1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap_btree.h" 20 #include "xfs_bmap.h" 21 #include "xfs_attr_sf.h" 22 #include "xfs_attr.h" 23 #include "xfs_attr_remote.h" 24 #include "xfs_attr_leaf.h" 25 #include "xfs_error.h" 26 #include "xfs_trace.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_dir2.h" 29 #include "xfs_log.h" 30 #include "xfs_ag.h" 31 #include "xfs_errortag.h" 32 #include "xfs_health.h" 33 34 35 /* 36 * xfs_attr_leaf.c 37 * 38 * Routines to implement leaf blocks of attributes as Btrees of hashed names. 39 */ 40 41 /*======================================================================== 42 * Function prototypes for the kernel. 43 *========================================================================*/ 44 45 /* 46 * Routines used for growing the Btree. 47 */ 48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, 49 xfs_dablk_t which_block, struct xfs_buf **bpp); 50 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, 51 struct xfs_attr3_icleaf_hdr *ichdr, 52 struct xfs_da_args *args, int freemap_index); 53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, 54 struct xfs_attr3_icleaf_hdr *ichdr, 55 struct xfs_buf *leaf_buffer); 56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, 57 xfs_da_state_blk_t *blk1, 58 xfs_da_state_blk_t *blk2); 59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, 60 xfs_da_state_blk_t *leaf_blk_1, 61 struct xfs_attr3_icleaf_hdr *ichdr1, 62 xfs_da_state_blk_t *leaf_blk_2, 63 struct xfs_attr3_icleaf_hdr *ichdr2, 64 int *number_entries_in_blk1, 65 int *number_usedbytes_in_blk1); 66 67 /* 68 * Utility routines. 69 */ 70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, 71 struct xfs_attr_leafblock *src_leaf, 72 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, 73 struct xfs_attr_leafblock *dst_leaf, 74 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, 75 int move_count); 76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); 77 78 /* 79 * attr3 block 'firstused' conversion helpers. 80 * 81 * firstused refers to the offset of the first used byte of the nameval region 82 * of an attr leaf block. The region starts at the tail of the block and expands 83 * backwards towards the middle. As such, firstused is initialized to the block 84 * size for an empty leaf block and is reduced from there. 85 * 86 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. 87 * The in-core firstused field is 32-bit and thus supports the maximum fsb size. 88 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this 89 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent 90 * the attr block size. The following helpers manage the conversion between the 91 * in-core and on-disk formats. 92 */ 93 94 static void 95 xfs_attr3_leaf_firstused_from_disk( 96 struct xfs_da_geometry *geo, 97 struct xfs_attr3_icleaf_hdr *to, 98 struct xfs_attr_leafblock *from) 99 { 100 struct xfs_attr3_leaf_hdr *hdr3; 101 102 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 103 hdr3 = (struct xfs_attr3_leaf_hdr *) from; 104 to->firstused = be16_to_cpu(hdr3->firstused); 105 } else { 106 to->firstused = be16_to_cpu(from->hdr.firstused); 107 } 108 109 /* 110 * Convert from the magic fsb size value to actual blocksize. This 111 * should only occur for empty blocks when the block size overflows 112 * 16-bits. 113 */ 114 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { 115 ASSERT(!to->count && !to->usedbytes); 116 ASSERT(geo->blksize > USHRT_MAX); 117 to->firstused = geo->blksize; 118 } 119 } 120 121 static void 122 xfs_attr3_leaf_firstused_to_disk( 123 struct xfs_da_geometry *geo, 124 struct xfs_attr_leafblock *to, 125 struct xfs_attr3_icleaf_hdr *from) 126 { 127 struct xfs_attr3_leaf_hdr *hdr3; 128 uint32_t firstused; 129 130 /* magic value should only be seen on disk */ 131 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); 132 133 /* 134 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk 135 * value. This only overflows at the max supported value of 64k. Use the 136 * magic on-disk value to represent block size in this case. 137 */ 138 firstused = from->firstused; 139 if (firstused > USHRT_MAX) { 140 ASSERT(from->firstused == geo->blksize); 141 firstused = XFS_ATTR3_LEAF_NULLOFF; 142 } 143 144 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 145 hdr3 = (struct xfs_attr3_leaf_hdr *) to; 146 hdr3->firstused = cpu_to_be16(firstused); 147 } else { 148 to->hdr.firstused = cpu_to_be16(firstused); 149 } 150 } 151 152 void 153 xfs_attr3_leaf_hdr_from_disk( 154 struct xfs_da_geometry *geo, 155 struct xfs_attr3_icleaf_hdr *to, 156 struct xfs_attr_leafblock *from) 157 { 158 int i; 159 160 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 161 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 162 163 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { 164 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; 165 166 to->forw = be32_to_cpu(hdr3->info.hdr.forw); 167 to->back = be32_to_cpu(hdr3->info.hdr.back); 168 to->magic = be16_to_cpu(hdr3->info.hdr.magic); 169 to->count = be16_to_cpu(hdr3->count); 170 to->usedbytes = be16_to_cpu(hdr3->usedbytes); 171 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 172 to->holes = hdr3->holes; 173 174 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 175 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); 176 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); 177 } 178 return; 179 } 180 to->forw = be32_to_cpu(from->hdr.info.forw); 181 to->back = be32_to_cpu(from->hdr.info.back); 182 to->magic = be16_to_cpu(from->hdr.info.magic); 183 to->count = be16_to_cpu(from->hdr.count); 184 to->usedbytes = be16_to_cpu(from->hdr.usedbytes); 185 xfs_attr3_leaf_firstused_from_disk(geo, to, from); 186 to->holes = from->hdr.holes; 187 188 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 189 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); 190 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); 191 } 192 } 193 194 void 195 xfs_attr3_leaf_hdr_to_disk( 196 struct xfs_da_geometry *geo, 197 struct xfs_attr_leafblock *to, 198 struct xfs_attr3_icleaf_hdr *from) 199 { 200 int i; 201 202 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || 203 from->magic == XFS_ATTR3_LEAF_MAGIC); 204 205 if (from->magic == XFS_ATTR3_LEAF_MAGIC) { 206 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; 207 208 hdr3->info.hdr.forw = cpu_to_be32(from->forw); 209 hdr3->info.hdr.back = cpu_to_be32(from->back); 210 hdr3->info.hdr.magic = cpu_to_be16(from->magic); 211 hdr3->count = cpu_to_be16(from->count); 212 hdr3->usedbytes = cpu_to_be16(from->usedbytes); 213 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 214 hdr3->holes = from->holes; 215 hdr3->pad1 = 0; 216 217 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 218 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); 219 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); 220 } 221 return; 222 } 223 to->hdr.info.forw = cpu_to_be32(from->forw); 224 to->hdr.info.back = cpu_to_be32(from->back); 225 to->hdr.info.magic = cpu_to_be16(from->magic); 226 to->hdr.count = cpu_to_be16(from->count); 227 to->hdr.usedbytes = cpu_to_be16(from->usedbytes); 228 xfs_attr3_leaf_firstused_to_disk(geo, to, from); 229 to->hdr.holes = from->holes; 230 to->hdr.pad1 = 0; 231 232 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 233 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); 234 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); 235 } 236 } 237 238 static xfs_failaddr_t 239 xfs_attr3_leaf_verify_entry( 240 struct xfs_mount *mp, 241 char *buf_end, 242 struct xfs_attr_leafblock *leaf, 243 struct xfs_attr3_icleaf_hdr *leafhdr, 244 struct xfs_attr_leaf_entry *ent, 245 int idx, 246 __u32 *last_hashval) 247 { 248 struct xfs_attr_leaf_name_local *lentry; 249 struct xfs_attr_leaf_name_remote *rentry; 250 char *name_end; 251 unsigned int nameidx; 252 unsigned int namesize; 253 __u32 hashval; 254 255 /* hash order check */ 256 hashval = be32_to_cpu(ent->hashval); 257 if (hashval < *last_hashval) 258 return __this_address; 259 *last_hashval = hashval; 260 261 nameidx = be16_to_cpu(ent->nameidx); 262 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) 263 return __this_address; 264 265 /* 266 * Check the name information. The namelen fields are u8 so we can't 267 * possibly exceed the maximum name length of 255 bytes. 268 */ 269 if (ent->flags & XFS_ATTR_LOCAL) { 270 lentry = xfs_attr3_leaf_name_local(leaf, idx); 271 namesize = xfs_attr_leaf_entsize_local(lentry->namelen, 272 be16_to_cpu(lentry->valuelen)); 273 name_end = (char *)lentry + namesize; 274 if (lentry->namelen == 0) 275 return __this_address; 276 } else { 277 rentry = xfs_attr3_leaf_name_remote(leaf, idx); 278 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); 279 name_end = (char *)rentry + namesize; 280 if (rentry->namelen == 0) 281 return __this_address; 282 if (!(ent->flags & XFS_ATTR_INCOMPLETE) && 283 rentry->valueblk == 0) 284 return __this_address; 285 } 286 287 if (name_end > buf_end) 288 return __this_address; 289 290 return NULL; 291 } 292 293 /* 294 * Validate an attribute leaf block. 295 * 296 * Empty leaf blocks can occur under the following circumstances: 297 * 298 * 1. setxattr adds a new extended attribute to a file; 299 * 2. The file has zero existing attributes; 300 * 3. The attribute is too large to fit in the attribute fork; 301 * 4. The attribute is small enough to fit in a leaf block; 302 * 5. A log flush occurs after committing the transaction that creates 303 * the (empty) leaf block; and 304 * 6. The filesystem goes down after the log flush but before the new 305 * attribute can be committed to the leaf block. 306 * 307 * Hence we need to ensure that we don't fail the validation purely 308 * because the leaf is empty. 309 */ 310 static xfs_failaddr_t 311 xfs_attr3_leaf_verify( 312 struct xfs_buf *bp) 313 { 314 struct xfs_attr3_icleaf_hdr ichdr; 315 struct xfs_mount *mp = bp->b_mount; 316 struct xfs_attr_leafblock *leaf = bp->b_addr; 317 struct xfs_attr_leaf_entry *entries; 318 struct xfs_attr_leaf_entry *ent; 319 char *buf_end; 320 uint32_t end; /* must be 32bit - see below */ 321 __u32 last_hashval = 0; 322 int i; 323 xfs_failaddr_t fa; 324 325 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); 326 327 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 328 if (fa) 329 return fa; 330 331 /* 332 * firstused is the block offset of the first name info structure. 333 * Make sure it doesn't go off the block or crash into the header. 334 */ 335 if (ichdr.firstused > mp->m_attr_geo->blksize) 336 return __this_address; 337 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) 338 return __this_address; 339 340 /* Make sure the entries array doesn't crash into the name info. */ 341 entries = xfs_attr3_leaf_entryp(bp->b_addr); 342 if ((char *)&entries[ichdr.count] > 343 (char *)bp->b_addr + ichdr.firstused) 344 return __this_address; 345 346 /* 347 * NOTE: This verifier historically failed empty leaf buffers because 348 * we expect the fork to be in another format. Empty attr fork format 349 * conversions are possible during xattr set, however, and format 350 * conversion is not atomic with the xattr set that triggers it. We 351 * cannot assume leaf blocks are non-empty until that is addressed. 352 */ 353 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; 354 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { 355 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, 356 ent, i, &last_hashval); 357 if (fa) 358 return fa; 359 } 360 361 /* 362 * Quickly check the freemap information. Attribute data has to be 363 * aligned to 4-byte boundaries, and likewise for the free space. 364 * 365 * Note that for 64k block size filesystems, the freemap entries cannot 366 * overflow as they are only be16 fields. However, when checking end 367 * pointer of the freemap, we have to be careful to detect overflows and 368 * so use uint32_t for those checks. 