xref: /linux/fs/xfs/libxfs/xfs_attr_leaf.c (revision 1e58a8ccf2597c9259a8e71a2bffac5e11e12ea0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2013 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr.h"
23 #include "xfs_attr_remote.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30 #include "xfs_ag.h"
31 #include "xfs_errortag.h"
32 #include "xfs_health.h"
33 
34 
35 /*
36  * xfs_attr_leaf.c
37  *
38  * Routines to implement leaf blocks of attributes as Btrees of hashed names.
39  */
40 
41 /*========================================================================
42  * Function prototypes for the kernel.
43  *========================================================================*/
44 
45 /*
46  * Routines used for growing the Btree.
47  */
48 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
49 				 xfs_dablk_t which_block, struct xfs_buf **bpp);
50 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
51 				   struct xfs_attr3_icleaf_hdr *ichdr,
52 				   struct xfs_da_args *args, int freemap_index);
53 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
54 				   struct xfs_attr3_icleaf_hdr *ichdr,
55 				   struct xfs_buf *leaf_buffer);
56 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
57 						   xfs_da_state_blk_t *blk1,
58 						   xfs_da_state_blk_t *blk2);
59 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
60 			xfs_da_state_blk_t *leaf_blk_1,
61 			struct xfs_attr3_icleaf_hdr *ichdr1,
62 			xfs_da_state_blk_t *leaf_blk_2,
63 			struct xfs_attr3_icleaf_hdr *ichdr2,
64 			int *number_entries_in_blk1,
65 			int *number_usedbytes_in_blk1);
66 
67 /*
68  * Utility routines.
69  */
70 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
71 			struct xfs_attr_leafblock *src_leaf,
72 			struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
73 			struct xfs_attr_leafblock *dst_leaf,
74 			struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
75 			int move_count);
76 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
77 
78 /*
79  * attr3 block 'firstused' conversion helpers.
80  *
81  * firstused refers to the offset of the first used byte of the nameval region
82  * of an attr leaf block. The region starts at the tail of the block and expands
83  * backwards towards the middle. As such, firstused is initialized to the block
84  * size for an empty leaf block and is reduced from there.
85  *
86  * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
87  * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
88  * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
89  * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
90  * the attr block size. The following helpers manage the conversion between the
91  * in-core and on-disk formats.
92  */
93 
94 static void
95 xfs_attr3_leaf_firstused_from_disk(
96 	struct xfs_da_geometry		*geo,
97 	struct xfs_attr3_icleaf_hdr	*to,
98 	struct xfs_attr_leafblock	*from)
99 {
100 	struct xfs_attr3_leaf_hdr	*hdr3;
101 
102 	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
103 		hdr3 = (struct xfs_attr3_leaf_hdr *) from;
104 		to->firstused = be16_to_cpu(hdr3->firstused);
105 	} else {
106 		to->firstused = be16_to_cpu(from->hdr.firstused);
107 	}
108 
109 	/*
110 	 * Convert from the magic fsb size value to actual blocksize. This
111 	 * should only occur for empty blocks when the block size overflows
112 	 * 16-bits.
113 	 */
114 	if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
115 		ASSERT(!to->count && !to->usedbytes);
116 		ASSERT(geo->blksize > USHRT_MAX);
117 		to->firstused = geo->blksize;
118 	}
119 }
120 
121 static void
122 xfs_attr3_leaf_firstused_to_disk(
123 	struct xfs_da_geometry		*geo,
124 	struct xfs_attr_leafblock	*to,
125 	struct xfs_attr3_icleaf_hdr	*from)
126 {
127 	struct xfs_attr3_leaf_hdr	*hdr3;
128 	uint32_t			firstused;
129 
130 	/* magic value should only be seen on disk */
131 	ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
132 
133 	/*
134 	 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
135 	 * value. This only overflows at the max supported value of 64k. Use the
136 	 * magic on-disk value to represent block size in this case.
137 	 */
138 	firstused = from->firstused;
139 	if (firstused > USHRT_MAX) {
140 		ASSERT(from->firstused == geo->blksize);
141 		firstused = XFS_ATTR3_LEAF_NULLOFF;
142 	}
143 
144 	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
145 		hdr3 = (struct xfs_attr3_leaf_hdr *) to;
146 		hdr3->firstused = cpu_to_be16(firstused);
147 	} else {
148 		to->hdr.firstused = cpu_to_be16(firstused);
149 	}
150 }
151 
152 void
153 xfs_attr3_leaf_hdr_from_disk(
154 	struct xfs_da_geometry		*geo,
155 	struct xfs_attr3_icleaf_hdr	*to,
156 	struct xfs_attr_leafblock	*from)
157 {
158 	int	i;
159 
160 	ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
161 	       from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
162 
163 	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
164 		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
165 
166 		to->forw = be32_to_cpu(hdr3->info.hdr.forw);
167 		to->back = be32_to_cpu(hdr3->info.hdr.back);
168 		to->magic = be16_to_cpu(hdr3->info.hdr.magic);
169 		to->count = be16_to_cpu(hdr3->count);
170 		to->usedbytes = be16_to_cpu(hdr3->usedbytes);
171 		xfs_attr3_leaf_firstused_from_disk(geo, to, from);
172 		to->holes = hdr3->holes;
173 
174 		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
175 			to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
176 			to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
177 		}
178 		return;
179 	}
180 	to->forw = be32_to_cpu(from->hdr.info.forw);
181 	to->back = be32_to_cpu(from->hdr.info.back);
182 	to->magic = be16_to_cpu(from->hdr.info.magic);
183 	to->count = be16_to_cpu(from->hdr.count);
184 	to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
185 	xfs_attr3_leaf_firstused_from_disk(geo, to, from);
186 	to->holes = from->hdr.holes;
187 
188 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
189 		to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
190 		to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
191 	}
192 }
193 
194 void
195 xfs_attr3_leaf_hdr_to_disk(
196 	struct xfs_da_geometry		*geo,
197 	struct xfs_attr_leafblock	*to,
198 	struct xfs_attr3_icleaf_hdr	*from)
199 {
200 	int				i;
201 
202 	ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
203 	       from->magic == XFS_ATTR3_LEAF_MAGIC);
204 
205 	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
206 		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
207 
208 		hdr3->info.hdr.forw = cpu_to_be32(from->forw);
209 		hdr3->info.hdr.back = cpu_to_be32(from->back);
210 		hdr3->info.hdr.magic = cpu_to_be16(from->magic);
211 		hdr3->count = cpu_to_be16(from->count);
212 		hdr3->usedbytes = cpu_to_be16(from->usedbytes);
213 		xfs_attr3_leaf_firstused_to_disk(geo, to, from);
214 		hdr3->holes = from->holes;
215 		hdr3->pad1 = 0;
216 
217 		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
218 			hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
219 			hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
220 		}
221 		return;
222 	}
223 	to->hdr.info.forw = cpu_to_be32(from->forw);
224 	to->hdr.info.back = cpu_to_be32(from->back);
225 	to->hdr.info.magic = cpu_to_be16(from->magic);
226 	to->hdr.count = cpu_to_be16(from->count);
227 	to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
228 	xfs_attr3_leaf_firstused_to_disk(geo, to, from);
229 	to->hdr.holes = from->holes;
230 	to->hdr.pad1 = 0;
231 
232 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
233 		to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
234 		to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
235 	}
236 }
237 
238 static xfs_failaddr_t
239 xfs_attr3_leaf_verify_entry(
240 	struct xfs_mount			*mp,
241 	char					*buf_end,
242 	struct xfs_attr_leafblock		*leaf,
243 	struct xfs_attr3_icleaf_hdr		*leafhdr,
244 	struct xfs_attr_leaf_entry		*ent,
245 	int					idx,
246 	__u32					*last_hashval)
247 {
248 	struct xfs_attr_leaf_name_local		*lentry;
249 	struct xfs_attr_leaf_name_remote	*rentry;
250 	char					*name_end;
251 	unsigned int				nameidx;
252 	unsigned int				namesize;
253 	__u32					hashval;
254 
255 	/* hash order check */
256 	hashval = be32_to_cpu(ent->hashval);
257 	if (hashval < *last_hashval)
258 		return __this_address;
259 	*last_hashval = hashval;
260 
261 	nameidx = be16_to_cpu(ent->nameidx);
262 	if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
263 		return __this_address;
264 
265 	/*
266 	 * Check the name information.  The namelen fields are u8 so we can't
267 	 * possibly exceed the maximum name length of 255 bytes.
268 	 */
269 	if (ent->flags & XFS_ATTR_LOCAL) {
270 		lentry = xfs_attr3_leaf_name_local(leaf, idx);
271 		namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
272 				be16_to_cpu(lentry->valuelen));
273 		name_end = (char *)lentry + namesize;
274 		if (lentry->namelen == 0)
275 			return __this_address;
276 	} else {
277 		rentry = xfs_attr3_leaf_name_remote(leaf, idx);
278 		namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
279 		name_end = (char *)rentry + namesize;
280 		if (rentry->namelen == 0)
281 			return __this_address;
282 		if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
283 		    rentry->valueblk == 0)
284 			return __this_address;
285 	}
286 
287 	if (name_end > buf_end)
288 		return __this_address;
289 
290 	return NULL;
291 }
292 
293 /*
294  * Validate an attribute leaf block.
295  *
296  * Empty leaf blocks can occur under the following circumstances:
297  *
298  * 1. setxattr adds a new extended attribute to a file;
299  * 2. The file has zero existing attributes;
300  * 3. The attribute is too large to fit in the attribute fork;
301  * 4. The attribute is small enough to fit in a leaf block;
302  * 5. A log flush occurs after committing the transaction that creates
303  *    the (empty) leaf block; and
304  * 6. The filesystem goes down after the log flush but before the new
305  *    attribute can be committed to the leaf block.
306  *
307  * Hence we need to ensure that we don't fail the validation purely
308  * because the leaf is empty.
309  */
310 static xfs_failaddr_t
311 xfs_attr3_leaf_verify(
312 	struct xfs_buf			*bp)
313 {
314 	struct xfs_attr3_icleaf_hdr	ichdr;
315 	struct xfs_mount		*mp = bp->b_mount;
316 	struct xfs_attr_leafblock	*leaf = bp->b_addr;
317 	struct xfs_attr_leaf_entry	*entries;
318 	struct xfs_attr_leaf_entry	*ent;
319 	char				*buf_end;
320 	uint32_t			end;	/* must be 32bit - see below */
321 	__u32				last_hashval = 0;
322 	int				i;
323 	xfs_failaddr_t			fa;
324 
325 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
326 
327 	fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
328 	if (fa)
329 		return fa;
330 
331 	/*
332 	 * firstused is the block offset of the first name info structure.
333 	 * Make sure it doesn't go off the block or crash into the header.
334 	 */
335 	if (ichdr.firstused > mp->m_attr_geo->blksize)
336 		return __this_address;
337 	if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
338 		return __this_address;
339 
340 	/* Make sure the entries array doesn't crash into the name info. */
341 	entries = xfs_attr3_leaf_entryp(bp->b_addr);
342 	if ((char *)&entries[ichdr.count] >
343 	    (char *)bp->b_addr + ichdr.firstused)
344 		return __this_address;
345 
346 	/*
347 	 * NOTE: This verifier historically failed empty leaf buffers because
348 	 * we expect the fork to be in another format. Empty attr fork format
349 	 * conversions are possible during xattr set, however, and format
350 	 * conversion is not atomic with the xattr set that triggers it. We
351 	 * cannot assume leaf blocks are non-empty until that is addressed.
352 	*/
353 	buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
354 	for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
355 		fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
356 				ent, i, &last_hashval);
357 		if (fa)
358 			return fa;
359 	}
360 
361 	/*
362 	 * Quickly check the freemap information.  Attribute data has to be
363 	 * aligned to 4-byte boundaries, and likewise for the free space.
364 	 *
365 	 * Note that for 64k block size filesystems, the freemap entries cannot
366 	 * overflow as they are only be16 fields. However, when checking end
367 	 * pointer of the freemap, we have to be careful to detect overflows and
368 	 * so use uint32_t for those checks.
