribute list 1205 * or a leaf in a node attribute list. 1206 */ 1207 STATIC int 1208 xfs_attr3_leaf_create( 1209 struct xfs_da_args *args, 1210 xfs_dablk_t blkno, 1211 struct xfs_buf **bpp) 1212 { 1213 struct xfs_attr_leafblock *leaf; 1214 struct xfs_attr3_icleaf_hdr ichdr; 1215 struct xfs_inode *dp = args->dp; 1216 struct xfs_mount *mp = dp->i_mount; 1217 struct xfs_buf *bp; 1218 int error; 1219 1220 trace_xfs_attr_leaf_create(args); 1221 1222 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1223 XFS_ATTR_FORK); 1224 if (error) 1225 return error; 1226 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1227 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1228 leaf = bp->b_addr; 1229 memset(leaf, 0, args->geo->blksize); 1230 1231 memset(&ichdr, 0, sizeof(ichdr)); 1232 ichdr.firstused = args->geo->blksize; 1233 1234 if (xfs_has_crc(mp)) { 1235 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1236 1237 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1238 1239 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1240 hdr3->owner = cpu_to_be64(dp->i_ino); 1241 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1242 1243 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1244 } else { 1245 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1246 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1247 } 1248 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1249 1250 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1251 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1252 1253 *bpp = bp; 1254 return 0; 1255 } 1256 1257 /* 1258 * Split the leaf node, rebalance, then add the new entry. 1259 */ 1260 int 1261 xfs_attr3_leaf_split( 1262 struct xfs_da_state *state, 1263 struct xfs_da_state_blk *oldblk, 1264 struct xfs_da_state_blk *newblk) 1265 { 1266 xfs_dablk_t blkno; 1267 int error; 1268 1269 trace_xfs_attr_leaf_split(state->args); 1270 1271 /* 1272 * Allocate space for a new leaf node. 1273 */ 1274 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1275 error = xfs_da_grow_inode(state->args, &blkno); 1276 if (error) 1277 return error; 1278 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1279 if (error) 1280 return error; 1281 newblk->blkno = blkno; 1282 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1283 1284 /* 1285 * Rebalance the entries across the two leaves. 1286 * NOTE: rebalance() currently depends on the 2nd block being empty. 1287 */ 1288 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1289 error = xfs_da3_blk_link(state, oldblk, newblk); 1290 if (error) 1291 return error; 1292 1293 /* 1294 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1295 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1296 * "new" attrs info. Will need the "old" info to remove it later. 1297 * 1298 * Insert the "new" entry in the correct block. 1299 */ 1300 if (state->inleaf) { 1301 trace_xfs_attr_leaf_add_old(state->args); 1302 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1303 } else { 1304 trace_xfs_attr_leaf_add_new(state->args); 1305 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1306 } 1307 1308 /* 1309 * Update last hashval in each block since we added the name. 1310 */ 1311 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1312 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1313 return error; 1314 } 1315 1316 /* 1317 * Add a name to the leaf attribute list structure. 1318 */ 1319 int 1320 xfs_attr3_leaf_add( 1321 struct xfs_buf *bp, 1322 struct xfs_da_args *args) 1323 { 1324 struct xfs_attr_leafblock *leaf; 1325 struct xfs_attr3_icleaf_hdr ichdr; 1326 int tablesize; 1327 int entsize; 1328 int sum; 1329 int tmp; 1330 int i; 1331 1332 trace_xfs_attr_leaf_add(args); 1333 1334 leaf = bp->b_addr; 1335 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1336 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1337 entsize = xfs_attr_leaf_newentsize(args, NULL); 1338 1339 /* 1340 * Search through freemap for first-fit on new name length. 1341 * (may need to figure in size of entry struct too) 1342 */ 1343 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1344 + xfs_attr3_leaf_hdr_size(leaf); 1345 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1346 if (tablesize > ichdr.firstused) { 1347 sum += ichdr.freemap[i].size; 1348 continue; 1349 } 1350 if (!ichdr.freemap[i].size) 1351 continue; /* no space in this map */ 1352 tmp = entsize; 1353 if (ichdr.freemap[i].base < ichdr.firstused) 1354 tmp += sizeof(xfs_attr_leaf_entry_t); 1355 if (ichdr.freemap[i].size >= tmp) { 1356 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1357 goto out_log_hdr; 1358 } 1359 sum += ichdr.freemap[i].size; 1360 } 1361 1362 /* 1363 * If there are no holes in the address space of the block, 1364 * and we don't have enough freespace, then compaction will do us 1365 * no good and we should just give up. 1366 */ 1367 if (!ichdr.holes && sum < entsize) 1368 return -ENOSPC; 1369 1370 /* 1371 * Compact the entries to coalesce free space. 1372 * This may change the hdr->count via dropping INCOMPLETE entries. 1373 */ 1374 xfs_attr3_leaf_compact(args, &ichdr, bp); 1375 1376 /* 1377 * After compaction, the block is guaranteed to have only one 1378 * free region, in freemap[0]. If it is not big enough, give up. 1379 */ 1380 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1381 tmp = -ENOSPC; 1382 goto out_log_hdr; 1383 } 1384 1385 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1386 1387 out_log_hdr: 1388 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1389 xfs_trans_log_buf(args->trans, bp, 1390 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1391 xfs_attr3_leaf_hdr_size(leaf))); 1392 return tmp; 1393 } 1394 1395 /* 1396 * Add a name to a leaf attribute list structure. 1397 */ 1398 STATIC int 1399 xfs_attr3_leaf_add_work( 1400 struct xfs_buf *bp, 1401 struct xfs_attr3_icleaf_hdr *ichdr, 1402 struct xfs_da_args *args, 1403 int mapindex) 1404 { 1405 struct xfs_attr_leafblock *leaf; 1406 struct xfs_attr_leaf_entry *entry; 1407 struct xfs_attr_leaf_name_local *name_loc; 1408 struct xfs_attr_leaf_name_remote *name_rmt; 1409 struct xfs_mount *mp; 1410 int tmp; 1411 int i; 1412 1413 trace_xfs_attr_leaf_add_work(args); 1414 1415 leaf = bp->b_addr; 1416 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1417 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1418 1419 /* 1420 * Force open some space in the entry array and fill it in. 1421 */ 1422 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1423 if (args->index < ichdr->count) { 1424 tmp = ichdr->count - args->index; 1425 tmp *= sizeof(xfs_attr_leaf_entry_t); 1426 memmove(entry + 1, entry, tmp); 1427 xfs_trans_log_buf(args->trans, bp, 1428 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1429 } 1430 ichdr->count++; 1431 1432 /* 1433 * Allocate space for the new string (at the end of the run). 