369 */ 370 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 371 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) 372 return __this_address; 373 if (ichdr.freemap[i].base & 0x3) 374 return __this_address; 375 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) 376 return __this_address; 377 if (ichdr.freemap[i].size & 0x3) 378 return __this_address; 379 380 /* be care of 16 bit overflows here */ 381 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; 382 if (end < ichdr.freemap[i].base) 383 return __this_address; 384 if (end > mp->m_attr_geo->blksize) 385 return __this_address; 386 } 387 388 return NULL; 389 } 390 391 xfs_failaddr_t 392 xfs_attr3_leaf_header_check( 393 struct xfs_buf *bp, 394 xfs_ino_t owner) 395 { 396 struct xfs_mount *mp = bp->b_mount; 397 398 if (xfs_has_crc(mp)) { 399 struct xfs_attr3_leafblock *hdr3 = bp->b_addr; 400 401 if (hdr3->hdr.info.hdr.magic != 402 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) 403 return __this_address; 404 405 if (be64_to_cpu(hdr3->hdr.info.owner) != owner) 406 return __this_address; 407 } 408 409 return NULL; 410 } 411 412 static void 413 xfs_attr3_leaf_write_verify( 414 struct xfs_buf *bp) 415 { 416 struct xfs_mount *mp = bp->b_mount; 417 struct xfs_buf_log_item *bip = bp->b_log_item; 418 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; 419 xfs_failaddr_t fa; 420 421 fa = xfs_attr3_leaf_verify(bp); 422 if (fa) { 423 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 424 return; 425 } 426 427 if (!xfs_has_crc(mp)) 428 return; 429 430 if (bip) 431 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 432 433 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); 434 } 435 436 /* 437 * leaf/node format detection on trees is sketchy, so a node read can be done on 438 * leaf level blocks when detection identifies the tree as a node format tree 439 * incorrectly. In this case, we need to swap the verifier to match the correct 440 * format of the block being read. 441 */ 442 static void 443 xfs_attr3_leaf_read_verify( 444 struct xfs_buf *bp) 445 { 446 struct xfs_mount *mp = bp->b_mount; 447 xfs_failaddr_t fa; 448 449 if (xfs_has_crc(mp) && 450 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) 451 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 452 else { 453 fa = xfs_attr3_leaf_verify(bp); 454 if (fa) 455 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 456 } 457 } 458 459 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { 460 .name = "xfs_attr3_leaf", 461 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), 462 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, 463 .verify_read = xfs_attr3_leaf_read_verify, 464 .verify_write = xfs_attr3_leaf_write_verify, 465 .verify_struct = xfs_attr3_leaf_verify, 466 }; 467 468 int 469 xfs_attr3_leaf_read( 470 struct xfs_trans *tp, 471 struct xfs_inode *dp, 472 xfs_ino_t owner, 473 xfs_dablk_t bno, 474 struct xfs_buf **bpp) 475 { 476 xfs_failaddr_t fa; 477 int err; 478 479 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, 480 &xfs_attr3_leaf_buf_ops); 481 if (err || !(*bpp)) 482 return err; 483 484 fa = xfs_attr3_leaf_header_check(*bpp, owner); 485 if (fa) { 486 __xfs_buf_mark_corrupt(*bpp, fa); 487 xfs_trans_brelse(tp, *bpp); 488 *bpp = NULL; 489 xfs_dirattr_mark_sick(dp, XFS_ATTR_FORK); 490 return -EFSCORRUPTED; 491 } 492 493 if (tp) 494 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); 495 return 0; 496 } 497 498 /*======================================================================== 499 * Namespace helper routines 500 *========================================================================*/ 501 502 /* 503 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE 504 * flag on disk - if there's an incomplete attr then recovery needs to tear it 505 * down. If there's no incomplete attr, then recovery needs to tear that attr 506 * down to replace it with the attr that has been logged. In this case, the 507 * INCOMPLETE flag will not be set in attr->attr_filter, but rather 508 * XFS_DA_OP_RECOVERY will be set in args->op_flags. 509 */ 510 static inline unsigned int xfs_attr_match_mask(const struct xfs_da_args *args) 511 { 512 if (args->op_flags & XFS_DA_OP_RECOVERY) 513 return XFS_ATTR_NSP_ONDISK_MASK; 514 return XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE; 515 } 516 517 static inline bool 518 xfs_attr_parent_match( 519 const struct xfs_da_args *args, 520 const void *value, 521 unsigned int valuelen) 522 { 523 ASSERT(args->value != NULL); 524 525 /* Parent pointers do not use remote values */ 526 if (!value) 527 return false; 528 529 /* 530 * The only value we support is a parent rec. However, we'll accept 531 * any valuelen so that offline repair can delete ATTR_PARENT values 532 * that are not parent pointers. 533 */ 534 if (valuelen != args->valuelen) 535 return false; 536 537 return memcmp(args->value, value, valuelen) == 0; 538 } 539 540 static bool 541 xfs_attr_match( 542 struct xfs_da_args *args, 543 unsigned int attr_flags, 544 const unsigned char *name, 545 unsigned int namelen, 546 const void *value, 547 unsigned int valuelen) 548 { 549 unsigned int mask = xfs_attr_match_mask(args); 550 551 if (args->namelen != namelen) 552 return false; 553 if ((args->attr_filter & mask) != (attr_flags & mask)) 554 return false; 555 if (memcmp(args->name, name, namelen) != 0) 556 return false; 557 558 if (attr_flags & XFS_ATTR_PARENT) 559 return xfs_attr_parent_match(args, value, valuelen); 560 561 return true; 562 } 563 564 static int 565 xfs_attr_copy_value( 566 struct xfs_da_args *args, 567 unsigned char *value, 568 int valuelen) 569 { 570 /* 571 * Parent pointer lookups require the caller to specify the name and 572 * value, so don't copy anything. 573 */ 574 if (args->attr_filter & XFS_ATTR_PARENT) 575 return 0; 576 577 /* 578 * No copy if all we have to do is get the length 579 */ 580 if (!args->valuelen) { 581 args->valuelen = valuelen; 582 return 0; 583 } 584 585 /* 586 * No copy if the length of the existing buffer is too small 587 */ 588 if (args->valuelen < valuelen) { 589 args->valuelen = valuelen; 590 return -ERANGE; 591 } 592 593 if (!args->value) { 594 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP); 595 if (!args->value) 596 return -ENOMEM; 597 } 598 args->valuelen = valuelen; 599 600 /* remote block xattr requires IO for copy-in */ 601 if (args->rmtblkno) 602 return xfs_attr_rmtval_get(args); 603 604 /* 605 * This is to prevent a GCC warning because the remote xattr case 606 * doesn't have a value to pass in. In that case, we never reach here, 607 * but GCC can't work that out and so throws a "passing NULL to 608 * memcpy" warning. 609 */ 610 if (!value) 611 return -EINVAL; 612 memcpy(args->value, value, valuelen); 613 return 0; 614 } 615 616 /*======================================================================== 617 * External routines when attribute fork size < XFS_LITINO(mp). 618 *========================================================================*/ 619 620 /* 621 * Query whether the total requested number of attr fork bytes of extended 622 * attribute space will be able to fit inline. 623 * 624 * Returns zero if not, else the i_forkoff fork offset to be used in the 625 * literal area for attribute data once the new bytes have been added. 626 * 627 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value; 628 * special case for dev/uuid inodes, they have fixed size data forks. 629 */ 630 int 631 xfs_attr_shortform_bytesfit( 632 struct xfs_inode *dp, 633 int bytes) 634 { 635 struct xfs_mount *mp = dp->i_mount; 636 int64_t dsize; 637 int minforkoff; 638 int maxforkoff; 639 int offset; 640 641 /* 642 * Check if the new size could fit at all first: 643 */ 644 if (bytes > XFS_LITINO(mp)) 645 return 0; 646 647 /* rounded down */ 648 offset = (XFS_LITINO(mp) - bytes) >> 3; 649 650 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) { 651 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; 652 return (offset >= minforkoff) ? minforkoff : 0; 653 } 654 655 /* 656 * If the requested numbers of bytes is smaller or equal to the 657 * current attribute fork size we can always proceed. 658 * 659 * Note that if_bytes in the data fork might actually be larger than 660 * the current data fork size is due to delalloc extents. In that 661 * case either the extent count will go down when they are converted 662 * to real extents, or the delalloc conversion will take care of the 663 * literal area rebalancing. 664 */ 665 if (bytes <= xfs_inode_attr_fork_size(dp)) 666 return dp->i_forkoff; 667 668 /* 669 * For attr2 we can try to move the forkoff if there is space in the 670 * literal area, but for the old format we are done if there is no 671 * space in the fixed attribute fork. 672 */ 673 if (!xfs_has_attr2(mp)) 674 return 0; 675 676 dsize = dp->i_df.if_bytes; 677 678 switch (dp->i_df.if_format) { 679 case XFS_DINODE_FMT_EXTENTS: 680 /* 681 * If there is no attr fork and the data fork is extents, 682 * determine if creating the default attr fork will result 683 * in the extents form migrating to btree. If so, the 684 * minimum offset only needs to be the space required for 685 * the btree root. 686 */ 687 if (!dp->i_forkoff && dp->i_df.if_bytes > 688 xfs_default_attroffset(dp)) 689 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); 690 break; 691 case XFS_DINODE_FMT_BTREE: 692 /* 693 * If we have a data btree then keep forkoff if we have one, 694 * otherwise we are adding a new attr, so then we set 695 * minforkoff to where the btree root can finish so we have 696 * plenty of room for attrs 697 */ 698 if (dp->i_forkoff) { 699 if (offset < dp->i_forkoff) 700 return 0; 701 return dp->i_forkoff; 702 } 703 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); 704 break; 705 } 706 707 /* 708 * A data fork btree root must have space for at least 709 * MINDBTPTRS key/ptr pairs if the data fork is small or empty. 710 */ 711 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); 712 minforkoff = roundup(minforkoff, 8) >> 3; 713 714 /* attr fork btree root can have at least this many key/ptr pairs */ 715 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); 716 maxforkoff = maxforkoff >> 3; /* rounded down */ 717 718 if (offset >= maxforkoff) 719 return maxforkoff; 720 if (offset >= minforkoff) 721 return offset; 722 return 0; 723 } 724 725 /* 726 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless: 727 * - noattr2 mount option is set, 728 * - on-disk version bit says it is already set, or 729 * - the attr2 mount option is not set to enable automatic upgrade from attr1. 