369 	 */
370 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
371 		if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
372 			return __this_address;
373 		if (ichdr.freemap[i].base & 0x3)
374 			return __this_address;
375 		if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
376 			return __this_address;
377 		if (ichdr.freemap[i].size & 0x3)
378 			return __this_address;
379 
380 		/* be care of 16 bit overflows here */
381 		end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
382 		if (end < ichdr.freemap[i].base)
383 			return __this_address;
384 		if (end > mp->m_attr_geo->blksize)
385 			return __this_address;
386 	}
387 
388 	return NULL;
389 }
390 
391 xfs_failaddr_t
392 xfs_attr3_leaf_header_check(
393 	struct xfs_buf		*bp,
394 	xfs_ino_t		owner)
395 {
396 	struct xfs_mount	*mp = bp->b_mount;
397 
398 	if (xfs_has_crc(mp)) {
399 		struct xfs_attr3_leafblock *hdr3 = bp->b_addr;
400 
401 		if (hdr3->hdr.info.hdr.magic !=
402 				cpu_to_be16(XFS_ATTR3_LEAF_MAGIC))
403 			return __this_address;
404 
405 		if (be64_to_cpu(hdr3->hdr.info.owner) != owner)
406 			return __this_address;
407 	}
408 
409 	return NULL;
410 }
411 
412 static void
413 xfs_attr3_leaf_write_verify(
414 	struct xfs_buf	*bp)
415 {
416 	struct xfs_mount	*mp = bp->b_mount;
417 	struct xfs_buf_log_item	*bip = bp->b_log_item;
418 	struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
419 	xfs_failaddr_t		fa;
420 
421 	fa = xfs_attr3_leaf_verify(bp);
422 	if (fa) {
423 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
424 		return;
425 	}
426 
427 	if (!xfs_has_crc(mp))
428 		return;
429 
430 	if (bip)
431 		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
432 
433 	xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
434 }
435 
436 /*
437  * leaf/node format detection on trees is sketchy, so a node read can be done on
438  * leaf level blocks when detection identifies the tree as a node format tree
439  * incorrectly. In this case, we need to swap the verifier to match the correct
440  * format of the block being read.
441  */
442 static void
443 xfs_attr3_leaf_read_verify(
444 	struct xfs_buf		*bp)
445 {
446 	struct xfs_mount	*mp = bp->b_mount;
447 	xfs_failaddr_t		fa;
448 
449 	if (xfs_has_crc(mp) &&
450 	     !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
451 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
452 	else {
453 		fa = xfs_attr3_leaf_verify(bp);
454 		if (fa)
455 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
456 	}
457 }
458 
459 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
460 	.name = "xfs_attr3_leaf",
461 	.magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
462 		     cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
463 	.verify_read = xfs_attr3_leaf_read_verify,
464 	.verify_write = xfs_attr3_leaf_write_verify,
465 	.verify_struct = xfs_attr3_leaf_verify,
466 };
467 
468 int
469 xfs_attr3_leaf_read(
470 	struct xfs_trans	*tp,
471 	struct xfs_inode	*dp,
472 	xfs_ino_t		owner,
473 	xfs_dablk_t		bno,
474 	struct xfs_buf		**bpp)
475 {
476 	xfs_failaddr_t		fa;
477 	int			err;
478 
479 	err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
480 			&xfs_attr3_leaf_buf_ops);
481 	if (err || !(*bpp))
482 		return err;
483 
484 	fa = xfs_attr3_leaf_header_check(*bpp, owner);
485 	if (fa) {
486 		__xfs_buf_mark_corrupt(*bpp, fa);
487 		xfs_trans_brelse(tp, *bpp);
488 		*bpp = NULL;
489 		xfs_dirattr_mark_sick(dp, XFS_ATTR_FORK);
490 		return -EFSCORRUPTED;
491 	}
492 
493 	if (tp)
494 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
495 	return 0;
496 }
497 
498 /*========================================================================
499  * Namespace helper routines
500  *========================================================================*/
501 
502 /*
503  * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
504  * flag on disk - if there's an incomplete attr then recovery needs to tear it
505  * down. If there's no incomplete attr, then recovery needs to tear that attr
506  * down to replace it with the attr that has been logged. In this case, the
507  * INCOMPLETE flag will not be set in attr->attr_filter, but rather
508  * XFS_DA_OP_RECOVERY will be set in args->op_flags.
509  */
510 static bool
511 xfs_attr_match(
512 	struct xfs_da_args	*args,
513 	uint8_t			namelen,
514 	unsigned char		*name,
515 	int			flags)
516 {
517 
518 	if (args->namelen != namelen)
519 		return false;
520 	if (memcmp(args->name, name, namelen) != 0)
521 		return false;
522 
523 	/* Recovery ignores the INCOMPLETE flag. */
524 	if ((args->op_flags & XFS_DA_OP_RECOVERY) &&
525 	    args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK))
526 		return true;
527 
528 	/* All remaining matches need to be filtered by INCOMPLETE state. */
529 	if (args->attr_filter !=
530 	    (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
531 		return false;
532 	return true;
533 }
534 
535 static int
536 xfs_attr_copy_value(
537 	struct xfs_da_args	*args,
538 	unsigned char		*value,
539 	int			valuelen)
540 {
541 	/*
542 	 * No copy if all we have to do is get the length
543 	 */
544 	if (!args->valuelen) {
545 		args->valuelen = valuelen;
546 		return 0;
547 	}
548 
549 	/*
550 	 * No copy if the length of the existing buffer is too small
551 	 */
552 	if (args->valuelen < valuelen) {
553 		args->valuelen = valuelen;
554 		return -ERANGE;
555 	}
556 
557 	if (!args->value) {
558 		args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
559 		if (!args->value)
560 			return -ENOMEM;
561 	}
562 	args->valuelen = valuelen;
563 
564 	/* remote block xattr requires IO for copy-in */
565 	if (args->rmtblkno)
566 		return xfs_attr_rmtval_get(args);
567 
568 	/*
569 	 * This is to prevent a GCC warning because the remote xattr case
570 	 * doesn't have a value to pass in. In that case, we never reach here,
571 	 * but GCC can't work that out and so throws a "passing NULL to
572 	 * memcpy" warning.
573 	 */
574 	if (!value)
575 		return -EINVAL;
576 	memcpy(args->value, value, valuelen);
577 	return 0;
578 }
579 
580 /*========================================================================
581  * External routines when attribute fork size < XFS_LITINO(mp).
582  *========================================================================*/
583 
584 /*
585  * Query whether the total requested number of attr fork bytes of extended
586  * attribute space will be able to fit inline.
587  *
588  * Returns zero if not, else the i_forkoff fork offset to be used in the
589  * literal area for attribute data once the new bytes have been added.
590  *
591  * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
592  * special case for dev/uuid inodes, they have fixed size data forks.
593  */
594 int
595 xfs_attr_shortform_bytesfit(
596 	struct xfs_inode	*dp,
597 	int			bytes)
598 {
599 	struct xfs_mount	*mp = dp->i_mount;
600 	int64_t			dsize;
601 	int			minforkoff;
602 	int			maxforkoff;
603 	int			offset;
604 
605 	/*
606 	 * Check if the new size could fit at all first:
607 	 */
608 	if (bytes > XFS_LITINO(mp))
609 		return 0;
610 
611 	/* rounded down */
612 	offset = (XFS_LITINO(mp) - bytes) >> 3;
613 
614 	if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
615 		minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
616 		return (offset >= minforkoff) ? minforkoff : 0;
617 	}
618 
619 	/*
620 	 * If the requested numbers of bytes is smaller or equal to the
621 	 * current attribute fork size we can always proceed.
622 	 *
623 	 * Note that if_bytes in the data fork might actually be larger than
624 	 * the current data fork size is due to delalloc extents. In that
625 	 * case either the extent count will go down when they are converted
626 	 * to real extents, or the delalloc conversion will take care of the
627 	 * literal area rebalancing.
628 	 */
629 	if (bytes <= xfs_inode_attr_fork_size(dp))
630 		return dp->i_forkoff;
631 
632 	/*
633 	 * For attr2 we can try to move the forkoff if there is space in the
634 	 * literal area, but for the old format we are done if there is no
635 	 * space in the fixed attribute fork.
636 	 */
637 	if (!xfs_has_attr2(mp))
638 		return 0;
639 
640 	dsize = dp->i_df.if_bytes;
641 
642 	switch (dp->i_df.if_format) {
643 	case XFS_DINODE_FMT_EXTENTS:
644 		/*
645 		 * If there is no attr fork and the data fork is extents,
646 		 * determine if creating the default attr fork will result
647 		 * in the extents form migrating to btree. If so, the
648 		 * minimum offset only needs to be the space required for
649 		 * the btree root.
650 		 */
651 		if (!dp->i_forkoff && dp->i_df.if_bytes >
652 		    xfs_default_attroffset(dp))
653 			dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
654 		break;
655 	case XFS_DINODE_FMT_BTREE:
656 		/*
657 		 * If we have a data btree then keep forkoff if we have one,
658 		 * otherwise we are adding a new attr, so then we set
659 		 * minforkoff to where the btree root can finish so we have
660 		 * plenty of room for attrs
661 		 */
662 		if (dp->i_forkoff) {
663 			if (offset < dp->i_forkoff)
664 				return 0;
665 			return dp->i_forkoff;
666 		}
667 		dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
668 		break;
669 	}
670 
671 	/*
672 	 * A data fork btree root must have space for at least
673 	 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
674 	 */
675 	minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
676 	minforkoff = roundup(minforkoff, 8) >> 3;
677 
678 	/* attr fork btree root can have at least this many key/ptr pairs */
679 	maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
680 	maxforkoff = maxforkoff >> 3;	/* rounded down */
681 
682 	if (offset >= maxforkoff)
683 		return maxforkoff;
684 	if (offset >= minforkoff)
685 		return offset;
686 	return 0;
687 }
688 
689 /*
690  * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
691  * - noattr2 mount option is set,
692  * - on-disk version bit says it is already set, or
693  * - the attr2 mount option is not set to enable automatic upgrade from attr1.
694  */
695 STATIC void
696 xfs_sbversion_add_attr2(
697 	struct xfs_mount	*mp,
698 	struct xfs_trans	*tp)
699 {
700 	if (xfs_has_noattr2(mp))
701 		return;
702 	if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
703 		return;
704 	if (!xfs_has_attr2(mp))
705 		return;
706 
707 	spin_lock(&mp->m_sb_lock);
708 	xfs_add_attr2(mp);
709 	spin_unlock(&mp->m_sb_lock);
710 	xfs_log_sb(tp);
711 }
712 
713 /*
714  * Create the initial contents of a shortform attribute list.
715  */
716 void
717 xfs_attr_shortform_create(
718 	struct xfs_da_args	*args)
719 {
720 	struct xfs_inode	*dp = args->dp;
721 	struct xfs_ifork	*ifp = &dp->i_af;
722 	struct xfs_attr_sf_hdr	*hdr;
723 
724 	trace_xfs_attr_sf_create(args);
725 
726 	ASSERT(ifp->if_bytes == 0);
727 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
728 		ifp->if_format = XFS_DINODE_FMT_LOCAL;
729 
730 	hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
731 	memset(hdr, 0, sizeof(*hdr));
732 	hdr->totsize = cpu_to_be16(sizeof(*hdr));
733 	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
734 }
735 
736 /*
737  * Return the entry if the attr in args is found, or NULL if not.
738  */
739 struct xfs_attr_sf_entry *
740 xfs_attr_sf_findname(
741 	struct xfs_da_args		*args)
742 {
743 	struct xfs_attr_sf_hdr		*sf = args->dp->i_af.if_data;
744 	struct xfs_attr_sf_entry	*sfe;
745 
746 	for (sfe = xfs_attr_sf_firstentry(sf);
747 	     sfe < xfs_attr_sf_endptr(sf);
748 	     sfe = xfs_attr_sf_nextentry(sfe)) {
749 		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
750 				sfe->flags))
751 			return sfe;
752 	}
753 
754 	return NULL;
755 }
756 
757 /*
758  * Add a name/value pair to the shortform attribute list.
759  * Overflow from the inode has already been checked for.
760  */
761 void
762 xfs_attr_shortform_add(
763 	struct xfs_da_args		*args,
764 	int				forkoff)
765 {
766 	struct xfs_inode		*dp = args->dp;
767 	struct xfs_mount		*mp = dp->i_mount;
768 	struct xfs_ifork		*ifp = &dp->i_af;
769 	struct xfs_attr_sf_hdr		*sf = ifp->if_data;
770 	struct xfs_attr_sf_entry	*sfe;
771 	int				size;
772 
773 	trace_xfs_attr_sf_add(args);
774 
775 	dp->i_forkoff = forkoff;
776 
777 	ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
778 	ASSERT(!xfs_attr_sf_findname(args));
779 
780 	size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
781 	sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
782 
783 	sfe = xfs_attr_sf_endptr(sf);
784 	sfe->namelen = args->namelen;
785 	sfe->valuelen = args->valuelen;
786 	sfe->flags = args->attr_filter;
787 	memcpy(sfe->nameval, args->name, args->namelen);
788 	memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
789 	sf->count++;
790 	be16_add_cpu(&sf->totsize, size);
791 	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
792 
793 	xfs_sbversion_add_attr2(mp, args->trans);
794 }
795 
796 /*
797  * After the last attribute is removed revert to original inode format,
798  * making all literal area available to the data fork once more.