1434 */ 1435 mp = args->trans->t_mountp; 1436 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1437 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1438 ASSERT(ichdr->freemap[mapindex].size >= 1439 xfs_attr_leaf_newentsize(args, NULL)); 1440 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1441 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1442 1443 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1444 1445 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1446 ichdr->freemap[mapindex].size); 1447 entry->hashval = cpu_to_be32(args->hashval); 1448 entry->flags = args->attr_filter; 1449 if (tmp) 1450 entry->flags |= XFS_ATTR_LOCAL; 1451 if (args->op_flags & XFS_DA_OP_REPLACE) { 1452 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1453 entry->flags |= XFS_ATTR_INCOMPLETE; 1454 if ((args->blkno2 == args->blkno) && 1455 (args->index2 <= args->index)) { 1456 args->index2++; 1457 } 1458 } 1459 xfs_trans_log_buf(args->trans, bp, 1460 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1461 ASSERT((args->index == 0) || 1462 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1463 ASSERT((args->index == ichdr->count - 1) || 1464 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1465 1466 /* 1467 * For "remote" attribute values, simply note that we need to 1468 * allocate space for the "remote" value. We can't actually 1469 * allocate the extents in this transaction, and we can't decide 1470 * which blocks they should be as we might allocate more blocks 1471 * as part of this transaction (a split operation for example). 1472 */ 1473 if (entry->flags & XFS_ATTR_LOCAL) { 1474 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1475 name_loc->namelen = args->namelen; 1476 name_loc->valuelen = cpu_to_be16(args->valuelen); 1477 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1478 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1479 be16_to_cpu(name_loc->valuelen)); 1480 } else { 1481 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1482 name_rmt->namelen = args->namelen; 1483 memcpy((char *)name_rmt->name, args->name, args->namelen); 1484 entry->flags |= XFS_ATTR_INCOMPLETE; 1485 /* just in case */ 1486 name_rmt->valuelen = 0; 1487 name_rmt->valueblk = 0; 1488 args->rmtblkno = 1; 1489 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1490 args->rmtvaluelen = args->valuelen; 1491 } 1492 xfs_trans_log_buf(args->trans, bp, 1493 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1494 xfs_attr_leaf_entsize(leaf, args->index))); 1495 1496 /* 1497 * Update the control info for this leaf node 1498 */ 1499 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1500 ichdr->firstused = be16_to_cpu(entry->nameidx); 1501 1502 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1503 + xfs_attr3_leaf_hdr_size(leaf)); 1504 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1505 + xfs_attr3_leaf_hdr_size(leaf); 1506 1507 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1508 if (ichdr->freemap[i].base == tmp) { 1509 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1510 ichdr->freemap[i].size -= 1511 min_t(uint16_t, ichdr->freemap[i].size, 1512 sizeof(xfs_attr_leaf_entry_t)); 1513 } 1514 } 1515 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1516 return 0; 1517 } 1518 1519 /* 1520 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1521 */ 1522 STATIC void 1523 xfs_attr3_leaf_compact( 1524 struct xfs_da_args *args, 1525 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1526 struct xfs_buf *bp) 1527 { 1528 struct xfs_attr_leafblock *leaf_src; 1529 struct xfs_attr_leafblock *leaf_dst; 1530 struct xfs_attr3_icleaf_hdr ichdr_src; 1531 struct xfs_trans *trans = args->trans; 1532 char *tmpbuffer; 1533 1534 trace_xfs_attr_leaf_compact(args); 1535 1536 tmpbuffer = kmem_alloc(args->geo->blksize, 0); 1537 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1538 memset(bp->b_addr, 0, args->geo->blksize); 1539 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1540 leaf_dst = bp->b_addr; 1541 1542 /* 1543 * Copy the on-disk header back into the destination buffer to ensure 1544 * all the information in the header that is not part of the incore 1545 * header structure is preserved. 1546 */ 1547 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1548 1549 /* Initialise the incore headers */ 1550 ichdr_src = *ichdr_dst; /* struct copy */ 1551 ichdr_dst->firstused = args->geo->blksize; 1552 ichdr_dst->usedbytes = 0; 1553 ichdr_dst->count = 0; 1554 ichdr_dst->holes = 0; 1555 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1556 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1557 ichdr_dst->freemap[0].base; 1558 1559 /* write the header back to initialise the underlying buffer */ 1560 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1561 1562 /* 1563 * Copy all entry's in the same (sorted) order, 1564 * but allocate name/value pairs packed and in sequence. 1565 */ 1566 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1567 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1568 /* 1569 * this logs the entire buffer, but the caller must write the header 1570 * back to the buffer when it is finished modifying it. 1571 */ 1572 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1573 1574 kmem_free(tmpbuffer); 1575 } 1576 1577 /* 1578 * Compare two leaf blocks "order". 1579 * Return 0 unless leaf2 should go before leaf1. 1580 */ 1581 static int 1582 xfs_attr3_leaf_order( 1583 struct xfs_buf *leaf1_bp, 1584 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1585 struct xfs_buf *leaf2_bp, 1586 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1587 { 1588 struct xfs_attr_leaf_entry *entries1; 1589 struct xfs_attr_leaf_entry *entries2; 1590 1591 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1592 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1593 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1594 ((be32_to_cpu(entries2[0].hashval) < 1595 be32_to_cpu(entries1[0].hashval)) || 1596 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1597 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1598 return 1; 1599 } 1600 return 0; 1601 } 1602 1603 int 1604 xfs_attr_leaf_order( 1605 struct xfs_buf *leaf1_bp, 1606 struct xfs_buf *leaf2_bp) 1607 { 1608 struct xfs_attr3_icleaf_hdr ichdr1; 1609 struct xfs_attr3_icleaf_hdr ichdr2; 1610 struct xfs_mount *mp = leaf1_bp->b_mount; 1611 1612 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1613 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1614 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1615 } 1616 1617 /* 1618 * Redistribute the attribute list entries between two leaf nodes, 1619 * taking into account the size of the new entry. 1620 * 1621 * NOTE: if new block is empty, then it will get the upper half of the 1622 * old block. At present, all (one) callers pass in an empty second block. 1623 * 1624 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1625 * to match what it is doing in splitting the attribute leaf block. Those 1626 * values are used in "atomic rename" operations on attributes. Note that 1627 * the "new" and "old" values can end up in different blocks. 