730 */ 731 STATIC void 732 xfs_sbversion_add_attr2( 733 struct xfs_mount *mp, 734 struct xfs_trans *tp) 735 { 736 if (xfs_has_noattr2(mp)) 737 return; 738 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT) 739 return; 740 if (!xfs_has_attr2(mp)) 741 return; 742 743 spin_lock(&mp->m_sb_lock); 744 xfs_add_attr2(mp); 745 spin_unlock(&mp->m_sb_lock); 746 xfs_log_sb(tp); 747 } 748 749 /* 750 * Create the initial contents of a shortform attribute list. 751 */ 752 void 753 xfs_attr_shortform_create( 754 struct xfs_da_args *args) 755 { 756 struct xfs_inode *dp = args->dp; 757 struct xfs_ifork *ifp = &dp->i_af; 758 struct xfs_attr_sf_hdr *hdr; 759 760 trace_xfs_attr_sf_create(args); 761 762 ASSERT(ifp->if_bytes == 0); 763 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS) 764 ifp->if_format = XFS_DINODE_FMT_LOCAL; 765 766 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); 767 memset(hdr, 0, sizeof(*hdr)); 768 hdr->totsize = cpu_to_be16(sizeof(*hdr)); 769 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 770 } 771 772 /* 773 * Return the entry if the attr in args is found, or NULL if not. 774 */ 775 struct xfs_attr_sf_entry * 776 xfs_attr_sf_findname( 777 struct xfs_da_args *args) 778 { 779 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data; 780 struct xfs_attr_sf_entry *sfe; 781 782 for (sfe = xfs_attr_sf_firstentry(sf); 783 sfe < xfs_attr_sf_endptr(sf); 784 sfe = xfs_attr_sf_nextentry(sfe)) { 785 if (xfs_attr_match(args, sfe->flags, sfe->nameval, 786 sfe->namelen, &sfe->nameval[sfe->namelen], 787 sfe->valuelen)) 788 return sfe; 789 } 790 791 return NULL; 792 } 793 794 /* 795 * Add a name/value pair to the shortform attribute list. 796 * Overflow from the inode has already been checked for. 797 */ 798 void 799 xfs_attr_shortform_add( 800 struct xfs_da_args *args, 801 int forkoff) 802 { 803 struct xfs_inode *dp = args->dp; 804 struct xfs_mount *mp = dp->i_mount; 805 struct xfs_ifork *ifp = &dp->i_af; 806 struct xfs_attr_sf_hdr *sf = ifp->if_data; 807 struct xfs_attr_sf_entry *sfe; 808 int size; 809 810 trace_xfs_attr_sf_add(args); 811 812 dp->i_forkoff = forkoff; 813 814 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 815 ASSERT(!xfs_attr_sf_findname(args)); 816 817 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen); 818 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK); 819 820 sfe = xfs_attr_sf_endptr(sf); 821 sfe->namelen = args->namelen; 822 sfe->valuelen = args->valuelen; 823 sfe->flags = args->attr_filter; 824 memcpy(sfe->nameval, args->name, args->namelen); 825 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); 826 sf->count++; 827 be16_add_cpu(&sf->totsize, size); 828 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); 829 830 xfs_sbversion_add_attr2(mp, args->trans); 831 } 832 833 /* 834 * After the last attribute is removed revert to original inode format, 835 * making all literal area available to the data fork once more. 836 */ 837 void 838 xfs_attr_fork_remove( 839 struct xfs_inode *ip, 840 struct xfs_trans *tp) 841 { 842 ASSERT(ip->i_af.if_nextents == 0); 843 844 xfs_ifork_zap_attr(ip); 845 ip->i_forkoff = 0; 846 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 847 } 848 849 /* 850 * Remove an attribute from the shortform attribute list structure. 851 */ 852 int 853 xfs_attr_sf_removename( 854 struct xfs_da_args *args) 855 { 856 struct xfs_inode *dp = args->dp; 857 struct xfs_mount *mp = dp->i_mount; 858 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data; 859 struct xfs_attr_sf_entry *sfe; 860 uint16_t totsize = be16_to_cpu(sf->totsize); 861 void *next, *end; 862 int size = 0; 863 864 trace_xfs_attr_sf_remove(args); 865 866 sfe = xfs_attr_sf_findname(args); 867 if (!sfe) { 868 /* 869 * If we are recovering an operation, finding nothing to remove 870 * is not an error, it just means there was nothing to clean up. 871 */ 872 if (args->op_flags & XFS_DA_OP_RECOVERY) 873 return 0; 874 return -ENOATTR; 875 } 876 877 /* 878 * Fix up the attribute fork data, covering the hole 879 */ 880 size = xfs_attr_sf_entsize(sfe); 881 next = xfs_attr_sf_nextentry(sfe); 882 end = xfs_attr_sf_endptr(sf); 883 if (next < end) 884 memmove(sfe, next, end - next); 885 sf->count--; 886 totsize -= size; 887 sf->totsize = cpu_to_be16(totsize); 888 889 /* 890 * Fix up the start offset of the attribute fork 891 */ 892 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) && 893 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 894 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE)) && 895 !xfs_has_parent(mp)) { 896 xfs_attr_fork_remove(dp, args->trans); 897 } else { 898 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 899 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); 900 ASSERT(dp->i_forkoff); 901 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) || 902 (args->op_flags & XFS_DA_OP_ADDNAME) || 903 !xfs_has_attr2(mp) || 904 dp->i_df.if_format == XFS_DINODE_FMT_BTREE || 905 xfs_has_parent(mp)); 906 xfs_trans_log_inode(args->trans, dp, 907 XFS_ILOG_CORE | XFS_ILOG_ADATA); 908 } 909 910 xfs_sbversion_add_attr2(mp, args->trans); 911 912 return 0; 913 } 914 915 /* 916 * Retrieve the attribute value and length. 917 * 918 * If args->valuelen is zero, only the length needs to be returned. Unlike a 919 * lookup, we only return an error if the attribute does not exist or we can't 920 * retrieve the value. 921 */ 922 int 923 xfs_attr_shortform_getvalue( 924 struct xfs_da_args *args) 925 { 926 struct xfs_attr_sf_entry *sfe; 927 928 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL); 929 930 trace_xfs_attr_sf_lookup(args); 931 932 sfe = xfs_attr_sf_findname(args); 933 if (!sfe) 934 return -ENOATTR; 935 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen], 936 sfe->valuelen); 937 } 938 939 /* Convert from using the shortform to the leaf format. */ 940 int 941 xfs_attr_shortform_to_leaf( 942 struct xfs_da_args *args) 943 { 944 struct xfs_inode *dp = args->dp; 945 struct xfs_ifork *ifp = &dp->i_af; 946 struct xfs_attr_sf_hdr *sf = ifp->if_data; 947 struct xfs_attr_sf_entry *sfe; 948 int size = be16_to_cpu(sf->totsize); 949 struct xfs_da_args nargs; 950 char *tmpbuffer; 951 int error, i; 952 xfs_dablk_t blkno; 953 struct xfs_buf *bp; 954 955 trace_xfs_attr_sf_to_leaf(args); 956 957 tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL); 958 memcpy(tmpbuffer, ifp->if_data, size); 959 sf = (struct xfs_attr_sf_hdr *)tmpbuffer; 960 961 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); 962 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); 963 964 bp = NULL; 965 error = xfs_da_grow_inode(args, &blkno); 966 if (error) 967 goto out; 968 969 ASSERT(blkno == 0); 970 error = xfs_attr3_leaf_create(args, blkno, &bp); 971 if (error) 972 goto out; 973 974 memset((char *)&nargs, 0, sizeof(nargs)); 975 nargs.dp = dp; 976 nargs.geo = args->geo; 977 nargs.total = args->total; 978 nargs.whichfork = XFS_ATTR_FORK; 979 nargs.trans = args->trans; 980 nargs.op_flags = XFS_DA_OP_OKNOENT; 981 nargs.owner = args->owner; 982 983 sfe = xfs_attr_sf_firstentry(sf); 984 for (i = 0; i < sf->count; i++) { 985 nargs.name = sfe->nameval; 986 nargs.namelen = sfe->namelen; 987 nargs.value = &sfe->nameval[nargs.namelen]; 988 nargs.valuelen = sfe->valuelen; 989 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; 990 if (!xfs_attr_check_namespace(sfe->flags)) { 991 xfs_da_mark_sick(args); 992 error = -EFSCORRUPTED; 993 goto out; 994 } 995 xfs_attr_sethash(&nargs); 996 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ 997 ASSERT(error == -ENOATTR); 998 error = xfs_attr3_leaf_add(bp, &nargs); 999 ASSERT(error != -ENOSPC); 1000 if (error) 1001 goto out; 1002 sfe = xfs_attr_sf_nextentry(sfe); 1003 } 1004 error = 0; 1005 out: 1006 kfree(tmpbuffer); 1007 return error; 1008 } 1009 1010 /* 1011 * Check a leaf attribute block to see if all the entries would fit into 1012 * a shortform attribute list. 1013 */ 1014 int 1015 xfs_attr_shortform_allfit( 1016 struct xfs_buf *bp, 1017 struct xfs_inode *dp) 1018 { 1019 struct xfs_attr_leafblock *leaf; 1020 struct xfs_attr_leaf_entry *entry; 1021 xfs_attr_leaf_name_local_t *name_loc; 1022 struct xfs_attr3_icleaf_hdr leafhdr; 1023 int bytes; 1024 int i; 1025 struct xfs_mount *mp = bp->b_mount; 1026 1027 leaf = bp->b_addr; 1028 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); 1029 entry = xfs_attr3_leaf_entryp(leaf); 1030 1031 bytes = sizeof(struct xfs_attr_sf_hdr); 1032 for (i = 0; i < leafhdr.count; entry++, i++) { 1033 if (entry->flags & XFS_ATTR_INCOMPLETE) 1034 continue; /* don't copy partial entries */ 1035 if (!(entry->flags & XFS_ATTR_LOCAL)) 1036 return 0; 1037 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1038 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) 1039 return 0; 1040 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) 1041 return 0; 1042 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen, 1043 be16_to_cpu(name_loc->valuelen)); 1044 } 1045 if (xfs_has_attr2(dp->i_mount) && 1046 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && 1047 (bytes == sizeof(struct xfs_attr_sf_hdr))) 1048 return -1; 1049 return xfs_attr_shortform_bytesfit(dp, bytes); 1050 } 1051 1052 /* Verify the consistency of a raw inline attribute fork. */ 1053 xfs_failaddr_t 1054 xfs_attr_shortform_verify( 1055 struct xfs_attr_sf_hdr *sfp, 1056 size_t size) 1057 { 1058 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp); 1059 struct xfs_attr_sf_entry *next_sfep; 1060 char *endp; 1061 int i; 1062 1063 /* 1064 * Give up if the attribute is way too short. 1065 */ 1066 if (size < sizeof(struct xfs_attr_sf_hdr)) 1067 return __this_address; 1068 1069 endp = (char *)sfp + size; 1070 1071 /* Check all reported entries */ 1072 for (i = 0; i < sfp->count; i++) { 1073 /* 1074 * struct xfs_attr_sf_entry has a variable length. 1075 * Check the fixed-offset parts of the structure are 1076 * within the data buffer. 1077 * xfs_attr_sf_entry is defined with a 1-byte variable 1078 * array at the end, so we must subtract that off. 1079 */ 1080 if (((char *)sfep + sizeof(*sfep)) >= endp) 1081 return __this_address; 1082 1083 /* Don't allow names with known bad length. */ 1084 if (sfep->namelen == 0) 1085 return __this_address; 1086 1087 /* 1088 * Check that the variable-length part of the structure is 1089 * within the data buffer. The next entry starts after the 1090 * name component, so nextentry is an acceptable test. 1091 */ 1092 next_sfep = xfs_attr_sf_nextentry(sfep); 1093 if ((char *)next_sfep > endp) 1094 return __this_address; 1095 1096 /* 1097 * Check for unknown flags. Short form doesn't support 1098 * the incomplete or local bits, so we can use the namespace 1099 * mask here. 1100 */ 1101 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) 1102 return __this_address; 1103 1104 /* 1105 * Check for invalid namespace combinations. We only allow 1106 * one namespace flag per xattr, so we can just count the 1107 * bits (i.e. hweight) here. 1108 */ 1109 if (!xfs_attr_check_namespace(sfep->flags)) 1110 return __this_address; 1111 1112 sfep = next_sfep; 1113 } 1114 if ((void *)sfep != (void *)endp) 1115 return __this_address; 1116 1117 return NULL; 1118 } 1119 1120 /* 1121 * Convert a leaf attribute list to shortform attribute list 1122 */ 1123 int 1124 xfs_attr3_leaf_to_shortform( 1125 struct xfs_buf *bp, 1126 struct xfs_da_args *args, 1127 int forkoff) 1128 { 1129 struct xfs_attr_leafblock *leaf; 1130 struct xfs_attr3_icleaf_hdr ichdr; 1131 struct xfs_attr_leaf_entry *entry; 1132 struct xfs_attr_leaf_name_local *name_loc; 1133 struct xfs_da_args nargs; 1134 struct xfs_inode *dp = args->dp; 1135 char *tmpbuffer; 1136 int error; 1137 int i; 1138 1139 trace_xfs_attr_leaf_to_sf(args); 1140 1141 tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1142 if (!tmpbuffer) 1143 return -ENOMEM; 1144 1145 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1146 1147 leaf = (xfs_attr_leafblock_t *)tmpbuffer; 1148 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1149 entry = xfs_attr3_leaf_entryp(leaf); 1150 1151 /* XXX (dgc): buffer is about to be marked stale - why zero it? */ 1152 memset(bp->b_addr, 0, args->geo->blksize); 1153 1154 /* 1155 * Clean out the prior contents of the attribute list. 1156 */ 1157 error = xfs_da_shrink_inode(args, 0, bp); 1158 if (error) 1159 goto out; 1160 1161 if (forkoff == -1) { 1162 /* 1163 * Don't remove the attr fork if this operation is the first 1164 * part of a attr replace operations. We're going to add a new 1165 * attr immediately, so we need to keep the attr fork around in 1166 * this case. 1167 */ 1168 if (!