799  */
800 void
801 xfs_attr_fork_remove(
802 	struct xfs_inode	*ip,
803 	struct xfs_trans	*tp)
804 {
805 	ASSERT(ip->i_af.if_nextents == 0);
806 
807 	xfs_ifork_zap_attr(ip);
808 	ip->i_forkoff = 0;
809 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
810 }
811 
812 /*
813  * Remove an attribute from the shortform attribute list structure.
814  */
815 int
816 xfs_attr_sf_removename(
817 	struct xfs_da_args		*args)
818 {
819 	struct xfs_inode		*dp = args->dp;
820 	struct xfs_mount		*mp = dp->i_mount;
821 	struct xfs_attr_sf_hdr		*sf = dp->i_af.if_data;
822 	struct xfs_attr_sf_entry	*sfe;
823 	uint16_t			totsize = be16_to_cpu(sf->totsize);
824 	void				*next, *end;
825 	int				size = 0;
826 
827 	trace_xfs_attr_sf_remove(args);
828 
829 	sfe = xfs_attr_sf_findname(args);
830 	if (!sfe) {
831 		/*
832 		 * If we are recovering an operation, finding nothing to remove
833 		 * is not an error, it just means there was nothing to clean up.
834 		 */
835 		if (args->op_flags & XFS_DA_OP_RECOVERY)
836 			return 0;
837 		return -ENOATTR;
838 	}
839 
840 	/*
841 	 * Fix up the attribute fork data, covering the hole
842 	 */
843 	size = xfs_attr_sf_entsize(sfe);
844 	next = xfs_attr_sf_nextentry(sfe);
845 	end = xfs_attr_sf_endptr(sf);
846 	if (next < end)
847 		memmove(sfe, next, end - next);
848 	sf->count--;
849 	totsize -= size;
850 	sf->totsize = cpu_to_be16(totsize);
851 
852 	/*
853 	 * Fix up the start offset of the attribute fork
854 	 */
855 	if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) &&
856 	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
857 	    !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) {
858 		xfs_attr_fork_remove(dp, args->trans);
859 	} else {
860 		xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
861 		dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
862 		ASSERT(dp->i_forkoff);
863 		ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) ||
864 				(args->op_flags & XFS_DA_OP_ADDNAME) ||
865 				!xfs_has_attr2(mp) ||
866 				dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
867 		xfs_trans_log_inode(args->trans, dp,
868 					XFS_ILOG_CORE | XFS_ILOG_ADATA);
869 	}
870 
871 	xfs_sbversion_add_attr2(mp, args->trans);
872 
873 	return 0;
874 }
875 
876 /*
877  * Retrieve the attribute value and length.
878  *
879  * If args->valuelen is zero, only the length needs to be returned.  Unlike a
880  * lookup, we only return an error if the attribute does not exist or we can't
881  * retrieve the value.
882  */
883 int
884 xfs_attr_shortform_getvalue(
885 	struct xfs_da_args		*args)
886 {
887 	struct xfs_attr_sf_entry	*sfe;
888 
889 	ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
890 
891 	trace_xfs_attr_sf_lookup(args);
892 
893 	sfe = xfs_attr_sf_findname(args);
894 	if (!sfe)
895 		return -ENOATTR;
896 	return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
897 			sfe->valuelen);
898 }
899 
900 /* Convert from using the shortform to the leaf format. */
901 int
902 xfs_attr_shortform_to_leaf(
903 	struct xfs_da_args		*args)
904 {
905 	struct xfs_inode		*dp = args->dp;
906 	struct xfs_ifork		*ifp = &dp->i_af;
907 	struct xfs_attr_sf_hdr		*sf = ifp->if_data;
908 	struct xfs_attr_sf_entry	*sfe;
909 	int				size = be16_to_cpu(sf->totsize);
910 	struct xfs_da_args		nargs;
911 	char				*tmpbuffer;
912 	int				error, i;
913 	xfs_dablk_t			blkno;
914 	struct xfs_buf			*bp;
915 
916 	trace_xfs_attr_sf_to_leaf(args);
917 
918 	tmpbuffer = kmalloc(size, GFP_KERNEL | __GFP_NOFAIL);
919 	memcpy(tmpbuffer, ifp->if_data, size);
920 	sf = (struct xfs_attr_sf_hdr *)tmpbuffer;
921 
922 	xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
923 	xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
924 
925 	bp = NULL;
926 	error = xfs_da_grow_inode(args, &blkno);
927 	if (error)
928 		goto out;
929 
930 	ASSERT(blkno == 0);
931 	error = xfs_attr3_leaf_create(args, blkno, &bp);
932 	if (error)
933 		goto out;
934 
935 	memset((char *)&nargs, 0, sizeof(nargs));
936 	nargs.dp = dp;
937 	nargs.geo = args->geo;
938 	nargs.total = args->total;
939 	nargs.whichfork = XFS_ATTR_FORK;
940 	nargs.trans = args->trans;
941 	nargs.op_flags = XFS_DA_OP_OKNOENT;
942 	nargs.owner = args->owner;
943 
944 	sfe = xfs_attr_sf_firstentry(sf);
945 	for (i = 0; i < sf->count; i++) {
946 		nargs.name = sfe->nameval;
947 		nargs.namelen = sfe->namelen;
948 		nargs.value = &sfe->nameval[nargs.namelen];
949 		nargs.valuelen = sfe->valuelen;
950 		nargs.hashval = xfs_da_hashname(sfe->nameval,
951 						sfe->namelen);
952 		nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
953 		error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
954 		ASSERT(error == -ENOATTR);
955 		error = xfs_attr3_leaf_add(bp, &nargs);
956 		ASSERT(error != -ENOSPC);
957 		if (error)
958 			goto out;
959 		sfe = xfs_attr_sf_nextentry(sfe);
960 	}
961 	error = 0;
962 out:
963 	kfree(tmpbuffer);
964 	return error;
965 }
966 
967 /*
968  * Check a leaf attribute block to see if all the entries would fit into
969  * a shortform attribute list.
970  */
971 int
972 xfs_attr_shortform_allfit(
973 	struct xfs_buf		*bp,
974 	struct xfs_inode	*dp)
975 {
976 	struct xfs_attr_leafblock *leaf;
977 	struct xfs_attr_leaf_entry *entry;
978 	xfs_attr_leaf_name_local_t *name_loc;
979 	struct xfs_attr3_icleaf_hdr leafhdr;
980 	int			bytes;
981 	int			i;
982 	struct xfs_mount	*mp = bp->b_mount;
983 
984 	leaf = bp->b_addr;
985 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
986 	entry = xfs_attr3_leaf_entryp(leaf);
987 
988 	bytes = sizeof(struct xfs_attr_sf_hdr);
989 	for (i = 0; i < leafhdr.count; entry++, i++) {
990 		if (entry->flags & XFS_ATTR_INCOMPLETE)
991 			continue;		/* don't copy partial entries */
992 		if (!(entry->flags & XFS_ATTR_LOCAL))
993 			return 0;
994 		name_loc = xfs_attr3_leaf_name_local(leaf, i);
995 		if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
996 			return 0;
997 		if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
998 			return 0;
999 		bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
1000 					be16_to_cpu(name_loc->valuelen));
1001 	}
1002 	if (xfs_has_attr2(dp->i_mount) &&
1003 	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1004 	    (bytes == sizeof(struct xfs_attr_sf_hdr)))
1005 		return -1;
1006 	return xfs_attr_shortform_bytesfit(dp, bytes);
1007 }
1008 
1009 /* Verify the consistency of a raw inline attribute fork. */
1010 xfs_failaddr_t
1011 xfs_attr_shortform_verify(
1012 	struct xfs_attr_sf_hdr		*sfp,
1013 	size_t				size)
1014 {
1015 	struct xfs_attr_sf_entry	*sfep = xfs_attr_sf_firstentry(sfp);
1016 	struct xfs_attr_sf_entry	*next_sfep;
1017 	char				*endp;
1018 	int				i;
1019 
1020 	/*
1021 	 * Give up if the attribute is way too short.
1022 	 */
1023 	if (size < sizeof(struct xfs_attr_sf_hdr))
1024 		return __this_address;
1025 
1026 	endp = (char *)sfp + size;
1027 
1028 	/* Check all reported entries */
1029 	for (i = 0; i < sfp->count; i++) {
1030 		/*
1031 		 * struct xfs_attr_sf_entry has a variable length.
1032 		 * Check the fixed-offset parts of the structure are
1033 		 * within the data buffer.
1034 		 * xfs_attr_sf_entry is defined with a 1-byte variable
1035 		 * array at the end, so we must subtract that off.
1036 		 */
1037 		if (((char *)sfep + sizeof(*sfep)) >= endp)
1038 			return __this_address;
1039 
1040 		/* Don't allow names with known bad length. */
1041 		if (sfep->namelen == 0)
1042 			return __this_address;
1043 
1044 		/*
1045 		 * Check that the variable-length part of the structure is
1046 		 * within the data buffer.  The next entry starts after the
1047 		 * name component, so nextentry is an acceptable test.
1048 		 */
1049 		next_sfep = xfs_attr_sf_nextentry(sfep);
1050 		if ((char *)next_sfep > endp)
1051 			return __this_address;
1052 
1053 		/*
1054 		 * Check for unknown flags.  Short form doesn't support
1055 		 * the incomplete or local bits, so we can use the namespace
1056 		 * mask here.
1057 		 */
1058 		if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1059 			return __this_address;
1060 
1061 		/*
1062 		 * Check for invalid namespace combinations.  We only allow
1063 		 * one namespace flag per xattr, so we can just count the
1064 		 * bits (i.e. hweight) here.
1065 		 */
1066 		if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1067 			return __this_address;
1068 
1069 		sfep = next_sfep;
1070 	}
1071 	if ((void *)sfep != (void *)endp)
1072 		return __this_address;
1073 
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * Convert a leaf attribute list to shortform attribute list
1079  */
1080 int
1081 xfs_attr3_leaf_to_shortform(
1082 	struct xfs_buf		*bp,
1083 	struct xfs_da_args	*args,
1084 	int			forkoff)
1085 {
1086 	struct xfs_attr_leafblock *leaf;
1087 	struct xfs_attr3_icleaf_hdr ichdr;
1088 	struct xfs_attr_leaf_entry *entry;
1089 	struct xfs_attr_leaf_name_local *name_loc;
1090 	struct xfs_da_args	nargs;
1091 	struct xfs_inode	*dp = args->dp;
1092 	char			*tmpbuffer;
1093 	int			error;
1094 	int			i;
1095 
1096 	trace_xfs_attr_leaf_to_sf(args);
1097 
1098 	tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1099 	if (!tmpbuffer)
1100 		return -ENOMEM;
1101 
1102 	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1103 
1104 	leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1105 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1106 	entry = xfs_attr3_leaf_entryp(leaf);
1107 
1108 	/* XXX (dgc): buffer is about to be marked stale - why zero it? */
1109 	memset(bp->b_addr, 0, args->geo->blksize);
1110 
1111 	/*
1112 	 * Clean out the prior contents of the attribute list.
1113 	 */
1114 	error = xfs_da_shrink_inode(args, 0, bp);
1115 	if (error)
1116 		goto out;
1117 
1118 	if (forkoff == -1) {
1119 		/*
1120 		 * Don't remove the attr fork if this operation is the first
1121 		 * part of a attr replace operations. We're going to add a new
1122 		 * attr immediately, so we need to keep the attr fork around in
1123 		 * this case.