1628 */ 1629 STATIC void 1630 xfs_attr3_leaf_rebalance( 1631 struct xfs_da_state *state, 1632 struct xfs_da_state_blk *blk1, 1633 struct xfs_da_state_blk *blk2) 1634 { 1635 struct xfs_da_args *args; 1636 struct xfs_attr_leafblock *leaf1; 1637 struct xfs_attr_leafblock *leaf2; 1638 struct xfs_attr3_icleaf_hdr ichdr1; 1639 struct xfs_attr3_icleaf_hdr ichdr2; 1640 struct xfs_attr_leaf_entry *entries1; 1641 struct xfs_attr_leaf_entry *entries2; 1642 int count; 1643 int totallen; 1644 int max; 1645 int space; 1646 int swap; 1647 1648 /* 1649 * Set up environment. 1650 */ 1651 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1652 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1653 leaf1 = blk1->bp->b_addr; 1654 leaf2 = blk2->bp->b_addr; 1655 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1656 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1657 ASSERT(ichdr2.count == 0); 1658 args = state->args; 1659 1660 trace_xfs_attr_leaf_rebalance(args); 1661 1662 /* 1663 * Check ordering of blocks, reverse if it makes things simpler. 1664 * 1665 * NOTE: Given that all (current) callers pass in an empty 1666 * second block, this code should never set "swap". 1667 */ 1668 swap = 0; 1669 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1670 swap(blk1, blk2); 1671 1672 /* swap structures rather than reconverting them */ 1673 swap(ichdr1, ichdr2); 1674 1675 leaf1 = blk1->bp->b_addr; 1676 leaf2 = blk2->bp->b_addr; 1677 swap = 1; 1678 } 1679 1680 /* 1681 * Examine entries until we reduce the absolute difference in 1682 * byte usage between the two blocks to a minimum. Then get 1683 * the direction to copy and the number of elements to move. 1684 * 1685 * "inleaf" is true if the new entry should be inserted into blk1. 1686 * If "swap" is also true, then reverse the sense of "inleaf". 1687 */ 1688 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1689 blk2, &ichdr2, 1690 &count, &totallen); 1691 if (swap) 1692 state->inleaf = !state->inleaf; 1693 1694 /* 1695 * Move any entries required from leaf to leaf: 1696 */ 1697 if (count < ichdr1.count) { 1698 /* 1699 * Figure the total bytes to be added to the destination leaf. 1700 */ 1701 /* number entries being moved */ 1702 count = ichdr1.count - count; 1703 space = ichdr1.usedbytes - totallen; 1704 space += count * sizeof(xfs_attr_leaf_entry_t); 1705 1706 /* 1707 * leaf2 is the destination, compact it if it looks tight. 1708 */ 1709 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1710 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1711 if (space > max) 1712 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1713 1714 /* 1715 * Move high entries from leaf1 to low end of leaf2. 1716 */ 1717 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1718 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1719 1720 } else if (count > ichdr1.count) { 1721 /* 1722 * I assert that since all callers pass in an empty 1723 * second buffer, this code should never execute. 1724 */ 1725 ASSERT(0); 1726 1727 /* 1728 * Figure the total bytes to be added to the destination leaf. 1729 */ 1730 /* number entries being moved */ 1731 count -= ichdr1.count; 1732 space = totallen - ichdr1.usedbytes; 1733 space += count * sizeof(xfs_attr_leaf_entry_t); 1734 1735 /* 1736 * leaf1 is the destination, compact it if it looks tight. 1737 */ 1738 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1739 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1740 if (space > max) 1741 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1742 1743 /* 1744 * Move low entries from leaf2 to high end of leaf1. 1745 */ 1746 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1747 ichdr1.count, count); 1748 } 1749 1750 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1751 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1752 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1753 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1754 1755 /* 1756 * Copy out last hashval in each block for B-tree code. 1757 */ 1758 entries1 = xfs_attr3_leaf_entryp(leaf1); 1759 entries2 = xfs_attr3_leaf_entryp(leaf2); 1760 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1761 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1762 1763 /* 1764 * Adjust the expected index for insertion. 1765 * NOTE: this code depends on the (current) situation that the 1766 * second block was originally empty. 1767 * 1768 * If the insertion point moved to the 2nd block, we must adjust 1769 * the index. We must also track the entry just following the 1770 * new entry for use in an "atomic rename" operation, that entry 1771 * is always the "old" entry and the "new" entry is what we are 1772 * inserting. The index/blkno fields refer to the "old" entry, 1773 * while the index2/blkno2 fields refer to the "new" entry. 1774 */ 1775 if (blk1->index > ichdr1.count) { 1776 ASSERT(state->inleaf == 0); 1777 blk2->index = blk1->index - ichdr1.count; 1778 args->index = args->index2 = blk2->index; 1779 args->blkno = args->blkno2 = blk2->blkno; 1780 } else if (blk1->index == ichdr1.count) { 1781 if (state->inleaf) { 1782 args->index = blk1->index; 1783 args->blkno = blk1->blkno; 1784 args->index2 = 0; 1785 args->blkno2 = blk2->blkno; 1786 } else { 1787 /* 1788 * On a double leaf split, the original attr location 1789 * is already stored in blkno2/index2, so don't 1790 * overwrite it overwise we corrupt the tree. 1791 */ 1792 blk2->index = blk1->index - ichdr1.count; 1793 args->index = blk2->index; 1794 args->blkno = blk2->blkno; 1795 if (!state->extravalid) { 1796 /* 1797 * set the new attr location to match the old 1798 * one and let the higher level split code 1799 * decide where in the leaf to place it. 1800 */ 1801 args->index2 = blk2->index; 1802 args->blkno2 = blk2->blkno; 1803 } 1804 } 1805 } else { 1806 ASSERT(state->inleaf == 1); 1807 args->index = args->index2 = blk1->index; 1808 args->blkno = args->blkno2 = blk1->blkno; 1809 } 1810 } 1811 1812 /* 1813 * Examine entries until we reduce the absolute difference in 1814 * byte usage between the two blocks to a minimum. 1815 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1816 * GROT: there will always be enough room in either block for a new entry. 1817 * GROT: Do a double-split for this case? 1818 */ 1819 STATIC int 1820 xfs_attr3_leaf_figure_balance( 1821 struct xfs_da_state *state, 1822 struct xfs_da_state_blk *blk1, 1823 struct xfs_attr3_icleaf_hdr *ichdr1, 1824 struct xfs_da_state_blk *blk2, 1825 struct xfs_attr3_icleaf_hdr *ichdr2, 1826 int *countarg, 1827 int *usedbytesarg) 1828 { 1829 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1830 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1831 struct xfs_attr_leaf_entry *entry; 1832 int count; 1833 int max; 1834 int index; 1835 int totallen = 0; 1836 int half; 1837 int lastdelta; 1838 int foundit = 0; 1839 int tmp; 1840 1841 /* 1842 * Examine entries until we reduce the absolute difference in 1843 * byte usage between the two blocks to a minimum. 