(args->op_flags & XFS_DA_OP_REPLACE)) { 1169 ASSERT(xfs_has_attr2(dp->i_mount)); 1170 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE); 1171 xfs_attr_fork_remove(dp, args->trans); 1172 } 1173 goto out; 1174 } 1175 1176 xfs_attr_shortform_create(args); 1177 1178 /* 1179 * Copy the attributes 1180 */ 1181 memset((char *)&nargs, 0, sizeof(nargs)); 1182 nargs.geo = args->geo; 1183 nargs.dp = dp; 1184 nargs.total = args->total; 1185 nargs.whichfork = XFS_ATTR_FORK; 1186 nargs.trans = args->trans; 1187 nargs.op_flags = XFS_DA_OP_OKNOENT; 1188 nargs.owner = args->owner; 1189 1190 for (i = 0; i < ichdr.count; entry++, i++) { 1191 if (entry->flags & XFS_ATTR_INCOMPLETE) 1192 continue; /* don't copy partial entries */ 1193 if (!entry->nameidx) 1194 continue; 1195 ASSERT(entry->flags & XFS_ATTR_LOCAL); 1196 name_loc = xfs_attr3_leaf_name_local(leaf, i); 1197 nargs.name = name_loc->nameval; 1198 nargs.namelen = name_loc->namelen; 1199 nargs.value = &name_loc->nameval[nargs.namelen]; 1200 nargs.valuelen = be16_to_cpu(name_loc->valuelen); 1201 nargs.hashval = be32_to_cpu(entry->hashval); 1202 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; 1203 xfs_attr_shortform_add(&nargs, forkoff); 1204 } 1205 error = 0; 1206 1207 out: 1208 kfree(tmpbuffer); 1209 return error; 1210 } 1211 1212 /* 1213 * Convert from using a single leaf to a root node and a leaf. 1214 */ 1215 int 1216 xfs_attr3_leaf_to_node( 1217 struct xfs_da_args *args) 1218 { 1219 struct xfs_attr_leafblock *leaf; 1220 struct xfs_attr3_icleaf_hdr icleafhdr; 1221 struct xfs_attr_leaf_entry *entries; 1222 struct xfs_da3_icnode_hdr icnodehdr; 1223 struct xfs_da_intnode *node; 1224 struct xfs_inode *dp = args->dp; 1225 struct xfs_mount *mp = dp->i_mount; 1226 struct xfs_buf *bp1 = NULL; 1227 struct xfs_buf *bp2 = NULL; 1228 xfs_dablk_t blkno; 1229 int error; 1230 1231 trace_xfs_attr_leaf_to_node(args); 1232 1233 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) { 1234 error = -EIO; 1235 goto out; 1236 } 1237 1238 error = xfs_da_grow_inode(args, &blkno); 1239 if (error) 1240 goto out; 1241 error = xfs_attr3_leaf_read(args->trans, dp, args->owner, 0, &bp1); 1242 if (error) 1243 goto out; 1244 1245 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); 1246 if (error) 1247 goto out; 1248 1249 /* 1250 * Copy leaf to new buffer and log it. 1251 */ 1252 xfs_da_buf_copy(bp2, bp1, args->geo->blksize); 1253 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); 1254 1255 /* 1256 * Set up the new root node. 1257 */ 1258 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); 1259 if (error) 1260 goto out; 1261 node = bp1->b_addr; 1262 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); 1263 1264 leaf = bp2->b_addr; 1265 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); 1266 entries = xfs_attr3_leaf_entryp(leaf); 1267 1268 /* both on-disk, don't endian-flip twice */ 1269 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; 1270 icnodehdr.btree[0].before = cpu_to_be32(blkno); 1271 icnodehdr.count = 1; 1272 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); 1273 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); 1274 error = 0; 1275 out: 1276 return error; 1277 } 1278 1279 /*======================================================================== 1280 * Routines used for growing the Btree. 1281 *========================================================================*/ 1282 1283 /* 1284 * Create the initial contents of a leaf attribute list 1285 * or a leaf in a node attribute list. 1286 */ 1287 STATIC int 1288 xfs_attr3_leaf_create( 1289 struct xfs_da_args *args, 1290 xfs_dablk_t blkno, 1291 struct xfs_buf **bpp) 1292 { 1293 struct xfs_attr_leafblock *leaf; 1294 struct xfs_attr3_icleaf_hdr ichdr; 1295 struct xfs_inode *dp = args->dp; 1296 struct xfs_mount *mp = dp->i_mount; 1297 struct xfs_buf *bp; 1298 int error; 1299 1300 trace_xfs_attr_leaf_create(args); 1301 1302 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, 1303 XFS_ATTR_FORK); 1304 if (error) 1305 return error; 1306 bp->b_ops = &xfs_attr3_leaf_buf_ops; 1307 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); 1308 leaf = bp->b_addr; 1309 memset(leaf, 0, args->geo->blksize); 1310 1311 memset(&ichdr, 0, sizeof(ichdr)); 1312 ichdr.firstused = args->geo->blksize; 1313 1314 if (xfs_has_crc(mp)) { 1315 struct xfs_da3_blkinfo *hdr3 = bp->b_addr; 1316 1317 ichdr.magic = XFS_ATTR3_LEAF_MAGIC; 1318 1319 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp)); 1320 hdr3->owner = cpu_to_be64(args->owner); 1321 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); 1322 1323 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); 1324 } else { 1325 ichdr.magic = XFS_ATTR_LEAF_MAGIC; 1326 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); 1327 } 1328 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; 1329 1330 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1331 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); 1332 1333 *bpp = bp; 1334 return 0; 1335 } 1336 1337 /* 1338 * Split the leaf node, rebalance, then add the new entry. 1339 */ 1340 int 1341 xfs_attr3_leaf_split( 1342 struct xfs_da_state *state, 1343 struct xfs_da_state_blk *oldblk, 1344 struct xfs_da_state_blk *newblk) 1345 { 1346 xfs_dablk_t blkno; 1347 int error; 1348 1349 trace_xfs_attr_leaf_split(state->args); 1350 1351 /* 1352 * Allocate space for a new leaf node. 1353 */ 1354 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); 1355 error = xfs_da_grow_inode(state->args, &blkno); 1356 if (error) 1357 return error; 1358 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); 1359 if (error) 1360 return error; 1361 newblk->blkno = blkno; 1362 newblk->magic = XFS_ATTR_LEAF_MAGIC; 1363 1364 /* 1365 * Rebalance the entries across the two leaves. 1366 * NOTE: rebalance() currently depends on the 2nd block being empty. 1367 */ 1368 xfs_attr3_leaf_rebalance(state, oldblk, newblk); 1369 error = xfs_da3_blk_link(state, oldblk, newblk); 1370 if (error) 1371 return error; 1372 1373 /* 1374 * Save info on "old" attribute for "atomic rename" ops, leaf_add() 1375 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the 1376 * "new" attrs info. Will need the "old" info to remove it later. 1377 * 1378 * Insert the "new" entry in the correct block. 1379 */ 1380 if (state->inleaf) { 1381 trace_xfs_attr_leaf_add_old(state->args); 1382 error = xfs_attr3_leaf_add(oldblk->bp, state->args); 1383 } else { 1384 trace_xfs_attr_leaf_add_new(state->args); 1385 error = xfs_attr3_leaf_add(newblk->bp, state->args); 1386 } 1387 1388 /* 1389 * Update last hashval in each block since we added the name. 1390 */ 1391 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); 1392 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); 1393 return error; 1394 } 1395 1396 /* 1397 * Add a name to the leaf attribute list structure. 1398 */ 1399 int 1400 xfs_attr3_leaf_add( 1401 struct xfs_buf *bp, 1402 struct xfs_da_args *args) 1403 { 1404 struct xfs_attr_leafblock *leaf; 1405 struct xfs_attr3_icleaf_hdr ichdr; 1406 int tablesize; 1407 int entsize; 1408 int sum; 1409 int tmp; 1410 int i; 1411 1412 trace_xfs_attr_leaf_add(args); 1413 1414 leaf = bp->b_addr; 1415 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 1416 ASSERT(args->index >= 0 && args->index <= ichdr.count); 1417 entsize = xfs_attr_leaf_newentsize(args, NULL); 1418 1419 /* 1420 * Search through freemap for first-fit on new name length. 1421 * (may need to figure in size of entry struct too) 1422 */ 1423 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) 1424 + xfs_attr3_leaf_hdr_size(leaf); 1425 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { 1426 if (tablesize > ichdr.firstused) { 1427 sum += ichdr.freemap[i].size; 1428 continue; 1429 } 1430 if (!ichdr.freemap[i].size) 1431 continue; /* no space in this map */ 1432 tmp = entsize; 1433 if (ichdr.freemap[i].base < ichdr.firstused) 1434 tmp += sizeof(xfs_attr_leaf_entry_t); 1435 if (ichdr.freemap[i].size >= tmp) { 1436 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); 1437 goto out_log_hdr; 1438 } 1439 sum += ichdr.freemap[i].size; 1440 } 1441 1442 /* 1443 * If there are no holes in the address space of the block, 1444 * and we don't have enough freespace, then compaction will do us 1445 * no good and we should just give up. 1446 */ 1447 if (!ichdr.holes && sum < entsize) 1448 return -ENOSPC; 1449 1450 /* 1451 * Compact the entries to coalesce free space. 1452 * This may change the hdr->count via dropping INCOMPLETE entries. 1453 */ 1454 xfs_attr3_leaf_compact(args, &ichdr, bp); 1455 1456 /* 1457 * After compaction, the block is guaranteed to have only one 1458 * free region, in freemap[0]. If it is not big enough, give up. 1459 */ 1460 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { 1461 tmp = -ENOSPC; 1462 goto out_log_hdr; 1463 } 1464 1465 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); 1466 1467 out_log_hdr: 1468 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 1469 xfs_trans_log_buf(args->trans, bp, 1470 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 1471 xfs_attr3_leaf_hdr_size(leaf))); 1472 return tmp; 1473 } 1474 1475 /* 1476 * Add a name to a leaf attribute list structure. 1477 */ 1478 STATIC int 1479 xfs_attr3_leaf_add_work( 1480 struct xfs_buf *bp, 1481 struct xfs_attr3_icleaf_hdr *ichdr, 1482 struct xfs_da_args *args, 1483 int mapindex) 1484 { 1485 struct xfs_attr_leafblock *leaf; 1486 struct xfs_attr_leaf_entry *entry; 1487 struct xfs_attr_leaf_name_local *name_loc; 1488 struct xfs_attr_leaf_name_remote *name_rmt; 1489 struct xfs_mount *mp; 1490 int tmp; 1491 int i; 1492 1493 trace_xfs_attr_leaf_add_work(args); 1494 1495 leaf = bp->b_addr; 1496 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); 1497 ASSERT(args->index >= 0 && args->index <= ichdr->count); 1498 1499 /* 1500 * Force open some space in the entry array and fill it in. 1501 */ 1502 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 1503 if (args->index < ichdr->count) { 1504 tmp = ichdr->count - args->index; 1505 tmp *= sizeof(xfs_attr_leaf_entry_t); 1506 memmove(entry + 1, entry, tmp); 1507 xfs_trans_log_buf(args->trans, bp, 1508 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); 1509 } 1510 ichdr->count++; 1511 1512 /* 1513 * Allocate space for the new string (at the end of the run). 1514 */ 1515 mp = args->trans->t_mountp; 1516 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); 1517 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); 1518 ASSERT(ichdr->freemap[mapindex].size >= 1519 xfs_attr_leaf_newentsize(args, NULL)); 1520 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); 1521 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); 1522 1523 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); 1524 1525 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + 1526 ichdr->freemap[mapindex].size); 1527 entry->hashval = cpu_to_be32(args->hashval); 1528 entry->flags = args->attr_filter; 1529 if (tmp) 1530 entry->flags |= XFS_ATTR_LOCAL; 1531 if (args->op_flags & XFS_DA_OP_REPLACE) { 1532 if (!(args->op_flags & XFS_DA_OP_LOGGED)) 1533 entry->flags |= XFS_ATTR_INCOMPLETE; 1534 if ((args->blkno2 == args->blkno) && 1535 (args->index2 <= args->index)) { 1536 args->index2++; 1537 } 1538 } 1539 xfs_trans_log_buf(args->trans, bp, 1540 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 1541 ASSERT((args->index == 0) || 1542 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); 1543 ASSERT((args->index == ichdr->count - 1) || 1544 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); 1545 1546 /* 1547 * For "remote" attribute values, simply note that we need to 1548 * allocate space for the "remote" value. We can't actually 1549 * allocate the extents in this transaction, and we can't decide 1550 * which blocks they should be as we might allocate more blocks 1551 * as part of this transaction (a split operation for example). 