1124 		 */
1125 		if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1126 			ASSERT(xfs_has_attr2(dp->i_mount));
1127 			ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1128 			xfs_attr_fork_remove(dp, args->trans);
1129 		}
1130 		goto out;
1131 	}
1132 
1133 	xfs_attr_shortform_create(args);
1134 
1135 	/*
1136 	 * Copy the attributes
1137 	 */
1138 	memset((char *)&nargs, 0, sizeof(nargs));
1139 	nargs.geo = args->geo;
1140 	nargs.dp = dp;
1141 	nargs.total = args->total;
1142 	nargs.whichfork = XFS_ATTR_FORK;
1143 	nargs.trans = args->trans;
1144 	nargs.op_flags = XFS_DA_OP_OKNOENT;
1145 	nargs.owner = args->owner;
1146 
1147 	for (i = 0; i < ichdr.count; entry++, i++) {
1148 		if (entry->flags & XFS_ATTR_INCOMPLETE)
1149 			continue;	/* don't copy partial entries */
1150 		if (!entry->nameidx)
1151 			continue;
1152 		ASSERT(entry->flags & XFS_ATTR_LOCAL);
1153 		name_loc = xfs_attr3_leaf_name_local(leaf, i);
1154 		nargs.name = name_loc->nameval;
1155 		nargs.namelen = name_loc->namelen;
1156 		nargs.value = &name_loc->nameval[nargs.namelen];
1157 		nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1158 		nargs.hashval = be32_to_cpu(entry->hashval);
1159 		nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1160 		xfs_attr_shortform_add(&nargs, forkoff);
1161 	}
1162 	error = 0;
1163 
1164 out:
1165 	kfree(tmpbuffer);
1166 	return error;
1167 }
1168 
1169 /*
1170  * Convert from using a single leaf to a root node and a leaf.
1171  */
1172 int
1173 xfs_attr3_leaf_to_node(
1174 	struct xfs_da_args	*args)
1175 {
1176 	struct xfs_attr_leafblock *leaf;
1177 	struct xfs_attr3_icleaf_hdr icleafhdr;
1178 	struct xfs_attr_leaf_entry *entries;
1179 	struct xfs_da3_icnode_hdr icnodehdr;
1180 	struct xfs_da_intnode	*node;
1181 	struct xfs_inode	*dp = args->dp;
1182 	struct xfs_mount	*mp = dp->i_mount;
1183 	struct xfs_buf		*bp1 = NULL;
1184 	struct xfs_buf		*bp2 = NULL;
1185 	xfs_dablk_t		blkno;
1186 	int			error;
1187 
1188 	trace_xfs_attr_leaf_to_node(args);
1189 
1190 	if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1191 		error = -EIO;
1192 		goto out;
1193 	}
1194 
1195 	error = xfs_da_grow_inode(args, &blkno);
1196 	if (error)
1197 		goto out;
1198 	error = xfs_attr3_leaf_read(args->trans, dp, args->owner, 0, &bp1);
1199 	if (error)
1200 		goto out;
1201 
1202 	error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1203 	if (error)
1204 		goto out;
1205 
1206 	/*
1207 	 * Copy leaf to new buffer and log it.
1208 	 */
1209 	xfs_da_buf_copy(bp2, bp1, args->geo->blksize);
1210 	xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1211 
1212 	/*
1213 	 * Set up the new root node.
1214 	 */
1215 	error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1216 	if (error)
1217 		goto out;
1218 	node = bp1->b_addr;
1219 	xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1220 
1221 	leaf = bp2->b_addr;
1222 	xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1223 	entries = xfs_attr3_leaf_entryp(leaf);
1224 
1225 	/* both on-disk, don't endian-flip twice */
1226 	icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1227 	icnodehdr.btree[0].before = cpu_to_be32(blkno);
1228 	icnodehdr.count = 1;
1229 	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1230 	xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1231 	error = 0;
1232 out:
1233 	return error;
1234 }
1235 
1236 /*========================================================================
1237  * Routines used for growing the Btree.
1238  *========================================================================*/
1239 
1240 /*
1241  * Create the initial contents of a leaf attribute list
1242  * or a leaf in a node attribute list.
1243  */
1244 STATIC int
1245 xfs_attr3_leaf_create(
1246 	struct xfs_da_args	*args,
1247 	xfs_dablk_t		blkno,
1248 	struct xfs_buf		**bpp)
1249 {
1250 	struct xfs_attr_leafblock *leaf;
1251 	struct xfs_attr3_icleaf_hdr ichdr;
1252 	struct xfs_inode	*dp = args->dp;
1253 	struct xfs_mount	*mp = dp->i_mount;
1254 	struct xfs_buf		*bp;
1255 	int			error;
1256 
1257 	trace_xfs_attr_leaf_create(args);
1258 
1259 	error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1260 					    XFS_ATTR_FORK);
1261 	if (error)
1262 		return error;
1263 	bp->b_ops = &xfs_attr3_leaf_buf_ops;
1264 	xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1265 	leaf = bp->b_addr;
1266 	memset(leaf, 0, args->geo->blksize);
1267 
1268 	memset(&ichdr, 0, sizeof(ichdr));
1269 	ichdr.firstused = args->geo->blksize;
1270 
1271 	if (xfs_has_crc(mp)) {
1272 		struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1273 
1274 		ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1275 
1276 		hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1277 		hdr3->owner = cpu_to_be64(args->owner);
1278 		uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1279 
1280 		ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1281 	} else {
1282 		ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1283 		ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1284 	}
1285 	ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1286 
1287 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1288 	xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1289 
1290 	*bpp = bp;
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Split the leaf node, rebalance, then add the new entry.
1296  */
1297 int
1298 xfs_attr3_leaf_split(
1299 	struct xfs_da_state	*state,
1300 	struct xfs_da_state_blk	*oldblk,
1301 	struct xfs_da_state_blk	*newblk)
1302 {
1303 	xfs_dablk_t blkno;
1304 	int error;
1305 
1306 	trace_xfs_attr_leaf_split(state->args);
1307 
1308 	/*
1309 	 * Allocate space for a new leaf node.
1310 	 */
1311 	ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1312 	error = xfs_da_grow_inode(state->args, &blkno);
1313 	if (error)
1314 		return error;
1315 	error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1316 	if (error)
1317 		return error;
1318 	newblk->blkno = blkno;
1319 	newblk->magic = XFS_ATTR_LEAF_MAGIC;
1320 
1321 	/*
1322 	 * Rebalance the entries across the two leaves.
1323 	 * NOTE: rebalance() currently depends on the 2nd block being empty.
1324 	 */
1325 	xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1326 	error = xfs_da3_blk_link(state, oldblk, newblk);
1327 	if (error)
1328 		return error;
1329 
1330 	/*
1331 	 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1332 	 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1333 	 * "new" attrs info.  Will need the "old" info to remove it later.
1334 	 *
1335 	 * Insert the "new" entry in the correct block.
1336 	 */
1337 	if (state->inleaf) {
1338 		trace_xfs_attr_leaf_add_old(state->args);
1339 		error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1340 	} else {
1341 		trace_xfs_attr_leaf_add_new(state->args);
1342 		error = xfs_attr3_leaf_add(newblk->bp, state->args);
1343 	}
1344 
1345 	/*
1346 	 * Update last hashval in each block since we added the name.
1347 	 */
1348 	oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1349 	newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1350 	return error;
1351 }
1352 
1353 /*
1354  * Add a name to the leaf attribute list structure.
1355  */
1356 int
1357 xfs_attr3_leaf_add(
1358 	struct xfs_buf		*bp,
1359 	struct xfs_da_args	*args)
1360 {
1361 	struct xfs_attr_leafblock *leaf;
1362 	struct xfs_attr3_icleaf_hdr ichdr;
1363 	int			tablesize;
1364 	int			entsize;
1365 	int			sum;
1366 	int			tmp;
1367 	int			i;
1368 
1369 	trace_xfs_attr_leaf_add(args);
1370 
1371 	leaf = bp->b_addr;
1372 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1373 	ASSERT(args->index >= 0 && args->index <= ichdr.count);
1374 	entsize = xfs_attr_leaf_newentsize(args, NULL);
1375 
1376 	/*
1377 	 * Search through freemap for first-fit on new name length.
1378 	 * (may need to figure in size of entry struct too)
1379 	 */
1380 	tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1381 					+ xfs_attr3_leaf_hdr_size(leaf);
1382 	for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1383 		if (tablesize > ichdr.firstused) {
1384 			sum += ichdr.freemap[i].size;
1385 			continue;
1386 		}
1387 		if (!ichdr.freemap[i].size)
1388 			continue;	/* no space in this map */
1389 		tmp = entsize;
1390 		if (ichdr.freemap[i].base < ichdr.firstused)
1391 			tmp += sizeof(xfs_attr_leaf_entry_t);
1392 		if (ichdr.freemap[i].size >= tmp) {
1393 			tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1394 			goto out_log_hdr;
1395 		}
1396 		sum += ichdr.freemap[i].size;
1397 	}
1398 
1399 	/*
1400 	 * If there are no holes in the address space of the block,
1401 	 * and we don't have enough freespace, then compaction will do us
1402 	 * no good and we should just give up.
1403 	 */
1404 	if (!ichdr.holes && sum < entsize)
1405 		return -ENOSPC;
1406 
1407 	/*
1408 	 * Compact the entries to coalesce free space.
1409 	 * This may change the hdr->count via dropping INCOMPLETE entries.
1410 	 */
1411 	xfs_attr3_leaf_compact(args, &ichdr, bp);
1412 
1413 	/*
1414 	 * After compaction, the block is guaranteed to have only one
1415 	 * free region, in freemap[0].  If it is not big enough, give up.
1416 	 */
1417 	if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1418 		tmp = -ENOSPC;
1419 		goto out_log_hdr;
1420 	}
1421 
1422 	tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1423 
1424 out_log_hdr:
1425 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1426 	xfs_trans_log_buf(args->trans, bp,
1427 		XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1428 				xfs_attr3_leaf_hdr_size(leaf)));
1429 	return tmp;
1430 }
1431 
1432 /*
1433  * Add a name to a leaf attribute list structure.
1434  */
1435 STATIC int
1436 xfs_attr3_leaf_add_work(
1437 	struct xfs_buf		*bp,
1438 	struct xfs_attr3_icleaf_hdr *ichdr,
1439 	struct xfs_da_args	*args,
1440 	int			mapindex)
1441 {
1442 	struct xfs_attr_leafblock *leaf;
1443 	struct xfs_attr_leaf_entry *entry;
1444 	struct xfs_attr_leaf_name_local *name_loc;
1445 	struct xfs_attr_leaf_name_remote *name_rmt;
1446 	struct xfs_mount	*mp;
1447 	int			tmp;
1448 	int			i;
1449 
1450 	trace_xfs_attr_leaf_add_work(args);
1451 
1452 	leaf = bp->b_addr;
1453 	ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1454 	ASSERT(args->index >= 0 && args->index <= ichdr->count);
1455 
1456 	/*
1457 	 * Force open some space in the entry array and fill it in.
1458 	 */
1459 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1460 	if (args->index < ichdr->count) {
1461 		tmp  = ichdr->count - args->index;
1462 		tmp *= sizeof(xfs_attr_leaf_entry_t);
1463 		memmove(entry + 1, entry, tmp);
1464 		xfs_trans_log_buf(args->trans, bp,
1465 		    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1466 	}
1467 	ichdr->count++;
1468 
1469 	/*
1470 	 * Allocate space for the new string (at the end of the run).
1471 	 */
1472 	mp = args->trans->t_mountp;
1473 	ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1474 	ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1475 	ASSERT(ichdr->freemap[mapindex].size >=
1476 		xfs_attr_leaf_newentsize(args, NULL));
1477 	ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1478 	ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1479 
1480 	ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1481 
1482 	entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1483 				     ichdr->freemap[mapindex].size);
1484 	entry->hashval = cpu_to_be32(args->hashval);
1485 	entry->flags = args->attr_filter;
1486 	if (tmp)
1487 		entry->flags |= XFS_ATTR_LOCAL;
1488 	if (args->op_flags & XFS_DA_OP_REPLACE) {
1489 		if (!(args->op_flags & XFS_DA_OP_LOGGED))
1490 			entry->flags |= XFS_ATTR_INCOMPLETE;
1491 		if ((args->blkno2 == args->blkno) &&
1492 		    (args->index2 <= args->index)) {
1493 			args->index2++;
1494 		}
1495 	}
1496 	xfs_trans_log_buf(args->trans, bp,
1497 			  XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1498 	ASSERT((args->index == 0) ||
1499 	       (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1500 	ASSERT((args->index == ichdr->count - 1) ||
1501 	       (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1502 
1503 	/*
1504 	 * For "remote" attribute values, simply note that we need to
1505 	 * allocate space for the "remote" value.  We can't actually
1506 	 * allocate the extents in this transaction, and we can't decide
1507 	 * which blocks they should be as we might allocate more blocks
1508 	 * as part of this transaction (a split operation for example).