1844 */ 1845 max = ichdr1->count + ichdr2->count; 1846 half = (max + 1) * sizeof(*entry); 1847 half += ichdr1->usedbytes + ichdr2->usedbytes + 1848 xfs_attr_leaf_newentsize(state->args, NULL); 1849 half /= 2; 1850 lastdelta = state->args->geo->blksize; 1851 entry = xfs_attr3_leaf_entryp(leaf1); 1852 for (count = index = 0; count < max; entry++, index++, count++) { 1853 1854 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1855 /* 1856 * The new entry is in the first block, account for it. 1857 */ 1858 if (count == blk1->index) { 1859 tmp = totallen + sizeof(*entry) + 1860 xfs_attr_leaf_newentsize(state->args, NULL); 1861 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1862 break; 1863 lastdelta = XFS_ATTR_ABS(half - tmp); 1864 totallen = tmp; 1865 foundit = 1; 1866 } 1867 1868 /* 1869 * Wrap around into the second block if necessary. 1870 */ 1871 if (count == ichdr1->count) { 1872 leaf1 = leaf2; 1873 entry = xfs_attr3_leaf_entryp(leaf1); 1874 index = 0; 1875 } 1876 1877 /* 1878 * Figure out if next leaf entry would be too much. 1879 */ 1880 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1881 index); 1882 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1883 break; 1884 lastdelta = XFS_ATTR_ABS(half - tmp); 1885 totallen = tmp; 1886 #undef XFS_ATTR_ABS 1887 } 1888 1889 /* 1890 * Calculate the number of usedbytes that will end up in lower block. 1891 * If new entry not in lower block, fix up the count. 1892 */ 1893 totallen -= count * sizeof(*entry); 1894 if (foundit) { 1895 totallen -= sizeof(*entry) + 1896 xfs_attr_leaf_newentsize(state->args, NULL); 1897 } 1898 1899 *countarg = count; 1900 *usedbytesarg = totallen; 1901 return foundit; 1902 } 1903 1904 /*======================================================================== 1905 * Routines used for shrinking the Btree. 1906 *========================================================================*/ 1907 1908 /* 1909 * Check a leaf block and its neighbors to see if the block should be 1910 * collapsed into one or the other neighbor. Always keep the block 1911 * with the smaller block number. 1912 * If the current block is over 50% full, don't try to join it, return 0. 1913 * If the block is empty, fill in the state structure and return 2. 1914 * If it can be collapsed, fill in the state structure and return 1. 1915 * If nothing can be done, return 0. 1916 * 1917 * GROT: allow for INCOMPLETE entries in calculation. 1918 */ 1919 int 1920 xfs_attr3_leaf_toosmall( 1921 struct xfs_da_state *state, 1922 int *action) 1923 { 1924 struct xfs_attr_leafblock *leaf; 1925 struct xfs_da_state_blk *blk; 1926 struct xfs_attr3_icleaf_hdr ichdr; 1927 struct xfs_buf *bp; 1928 xfs_dablk_t blkno; 1929 int bytes; 1930 int forward; 1931 int error; 1932 int retval; 1933 int i; 1934 1935 trace_xfs_attr_leaf_toosmall(state->args); 1936 1937 /* 1938 * Check for the degenerate case of the block being over 50% full. 1939 * If so, it's not worth even looking to see if we might be able 1940 * to coalesce with a sibling. 1941 */ 1942 blk = &state->path.blk[ state->path.active-1 ]; 1943 leaf = blk->bp->b_addr; 1944 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 1945 bytes = xfs_attr3_leaf_hdr_size(leaf) + 1946 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 1947 ichdr.usedbytes; 1948 if (bytes > (state->args->geo->blksize >> 1)) { 1949 *action = 0; /* blk over 50%, don't try to join */ 1950 return 0; 1951 } 1952 1953 /* 1954 * Check for the degenerate case of the block being empty. 1955 * If the block is empty, we'll simply delete it, no need to 1956 * coalesce it with a sibling block. We choose (arbitrarily) 1957 * to merge with the forward block unless it is NULL. 1958 */ 1959 if (ichdr.count == 0) { 1960 /* 1961 * Make altpath point to the block we want to keep and 1962 * path point to the block we want to drop (this one). 1963 */ 1964 forward = (ichdr.forw != 0); 1965 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1966 error = xfs_da3_path_shift(state, &state->altpath, forward, 1967 0, &retval); 1968 if (error) 1969 return error; 1970 if (retval) { 1971 *action = 0; 1972 } else { 1973 *action = 2; 1974 } 1975 return 0; 1976 } 1977 1978 /* 1979 * Examine each sibling block to see if we can coalesce with 1980 * at least 25% free space to spare. We need to figure out 1981 * whether to merge with the forward or the backward block. 1982 * We prefer coalescing with the lower numbered sibling so as 1983 * to shrink an attribute list over time. 1984 */ 1985 /* start with smaller blk num */ 1986 forward = ichdr.forw < ichdr.back; 1987 for (i = 0; i < 2; forward = !forward, i++) { 1988 struct xfs_attr3_icleaf_hdr ichdr2; 1989 if (forward) 1990 blkno = ichdr.forw; 1991 else 1992 blkno = ichdr.back; 1993 if (blkno == 0) 1994 continue; 1995 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 1996 blkno, &bp); 1997 if (error) 1998 return error; 1999 2000 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2001 2002 bytes = state->args->geo->blksize - 2003 (state->args->geo->blksize >> 2) - 2004 ichdr.usedbytes - ichdr2.usedbytes - 2005 ((ichdr.count + ichdr2.count) * 2006 sizeof(xfs_attr_leaf_entry_t)) - 2007 xfs_attr3_leaf_hdr_size(leaf); 2008 2009 xfs_trans_brelse(state->args->trans, bp); 2010 if (bytes >= 0) 2011 break; /* fits with at least 25% to spare */ 2012 } 2013 if (i >= 2) { 2014 *action = 0; 2015 return 0; 2016 } 2017 2018 /* 2019 * Make altpath point to the block we want to keep (the lower 2020 * numbered block) and path point to the block we want to drop. 2021 */ 2022 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2023 if (blkno < blk->blkno) { 2024 error = xfs_da3_path_shift(state, &state->altpath, forward, 2025 0, &retval); 2026 } else { 2027 error = xfs_da3_path_shift(state, &state->path, forward, 2028 0, &retval); 2029 } 2030 if (error) 2031 return error; 2032 if (retval) { 2033 *action = 0; 2034 } else { 2035 *action = 1; 2036 } 2037 return 0; 2038 } 2039 2040 /* 2041 * Remove a name from the leaf attribute list structure. 