1552 */ 1553 if (entry->flags & XFS_ATTR_LOCAL) { 1554 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 1555 name_loc->namelen = args->namelen; 1556 name_loc->valuelen = cpu_to_be16(args->valuelen); 1557 memcpy((char *)name_loc->nameval, args->name, args->namelen); 1558 memcpy((char *)&name_loc->nameval[args->namelen], args->value, 1559 be16_to_cpu(name_loc->valuelen)); 1560 } else { 1561 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 1562 name_rmt->namelen = args->namelen; 1563 memcpy((char *)name_rmt->name, args->name, args->namelen); 1564 entry->flags |= XFS_ATTR_INCOMPLETE; 1565 /* just in case */ 1566 name_rmt->valuelen = 0; 1567 name_rmt->valueblk = 0; 1568 args->rmtblkno = 1; 1569 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); 1570 args->rmtvaluelen = args->valuelen; 1571 } 1572 xfs_trans_log_buf(args->trans, bp, 1573 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 1574 xfs_attr_leaf_entsize(leaf, args->index))); 1575 1576 /* 1577 * Update the control info for this leaf node 1578 */ 1579 if (be16_to_cpu(entry->nameidx) < ichdr->firstused) 1580 ichdr->firstused = be16_to_cpu(entry->nameidx); 1581 1582 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) 1583 + xfs_attr3_leaf_hdr_size(leaf)); 1584 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) 1585 + xfs_attr3_leaf_hdr_size(leaf); 1586 1587 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 1588 if (ichdr->freemap[i].base == tmp) { 1589 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); 1590 ichdr->freemap[i].size -= 1591 min_t(uint16_t, ichdr->freemap[i].size, 1592 sizeof(xfs_attr_leaf_entry_t)); 1593 } 1594 } 1595 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); 1596 return 0; 1597 } 1598 1599 /* 1600 * Garbage collect a leaf attribute list block by copying it to a new buffer. 1601 */ 1602 STATIC void 1603 xfs_attr3_leaf_compact( 1604 struct xfs_da_args *args, 1605 struct xfs_attr3_icleaf_hdr *ichdr_dst, 1606 struct xfs_buf *bp) 1607 { 1608 struct xfs_attr_leafblock *leaf_src; 1609 struct xfs_attr_leafblock *leaf_dst; 1610 struct xfs_attr3_icleaf_hdr ichdr_src; 1611 struct xfs_trans *trans = args->trans; 1612 char *tmpbuffer; 1613 1614 trace_xfs_attr_leaf_compact(args); 1615 1616 tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL); 1617 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); 1618 memset(bp->b_addr, 0, args->geo->blksize); 1619 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; 1620 leaf_dst = bp->b_addr; 1621 1622 /* 1623 * Copy the on-disk header back into the destination buffer to ensure 1624 * all the information in the header that is not part of the incore 1625 * header structure is preserved. 1626 */ 1627 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); 1628 1629 /* Initialise the incore headers */ 1630 ichdr_src = *ichdr_dst; /* struct copy */ 1631 ichdr_dst->firstused = args->geo->blksize; 1632 ichdr_dst->usedbytes = 0; 1633 ichdr_dst->count = 0; 1634 ichdr_dst->holes = 0; 1635 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); 1636 ichdr_dst->freemap[0].size = ichdr_dst->firstused - 1637 ichdr_dst->freemap[0].base; 1638 1639 /* write the header back to initialise the underlying buffer */ 1640 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); 1641 1642 /* 1643 * Copy all entry's in the same (sorted) order, 1644 * but allocate name/value pairs packed and in sequence. 1645 */ 1646 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, 1647 leaf_dst, ichdr_dst, 0, ichdr_src.count); 1648 /* 1649 * this logs the entire buffer, but the caller must write the header 1650 * back to the buffer when it is finished modifying it. 1651 */ 1652 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); 1653 1654 kfree(tmpbuffer); 1655 } 1656 1657 /* 1658 * Compare two leaf blocks "order". 1659 * Return 0 unless leaf2 should go before leaf1. 1660 */ 1661 static int 1662 xfs_attr3_leaf_order( 1663 struct xfs_buf *leaf1_bp, 1664 struct xfs_attr3_icleaf_hdr *leaf1hdr, 1665 struct xfs_buf *leaf2_bp, 1666 struct xfs_attr3_icleaf_hdr *leaf2hdr) 1667 { 1668 struct xfs_attr_leaf_entry *entries1; 1669 struct xfs_attr_leaf_entry *entries2; 1670 1671 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); 1672 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); 1673 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && 1674 ((be32_to_cpu(entries2[0].hashval) < 1675 be32_to_cpu(entries1[0].hashval)) || 1676 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < 1677 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { 1678 return 1; 1679 } 1680 return 0; 1681 } 1682 1683 int 1684 xfs_attr_leaf_order( 1685 struct xfs_buf *leaf1_bp, 1686 struct xfs_buf *leaf2_bp) 1687 { 1688 struct xfs_attr3_icleaf_hdr ichdr1; 1689 struct xfs_attr3_icleaf_hdr ichdr2; 1690 struct xfs_mount *mp = leaf1_bp->b_mount; 1691 1692 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); 1693 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); 1694 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); 1695 } 1696 1697 /* 1698 * Redistribute the attribute list entries between two leaf nodes, 1699 * taking into account the size of the new entry. 1700 * 1701 * NOTE: if new block is empty, then it will get the upper half of the 1702 * old block. At present, all (one) callers pass in an empty second block. 1703 * 1704 * This code adjusts the args->index/blkno and args->index2/blkno2 fields 1705 * to match what it is doing in splitting the attribute leaf block. Those 1706 * values are used in "atomic rename" operations on attributes. Note that 1707 * the "new" and "old" values can end up in different blocks. 1708 */ 1709 STATIC void 1710 xfs_attr3_leaf_rebalance( 1711 struct xfs_da_state *state, 1712 struct xfs_da_state_blk *blk1, 1713 struct xfs_da_state_blk *blk2) 1714 { 1715 struct xfs_da_args *args; 1716 struct xfs_attr_leafblock *leaf1; 1717 struct xfs_attr_leafblock *leaf2; 1718 struct xfs_attr3_icleaf_hdr ichdr1; 1719 struct xfs_attr3_icleaf_hdr ichdr2; 1720 struct xfs_attr_leaf_entry *entries1; 1721 struct xfs_attr_leaf_entry *entries2; 1722 int count; 1723 int totallen; 1724 int max; 1725 int space; 1726 int swap; 1727 1728 /* 1729 * Set up environment. 1730 */ 1731 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); 1732 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); 1733 leaf1 = blk1->bp->b_addr; 1734 leaf2 = blk2->bp->b_addr; 1735 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); 1736 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); 1737 ASSERT(ichdr2.count == 0); 1738 args = state->args; 1739 1740 trace_xfs_attr_leaf_rebalance(args); 1741 1742 /* 1743 * Check ordering of blocks, reverse if it makes things simpler. 1744 * 1745 * NOTE: Given that all (current) callers pass in an empty 1746 * second block, this code should never set "swap". 1747 */ 1748 swap = 0; 1749 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { 1750 swap(blk1, blk2); 1751 1752 /* swap structures rather than reconverting them */ 1753 swap(ichdr1, ichdr2); 1754 1755 leaf1 = blk1->bp->b_addr; 1756 leaf2 = blk2->bp->b_addr; 1757 swap = 1; 1758 } 1759 1760 /* 1761 * Examine entries until we reduce the absolute difference in 1762 * byte usage between the two blocks to a minimum. Then get 1763 * the direction to copy and the number of elements to move. 1764 * 1765 * "inleaf" is true if the new entry should be inserted into blk1. 1766 * If "swap" is also true, then reverse the sense of "inleaf". 1767 */ 1768 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, 1769 blk2, &ichdr2, 1770 &count, &totallen); 1771 if (swap) 1772 state->inleaf = !state->inleaf; 1773 1774 /* 1775 * Move any entries required from leaf to leaf: 1776 */ 1777 if (count < ichdr1.count) { 1778 /* 1779 * Figure the total bytes to be added to the destination leaf. 1780 */ 1781 /* number entries being moved */ 1782 count = ichdr1.count - count; 1783 space = ichdr1.usedbytes - totallen; 1784 space += count * sizeof(xfs_attr_leaf_entry_t); 1785 1786 /* 1787 * leaf2 is the destination, compact it if it looks tight. 1788 */ 1789 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1790 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); 1791 if (space > max) 1792 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); 1793 1794 /* 1795 * Move high entries from leaf1 to low end of leaf2. 1796 */ 1797 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, 1798 ichdr1.count - count, leaf2, &ichdr2, 0, count); 1799 1800 } else if (count > ichdr1.count) { 1801 /* 1802 * I assert that since all callers pass in an empty 1803 * second buffer, this code should never execute. 1804 */ 1805 ASSERT(0); 1806 1807 /* 1808 * Figure the total bytes to be added to the destination leaf. 1809 */ 1810 /* number entries being moved */ 1811 count -= ichdr1.count; 1812 space = totallen - ichdr1.usedbytes; 1813 space += count * sizeof(xfs_attr_leaf_entry_t); 1814 1815 /* 1816 * leaf1 is the destination, compact it if it looks tight. 1817 */ 1818 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); 1819 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); 1820 if (space > max) 1821 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); 1822 1823 /* 1824 * Move low entries from leaf2 to high end of leaf1. 1825 */ 1826 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, 1827 ichdr1.count, count); 1828 } 1829 1830 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); 1831 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); 1832 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); 1833 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); 1834 1835 /* 1836 * Copy out last hashval in each block for B-tree code. 1837 */ 1838 entries1 = xfs_attr3_leaf_entryp(leaf1); 1839 entries2 = xfs_attr3_leaf_entryp(leaf2); 1840 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); 1841 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); 1842 1843 /* 1844 * Adjust the expected index for insertion. 1845 * NOTE: this code depends on the (current) situation that the 1846 * second block was originally empty. 1847 * 1848 * If the insertion point moved to the 2nd block, we must adjust 1849 * the index. We must also track the entry just following the 1850 * new entry for use in an "atomic rename" operation, that entry 1851 * is always the "old" entry and the "new" entry is what we are 1852 * inserting. The index/blkno fields refer to the "old" entry, 1853 * while the index2/blkno2 fields refer to the "new" entry. 1854 */ 1855 if (blk1->index > ichdr1.count) { 1856 ASSERT(state->inleaf == 0); 1857 blk2->index = blk1->index - ichdr1.count; 1858 args->index = args->index2 = blk2->index; 1859 args->blkno = args->blkno2 = blk2->blkno; 1860 } else if (blk1->index == ichdr1.count) { 1861 if (state->inleaf) { 1862 args->index = blk1->index; 1863 args->blkno = blk1->blkno; 1864 args->index2 = 0; 1865 args->blkno2 = blk2->blkno; 1866 } else { 1867 /* 1868 * On a double leaf split, the original attr location 1869 * is already stored in blkno2/index2, so don't 1870 * overwrite it overwise we corrupt the tree. 1871 */ 1872 blk2->index = blk1->index - ichdr1.count; 1873 args->index = blk2->index; 1874 args->blkno = blk2->blkno; 1875 if (!state->extravalid) { 1876 /* 1877 * set the new attr location to match the old 1878 * one and let the higher level split code 1879 * decide where in the leaf to place it. 1880 */ 1881 args->index2 = blk2->index; 1882 args->blkno2 = blk2->blkno; 1883 } 1884 } 1885 } else { 1886 ASSERT(state->inleaf == 1); 1887 args->index = args->index2 = blk1->index; 1888 args->blkno = args->blkno2 = blk1->blkno; 1889 } 1890 } 1891 1892 /* 1893 * Examine entries until we reduce the absolute difference in 1894 * byte usage between the two blocks to a minimum. 1895 * GROT: Is this really necessary? With other than a 512 byte blocksize, 1896 * GROT: there will always be enough room in either block for a new entry. 