1509 	 */
1510 	if (entry->flags & XFS_ATTR_LOCAL) {
1511 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1512 		name_loc->namelen = args->namelen;
1513 		name_loc->valuelen = cpu_to_be16(args->valuelen);
1514 		memcpy((char *)name_loc->nameval, args->name, args->namelen);
1515 		memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1516 				   be16_to_cpu(name_loc->valuelen));
1517 	} else {
1518 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1519 		name_rmt->namelen = args->namelen;
1520 		memcpy((char *)name_rmt->name, args->name, args->namelen);
1521 		entry->flags |= XFS_ATTR_INCOMPLETE;
1522 		/* just in case */
1523 		name_rmt->valuelen = 0;
1524 		name_rmt->valueblk = 0;
1525 		args->rmtblkno = 1;
1526 		args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1527 		args->rmtvaluelen = args->valuelen;
1528 	}
1529 	xfs_trans_log_buf(args->trans, bp,
1530 	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1531 				   xfs_attr_leaf_entsize(leaf, args->index)));
1532 
1533 	/*
1534 	 * Update the control info for this leaf node
1535 	 */
1536 	if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1537 		ichdr->firstused = be16_to_cpu(entry->nameidx);
1538 
1539 	ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1540 					+ xfs_attr3_leaf_hdr_size(leaf));
1541 	tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1542 					+ xfs_attr3_leaf_hdr_size(leaf);
1543 
1544 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1545 		if (ichdr->freemap[i].base == tmp) {
1546 			ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1547 			ichdr->freemap[i].size -=
1548 				min_t(uint16_t, ichdr->freemap[i].size,
1549 						sizeof(xfs_attr_leaf_entry_t));
1550 		}
1551 	}
1552 	ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1553 	return 0;
1554 }
1555 
1556 /*
1557  * Garbage collect a leaf attribute list block by copying it to a new buffer.
1558  */
1559 STATIC void
1560 xfs_attr3_leaf_compact(
1561 	struct xfs_da_args	*args,
1562 	struct xfs_attr3_icleaf_hdr *ichdr_dst,
1563 	struct xfs_buf		*bp)
1564 {
1565 	struct xfs_attr_leafblock *leaf_src;
1566 	struct xfs_attr_leafblock *leaf_dst;
1567 	struct xfs_attr3_icleaf_hdr ichdr_src;
1568 	struct xfs_trans	*trans = args->trans;
1569 	char			*tmpbuffer;
1570 
1571 	trace_xfs_attr_leaf_compact(args);
1572 
1573 	tmpbuffer = kmalloc(args->geo->blksize, GFP_KERNEL | __GFP_NOFAIL);
1574 	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1575 	memset(bp->b_addr, 0, args->geo->blksize);
1576 	leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1577 	leaf_dst = bp->b_addr;
1578 
1579 	/*
1580 	 * Copy the on-disk header back into the destination buffer to ensure
1581 	 * all the information in the header that is not part of the incore
1582 	 * header structure is preserved.
1583 	 */
1584 	memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1585 
1586 	/* Initialise the incore headers */
1587 	ichdr_src = *ichdr_dst;	/* struct copy */
1588 	ichdr_dst->firstused = args->geo->blksize;
1589 	ichdr_dst->usedbytes = 0;
1590 	ichdr_dst->count = 0;
1591 	ichdr_dst->holes = 0;
1592 	ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1593 	ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1594 						ichdr_dst->freemap[0].base;
1595 
1596 	/* write the header back to initialise the underlying buffer */
1597 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1598 
1599 	/*
1600 	 * Copy all entry's in the same (sorted) order,
1601 	 * but allocate name/value pairs packed and in sequence.
1602 	 */
1603 	xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1604 				leaf_dst, ichdr_dst, 0, ichdr_src.count);
1605 	/*
1606 	 * this logs the entire buffer, but the caller must write the header
1607 	 * back to the buffer when it is finished modifying it.
1608 	 */
1609 	xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1610 
1611 	kfree(tmpbuffer);
1612 }
1613 
1614 /*
1615  * Compare two leaf blocks "order".
1616  * Return 0 unless leaf2 should go before leaf1.
1617  */
1618 static int
1619 xfs_attr3_leaf_order(
1620 	struct xfs_buf	*leaf1_bp,
1621 	struct xfs_attr3_icleaf_hdr *leaf1hdr,
1622 	struct xfs_buf	*leaf2_bp,
1623 	struct xfs_attr3_icleaf_hdr *leaf2hdr)
1624 {
1625 	struct xfs_attr_leaf_entry *entries1;
1626 	struct xfs_attr_leaf_entry *entries2;
1627 
1628 	entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1629 	entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1630 	if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1631 	    ((be32_to_cpu(entries2[0].hashval) <
1632 	      be32_to_cpu(entries1[0].hashval)) ||
1633 	     (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1634 	      be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1635 		return 1;
1636 	}
1637 	return 0;
1638 }
1639 
1640 int
1641 xfs_attr_leaf_order(
1642 	struct xfs_buf	*leaf1_bp,
1643 	struct xfs_buf	*leaf2_bp)
1644 {
1645 	struct xfs_attr3_icleaf_hdr ichdr1;
1646 	struct xfs_attr3_icleaf_hdr ichdr2;
1647 	struct xfs_mount *mp = leaf1_bp->b_mount;
1648 
1649 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1650 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1651 	return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1652 }
1653 
1654 /*
1655  * Redistribute the attribute list entries between two leaf nodes,
1656  * taking into account the size of the new entry.
1657  *
1658  * NOTE: if new block is empty, then it will get the upper half of the
1659  * old block.  At present, all (one) callers pass in an empty second block.
1660  *
1661  * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1662  * to match what it is doing in splitting the attribute leaf block.  Those
1663  * values are used in "atomic rename" operations on attributes.  Note that
1664  * the "new" and "old" values can end up in different blocks.
1665  */
1666 STATIC void
1667 xfs_attr3_leaf_rebalance(
1668 	struct xfs_da_state	*state,
1669 	struct xfs_da_state_blk	*blk1,
1670 	struct xfs_da_state_blk	*blk2)
1671 {
1672 	struct xfs_da_args	*args;
1673 	struct xfs_attr_leafblock *leaf1;
1674 	struct xfs_attr_leafblock *leaf2;
1675 	struct xfs_attr3_icleaf_hdr ichdr1;
1676 	struct xfs_attr3_icleaf_hdr ichdr2;
1677 	struct xfs_attr_leaf_entry *entries1;
1678 	struct xfs_attr_leaf_entry *entries2;
1679 	int			count;
1680 	int			totallen;
1681 	int			max;
1682 	int			space;
1683 	int			swap;
1684 
1685 	/*
1686 	 * Set up environment.
1687 	 */
1688 	ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1689 	ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1690 	leaf1 = blk1->bp->b_addr;
1691 	leaf2 = blk2->bp->b_addr;
1692 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1693 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1694 	ASSERT(ichdr2.count == 0);
1695 	args = state->args;
1696 
1697 	trace_xfs_attr_leaf_rebalance(args);
1698 
1699 	/*
1700 	 * Check ordering of blocks, reverse if it makes things simpler.
1701 	 *
1702 	 * NOTE: Given that all (current) callers pass in an empty
1703 	 * second block, this code should never set "swap".
1704 	 */
1705 	swap = 0;
1706 	if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1707 		swap(blk1, blk2);
1708 
1709 		/* swap structures rather than reconverting them */
1710 		swap(ichdr1, ichdr2);
1711 
1712 		leaf1 = blk1->bp->b_addr;
1713 		leaf2 = blk2->bp->b_addr;
1714 		swap = 1;
1715 	}
1716 
1717 	/*
1718 	 * Examine entries until we reduce the absolute difference in
1719 	 * byte usage between the two blocks to a minimum.  Then get
1720 	 * the direction to copy and the number of elements to move.
1721 	 *
1722 	 * "inleaf" is true if the new entry should be inserted into blk1.
1723 	 * If "swap" is also true, then reverse the sense of "inleaf".
1724 	 */
1725 	state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1726 						      blk2, &ichdr2,
1727 						      &count, &totallen);
1728 	if (swap)
1729 		state->inleaf = !state->inleaf;
1730 
1731 	/*
1732 	 * Move any entries required from leaf to leaf:
1733 	 */
1734 	if (count < ichdr1.count) {
1735 		/*
1736 		 * Figure the total bytes to be added to the destination leaf.
1737 		 */
1738 		/* number entries being moved */
1739 		count = ichdr1.count - count;
1740 		space  = ichdr1.usedbytes - totallen;
1741 		space += count * sizeof(xfs_attr_leaf_entry_t);
1742 
1743 		/*
1744 		 * leaf2 is the destination, compact it if it looks tight.
1745 		 */
1746 		max  = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1747 		max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1748 		if (space > max)
1749 			xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1750 
1751 		/*
1752 		 * Move high entries from leaf1 to low end of leaf2.
1753 		 */
1754 		xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1755 				ichdr1.count - count, leaf2, &ichdr2, 0, count);
1756 
1757 	} else if (count > ichdr1.count) {
1758 		/*
1759 		 * I assert that since all callers pass in an empty
1760 		 * second buffer, this code should never execute.
1761 		 */
1762 		ASSERT(0);
1763 
1764 		/*
1765 		 * Figure the total bytes to be added to the destination leaf.
1766 		 */
1767 		/* number entries being moved */
1768 		count -= ichdr1.count;
1769 		space  = totallen - ichdr1.usedbytes;
1770 		space += count * sizeof(xfs_attr_leaf_entry_t);
1771 
1772 		/*
1773 		 * leaf1 is the destination, compact it if it looks tight.
1774 		 */
1775 		max  = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1776 		max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1777 		if (space > max)
1778 			xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1779 
1780 		/*
1781 		 * Move low entries from leaf2 to high end of leaf1.
1782 		 */
1783 		xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1784 					ichdr1.count, count);
1785 	}
1786 
1787 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1788 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1789 	xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1790 	xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1791 
1792 	/*
1793 	 * Copy out last hashval in each block for B-tree code.
1794 	 */
1795 	entries1 = xfs_attr3_leaf_entryp(leaf1);
1796 	entries2 = xfs_attr3_leaf_entryp(leaf2);
1797 	blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1798 	blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1799 
1800 	/*
1801 	 * Adjust the expected index for insertion.
1802 	 * NOTE: this code depends on the (current) situation that the
1803 	 * second block was originally empty.
1804 	 *
1805 	 * If the insertion point moved to the 2nd block, we must adjust
1806 	 * the index.  We must also track the entry just following the
1807 	 * new entry for use in an "atomic rename" operation, that entry
1808 	 * is always the "old" entry and the "new" entry is what we are
1809 	 * inserting.  The index/blkno fields refer to the "old" entry,
1810 	 * while the index2/blkno2 fields refer to the "new" entry.
1811 	 */
1812 	if (blk1->index > ichdr1.count) {
1813 		ASSERT(state->inleaf == 0);
1814 		blk2->index = blk1->index - ichdr1.count;
1815 		args->index = args->index2 = blk2->index;
1816 		args->blkno = args->blkno2 = blk2->blkno;
1817 	} else if (blk1->index == ichdr1.count) {
1818 		if (state->inleaf) {
1819 			args->index = blk1->index;
1820 			args->blkno = blk1->blkno;
1821 			args->index2 = 0;
1822 			args->blkno2 = blk2->blkno;
1823 		} else {
1824 			/*
1825 			 * On a double leaf split, the original attr location
1826 			 * is already stored in blkno2/index2, so don't
1827 			 * overwrite it overwise we corrupt the tree.
1828 			 */
1829 			blk2->index = blk1->index - ichdr1.count;
1830 			args->index = blk2->index;
1831 			args->blkno = blk2->blkno;
1832 			if (!state->extravalid) {
1833 				/*
1834 				 * set the new attr location to match the old
1835 				 * one and let the higher level split code
1836 				 * decide where in the leaf to place it.
1837 				 */
1838 				args->index2 = blk2->index;
1839 				args->blkno2 = blk2->blkno;
1840 			}
1841 		}
1842 	} else {
1843 		ASSERT(state->inleaf == 1);
1844 		args->index = args->index2 = blk1->index;
1845 		args->blkno = args->blkno2 = blk1->blkno;
1846 	}
1847 }
1848 
1849 /*
1850  * Examine entries until we reduce the absolute difference in
1851  * byte usage between the two blocks to a minimum.
1852  * GROT: Is this really necessary?  With other than a 512 byte blocksize,
1853  * GROT: there will always be enough room in either block for a new entry.
1854  * GROT: Do a double-split for this case?