2042 * 2043 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2044 * If two leaves are 37% full, when combined they will leave 25% free. 2045 */ 2046 int 2047 xfs_attr3_leaf_remove( 2048 struct xfs_buf *bp, 2049 struct xfs_da_args *args) 2050 { 2051 struct xfs_attr_leafblock *leaf; 2052 struct xfs_attr3_icleaf_hdr ichdr; 2053 struct xfs_attr_leaf_entry *entry; 2054 int before; 2055 int after; 2056 int smallest; 2057 int entsize; 2058 int tablesize; 2059 int tmp; 2060 int i; 2061 2062 trace_xfs_attr_leaf_remove(args); 2063 2064 leaf = bp->b_addr; 2065 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2066 2067 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2068 ASSERT(args->index >= 0 && args->index < ichdr.count); 2069 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2070 xfs_attr3_leaf_hdr_size(leaf)); 2071 2072 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2073 2074 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2075 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2076 2077 /* 2078 * Scan through free region table: 2079 * check for adjacency of free'd entry with an existing one, 2080 * find smallest free region in case we need to replace it, 2081 * adjust any map that borders the entry table, 2082 */ 2083 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2084 + xfs_attr3_leaf_hdr_size(leaf); 2085 tmp = ichdr.freemap[0].size; 2086 before = after = -1; 2087 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2088 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2089 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2090 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2091 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2092 if (ichdr.freemap[i].base == tablesize) { 2093 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2094 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2095 } 2096 2097 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2098 be16_to_cpu(entry->nameidx)) { 2099 before = i; 2100 } else if (ichdr.freemap[i].base == 2101 (be16_to_cpu(entry->nameidx) + entsize)) { 2102 after = i; 2103 } else if (ichdr.freemap[i].size < tmp) { 2104 tmp = ichdr.freemap[i].size; 2105 smallest = i; 2106 } 2107 } 2108 2109 /* 2110 * Coalesce adjacent freemap regions, 2111 * or replace the smallest region. 2112 */ 2113 if ((before >= 0) || (after >= 0)) { 2114 if ((before >= 0) && (after >= 0)) { 2115 ichdr.freemap[before].size += entsize; 2116 ichdr.freemap[before].size += ichdr.freemap[after].size; 2117 ichdr.freemap[after].base = 0; 2118 ichdr.freemap[after].size = 0; 2119 } else if (before >= 0) { 2120 ichdr.freemap[before].size += entsize; 2121 } else { 2122 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2123 ichdr.freemap[after].size += entsize; 2124 } 2125 } else { 2126 /* 2127 * Replace smallest region (if it is smaller than free'd entry) 2128 */ 2129 if (ichdr.freemap[smallest].size < entsize) { 2130 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2131 ichdr.freemap[smallest].size = entsize; 2132 } 2133 } 2134 2135 /* 2136 * Did we remove the first entry? 2137 */ 2138 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2139 smallest = 1; 2140 else 2141 smallest = 0; 2142 2143 /* 2144 * Compress the remaining entries and zero out the removed stuff. 2145 */ 2146 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2147 ichdr.usedbytes -= entsize; 2148 xfs_trans_log_buf(args->trans, bp, 2149 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2150 entsize)); 2151 2152 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2153 memmove(entry, entry + 1, tmp); 2154 ichdr.count--; 2155 xfs_trans_log_buf(args->trans, bp, 2156 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2157 2158 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2159 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2160 2161 /* 2162 * If we removed the first entry, re-find the first used byte 2163 * in the name area. Note that if the entry was the "firstused", 2164 * then we don't have a "hole" in our block resulting from 2165 * removing the name. 2166 */ 2167 if (smallest) { 2168 tmp = args->geo->blksize; 2169 entry = xfs_attr3_leaf_entryp(leaf); 2170 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2171 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2172 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2173 2174 if (be16_to_cpu(entry->nameidx) < tmp) 2175 tmp = be16_to_cpu(entry->nameidx); 2176 } 2177 ichdr.firstused = tmp; 2178 ASSERT(ichdr.firstused != 0); 2179 } else { 2180 ichdr.holes = 1; /* mark as needing compaction */ 2181 } 2182 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2183 xfs_trans_log_buf(args->trans, bp, 2184 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2185 xfs_attr3_leaf_hdr_size(leaf))); 2186 2187 /* 2188 * Check if leaf is less than 50% full, caller may want to 2189 * "join" the leaf with a sibling if so. 2190 */ 2191 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2192 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2193 2194 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2195 } 2196 2197 /* 2198 * Move all the attribute list entries from drop_leaf into save_leaf. 2199 */ 2200 void 2201 xfs_attr3_leaf_unbalance( 2202 struct xfs_da_state *state, 2203 struct xfs_da_state_blk *drop_blk, 2204 struct xfs_da_state_blk *save_blk) 2205 { 2206 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2207 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2208 struct xfs_attr3_icleaf_hdr drophdr; 2209 struct xfs_attr3_icleaf_hdr savehdr; 2210 struct xfs_attr_leaf_entry *entry; 2211 2212 trace_xfs_attr_leaf_unbalance(state->args); 2213 2214 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2215 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2216 entry = xfs_attr3_leaf_entryp(drop_leaf); 2217 2218 /* 2219 * Save last hashval from dying block for later Btree fixup. 2220 */ 2221 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2222 2223 /* 2224 * Check if we need a temp buffer, or can we do it in place. 2225 * Note that we don't check "leaf" for holes because we will 2226 * always be dropping it, toosmall() decided that for us already. 2227 */ 2228 if (savehdr.holes == 0) { 2229 /* 2230 * dest leaf has no holes, so we add there. May need 2231 * to make some room in the entry array. 2232 */ 2233 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2234 drop_blk->bp, &drophdr)) { 2235 xfs_attr3_leaf_moveents(state->args, 2236 drop_leaf, &drophdr, 0, 2237 save_leaf, &savehdr, 0, 2238 drophdr.count); 2239 } else { 2240 xfs_attr3_leaf_moveents(state->args, 2241 drop_leaf, &drophdr, 0, 2242 save_leaf, &savehdr, 2243 savehdr.count, drophdr.count); 2244 } 2245 } else { 2246 /* 2247 * Destination has holes, so we make a temporary copy 2248 * of the leaf and add them both to that. 2249 */ 2250 struct xfs_attr_leafblock *tmp_leaf; 2251 struct xfs_attr3_icleaf_hdr tmphdr; 2252 2253 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); 2254 2255 /* 2256 * Copy the header into the temp leaf so that all the stuff 2257 * not in the incore header is present and gets copied back in 2258 * once we've moved all the entries. 