1897 * GROT: Do a double-split for this case? 1898 */ 1899 STATIC int 1900 xfs_attr3_leaf_figure_balance( 1901 struct xfs_da_state *state, 1902 struct xfs_da_state_blk *blk1, 1903 struct xfs_attr3_icleaf_hdr *ichdr1, 1904 struct xfs_da_state_blk *blk2, 1905 struct xfs_attr3_icleaf_hdr *ichdr2, 1906 int *countarg, 1907 int *usedbytesarg) 1908 { 1909 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; 1910 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; 1911 struct xfs_attr_leaf_entry *entry; 1912 int count; 1913 int max; 1914 int index; 1915 int totallen = 0; 1916 int half; 1917 int lastdelta; 1918 int foundit = 0; 1919 int tmp; 1920 1921 /* 1922 * Examine entries until we reduce the absolute difference in 1923 * byte usage between the two blocks to a minimum. 1924 */ 1925 max = ichdr1->count + ichdr2->count; 1926 half = (max + 1) * sizeof(*entry); 1927 half += ichdr1->usedbytes + ichdr2->usedbytes + 1928 xfs_attr_leaf_newentsize(state->args, NULL); 1929 half /= 2; 1930 lastdelta = state->args->geo->blksize; 1931 entry = xfs_attr3_leaf_entryp(leaf1); 1932 for (count = index = 0; count < max; entry++, index++, count++) { 1933 1934 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) 1935 /* 1936 * The new entry is in the first block, account for it. 1937 */ 1938 if (count == blk1->index) { 1939 tmp = totallen + sizeof(*entry) + 1940 xfs_attr_leaf_newentsize(state->args, NULL); 1941 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1942 break; 1943 lastdelta = XFS_ATTR_ABS(half - tmp); 1944 totallen = tmp; 1945 foundit = 1; 1946 } 1947 1948 /* 1949 * Wrap around into the second block if necessary. 1950 */ 1951 if (count == ichdr1->count) { 1952 leaf1 = leaf2; 1953 entry = xfs_attr3_leaf_entryp(leaf1); 1954 index = 0; 1955 } 1956 1957 /* 1958 * Figure out if next leaf entry would be too much. 1959 */ 1960 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, 1961 index); 1962 if (XFS_ATTR_ABS(half - tmp) > lastdelta) 1963 break; 1964 lastdelta = XFS_ATTR_ABS(half - tmp); 1965 totallen = tmp; 1966 #undef XFS_ATTR_ABS 1967 } 1968 1969 /* 1970 * Calculate the number of usedbytes that will end up in lower block. 1971 * If new entry not in lower block, fix up the count. 1972 */ 1973 totallen -= count * sizeof(*entry); 1974 if (foundit) { 1975 totallen -= sizeof(*entry) + 1976 xfs_attr_leaf_newentsize(state->args, NULL); 1977 } 1978 1979 *countarg = count; 1980 *usedbytesarg = totallen; 1981 return foundit; 1982 } 1983 1984 /*======================================================================== 1985 * Routines used for shrinking the Btree. 1986 *========================================================================*/ 1987 1988 /* 1989 * Check a leaf block and its neighbors to see if the block should be 1990 * collapsed into one or the other neighbor. Always keep the block 1991 * with the smaller block number. 1992 * If the current block is over 50% full, don't try to join it, return 0. 1993 * If the block is empty, fill in the state structure and return 2. 1994 * If it can be collapsed, fill in the state structure and return 1. 1995 * If nothing can be done, return 0. 1996 * 1997 * GROT: allow for INCOMPLETE entries in calculation. 1998 */ 1999 int 2000 xfs_attr3_leaf_toosmall( 2001 struct xfs_da_state *state, 2002 int *action) 2003 { 2004 struct xfs_attr_leafblock *leaf; 2005 struct xfs_da_state_blk *blk; 2006 struct xfs_attr3_icleaf_hdr ichdr; 2007 struct xfs_buf *bp; 2008 xfs_dablk_t blkno; 2009 int bytes; 2010 int forward; 2011 int error; 2012 int retval; 2013 int i; 2014 2015 trace_xfs_attr_leaf_toosmall(state->args); 2016 2017 /* 2018 * Check for the degenerate case of the block being over 50% full. 2019 * If so, it's not worth even looking to see if we might be able 2020 * to coalesce with a sibling. 2021 */ 2022 blk = &state->path.blk[ state->path.active-1 ]; 2023 leaf = blk->bp->b_addr; 2024 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); 2025 bytes = xfs_attr3_leaf_hdr_size(leaf) + 2026 ichdr.count * sizeof(xfs_attr_leaf_entry_t) + 2027 ichdr.usedbytes; 2028 if (bytes > (state->args->geo->blksize >> 1)) { 2029 *action = 0; /* blk over 50%, don't try to join */ 2030 return 0; 2031 } 2032 2033 /* 2034 * Check for the degenerate case of the block being empty. 2035 * If the block is empty, we'll simply delete it, no need to 2036 * coalesce it with a sibling block. We choose (arbitrarily) 2037 * to merge with the forward block unless it is NULL. 2038 */ 2039 if (ichdr.count == 0) { 2040 /* 2041 * Make altpath point to the block we want to keep and 2042 * path point to the block we want to drop (this one). 2043 */ 2044 forward = (ichdr.forw != 0); 2045 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2046 error = xfs_da3_path_shift(state, &state->altpath, forward, 2047 0, &retval); 2048 if (error) 2049 return error; 2050 if (retval) { 2051 *action = 0; 2052 } else { 2053 *action = 2; 2054 } 2055 return 0; 2056 } 2057 2058 /* 2059 * Examine each sibling block to see if we can coalesce with 2060 * at least 25% free space to spare. We need to figure out 2061 * whether to merge with the forward or the backward block. 2062 * We prefer coalescing with the lower numbered sibling so as 2063 * to shrink an attribute list over time. 2064 */ 2065 /* start with smaller blk num */ 2066 forward = ichdr.forw < ichdr.back; 2067 for (i = 0; i < 2; forward = !forward, i++) { 2068 struct xfs_attr3_icleaf_hdr ichdr2; 2069 if (forward) 2070 blkno = ichdr.forw; 2071 else 2072 blkno = ichdr.back; 2073 if (blkno == 0) 2074 continue; 2075 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, 2076 state->args->owner, blkno, &bp); 2077 if (error) 2078 return error; 2079 2080 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); 2081 2082 bytes = state->args->geo->blksize - 2083 (state->args->geo->blksize >> 2) - 2084 ichdr.usedbytes - ichdr2.usedbytes - 2085 ((ichdr.count + ichdr2.count) * 2086 sizeof(xfs_attr_leaf_entry_t)) - 2087 xfs_attr3_leaf_hdr_size(leaf); 2088 2089 xfs_trans_brelse(state->args->trans, bp); 2090 if (bytes >= 0) 2091 break; /* fits with at least 25% to spare */ 2092 } 2093 if (i >= 2) { 2094 *action = 0; 2095 return 0; 2096 } 2097 2098 /* 2099 * Make altpath point to the block we want to keep (the lower 2100 * numbered block) and path point to the block we want to drop. 2101 */ 2102 memcpy(&state->altpath, &state->path, sizeof(state->path)); 2103 if (blkno < blk->blkno) { 2104 error = xfs_da3_path_shift(state, &state->altpath, forward, 2105 0, &retval); 2106 } else { 2107 error = xfs_da3_path_shift(state, &state->path, forward, 2108 0, &retval); 2109 } 2110 if (error) 2111 return error; 2112 if (retval) { 2113 *action = 0; 2114 } else { 2115 *action = 1; 2116 } 2117 return 0; 2118 } 2119 2120 /* 2121 * Remove a name from the leaf attribute list structure. 2122 * 2123 * Return 1 if leaf is less than 37% full, 0 if >= 37% full. 2124 * If two leaves are 37% full, when combined they will leave 25% free. 2125 */ 2126 int 2127 xfs_attr3_leaf_remove( 2128 struct xfs_buf *bp, 2129 struct xfs_da_args *args) 2130 { 2131 struct xfs_attr_leafblock *leaf; 2132 struct xfs_attr3_icleaf_hdr ichdr; 2133 struct xfs_attr_leaf_entry *entry; 2134 int before; 2135 int after; 2136 int smallest; 2137 int entsize; 2138 int tablesize; 2139 int tmp; 2140 int i; 2141 2142 trace_xfs_attr_leaf_remove(args); 2143 2144 leaf = bp->b_addr; 2145 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2146 2147 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); 2148 ASSERT(args->index >= 0 && args->index < ichdr.count); 2149 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + 2150 xfs_attr3_leaf_hdr_size(leaf)); 2151 2152 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2153 2154 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2155 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2156 2157 /* 2158 * Scan through free region table: 2159 * check for adjacency of free'd entry with an existing one, 2160 * find smallest free region in case we need to replace it, 2161 * adjust any map that borders the entry table, 2162 */ 2163 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) 2164 + xfs_attr3_leaf_hdr_size(leaf); 2165 tmp = ichdr.freemap[0].size; 2166 before = after = -1; 2167 smallest = XFS_ATTR_LEAF_MAPSIZE - 1; 2168 entsize = xfs_attr_leaf_entsize(leaf, args->index); 2169 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { 2170 ASSERT(ichdr.freemap[i].base < args->geo->blksize); 2171 ASSERT(ichdr.freemap[i].size < args->geo->blksize); 2172 if (ichdr.freemap[i].base == tablesize) { 2173 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); 2174 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); 2175 } 2176 2177 if (ichdr.freemap[i].base + ichdr.freemap[i].size == 2178 be16_to_cpu(entry->nameidx)) { 2179 before = i; 2180 } else if (ichdr.freemap[i].base == 2181 (be16_to_cpu(entry->nameidx) + entsize)) { 2182 after = i; 2183 } else if (ichdr.freemap[i].size < tmp) { 2184 tmp = ichdr.freemap[i].size; 2185 smallest = i; 2186 } 2187 } 2188 2189 /* 2190 * Coalesce adjacent freemap regions, 2191 * or replace the smallest region. 2192 */ 2193 if ((before >= 0) || (after >= 0)) { 2194 if ((before >= 0) && (after >= 0)) { 2195 ichdr.freemap[before].size += entsize; 2196 ichdr.freemap[before].size += ichdr.freemap[after].size; 2197 ichdr.freemap[after].base = 0; 2198 ichdr.freemap[after].size = 0; 2199 } else if (before >= 0) { 2200 ichdr.freemap[before].size += entsize; 2201 } else { 2202 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); 2203 ichdr.freemap[after].size += entsize; 2204 } 2205 } else { 2206 /* 2207 * Replace smallest region (if it is smaller than free'd entry) 2208 */ 2209 if (ichdr.freemap[smallest].size < entsize) { 2210 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); 2211 ichdr.freemap[smallest].size = entsize; 2212 } 2213 } 2214 2215 /* 2216 * Did we remove the first entry? 2217 */ 2218 if (be16_to_cpu(entry->nameidx) == ichdr.firstused) 2219 smallest = 1; 2220 else 2221 smallest = 0; 2222 2223 /* 2224 * Compress the remaining entries and zero out the removed stuff. 2225 */ 2226 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); 2227 ichdr.usedbytes -= entsize; 2228 xfs_trans_log_buf(args->trans, bp, 2229 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), 2230 entsize)); 2231 2232 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); 2233 memmove(entry, entry + 1, tmp); 2234 ichdr.count--; 2235 xfs_trans_log_buf(args->trans, bp, 2236 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); 2237 2238 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; 2239 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); 2240 2241 /* 2242 * If we removed the first entry, re-find the first used byte 2243 * in the name area. Note that if the entry was the "firstused", 2244 * then we don't have a "hole" in our block resulting from 2245 * removing the name. 2246 */ 2247 if (smallest) { 2248 tmp = args->geo->blksize; 2249 entry = xfs_attr3_leaf_entryp(leaf); 2250 for (i = ichdr.count - 1; i >= 0; entry++, i--) { 2251 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); 2252 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); 2253 2254 if (be16_to_cpu(entry->nameidx) < tmp) 2255 tmp = be16_to_cpu(entry->nameidx); 2256 } 2257 ichdr.firstused = tmp; 2258 ASSERT(ichdr.firstused != 0); 2259 } else { 2260 ichdr.holes = 1; /* mark as needing compaction */ 2261 } 2262 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); 2263 xfs_trans_log_buf(args->trans, bp, 2264 XFS_DA_LOGRANGE(leaf, &leaf->hdr, 2265 xfs_attr3_leaf_hdr_size(leaf))); 2266 2267 /* 2268 * Check if leaf is less than 50% full, caller may want to 2269 * "join" the leaf with a sibling if so. 2270 */ 2271 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + 2272 ichdr.count * sizeof(xfs_attr_leaf_entry_t); 2273 2274 return tmp < args->geo->magicpct; /* leaf is < 37% full */ 2275 } 2276 2277 /* 2278 * Move all the attribute list entries from drop_leaf into save_leaf. 2279 */ 2280 void 2281 xfs_attr3_leaf_unbalance( 2282 struct xfs_da_state *state, 2283 struct xfs_da_state_blk *drop_blk, 2284 struct xfs_da_state_blk *save_blk) 2285 { 2286 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; 2287 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; 2288 struct xfs_attr3_icleaf_hdr drophdr; 2289 struct xfs_attr3_icleaf_hdr savehdr; 2290 struct xfs_attr_leaf_entry *entry; 2291 2292 trace_xfs_attr_leaf_unbalance(state->args); 2293 2294 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); 2295 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); 2296 entry = xfs_attr3_leaf_entryp(drop_leaf); 2297 2298 /* 2299 * Save last hashval from dying block for later Btree fixup. 