1855  */
1856 STATIC int
1857 xfs_attr3_leaf_figure_balance(
1858 	struct xfs_da_state		*state,
1859 	struct xfs_da_state_blk		*blk1,
1860 	struct xfs_attr3_icleaf_hdr	*ichdr1,
1861 	struct xfs_da_state_blk		*blk2,
1862 	struct xfs_attr3_icleaf_hdr	*ichdr2,
1863 	int				*countarg,
1864 	int				*usedbytesarg)
1865 {
1866 	struct xfs_attr_leafblock	*leaf1 = blk1->bp->b_addr;
1867 	struct xfs_attr_leafblock	*leaf2 = blk2->bp->b_addr;
1868 	struct xfs_attr_leaf_entry	*entry;
1869 	int				count;
1870 	int				max;
1871 	int				index;
1872 	int				totallen = 0;
1873 	int				half;
1874 	int				lastdelta;
1875 	int				foundit = 0;
1876 	int				tmp;
1877 
1878 	/*
1879 	 * Examine entries until we reduce the absolute difference in
1880 	 * byte usage between the two blocks to a minimum.
1881 	 */
1882 	max = ichdr1->count + ichdr2->count;
1883 	half = (max + 1) * sizeof(*entry);
1884 	half += ichdr1->usedbytes + ichdr2->usedbytes +
1885 			xfs_attr_leaf_newentsize(state->args, NULL);
1886 	half /= 2;
1887 	lastdelta = state->args->geo->blksize;
1888 	entry = xfs_attr3_leaf_entryp(leaf1);
1889 	for (count = index = 0; count < max; entry++, index++, count++) {
1890 
1891 #define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A))
1892 		/*
1893 		 * The new entry is in the first block, account for it.
1894 		 */
1895 		if (count == blk1->index) {
1896 			tmp = totallen + sizeof(*entry) +
1897 				xfs_attr_leaf_newentsize(state->args, NULL);
1898 			if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1899 				break;
1900 			lastdelta = XFS_ATTR_ABS(half - tmp);
1901 			totallen = tmp;
1902 			foundit = 1;
1903 		}
1904 
1905 		/*
1906 		 * Wrap around into the second block if necessary.
1907 		 */
1908 		if (count == ichdr1->count) {
1909 			leaf1 = leaf2;
1910 			entry = xfs_attr3_leaf_entryp(leaf1);
1911 			index = 0;
1912 		}
1913 
1914 		/*
1915 		 * Figure out if next leaf entry would be too much.
1916 		 */
1917 		tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1918 									index);
1919 		if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1920 			break;
1921 		lastdelta = XFS_ATTR_ABS(half - tmp);
1922 		totallen = tmp;
1923 #undef XFS_ATTR_ABS
1924 	}
1925 
1926 	/*
1927 	 * Calculate the number of usedbytes that will end up in lower block.
1928 	 * If new entry not in lower block, fix up the count.
1929 	 */
1930 	totallen -= count * sizeof(*entry);
1931 	if (foundit) {
1932 		totallen -= sizeof(*entry) +
1933 				xfs_attr_leaf_newentsize(state->args, NULL);
1934 	}
1935 
1936 	*countarg = count;
1937 	*usedbytesarg = totallen;
1938 	return foundit;
1939 }
1940 
1941 /*========================================================================
1942  * Routines used for shrinking the Btree.
1943  *========================================================================*/
1944 
1945 /*
1946  * Check a leaf block and its neighbors to see if the block should be
1947  * collapsed into one or the other neighbor.  Always keep the block
1948  * with the smaller block number.
1949  * If the current block is over 50% full, don't try to join it, return 0.
1950  * If the block is empty, fill in the state structure and return 2.
1951  * If it can be collapsed, fill in the state structure and return 1.
1952  * If nothing can be done, return 0.
1953  *
1954  * GROT: allow for INCOMPLETE entries in calculation.
1955  */
1956 int
1957 xfs_attr3_leaf_toosmall(
1958 	struct xfs_da_state	*state,
1959 	int			*action)
1960 {
1961 	struct xfs_attr_leafblock *leaf;
1962 	struct xfs_da_state_blk	*blk;
1963 	struct xfs_attr3_icleaf_hdr ichdr;
1964 	struct xfs_buf		*bp;
1965 	xfs_dablk_t		blkno;
1966 	int			bytes;
1967 	int			forward;
1968 	int			error;
1969 	int			retval;
1970 	int			i;
1971 
1972 	trace_xfs_attr_leaf_toosmall(state->args);
1973 
1974 	/*
1975 	 * Check for the degenerate case of the block being over 50% full.
1976 	 * If so, it's not worth even looking to see if we might be able
1977 	 * to coalesce with a sibling.
1978 	 */
1979 	blk = &state->path.blk[ state->path.active-1 ];
1980 	leaf = blk->bp->b_addr;
1981 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1982 	bytes = xfs_attr3_leaf_hdr_size(leaf) +
1983 		ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1984 		ichdr.usedbytes;
1985 	if (bytes > (state->args->geo->blksize >> 1)) {
1986 		*action = 0;	/* blk over 50%, don't try to join */
1987 		return 0;
1988 	}
1989 
1990 	/*
1991 	 * Check for the degenerate case of the block being empty.
1992 	 * If the block is empty, we'll simply delete it, no need to
1993 	 * coalesce it with a sibling block.  We choose (arbitrarily)
1994 	 * to merge with the forward block unless it is NULL.
1995 	 */
1996 	if (ichdr.count == 0) {
1997 		/*
1998 		 * Make altpath point to the block we want to keep and
1999 		 * path point to the block we want to drop (this one).
2000 		 */
2001 		forward = (ichdr.forw != 0);
2002 		memcpy(&state->altpath, &state->path, sizeof(state->path));
2003 		error = xfs_da3_path_shift(state, &state->altpath, forward,
2004 						 0, &retval);
2005 		if (error)
2006 			return error;
2007 		if (retval) {
2008 			*action = 0;
2009 		} else {
2010 			*action = 2;
2011 		}
2012 		return 0;
2013 	}
2014 
2015 	/*
2016 	 * Examine each sibling block to see if we can coalesce with
2017 	 * at least 25% free space to spare.  We need to figure out
2018 	 * whether to merge with the forward or the backward block.
2019 	 * We prefer coalescing with the lower numbered sibling so as
2020 	 * to shrink an attribute list over time.
2021 	 */
2022 	/* start with smaller blk num */
2023 	forward = ichdr.forw < ichdr.back;
2024 	for (i = 0; i < 2; forward = !forward, i++) {
2025 		struct xfs_attr3_icleaf_hdr ichdr2;
2026 		if (forward)
2027 			blkno = ichdr.forw;
2028 		else
2029 			blkno = ichdr.back;
2030 		if (blkno == 0)
2031 			continue;
2032 		error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2033 					state->args->owner, blkno, &bp);
2034 		if (error)
2035 			return error;
2036 
2037 		xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2038 
2039 		bytes = state->args->geo->blksize -
2040 			(state->args->geo->blksize >> 2) -
2041 			ichdr.usedbytes - ichdr2.usedbytes -
2042 			((ichdr.count + ichdr2.count) *
2043 					sizeof(xfs_attr_leaf_entry_t)) -
2044 			xfs_attr3_leaf_hdr_size(leaf);
2045 
2046 		xfs_trans_brelse(state->args->trans, bp);
2047 		if (bytes >= 0)
2048 			break;	/* fits with at least 25% to spare */
2049 	}
2050 	if (i >= 2) {
2051 		*action = 0;
2052 		return 0;
2053 	}
2054 
2055 	/*
2056 	 * Make altpath point to the block we want to keep (the lower
2057 	 * numbered block) and path point to the block we want to drop.
2058 	 */
2059 	memcpy(&state->altpath, &state->path, sizeof(state->path));
2060 	if (blkno < blk->blkno) {
2061 		error = xfs_da3_path_shift(state, &state->altpath, forward,
2062 						 0, &retval);
2063 	} else {
2064 		error = xfs_da3_path_shift(state, &state->path, forward,
2065 						 0, &retval);
2066 	}
2067 	if (error)
2068 		return error;
2069 	if (retval) {
2070 		*action = 0;
2071 	} else {
2072 		*action = 1;
2073 	}
2074 	return 0;
2075 }
2076 
2077 /*
2078  * Remove a name from the leaf attribute list structure.
2079  *
2080  * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2081  * If two leaves are 37% full, when combined they will leave 25% free.
2082  */
2083 int
2084 xfs_attr3_leaf_remove(
2085 	struct xfs_buf		*bp,
2086 	struct xfs_da_args	*args)
2087 {
2088 	struct xfs_attr_leafblock *leaf;
2089 	struct xfs_attr3_icleaf_hdr ichdr;
2090 	struct xfs_attr_leaf_entry *entry;
2091 	int			before;
2092 	int			after;
2093 	int			smallest;
2094 	int			entsize;
2095 	int			tablesize;
2096 	int			tmp;
2097 	int			i;
2098 
2099 	trace_xfs_attr_leaf_remove(args);
2100 
2101 	leaf = bp->b_addr;
2102 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2103 
2104 	ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2105 	ASSERT(args->index >= 0 && args->index < ichdr.count);
2106 	ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2107 					xfs_attr3_leaf_hdr_size(leaf));
2108 
2109 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2110 
2111 	ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2112 	ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2113 
2114 	/*
2115 	 * Scan through free region table:
2116 	 *    check for adjacency of free'd entry with an existing one,
2117 	 *    find smallest free region in case we need to replace it,
2118 	 *    adjust any map that borders the entry table,
2119 	 */
2120 	tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2121 					+ xfs_attr3_leaf_hdr_size(leaf);
2122 	tmp = ichdr.freemap[0].size;
2123 	before = after = -1;
2124 	smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2125 	entsize = xfs_attr_leaf_entsize(leaf, args->index);
2126 	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2127 		ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2128 		ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2129 		if (ichdr.freemap[i].base == tablesize) {
2130 			ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2131 			ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2132 		}
2133 
2134 		if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2135 				be16_to_cpu(entry->nameidx)) {
2136 			before = i;
2137 		} else if (ichdr.freemap[i].base ==
2138 				(be16_to_cpu(entry->nameidx) + entsize)) {
2139 			after = i;
2140 		} else if (ichdr.freemap[i].size < tmp) {
2141 			tmp = ichdr.freemap[i].size;
2142 			smallest = i;
2143 		}
2144 	}
2145 
2146 	/*
2147 	 * Coalesce adjacent freemap regions,
2148 	 * or replace the smallest region.
2149 	 */
2150 	if ((before >= 0) || (after >= 0)) {
2151 		if ((before >= 0) && (after >= 0)) {
2152 			ichdr.freemap[before].size += entsize;
2153 			ichdr.freemap[before].size += ichdr.freemap[after].size;
2154 			ichdr.freemap[after].base = 0;
2155 			ichdr.freemap[after].size = 0;
2156 		} else if (before >= 0) {
2157 			ichdr.freemap[before].size += entsize;
2158 		} else {
2159 			ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2160 			ichdr.freemap[after].size += entsize;
2161 		}
2162 	} else {
2163 		/*
2164 		 * Replace smallest region (if it is smaller than free'd entry)
2165 		 */
2166 		if (ichdr.freemap[smallest].size < entsize) {
2167 			ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2168 			ichdr.freemap[smallest].size = entsize;
2169 		}
2170 	}
2171 
2172 	/*
2173 	 * Did we remove the first entry?
2174 	 */
2175 	if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2176 		smallest = 1;
2177 	else
2178 		smallest = 0;
2179 
2180 	/*
2181 	 * Compress the remaining entries and zero out the removed stuff.
2182 	 */
2183 	memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2184 	ichdr.usedbytes -= entsize;
2185 	xfs_trans_log_buf(args->trans, bp,
2186 	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2187 				   entsize));
2188 
2189 	tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2190 	memmove(entry, entry + 1, tmp);
2191 	ichdr.count--;
2192 	xfs_trans_log_buf(args->trans, bp,
2193 	    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2194 
2195 	entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2196 	memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2197 
2198 	/*
2199 	 * If we removed the first entry, re-find the first used byte
2200 	 * in the name area.  Note that if the entry was the "firstused",
2201 	 * then we don't have a "hole" in our block resulting from
2202 	 * removing the name.
2203 	 */
2204 	if (smallest) {
2205 		tmp = args->geo->blksize;
2206 		entry = xfs_attr3_leaf_entryp(leaf);
2207 		for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2208 			ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2209 			ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2210 
2211 			if (be16_to_cpu(entry->nameidx) < tmp)
2212 				tmp = be16_to_cpu(entry->nameidx);
2213 		}
2214 		ichdr.firstused = tmp;
2215 		ASSERT(ichdr.firstused != 0);
2216 	} else {
2217 		ichdr.holes = 1;	/* mark as needing compaction */
2218 	}
2219 	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2220 	xfs_trans_log_buf(args->trans, bp,
2221 			  XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2222 					  xfs_attr3_leaf_hdr_size(leaf)));
2223 
2224 	/*
2225 	 * Check if leaf is less than 50% full, caller may want to
2226 	 * "join" the leaf with a sibling if so.