2259 */ 2260 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2261 2262 memset(&tmphdr, 0, sizeof(tmphdr)); 2263 tmphdr.magic = savehdr.magic; 2264 tmphdr.forw = savehdr.forw; 2265 tmphdr.back = savehdr.back; 2266 tmphdr.firstused = state->args->geo->blksize; 2267 2268 /* write the header to the temp buffer to initialise it */ 2269 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2270 2271 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2272 drop_blk->bp, &drophdr)) { 2273 xfs_attr3_leaf_moveents(state->args, 2274 drop_leaf, &drophdr, 0, 2275 tmp_leaf, &tmphdr, 0, 2276 drophdr.count); 2277 xfs_attr3_leaf_moveents(state->args, 2278 save_leaf, &savehdr, 0, 2279 tmp_leaf, &tmphdr, tmphdr.count, 2280 savehdr.count); 2281 } else { 2282 xfs_attr3_leaf_moveents(state->args, 2283 save_leaf, &savehdr, 0, 2284 tmp_leaf, &tmphdr, 0, 2285 savehdr.count); 2286 xfs_attr3_leaf_moveents(state->args, 2287 drop_leaf, &drophdr, 0, 2288 tmp_leaf, &tmphdr, tmphdr.count, 2289 drophdr.count); 2290 } 2291 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2292 savehdr = tmphdr; /* struct copy */ 2293 kmem_free(tmp_leaf); 2294 } 2295 2296 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2297 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2298 state->args->geo->blksize - 1); 2299 2300 /* 2301 * Copy out last hashval in each block for B-tree code. 2302 */ 2303 entry = xfs_attr3_leaf_entryp(save_leaf); 2304 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2305 } 2306 2307 /*======================================================================== 2308 * Routines used for finding things in the Btree. 2309 *========================================================================*/ 2310 2311 /* 2312 * Look up a name in a leaf attribute list structure. 2313 * This is the internal routine, it uses the caller's buffer. 2314 * 2315 * Note that duplicate keys are allowed, but only check within the 2316 * current leaf node. The Btree code must check in adjacent leaf nodes. 2317 * 2318 * Return in args->index the index into the entry[] array of either 2319 * the found entry, or where the entry should have been (insert before 2320 * that entry). 2321 * 2322 * Don't change the args->value unless we find the attribute. 2323 */ 2324 int 2325 xfs_attr3_leaf_lookup_int( 2326 struct xfs_buf *bp, 2327 struct xfs_da_args *args) 2328 { 2329 struct xfs_attr_leafblock *leaf; 2330 struct xfs_attr3_icleaf_hdr ichdr; 2331 struct xfs_attr_leaf_entry *entry; 2332 struct xfs_attr_leaf_entry *entries; 2333 struct xfs_attr_leaf_name_local *name_loc; 2334 struct xfs_attr_leaf_name_remote *name_rmt; 2335 xfs_dahash_t hashval; 2336 int probe; 2337 int span; 2338 2339 trace_xfs_attr_leaf_lookup(args); 2340 2341 leaf = bp->b_addr; 2342 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2343 entries = xfs_attr3_leaf_entryp(leaf); 2344 if (ichdr.count >= args->geo->blksize / 8) { 2345 xfs_buf_mark_corrupt(bp); 2346 return -EFSCORRUPTED; 2347 } 2348 2349 /* 2350 * Binary search. (note: small blocks will skip this loop) 2351 */ 2352 hashval = args->hashval; 2353 probe = span = ichdr.count / 2; 2354 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2355 span /= 2; 2356 if (be32_to_cpu(entry->hashval) < hashval) 2357 probe += span; 2358 else if (be32_to_cpu(entry->hashval) > hashval) 2359 probe -= span; 2360 else 2361 break; 2362 } 2363 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2364 xfs_buf_mark_corrupt(bp); 2365 return -EFSCORRUPTED; 2366 } 2367 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2368 xfs_buf_mark_corrupt(bp); 2369 return -EFSCORRUPTED; 2370 } 2371 2372 /* 2373 * Since we may have duplicate hashval's, find the first matching 2374 * hashval in the leaf. 2375 */ 2376 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2377 entry--; 2378 probe--; 2379 } 2380 while (probe < ichdr.count && 2381 be32_to_cpu(entry->hashval) < hashval) { 2382 entry++; 2383 probe++; 2384 } 2385 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2386 args->index = probe; 2387 return -ENOATTR; 2388 } 2389 2390 /* 2391 * Duplicate keys may be present, so search all of them for a match. 2392 */ 2393 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2394 entry++, probe++) { 2395 /* 2396 * GROT: Add code to remove incomplete entries. 2397 */ 2398 if (entry->flags & XFS_ATTR_LOCAL) { 2399 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2400 if (!xfs_attr_match(args, name_loc->namelen, 2401 name_loc->nameval, entry->flags)) 2402 continue; 2403 args->index = probe; 2404 return -EEXIST; 2405 } else { 2406 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2407 if (!xfs_attr_match(args, name_rmt->namelen, 2408 name_rmt->name, entry->flags)) 2409 continue; 2410 args->index = probe; 2411 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2412 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2413 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2414 args->dp->i_mount, 2415 args->rmtvaluelen); 2416 return -EEXIST; 2417 } 2418 } 2419 args->index = probe; 2420 return -ENOATTR; 2421 } 2422 2423 /* 2424 * Get the value associated with an attribute name from a leaf attribute 2425 * list structure. 2426 * 2427 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2428 * lookup, we only return an error if the attribute does not exist or we can't 2429 * retrieve the value. 2430 */ 2431 int 2432 xfs_attr3_leaf_getvalue( 2433 struct xfs_buf *bp, 2434 struct xfs_da_args *args) 2435 { 2436 struct xfs_attr_leafblock *leaf; 2437 struct xfs_attr3_icleaf_hdr ichdr; 2438 struct xfs_attr_leaf_entry *entry; 2439 struct xfs_attr_leaf_name_local *name_loc; 2440 struct xfs_attr_leaf_name_remote *name_rmt; 2441 2442 leaf = bp->b_addr; 2443 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2444 ASSERT(ichdr.count < args->geo->blksize / 8); 2445 ASSERT(args->index < ichdr.count); 2446 2447 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2448 if (entry->flags & XFS_ATTR_LOCAL) { 2449 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2450 ASSERT(name_loc->namelen == args->namelen); 2451 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2452 return xfs_attr_copy_value(args, 2453 &name_loc->nameval[args->namelen], 2454 be16_to_cpu(name_loc->valuelen)); 2455 } 2456 2457 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2458 ASSERT(name_rmt->namelen == args->namelen); 2459 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2460 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2461 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2462 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2463 args->rmtvaluelen); 2464 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2465 } 2466 2467 /*======================================================================== 2468 * Utility routines. 2469 *========================================================================*/ 2470 2471 /* 2472 * Move the indicated entries from one leaf to another. 2473 * NOTE: this routine modifies both source and destination leaves. 2474 */ 2475 /*ARGSUSED*/ 2476 STATIC void 2477 xfs_attr3_leaf_moveents( 2478 struct xfs_da_args *args, 2479 struct xfs_attr_leafblock *leaf_s, 2480 struct xfs_attr3_icleaf_hdr *ichdr_s, 2481 int start_s, 2482 struct xfs_attr_leafblock *leaf_d, 2483 struct xfs_attr3_icleaf_hdr *ichdr_d, 2484 int start_d, 2485 int count) 2486 { 2487 struct xfs_attr_leaf_entry *entry_s; 2488 struct xfs_attr_leaf_entry *entry_d; 2489 int desti; 2490 int tmp; 2491 int i; 2492 2493 /* 2494 * Check for nothing to do. 2495 */ 2496 if (count == 0) 2497 return; 2498 2499 /* 2500 * Set up environment. 