2300 */ 2301 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); 2302 2303 /* 2304 * Check if we need a temp buffer, or can we do it in place. 2305 * Note that we don't check "leaf" for holes because we will 2306 * always be dropping it, toosmall() decided that for us already. 2307 */ 2308 if (savehdr.holes == 0) { 2309 /* 2310 * dest leaf has no holes, so we add there. May need 2311 * to make some room in the entry array. 2312 */ 2313 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2314 drop_blk->bp, &drophdr)) { 2315 xfs_attr3_leaf_moveents(state->args, 2316 drop_leaf, &drophdr, 0, 2317 save_leaf, &savehdr, 0, 2318 drophdr.count); 2319 } else { 2320 xfs_attr3_leaf_moveents(state->args, 2321 drop_leaf, &drophdr, 0, 2322 save_leaf, &savehdr, 2323 savehdr.count, drophdr.count); 2324 } 2325 } else { 2326 /* 2327 * Destination has holes, so we make a temporary copy 2328 * of the leaf and add them both to that. 2329 */ 2330 struct xfs_attr_leafblock *tmp_leaf; 2331 struct xfs_attr3_icleaf_hdr tmphdr; 2332 2333 tmp_leaf = kzalloc(state->args->geo->blksize, 2334 GFP_KERNEL | __GFP_NOFAIL); 2335 2336 /* 2337 * Copy the header into the temp leaf so that all the stuff 2338 * not in the incore header is present and gets copied back in 2339 * once we've moved all the entries. 2340 */ 2341 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); 2342 2343 memset(&tmphdr, 0, sizeof(tmphdr)); 2344 tmphdr.magic = savehdr.magic; 2345 tmphdr.forw = savehdr.forw; 2346 tmphdr.back = savehdr.back; 2347 tmphdr.firstused = state->args->geo->blksize; 2348 2349 /* write the header to the temp buffer to initialise it */ 2350 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); 2351 2352 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, 2353 drop_blk->bp, &drophdr)) { 2354 xfs_attr3_leaf_moveents(state->args, 2355 drop_leaf, &drophdr, 0, 2356 tmp_leaf, &tmphdr, 0, 2357 drophdr.count); 2358 xfs_attr3_leaf_moveents(state->args, 2359 save_leaf, &savehdr, 0, 2360 tmp_leaf, &tmphdr, tmphdr.count, 2361 savehdr.count); 2362 } else { 2363 xfs_attr3_leaf_moveents(state->args, 2364 save_leaf, &savehdr, 0, 2365 tmp_leaf, &tmphdr, 0, 2366 savehdr.count); 2367 xfs_attr3_leaf_moveents(state->args, 2368 drop_leaf, &drophdr, 0, 2369 tmp_leaf, &tmphdr, tmphdr.count, 2370 drophdr.count); 2371 } 2372 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); 2373 savehdr = tmphdr; /* struct copy */ 2374 kfree(tmp_leaf); 2375 } 2376 2377 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); 2378 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, 2379 state->args->geo->blksize - 1); 2380 2381 /* 2382 * Copy out last hashval in each block for B-tree code. 2383 */ 2384 entry = xfs_attr3_leaf_entryp(save_leaf); 2385 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); 2386 } 2387 2388 /*======================================================================== 2389 * Routines used for finding things in the Btree. 2390 *========================================================================*/ 2391 2392 /* 2393 * Look up a name in a leaf attribute list structure. 2394 * This is the internal routine, it uses the caller's buffer. 2395 * 2396 * Note that duplicate keys are allowed, but only check within the 2397 * current leaf node. The Btree code must check in adjacent leaf nodes. 2398 * 2399 * Return in args->index the index into the entry[] array of either 2400 * the found entry, or where the entry should have been (insert before 2401 * that entry). 2402 * 2403 * Don't change the args->value unless we find the attribute. 2404 */ 2405 int 2406 xfs_attr3_leaf_lookup_int( 2407 struct xfs_buf *bp, 2408 struct xfs_da_args *args) 2409 { 2410 struct xfs_attr_leafblock *leaf; 2411 struct xfs_attr3_icleaf_hdr ichdr; 2412 struct xfs_attr_leaf_entry *entry; 2413 struct xfs_attr_leaf_entry *entries; 2414 struct xfs_attr_leaf_name_local *name_loc; 2415 struct xfs_attr_leaf_name_remote *name_rmt; 2416 xfs_dahash_t hashval; 2417 int probe; 2418 int span; 2419 2420 trace_xfs_attr_leaf_lookup(args); 2421 2422 leaf = bp->b_addr; 2423 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2424 entries = xfs_attr3_leaf_entryp(leaf); 2425 if (ichdr.count >= args->geo->blksize / 8) { 2426 xfs_buf_mark_corrupt(bp); 2427 xfs_da_mark_sick(args); 2428 return -EFSCORRUPTED; 2429 } 2430 2431 /* 2432 * Binary search. (note: small blocks will skip this loop) 2433 */ 2434 hashval = args->hashval; 2435 probe = span = ichdr.count / 2; 2436 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { 2437 span /= 2; 2438 if (be32_to_cpu(entry->hashval) < hashval) 2439 probe += span; 2440 else if (be32_to_cpu(entry->hashval) > hashval) 2441 probe -= span; 2442 else 2443 break; 2444 } 2445 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { 2446 xfs_buf_mark_corrupt(bp); 2447 xfs_da_mark_sick(args); 2448 return -EFSCORRUPTED; 2449 } 2450 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { 2451 xfs_buf_mark_corrupt(bp); 2452 xfs_da_mark_sick(args); 2453 return -EFSCORRUPTED; 2454 } 2455 2456 /* 2457 * Since we may have duplicate hashval's, find the first matching 2458 * hashval in the leaf. 2459 */ 2460 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { 2461 entry--; 2462 probe--; 2463 } 2464 while (probe < ichdr.count && 2465 be32_to_cpu(entry->hashval) < hashval) { 2466 entry++; 2467 probe++; 2468 } 2469 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { 2470 args->index = probe; 2471 return -ENOATTR; 2472 } 2473 2474 /* 2475 * Duplicate keys may be present, so search all of them for a match. 2476 */ 2477 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); 2478 entry++, probe++) { 2479 /* 2480 * GROT: Add code to remove incomplete entries. 2481 */ 2482 if (entry->flags & XFS_ATTR_LOCAL) { 2483 name_loc = xfs_attr3_leaf_name_local(leaf, probe); 2484 if (!xfs_attr_match(args, entry->flags, 2485 name_loc->nameval, name_loc->namelen, 2486 &name_loc->nameval[name_loc->namelen], 2487 be16_to_cpu(name_loc->valuelen))) 2488 continue; 2489 args->index = probe; 2490 return -EEXIST; 2491 } else { 2492 unsigned int valuelen; 2493 2494 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); 2495 valuelen = be32_to_cpu(name_rmt->valuelen); 2496 if (!xfs_attr_match(args, entry->flags, name_rmt->name, 2497 name_rmt->namelen, NULL, valuelen)) 2498 continue; 2499 args->index = probe; 2500 args->rmtvaluelen = valuelen; 2501 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2502 args->rmtblkcnt = xfs_attr3_rmt_blocks( 2503 args->dp->i_mount, 2504 args->rmtvaluelen); 2505 return -EEXIST; 2506 } 2507 } 2508 args->index = probe; 2509 return -ENOATTR; 2510 } 2511 2512 /* 2513 * Get the value associated with an attribute name from a leaf attribute 2514 * list structure. 2515 * 2516 * If args->valuelen is zero, only the length needs to be returned. Unlike a 2517 * lookup, we only return an error if the attribute does not exist or we can't 2518 * retrieve the value. 2519 */ 2520 int 2521 xfs_attr3_leaf_getvalue( 2522 struct xfs_buf *bp, 2523 struct xfs_da_args *args) 2524 { 2525 struct xfs_attr_leafblock *leaf; 2526 struct xfs_attr3_icleaf_hdr ichdr; 2527 struct xfs_attr_leaf_entry *entry; 2528 struct xfs_attr_leaf_name_local *name_loc; 2529 struct xfs_attr_leaf_name_remote *name_rmt; 2530 2531 leaf = bp->b_addr; 2532 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2533 ASSERT(ichdr.count < args->geo->blksize / 8); 2534 ASSERT(args->index < ichdr.count); 2535 2536 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2537 if (entry->flags & XFS_ATTR_LOCAL) { 2538 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2539 ASSERT(name_loc->namelen == args->namelen); 2540 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); 2541 return xfs_attr_copy_value(args, 2542 &name_loc->nameval[args->namelen], 2543 be16_to_cpu(name_loc->valuelen)); 2544 } 2545 2546 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2547 ASSERT(name_rmt->namelen == args->namelen); 2548 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); 2549 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); 2550 args->rmtblkno = be32_to_cpu(name_rmt->valueblk); 2551 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, 2552 args->rmtvaluelen); 2553 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); 2554 } 2555 2556 /*======================================================================== 2557 * Utility routines. 2558 *========================================================================*/ 2559 2560 /* 2561 * Move the indicated entries from one leaf to another. 2562 * NOTE: this routine modifies both source and destination leaves. 2563 */ 2564 /*ARGSUSED*/ 2565 STATIC void 2566 xfs_attr3_leaf_moveents( 2567 struct xfs_da_args *args, 2568 struct xfs_attr_leafblock *leaf_s, 2569 struct xfs_attr3_icleaf_hdr *ichdr_s, 2570 int start_s, 2571 struct xfs_attr_leafblock *leaf_d, 2572 struct xfs_attr3_icleaf_hdr *ichdr_d, 2573 int start_d, 2574 int count) 2575 { 2576 struct xfs_attr_leaf_entry *entry_s; 2577 struct xfs_attr_leaf_entry *entry_d; 2578 int desti; 2579 int tmp; 2580 int i; 2581 2582 /* 2583 * Check for nothing to do. 2584 */ 2585 if (count == 0) 2586 return; 2587 2588 /* 2589 * Set up environment. 2590 */ 2591 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || 2592 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); 2593 ASSERT(ichdr_s->magic == ichdr_d->magic); 2594 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); 2595 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) 2596 + xfs_attr3_leaf_hdr_size(leaf_s)); 2597 ASSERT(ichdr_d->count < args->geo->blksize / 8); 2598 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) 2599 + xfs_attr3_leaf_hdr_size(leaf_d)); 2600 2601 ASSERT(start_s < ichdr_s->count); 2602 ASSERT(start_d <= ichdr_d->count); 2603 ASSERT(count <= ichdr_s->count); 2604 2605 2606 /* 2607 * Move the entries in the destination leaf up to make a hole? 2608 */ 2609 if (start_d < ichdr_d->count) { 2610 tmp = ichdr_d->count - start_d; 2611 tmp *= sizeof(xfs_attr_leaf_entry_t); 2612 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2613 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; 2614 memmove(entry_d, entry_s, tmp); 2615 } 2616 2617 /* 2618 * Copy all entry's in the same (sorted) order, 2619 * but allocate attribute info packed and in sequence. 2620 */ 2621 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2622 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; 2623 desti = start_d; 2624 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { 2625 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); 2626 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); 2627 #ifdef GROT 2628 /* 2629 * Code to drop INCOMPLETE entries. Difficult to use as we 2630 * may also need to change the insertion index. Code turned 2631 * off for 6.2, should be revisited later. 