2227 	 */
2228 	tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2229 	      ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2230 
2231 	return tmp < args->geo->magicpct; /* leaf is < 37% full */
2232 }
2233 
2234 /*
2235  * Move all the attribute list entries from drop_leaf into save_leaf.
2236  */
2237 void
2238 xfs_attr3_leaf_unbalance(
2239 	struct xfs_da_state	*state,
2240 	struct xfs_da_state_blk	*drop_blk,
2241 	struct xfs_da_state_blk	*save_blk)
2242 {
2243 	struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2244 	struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2245 	struct xfs_attr3_icleaf_hdr drophdr;
2246 	struct xfs_attr3_icleaf_hdr savehdr;
2247 	struct xfs_attr_leaf_entry *entry;
2248 
2249 	trace_xfs_attr_leaf_unbalance(state->args);
2250 
2251 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2252 	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2253 	entry = xfs_attr3_leaf_entryp(drop_leaf);
2254 
2255 	/*
2256 	 * Save last hashval from dying block for later Btree fixup.
2257 	 */
2258 	drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2259 
2260 	/*
2261 	 * Check if we need a temp buffer, or can we do it in place.
2262 	 * Note that we don't check "leaf" for holes because we will
2263 	 * always be dropping it, toosmall() decided that for us already.
2264 	 */
2265 	if (savehdr.holes == 0) {
2266 		/*
2267 		 * dest leaf has no holes, so we add there.  May need
2268 		 * to make some room in the entry array.
2269 		 */
2270 		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2271 					 drop_blk->bp, &drophdr)) {
2272 			xfs_attr3_leaf_moveents(state->args,
2273 						drop_leaf, &drophdr, 0,
2274 						save_leaf, &savehdr, 0,
2275 						drophdr.count);
2276 		} else {
2277 			xfs_attr3_leaf_moveents(state->args,
2278 						drop_leaf, &drophdr, 0,
2279 						save_leaf, &savehdr,
2280 						savehdr.count, drophdr.count);
2281 		}
2282 	} else {
2283 		/*
2284 		 * Destination has holes, so we make a temporary copy
2285 		 * of the leaf and add them both to that.
2286 		 */
2287 		struct xfs_attr_leafblock *tmp_leaf;
2288 		struct xfs_attr3_icleaf_hdr tmphdr;
2289 
2290 		tmp_leaf = kzalloc(state->args->geo->blksize,
2291 				GFP_KERNEL | __GFP_NOFAIL);
2292 
2293 		/*
2294 		 * Copy the header into the temp leaf so that all the stuff
2295 		 * not in the incore header is present and gets copied back in
2296 		 * once we've moved all the entries.
2297 		 */
2298 		memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2299 
2300 		memset(&tmphdr, 0, sizeof(tmphdr));
2301 		tmphdr.magic = savehdr.magic;
2302 		tmphdr.forw = savehdr.forw;
2303 		tmphdr.back = savehdr.back;
2304 		tmphdr.firstused = state->args->geo->blksize;
2305 
2306 		/* write the header to the temp buffer to initialise it */
2307 		xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2308 
2309 		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2310 					 drop_blk->bp, &drophdr)) {
2311 			xfs_attr3_leaf_moveents(state->args,
2312 						drop_leaf, &drophdr, 0,
2313 						tmp_leaf, &tmphdr, 0,
2314 						drophdr.count);
2315 			xfs_attr3_leaf_moveents(state->args,
2316 						save_leaf, &savehdr, 0,
2317 						tmp_leaf, &tmphdr, tmphdr.count,
2318 						savehdr.count);
2319 		} else {
2320 			xfs_attr3_leaf_moveents(state->args,
2321 						save_leaf, &savehdr, 0,
2322 						tmp_leaf, &tmphdr, 0,
2323 						savehdr.count);
2324 			xfs_attr3_leaf_moveents(state->args,
2325 						drop_leaf, &drophdr, 0,
2326 						tmp_leaf, &tmphdr, tmphdr.count,
2327 						drophdr.count);
2328 		}
2329 		memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2330 		savehdr = tmphdr; /* struct copy */
2331 		kfree(tmp_leaf);
2332 	}
2333 
2334 	xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2335 	xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2336 					   state->args->geo->blksize - 1);
2337 
2338 	/*
2339 	 * Copy out last hashval in each block for B-tree code.
2340 	 */
2341 	entry = xfs_attr3_leaf_entryp(save_leaf);
2342 	save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2343 }
2344 
2345 /*========================================================================
2346  * Routines used for finding things in the Btree.
2347  *========================================================================*/
2348 
2349 /*
2350  * Look up a name in a leaf attribute list structure.
2351  * This is the internal routine, it uses the caller's buffer.
2352  *
2353  * Note that duplicate keys are allowed, but only check within the
2354  * current leaf node.  The Btree code must check in adjacent leaf nodes.
2355  *
2356  * Return in args->index the index into the entry[] array of either
2357  * the found entry, or where the entry should have been (insert before
2358  * that entry).
2359  *
2360  * Don't change the args->value unless we find the attribute.
2361  */
2362 int
2363 xfs_attr3_leaf_lookup_int(
2364 	struct xfs_buf		*bp,
2365 	struct xfs_da_args	*args)
2366 {
2367 	struct xfs_attr_leafblock *leaf;
2368 	struct xfs_attr3_icleaf_hdr ichdr;
2369 	struct xfs_attr_leaf_entry *entry;
2370 	struct xfs_attr_leaf_entry *entries;
2371 	struct xfs_attr_leaf_name_local *name_loc;
2372 	struct xfs_attr_leaf_name_remote *name_rmt;
2373 	xfs_dahash_t		hashval;
2374 	int			probe;
2375 	int			span;
2376 
2377 	trace_xfs_attr_leaf_lookup(args);
2378 
2379 	leaf = bp->b_addr;
2380 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2381 	entries = xfs_attr3_leaf_entryp(leaf);
2382 	if (ichdr.count >= args->geo->blksize / 8) {
2383 		xfs_buf_mark_corrupt(bp);
2384 		xfs_da_mark_sick(args);
2385 		return -EFSCORRUPTED;
2386 	}
2387 
2388 	/*
2389 	 * Binary search.  (note: small blocks will skip this loop)
2390 	 */
2391 	hashval = args->hashval;
2392 	probe = span = ichdr.count / 2;
2393 	for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2394 		span /= 2;
2395 		if (be32_to_cpu(entry->hashval) < hashval)
2396 			probe += span;
2397 		else if (be32_to_cpu(entry->hashval) > hashval)
2398 			probe -= span;
2399 		else
2400 			break;
2401 	}
2402 	if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2403 		xfs_buf_mark_corrupt(bp);
2404 		xfs_da_mark_sick(args);
2405 		return -EFSCORRUPTED;
2406 	}
2407 	if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2408 		xfs_buf_mark_corrupt(bp);
2409 		xfs_da_mark_sick(args);
2410 		return -EFSCORRUPTED;
2411 	}
2412 
2413 	/*
2414 	 * Since we may have duplicate hashval's, find the first matching
2415 	 * hashval in the leaf.
2416 	 */
2417 	while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2418 		entry--;
2419 		probe--;
2420 	}
2421 	while (probe < ichdr.count &&
2422 	       be32_to_cpu(entry->hashval) < hashval) {
2423 		entry++;
2424 		probe++;
2425 	}
2426 	if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2427 		args->index = probe;
2428 		return -ENOATTR;
2429 	}
2430 
2431 	/*
2432 	 * Duplicate keys may be present, so search all of them for a match.
2433 	 */
2434 	for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2435 			entry++, probe++) {
2436 /*
2437  * GROT: Add code to remove incomplete entries.
2438  */
2439 		if (entry->flags & XFS_ATTR_LOCAL) {
2440 			name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2441 			if (!xfs_attr_match(args, name_loc->namelen,
2442 					name_loc->nameval, entry->flags))
2443 				continue;
2444 			args->index = probe;
2445 			return -EEXIST;
2446 		} else {
2447 			name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2448 			if (!xfs_attr_match(args, name_rmt->namelen,
2449 					name_rmt->name, entry->flags))
2450 				continue;
2451 			args->index = probe;
2452 			args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2453 			args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2454 			args->rmtblkcnt = xfs_attr3_rmt_blocks(
2455 							args->dp->i_mount,
2456 							args->rmtvaluelen);
2457 			return -EEXIST;
2458 		}
2459 	}
2460 	args->index = probe;
2461 	return -ENOATTR;
2462 }
2463 
2464 /*
2465  * Get the value associated with an attribute name from a leaf attribute
2466  * list structure.
2467  *
2468  * If args->valuelen is zero, only the length needs to be returned.  Unlike a
2469  * lookup, we only return an error if the attribute does not exist or we can't
2470  * retrieve the value.
2471  */
2472 int
2473 xfs_attr3_leaf_getvalue(
2474 	struct xfs_buf		*bp,
2475 	struct xfs_da_args	*args)
2476 {
2477 	struct xfs_attr_leafblock *leaf;
2478 	struct xfs_attr3_icleaf_hdr ichdr;
2479 	struct xfs_attr_leaf_entry *entry;
2480 	struct xfs_attr_leaf_name_local *name_loc;
2481 	struct xfs_attr_leaf_name_remote *name_rmt;
2482 
2483 	leaf = bp->b_addr;
2484 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2485 	ASSERT(ichdr.count < args->geo->blksize / 8);
2486 	ASSERT(args->index < ichdr.count);
2487 
2488 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2489 	if (entry->flags & XFS_ATTR_LOCAL) {
2490 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2491 		ASSERT(name_loc->namelen == args->namelen);
2492 		ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2493 		return xfs_attr_copy_value(args,
2494 					&name_loc->nameval[args->namelen],
2495 					be16_to_cpu(name_loc->valuelen));
2496 	}
2497 
2498 	name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2499 	ASSERT(name_rmt->namelen == args->namelen);
2500 	ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2501 	args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2502 	args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2503 	args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2504 					       args->rmtvaluelen);
2505 	return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2506 }
2507 
2508 /*========================================================================
2509  * Utility routines.
2510  *========================================================================*/
2511 
2512 /*
2513  * Move the indicated entries from one leaf to another.
2514  * NOTE: this routine modifies both source and destination leaves.
2515  */
2516 /*ARGSUSED*/
2517 STATIC void
2518 xfs_attr3_leaf_moveents(
2519 	struct xfs_da_args		*args,
2520 	struct xfs_attr_leafblock	*leaf_s,
2521 	struct xfs_attr3_icleaf_hdr	*ichdr_s,
2522 	int				start_s,
2523 	struct xfs_attr_leafblock	*leaf_d,
2524 	struct xfs_attr3_icleaf_hdr	*ichdr_d,
2525 	int				start_d,
2526 	int				count)
2527 {
2528 	struct xfs_attr_leaf_entry	*entry_s;
2529 	struct xfs_attr_leaf_entry	*entry_d;
2530 	int				desti;
2531 	int				tmp;
2532 	int				i;
2533 
2534 	/*
2535 	 * Check for nothing to do.
2536 	 */
2537 	if (count == 0)
2538 		return;
2539 
2540 	/*
2541 	 * Set up environment.
2542 	 */
2543 	ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2544 	       ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2545 	ASSERT(ichdr_s->magic == ichdr_d->magic);
2546 	ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2547 	ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2548 					+ xfs_attr3_leaf_hdr_size(leaf_s));
2549 	ASSERT(ichdr_d->count < args->geo->blksize / 8);
2550 	ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2551 					+ xfs_attr3_leaf_hdr_size(leaf_d));
2552 
2553 	ASSERT(start_s < ichdr_s->count);
2554 	ASSERT(start_d <= ichdr_d->count);
2555 	ASSERT(count <= ichdr_s->count);
2556 
2557 
2558 	/*
2559 	 * Move the entries in the destination leaf up to make a hole?
2560 	 */
2561 	if (start_d < ichdr_d->count) {
2562 		tmp  = ichdr_d->count - start_d;
2563 		tmp *= sizeof(xfs_attr_leaf_entry_t);
2564 		entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2565 		entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2566 		memmove(entry_d, entry_s, tmp);
2567 	}
2568 
2569 	/*
2570 	 * Copy all entry's in the same (sorted) order,
2571 	 * but allocate attribute info packed and in sequence.