2501 */ 2502 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2503 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2504 ASSERT(ichdr_s->magic == ichdr_d->magic); 2505 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2506 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2507 + xfs_attr3_leaf_hdr_size(leaf_s)); 2508 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2509 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2510 + xfs_attr3_leaf_hdr_size(leaf_d)); 2511 2512 ASSERT(start_s < ichdr_s->count); 2513 ASSERT(start_d <= ichdr_d->count); 2514 ASSERT(count <= ichdr_s->count); 2515 2516 2517 /* 2518 * Move the entries in the destination leaf up to make a hole? 2519 */ 2520 if (start_d < ichdr_d->count) { 2521 tmp = ichdr_d->count - start_d; 2522 tmp *= sizeof(xfs_attr_leaf_entry_t); 2523 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2524 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2525 memmove(entry_d, entry_s, tmp); 2526 } 2527 2528 /* 2529 * Copy all entry's in the same (sorted) order, 2530 * but allocate attribute info packed and in sequence. 2531 */ 2532 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2533 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2534 desti = start_d; 2535 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2536 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2537 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2538 #ifdef GROT 2539 /* 2540 * Code to drop INCOMPLETE entries. Difficult to use as we 2541 * may also need to change the insertion index. Code turned 2542 * off for 6.2, should be revisited later. 2543 */ 2544 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2545 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2546 ichdr_s->usedbytes -= tmp; 2547 ichdr_s->count -= 1; 2548 entry_d--; /* to compensate for ++ in loop hdr */ 2549 desti--; 2550 if ((start_s + i) < offset) 2551 result++; /* insertion index adjustment */ 2552 } else { 2553 #endif /* GROT */ 2554 ichdr_d->firstused -= tmp; 2555 /* both on-disk, don't endian flip twice */ 2556 entry_d->hashval = entry_s->hashval; 2557 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2558 entry_d->flags = entry_s->flags; 2559 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2560 <= args->geo->blksize); 2561 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2562 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2563 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2564 <= args->geo->blksize); 2565 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2566 ichdr_s->usedbytes -= tmp; 2567 ichdr_d->usedbytes += tmp; 2568 ichdr_s->count -= 1; 2569 ichdr_d->count += 1; 2570 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2571 + xfs_attr3_leaf_hdr_size(leaf_d); 2572 ASSERT(ichdr_d->firstused >= tmp); 2573 #ifdef GROT 2574 } 2575 #endif /* GROT */ 2576 } 2577 2578 /* 2579 * Zero out the entries we just copied. 2580 */ 2581 if (start_s == ichdr_s->count) { 2582 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2583 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2584 ASSERT(((char *)entry_s + tmp) <= 2585 ((char *)leaf_s + args->geo->blksize)); 2586 memset(entry_s, 0, tmp); 2587 } else { 2588 /* 2589 * Move the remaining entries down to fill the hole, 2590 * then zero the entries at the top. 2591 */ 2592 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2593 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2594 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2595 memmove(entry_d, entry_s, tmp); 2596 2597 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2598 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2599 ASSERT(((char *)entry_s + tmp) <= 2600 ((char *)leaf_s + args->geo->blksize)); 2601 memset(entry_s, 0, tmp); 2602 } 2603 2604 /* 2605 * Fill in the freemap information 2606 */ 2607 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2608 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2609 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2610 ichdr_d->freemap[1].base = 0; 2611 ichdr_d->freemap[2].base = 0; 2612 ichdr_d->freemap[1].size = 0; 2613 ichdr_d->freemap[2].size = 0; 2614 ichdr_s->holes = 1; /* leaf may not be compact */ 2615 } 2616 2617 /* 2618 * Pick up the last hashvalue from a leaf block. 2619 */ 2620 xfs_dahash_t 2621 xfs_attr_leaf_lasthash( 2622 struct xfs_buf *bp, 2623 int *count) 2624 { 2625 struct xfs_attr3_icleaf_hdr ichdr; 2626 struct xfs_attr_leaf_entry *entries; 2627 struct xfs_mount *mp = bp->b_mount; 2628 2629 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2630 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2631 if (count) 2632 *count = ichdr.count; 2633 if (!ichdr.count) 2634 return 0; 2635 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2636 } 2637 2638 /* 2639 * Calculate the number of bytes used to store the indicated attribute 2640 * (whether local or remote only calculate bytes in this block). 2641 */ 2642 STATIC int 2643 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2644 { 2645 struct xfs_attr_leaf_entry *entries; 2646 xfs_attr_leaf_name_local_t *name_loc; 2647 xfs_attr_leaf_name_remote_t *name_rmt; 2648 int size; 2649 2650 entries = xfs_attr3_leaf_entryp(leaf); 2651 if (entries[index].flags & XFS_ATTR_LOCAL) { 2652 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2653 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2654 be16_to_cpu(name_loc->valuelen)); 2655 } else { 2656 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2657 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2658 } 2659 return size; 2660 } 2661 2662 /* 2663 * Calculate the number of bytes that would be required to store the new 2664 * attribute (whether local or remote only calculate bytes in this block). 2665 * This routine decides as a side effect whether the attribute will be 2666 * a "local" or a "remote" attribute. 2667 */ 2668 int 2669 xfs_attr_leaf_newentsize( 2670 struct xfs_da_args *args, 2671 int *local) 2672 { 2673 int size; 2674 2675 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2676 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2677 if (local) 2678 *local = 1; 2679 return size; 2680 } 2681 if (local) 2682 *local = 0; 2683 return xfs_attr_leaf_entsize_remote(args->namelen); 2684 } 2685 2686 2687 /*======================================================================== 2688 * Manage the INCOMPLETE flag in a leaf entry 2689 *========================================================================*/ 2690 2691 /* 2692 * Clear the INCOMPLETE flag on an entry in a leaf block. 