2632 */ 2633 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ 2634 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2635 ichdr_s->usedbytes -= tmp; 2636 ichdr_s->count -= 1; 2637 entry_d--; /* to compensate for ++ in loop hdr */ 2638 desti--; 2639 if ((start_s + i) < offset) 2640 result++; /* insertion index adjustment */ 2641 } else { 2642 #endif /* GROT */ 2643 ichdr_d->firstused -= tmp; 2644 /* both on-disk, don't endian flip twice */ 2645 entry_d->hashval = entry_s->hashval; 2646 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); 2647 entry_d->flags = entry_s->flags; 2648 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp 2649 <= args->geo->blksize); 2650 memmove(xfs_attr3_leaf_name(leaf_d, desti), 2651 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); 2652 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp 2653 <= args->geo->blksize); 2654 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); 2655 ichdr_s->usedbytes -= tmp; 2656 ichdr_d->usedbytes += tmp; 2657 ichdr_s->count -= 1; 2658 ichdr_d->count += 1; 2659 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) 2660 + xfs_attr3_leaf_hdr_size(leaf_d); 2661 ASSERT(ichdr_d->firstused >= tmp); 2662 #ifdef GROT 2663 } 2664 #endif /* GROT */ 2665 } 2666 2667 /* 2668 * Zero out the entries we just copied. 2669 */ 2670 if (start_s == ichdr_s->count) { 2671 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2672 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2673 ASSERT(((char *)entry_s + tmp) <= 2674 ((char *)leaf_s + args->geo->blksize)); 2675 memset(entry_s, 0, tmp); 2676 } else { 2677 /* 2678 * Move the remaining entries down to fill the hole, 2679 * then zero the entries at the top. 2680 */ 2681 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); 2682 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; 2683 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; 2684 memmove(entry_d, entry_s, tmp); 2685 2686 tmp = count * sizeof(xfs_attr_leaf_entry_t); 2687 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; 2688 ASSERT(((char *)entry_s + tmp) <= 2689 ((char *)leaf_s + args->geo->blksize)); 2690 memset(entry_s, 0, tmp); 2691 } 2692 2693 /* 2694 * Fill in the freemap information 2695 */ 2696 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); 2697 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); 2698 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; 2699 ichdr_d->freemap[1].base = 0; 2700 ichdr_d->freemap[2].base = 0; 2701 ichdr_d->freemap[1].size = 0; 2702 ichdr_d->freemap[2].size = 0; 2703 ichdr_s->holes = 1; /* leaf may not be compact */ 2704 } 2705 2706 /* 2707 * Pick up the last hashvalue from a leaf block. 2708 */ 2709 xfs_dahash_t 2710 xfs_attr_leaf_lasthash( 2711 struct xfs_buf *bp, 2712 int *count) 2713 { 2714 struct xfs_attr3_icleaf_hdr ichdr; 2715 struct xfs_attr_leaf_entry *entries; 2716 struct xfs_mount *mp = bp->b_mount; 2717 2718 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); 2719 entries = xfs_attr3_leaf_entryp(bp->b_addr); 2720 if (count) 2721 *count = ichdr.count; 2722 if (!ichdr.count) 2723 return 0; 2724 return be32_to_cpu(entries[ichdr.count - 1].hashval); 2725 } 2726 2727 /* 2728 * Calculate the number of bytes used to store the indicated attribute 2729 * (whether local or remote only calculate bytes in this block). 2730 */ 2731 STATIC int 2732 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) 2733 { 2734 struct xfs_attr_leaf_entry *entries; 2735 xfs_attr_leaf_name_local_t *name_loc; 2736 xfs_attr_leaf_name_remote_t *name_rmt; 2737 int size; 2738 2739 entries = xfs_attr3_leaf_entryp(leaf); 2740 if (entries[index].flags & XFS_ATTR_LOCAL) { 2741 name_loc = xfs_attr3_leaf_name_local(leaf, index); 2742 size = xfs_attr_leaf_entsize_local(name_loc->namelen, 2743 be16_to_cpu(name_loc->valuelen)); 2744 } else { 2745 name_rmt = xfs_attr3_leaf_name_remote(leaf, index); 2746 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); 2747 } 2748 return size; 2749 } 2750 2751 /* 2752 * Calculate the number of bytes that would be required to store the new 2753 * attribute (whether local or remote only calculate bytes in this block). 2754 * This routine decides as a side effect whether the attribute will be 2755 * a "local" or a "remote" attribute. 2756 */ 2757 int 2758 xfs_attr_leaf_newentsize( 2759 struct xfs_da_args *args, 2760 int *local) 2761 { 2762 int size; 2763 2764 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); 2765 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { 2766 if (local) 2767 *local = 1; 2768 return size; 2769 } 2770 if (local) 2771 *local = 0; 2772 return xfs_attr_leaf_entsize_remote(args->namelen); 2773 } 2774 2775 2776 /*======================================================================== 2777 * Manage the INCOMPLETE flag in a leaf entry 2778 *========================================================================*/ 2779 2780 /* 2781 * Clear the INCOMPLETE flag on an entry in a leaf block. 2782 */ 2783 int 2784 xfs_attr3_leaf_clearflag( 2785 struct xfs_da_args *args) 2786 { 2787 struct xfs_attr_leafblock *leaf; 2788 struct xfs_attr_leaf_entry *entry; 2789 struct xfs_attr_leaf_name_remote *name_rmt; 2790 struct xfs_buf *bp; 2791 int error; 2792 #ifdef DEBUG 2793 struct xfs_attr3_icleaf_hdr ichdr; 2794 xfs_attr_leaf_name_local_t *name_loc; 2795 int namelen; 2796 char *name; 2797 #endif /* DEBUG */ 2798 2799 trace_xfs_attr_leaf_clearflag(args); 2800 /* 2801 * Set up the operation. 2802 */ 2803 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2804 args->blkno, &bp); 2805 if (error) 2806 return error; 2807 2808 leaf = bp->b_addr; 2809 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2810 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); 2811 2812 #ifdef DEBUG 2813 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2814 ASSERT(args->index < ichdr.count); 2815 ASSERT(args->index >= 0); 2816 2817 if (entry->flags & XFS_ATTR_LOCAL) { 2818 name_loc = xfs_attr3_leaf_name_local(leaf, args->index); 2819 namelen = name_loc->namelen; 2820 name = (char *)name_loc->nameval; 2821 } else { 2822 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2823 namelen = name_rmt->namelen; 2824 name = (char *)name_rmt->name; 2825 } 2826 ASSERT(be32_to_cpu(entry->hashval) == args->hashval); 2827 ASSERT(namelen == args->namelen); 2828 ASSERT(memcmp(name, args->name, namelen) == 0); 2829 #endif /* DEBUG */ 2830 2831 entry->flags &= ~XFS_ATTR_INCOMPLETE; 2832 xfs_trans_log_buf(args->trans, bp, 2833 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2834 2835 if (args->rmtblkno) { 2836 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); 2837 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2838 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2839 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2840 xfs_trans_log_buf(args->trans, bp, 2841 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2842 } 2843 2844 return 0; 2845 } 2846 2847 /* 2848 * Set the INCOMPLETE flag on an entry in a leaf block. 2849 */ 2850 int 2851 xfs_attr3_leaf_setflag( 2852 struct xfs_da_args *args) 2853 { 2854 struct xfs_attr_leafblock *leaf; 2855 struct xfs_attr_leaf_entry *entry; 2856 struct xfs_attr_leaf_name_remote *name_rmt; 2857 struct xfs_buf *bp; 2858 int error; 2859 #ifdef DEBUG 2860 struct xfs_attr3_icleaf_hdr ichdr; 2861 #endif 2862 2863 trace_xfs_attr_leaf_setflag(args); 2864 2865 /* 2866 * Set up the operation. 2867 */ 2868 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2869 args->blkno, &bp); 2870 if (error) 2871 return error; 2872 2873 leaf = bp->b_addr; 2874 #ifdef DEBUG 2875 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); 2876 ASSERT(args->index < ichdr.count); 2877 ASSERT(args->index >= 0); 2878 #endif 2879 entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; 2880 2881 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); 2882 entry->flags |= XFS_ATTR_INCOMPLETE; 2883 xfs_trans_log_buf(args->trans, bp, 2884 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); 2885 if ((entry->flags & XFS_ATTR_LOCAL) == 0) { 2886 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); 2887 name_rmt->valueblk = 0; 2888 name_rmt->valuelen = 0; 2889 xfs_trans_log_buf(args->trans, bp, 2890 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); 2891 } 2892 2893 return 0; 2894 } 2895 2896 /* 2897 * In a single transaction, clear the INCOMPLETE flag on the leaf entry 2898 * given by args->blkno/index and set the INCOMPLETE flag on the leaf 2899 * entry given by args->blkno2/index2. 2900 * 2901 * Note that they could be in different blocks, or in the same block. 2902 */ 2903 int 2904 xfs_attr3_leaf_flipflags( 2905 struct xfs_da_args *args) 2906 { 2907 struct xfs_attr_leafblock *leaf1; 2908 struct xfs_attr_leafblock *leaf2; 2909 struct xfs_attr_leaf_entry *entry1; 2910 struct xfs_attr_leaf_entry *entry2; 2911 struct xfs_attr_leaf_name_remote *name_rmt; 2912 struct xfs_buf *bp1; 2913 struct xfs_buf *bp2; 2914 int error; 2915 #ifdef DEBUG 2916 struct xfs_attr3_icleaf_hdr ichdr1; 2917 struct xfs_attr3_icleaf_hdr ichdr2; 2918 xfs_attr_leaf_name_local_t *name_loc; 2919 int namelen1, namelen2; 2920 char *name1, *name2; 2921 #endif /* DEBUG */ 2922 2923 trace_xfs_attr_leaf_flipflags(args); 2924 2925 /* 2926 * Read the block containing the "old" attr 2927 */ 2928 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2929 args->blkno, &bp1); 2930 if (error) 2931 return error; 2932 2933 /* 2934 * Read the block containing the "new" attr, if it is different 2935 */ 2936 if (args->blkno2 != args->blkno) { 2937 error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner, 2938 args->blkno2, &bp2); 2939 if (error) 2940 return error; 2941 } else { 2942 bp2 = bp1; 2943 } 2944 2945 leaf1 = bp1->b_addr; 2946 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; 2947 2948 leaf2 = bp2->b_addr; 2949 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; 2950 2951 #ifdef DEBUG 2952 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); 2953 ASSERT(args->index < ichdr1.count); 2954 ASSERT(args->index >= 0); 2955 2956 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); 2957 ASSERT(args->index2 < ichdr2.count); 2958 ASSERT(args->index2 >= 0); 2959 2960 if (entry1->flags & XFS_ATTR_LOCAL) { 2961 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); 2962 namelen1 = name_loc->namelen; 2963 name1 = (char *)name_loc->nameval; 2964 } else { 2965 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2966 namelen1 = name_rmt->namelen; 2967 name1 = (char *)name_rmt->name; 2968 } 2969 if (entry2->flags & XFS_ATTR_LOCAL) { 2970 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); 2971 namelen2 = name_loc->namelen; 2972 name2 = (char *)name_loc->nameval; 2973 } else { 2974 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 2975 namelen2 = name_rmt->namelen; 2976 name2 = (char *)name_rmt->name; 2977 } 2978 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); 2979 ASSERT(namelen1 == namelen2); 2980 ASSERT(memcmp(name1, name2, namelen1) == 0); 2981 #endif /* DEBUG */ 2982 2983 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); 2984 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); 2985 2986 entry1->flags &= ~XFS_ATTR_INCOMPLETE; 2987 xfs_trans_log_buf(args->trans, bp1, 2988 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); 2989 if (args->rmtblkno) { 2990 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); 2991 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); 2992 name_rmt->valueblk = cpu_to_be32(args->rmtblkno); 2993 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); 2994 xfs_trans_log_buf(args->trans, bp1, 2995 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); 2996 } 2997 2998 entry2->flags |= XFS_ATTR_INCOMPLETE; 2999 xfs_trans_log_buf(args->trans, bp2, 3000 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); 3001 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { 3002 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); 3003 name_rmt->valueblk = 0; 3004 name_rmt->valuelen = 0; 3005 xfs_trans_log_buf(args->trans, bp2, 3006 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); 3007 } 3008 3009 return 0; 3010 } 3011