2572 	 */
2573 	entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2574 	entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2575 	desti = start_d;
2576 	for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2577 		ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2578 		tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2579 #ifdef GROT
2580 		/*
2581 		 * Code to drop INCOMPLETE entries.  Difficult to use as we
2582 		 * may also need to change the insertion index.  Code turned
2583 		 * off for 6.2, should be revisited later.
2584 		 */
2585 		if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2586 			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2587 			ichdr_s->usedbytes -= tmp;
2588 			ichdr_s->count -= 1;
2589 			entry_d--;	/* to compensate for ++ in loop hdr */
2590 			desti--;
2591 			if ((start_s + i) < offset)
2592 				result++;	/* insertion index adjustment */
2593 		} else {
2594 #endif /* GROT */
2595 			ichdr_d->firstused -= tmp;
2596 			/* both on-disk, don't endian flip twice */
2597 			entry_d->hashval = entry_s->hashval;
2598 			entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2599 			entry_d->flags = entry_s->flags;
2600 			ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2601 							<= args->geo->blksize);
2602 			memmove(xfs_attr3_leaf_name(leaf_d, desti),
2603 				xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2604 			ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2605 							<= args->geo->blksize);
2606 			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2607 			ichdr_s->usedbytes -= tmp;
2608 			ichdr_d->usedbytes += tmp;
2609 			ichdr_s->count -= 1;
2610 			ichdr_d->count += 1;
2611 			tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2612 					+ xfs_attr3_leaf_hdr_size(leaf_d);
2613 			ASSERT(ichdr_d->firstused >= tmp);
2614 #ifdef GROT
2615 		}
2616 #endif /* GROT */
2617 	}
2618 
2619 	/*
2620 	 * Zero out the entries we just copied.
2621 	 */
2622 	if (start_s == ichdr_s->count) {
2623 		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2624 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2625 		ASSERT(((char *)entry_s + tmp) <=
2626 		       ((char *)leaf_s + args->geo->blksize));
2627 		memset(entry_s, 0, tmp);
2628 	} else {
2629 		/*
2630 		 * Move the remaining entries down to fill the hole,
2631 		 * then zero the entries at the top.
2632 		 */
2633 		tmp  = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2634 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2635 		entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2636 		memmove(entry_d, entry_s, tmp);
2637 
2638 		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2639 		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2640 		ASSERT(((char *)entry_s + tmp) <=
2641 		       ((char *)leaf_s + args->geo->blksize));
2642 		memset(entry_s, 0, tmp);
2643 	}
2644 
2645 	/*
2646 	 * Fill in the freemap information
2647 	 */
2648 	ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2649 	ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2650 	ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2651 	ichdr_d->freemap[1].base = 0;
2652 	ichdr_d->freemap[2].base = 0;
2653 	ichdr_d->freemap[1].size = 0;
2654 	ichdr_d->freemap[2].size = 0;
2655 	ichdr_s->holes = 1;	/* leaf may not be compact */
2656 }
2657 
2658 /*
2659  * Pick up the last hashvalue from a leaf block.
2660  */
2661 xfs_dahash_t
2662 xfs_attr_leaf_lasthash(
2663 	struct xfs_buf	*bp,
2664 	int		*count)
2665 {
2666 	struct xfs_attr3_icleaf_hdr ichdr;
2667 	struct xfs_attr_leaf_entry *entries;
2668 	struct xfs_mount *mp = bp->b_mount;
2669 
2670 	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2671 	entries = xfs_attr3_leaf_entryp(bp->b_addr);
2672 	if (count)
2673 		*count = ichdr.count;
2674 	if (!ichdr.count)
2675 		return 0;
2676 	return be32_to_cpu(entries[ichdr.count - 1].hashval);
2677 }
2678 
2679 /*
2680  * Calculate the number of bytes used to store the indicated attribute
2681  * (whether local or remote only calculate bytes in this block).
2682  */
2683 STATIC int
2684 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2685 {
2686 	struct xfs_attr_leaf_entry *entries;
2687 	xfs_attr_leaf_name_local_t *name_loc;
2688 	xfs_attr_leaf_name_remote_t *name_rmt;
2689 	int size;
2690 
2691 	entries = xfs_attr3_leaf_entryp(leaf);
2692 	if (entries[index].flags & XFS_ATTR_LOCAL) {
2693 		name_loc = xfs_attr3_leaf_name_local(leaf, index);
2694 		size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2695 						   be16_to_cpu(name_loc->valuelen));
2696 	} else {
2697 		name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2698 		size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2699 	}
2700 	return size;
2701 }
2702 
2703 /*
2704  * Calculate the number of bytes that would be required to store the new
2705  * attribute (whether local or remote only calculate bytes in this block).
2706  * This routine decides as a side effect whether the attribute will be
2707  * a "local" or a "remote" attribute.
2708  */
2709 int
2710 xfs_attr_leaf_newentsize(
2711 	struct xfs_da_args	*args,
2712 	int			*local)
2713 {
2714 	int			size;
2715 
2716 	size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2717 	if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2718 		if (local)
2719 			*local = 1;
2720 		return size;
2721 	}
2722 	if (local)
2723 		*local = 0;
2724 	return xfs_attr_leaf_entsize_remote(args->namelen);
2725 }
2726 
2727 
2728 /*========================================================================
2729  * Manage the INCOMPLETE flag in a leaf entry
2730  *========================================================================*/
2731 
2732 /*
2733  * Clear the INCOMPLETE flag on an entry in a leaf block.
2734  */
2735 int
2736 xfs_attr3_leaf_clearflag(
2737 	struct xfs_da_args	*args)
2738 {
2739 	struct xfs_attr_leafblock *leaf;
2740 	struct xfs_attr_leaf_entry *entry;
2741 	struct xfs_attr_leaf_name_remote *name_rmt;
2742 	struct xfs_buf		*bp;
2743 	int			error;
2744 #ifdef DEBUG
2745 	struct xfs_attr3_icleaf_hdr ichdr;
2746 	xfs_attr_leaf_name_local_t *name_loc;
2747 	int namelen;
2748 	char *name;
2749 #endif /* DEBUG */
2750 
2751 	trace_xfs_attr_leaf_clearflag(args);
2752 	/*
2753 	 * Set up the operation.
2754 	 */
2755 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2756 			args->blkno, &bp);
2757 	if (error)
2758 		return error;
2759 
2760 	leaf = bp->b_addr;
2761 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2762 	ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2763 
2764 #ifdef DEBUG
2765 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2766 	ASSERT(args->index < ichdr.count);
2767 	ASSERT(args->index >= 0);
2768 
2769 	if (entry->flags & XFS_ATTR_LOCAL) {
2770 		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2771 		namelen = name_loc->namelen;
2772 		name = (char *)name_loc->nameval;
2773 	} else {
2774 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2775 		namelen = name_rmt->namelen;
2776 		name = (char *)name_rmt->name;
2777 	}
2778 	ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2779 	ASSERT(namelen == args->namelen);
2780 	ASSERT(memcmp(name, args->name, namelen) == 0);
2781 #endif /* DEBUG */
2782 
2783 	entry->flags &= ~XFS_ATTR_INCOMPLETE;
2784 	xfs_trans_log_buf(args->trans, bp,
2785 			 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2786 
2787 	if (args->rmtblkno) {
2788 		ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2789 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2790 		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2791 		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2792 		xfs_trans_log_buf(args->trans, bp,
2793 			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 /*
2800  * Set the INCOMPLETE flag on an entry in a leaf block.
2801  */
2802 int
2803 xfs_attr3_leaf_setflag(
2804 	struct xfs_da_args	*args)
2805 {
2806 	struct xfs_attr_leafblock *leaf;
2807 	struct xfs_attr_leaf_entry *entry;
2808 	struct xfs_attr_leaf_name_remote *name_rmt;
2809 	struct xfs_buf		*bp;
2810 	int error;
2811 #ifdef DEBUG
2812 	struct xfs_attr3_icleaf_hdr ichdr;
2813 #endif
2814 
2815 	trace_xfs_attr_leaf_setflag(args);
2816 
2817 	/*
2818 	 * Set up the operation.
2819 	 */
2820 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2821 			args->blkno, &bp);
2822 	if (error)
2823 		return error;
2824 
2825 	leaf = bp->b_addr;
2826 #ifdef DEBUG
2827 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2828 	ASSERT(args->index < ichdr.count);
2829 	ASSERT(args->index >= 0);
2830 #endif
2831 	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2832 
2833 	ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2834 	entry->flags |= XFS_ATTR_INCOMPLETE;
2835 	xfs_trans_log_buf(args->trans, bp,
2836 			XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2837 	if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2838 		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2839 		name_rmt->valueblk = 0;
2840 		name_rmt->valuelen = 0;
2841 		xfs_trans_log_buf(args->trans, bp,
2842 			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2850  * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2851  * entry given by args->blkno2/index2.
2852  *
2853  * Note that they could be in different blocks, or in the same block.
2854  */
2855 int
2856 xfs_attr3_leaf_flipflags(
2857 	struct xfs_da_args	*args)
2858 {
2859 	struct xfs_attr_leafblock *leaf1;
2860 	struct xfs_attr_leafblock *leaf2;
2861 	struct xfs_attr_leaf_entry *entry1;
2862 	struct xfs_attr_leaf_entry *entry2;
2863 	struct xfs_attr_leaf_name_remote *name_rmt;
2864 	struct xfs_buf		*bp1;
2865 	struct xfs_buf		*bp2;
2866 	int error;
2867 #ifdef DEBUG
2868 	struct xfs_attr3_icleaf_hdr ichdr1;
2869 	struct xfs_attr3_icleaf_hdr ichdr2;
2870 	xfs_attr_leaf_name_local_t *name_loc;
2871 	int namelen1, namelen2;
2872 	char *name1, *name2;
2873 #endif /* DEBUG */
2874 
2875 	trace_xfs_attr_leaf_flipflags(args);
2876 
2877 	/*
2878 	 * Read the block containing the "old" attr
2879 	 */
2880 	error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2881 			args->blkno, &bp1);
2882 	if (error)
2883 		return error;
2884 
2885 	/*
2886 	 * Read the block containing the "new" attr, if it is different
2887 	 */
2888 	if (args->blkno2 != args->blkno) {
2889 		error = xfs_attr3_leaf_read(args->trans, args->dp, args->owner,
2890 				args->blkno2, &bp2);
2891 		if (error)
2892 			return error;
2893 	} else {
2894 		bp2 = bp1;
2895 	}
2896 
2897 	leaf1 = bp1->b_addr;
2898 	entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2899 
2900 	leaf2 = bp2->b_addr;
2901 	entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2902 
2903 #ifdef DEBUG
2904 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2905 	ASSERT(args->index < ichdr1.count);
2906 	ASSERT(args->index >= 0);
2907 
2908 	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2909 	ASSERT(args->index2 < ichdr2.count);
2910 	ASSERT(args->index2 >= 0);
2911 
2912 	if (entry1->flags & XFS_ATTR_LOCAL) {
2913 		name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2914 		namelen1 = name_loc->namelen;
2915 		name1 = (char *)name_loc->nameval;
2916 	} else {
2917 		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2918 		namelen1 = name_rmt->namelen;
2919 		name1 = (char *)name_rmt->name;
2920 	}
2921 	if (entry2->flags & XFS_ATTR_LOCAL) {
2922 		name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2923 		namelen2 = name_loc->namelen;
2924 		name2 = (char *)name_loc->nameval;
2925 	} else {
2926 		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2927 		namelen2 = name_rmt->namelen;
2928 		name2 = (char *)name_rmt->name;
2929 	}
2930 	ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2931 	ASSERT(namelen1 == namelen2);
2932 	ASSERT(memcmp(name1, name2, namelen1) == 0);
2933 #endif /* DEBUG */
2934 
2935 	ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2936 	ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2937 
2938 	entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2939 	xfs_trans_log_buf(args->trans, bp1,
2940 			  XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2941 	if (args->rmtblkno) {
2942 		ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2943 		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2944 		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2945 		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2946 		xfs_trans_log_buf(args->trans, bp1,
2947 			 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2948 	}
2949 
2950 	entry2->flags |= XFS_ATTR_INCOMPLETE;
2951 	xfs_trans_log_buf(args->trans, bp2,
2952 			  XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2953 	if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2954 		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2955 		name_rmt->valueblk = 0;
2956 		name_rmt->valuelen = 0;
2957 		xfs_trans_log_buf(args->trans, bp2,
2958 			 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2959 	}
2960 
2961 	return 0;
2962 }
2963