2693 */ 2694 int 2695 xfs_attr3_leaf_clearflag( 2696 struct xfs_da_args *args) 2697 { 2698 struct xfs_attr_leafblock *leaf; 2699 struct xfs_attr_leaf_entry *entry; 2700 struct xfs_attr_leaf_name_remote *name_rmt; 2701 struct xfs_buf *bp; 2702 int error; 2703 #ifdef DEBUG 2704 struct xfs_attr3_icleaf_hdr ichdr; 2705 xfs_attr_leaf_name_local_t *name_loc; 2706 int namelen; 2707 char *name; 2708 #endif /* DEBUG */ 2709 2710 trace_xfs_attr_leaf_clearflag(args); 2711 /* 2712 * Set up the operation. 2713 */ 2714 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2715 if (error) 2716 return error; 2717 2718 leaf = bp->b_addr; 2719 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2720 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2721 2722 #ifdef DEBUG 2723 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2724 ASSERT(args->index < ichdr.count); 2725 ASSERT(args->index >= 0); 2726 2727 if (entry->flags & XFS_ATTR_LOCAL) { 2728 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2729 namelen = name_loc->namelen; 2730 name = (char *)name_loc->nameval; 2731 } else { 2732 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2733 namelen = name_rmt->namelen; 2734 name = (char *)name_rmt->name; 2735 } 2736 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2737 ASSERT(namelen == args->namelen); 2738 ASSERT(memcmp(name, args->name, namelen) == 0); 2739 #endif /* DEBUG */ 2740 2741 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2742 xfs_trans_log_buf(args->trans, bp, 2743 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2744 2745 if (args->rmtblkno) { 2746 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2747 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2748 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2749 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2750 xfs_trans_log_buf(args->trans, bp, 2751 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2752 } 2753 2754 return 0; 2755 } 2756 2757 /* 2758 * Set the INCOMPLETE flag on an entry in a leaf block. 2759 */ 2760 int 2761 xfs_attr3_leaf_setflag( 2762 struct xfs_da_args *args) 2763 { 2764 struct xfs_attr_leafblock *leaf; 2765 struct xfs_attr_leaf_entry *entry; 2766 struct xfs_attr_leaf_name_remote *name_rmt; 2767 struct xfs_buf *bp; 2768 int error; 2769 #ifdef DEBUG 2770 struct xfs_attr3_icleaf_hdr ichdr; 2771 #endif 2772 2773 trace_xfs_attr_leaf_setflag(args); 2774 2775 /* 2776 * Set up the operation. 2777 */ 2778 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); 2779 if (error) 2780 return error; 2781 2782 leaf = bp->b_addr; 2783 #ifdef DEBUG 2784 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2785 ASSERT(args->index < ichdr.count); 2786 ASSERT(args->index >= 0); 2787 #endif 2788 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2789 2790 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2791 entry->flags |= XFS_ATTR_INCOMPLETE; 2792 xfs_trans_log_buf(args->trans, bp, 2793 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2794 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2795 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2796 name_rmt->valueblk = 0; 2797 name_rmt->valuelen = 0; 2798 xfs_trans_log_buf(args->trans, bp, 2799 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2800 } 2801 2802 return 0; 2803 } 2804 2805 /* 2806 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2807 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2808 * entry given by args->blkno2/index2. 2809 * 2810 * Note that they could be in different blocks, or in the same block. 2811 */ 2812 int 2813 xfs_attr3_leaf_flipflags( 2814 struct xfs_da_args *args) 2815 { 2816 struct xfs_attr_leafblock *leaf1; 2817 struct xfs_attr_leafblock *leaf2; 2818 struct xfs_attr_leaf_entry *entry1; 2819 struct xfs_attr_leaf_entry *entry2; 2820 struct xfs_attr_leaf_name_remote *name_rmt; 2821 struct xfs_buf *bp1; 2822 struct xfs_buf *bp2; 2823 int error; 2824 #ifdef DEBUG 2825 struct xfs_attr3_icleaf_hdr ichdr1; 2826 struct xfs_attr3_icleaf_hdr ichdr2; 2827 xfs_attr_leaf_name_local_t *name_loc; 2828 int namelen1, namelen2; 2829 char *name1, *name2; 2830 #endif /* DEBUG */ 2831 2832 trace_xfs_attr_leaf_flipflags(args); 2833 2834 /* 2835 * Read the block containing the "old" attr 2836 */ 2837 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); 2838 if (error) 2839 return error; 2840 2841 /* 2842 * Read the block containing the "new" attr, if it is different 2843 */ 2844 if (args->blkno2 != args->blkno) { 2845 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, 2846 &bp2); 2847 if (error) 2848 return error; 2849 } else { 2850 bp2 = bp1; 2851 } 2852 2853 leaf1 = bp1->b_addr; 2854 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2855 2856 leaf2 = bp2->b_addr; 2857 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2858 2859 #ifdef DEBUG 2860 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2861 ASSERT(args->index < ichdr1.count); 2862 ASSERT(args->index >= 0); 2863 2864 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2865 ASSERT(args->index2 < ichdr2.count); 2866 ASSERT(args->index2 >= 0); 2867 2868 if (entry1->flags & XFS_ATTR_LOCAL) { 2869 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2870 namelen1 = name_loc->namelen; 2871 name1 = (char *)name_loc->nameval; 2872 } else { 2873 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2874 namelen1 = name_rmt->namelen; 2875 name1 = (char *)name_rmt->name; 2876 } 2877 if (entry2->flags & XFS_ATTR_LOCAL) { 2878 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2879 namelen2 = name_loc->namelen; 2880 name2 = (char *)name_loc->nameval; 2881 } else { 2882 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2883 namelen2 = name_rmt->namelen; 2884 name2 = (char *)name_rmt->name; 2885 } 2886 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2887 ASSERT(namelen1 == namelen2); 2888 ASSERT(memcmp(name1, name2, namelen1) == 0); 2889 #endif /* DEBUG */ 2890 2891 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2892 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2893 2894 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2895 xfs_trans_log_buf(args->trans, bp1, 2896 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2897 if (args->rmtblkno) { 2898 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2899 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2900 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2901 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2902 xfs_trans_log_buf(args->trans, bp1, 2903 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2904 } 2905 2906 entry2->flags |= XFS_ATTR_INCOMPLETE; 2907 xfs_trans_log_buf(args->trans, bp2, 2908 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 2909 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 2910 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2911 name_rmt->valueblk = 0; 2912 name_rmt->valuelen = 0; 2913 xfs_trans_log_buf(args->trans, bp2, 2914 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 2915 } 2916 2917 return 0; 2918 } 2919