1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 30 struct kmem_cache *xfs_extfree_item_cache; 31 32 struct workqueue_struct *xfs_alloc_wq; 33 34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 35 36 #define XFSA_FIXUP_BNO_OK 1 37 #define XFSA_FIXUP_CNT_OK 2 38 39 /* 40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 41 * the beginning of the block for a proper header with the location information 42 * and CRC. 43 */ 44 unsigned int 45 xfs_agfl_size( 46 struct xfs_mount *mp) 47 { 48 unsigned int size = mp->m_sb.sb_sectsize; 49 50 if (xfs_has_crc(mp)) 51 size -= sizeof(struct xfs_agfl); 52 53 return size / sizeof(xfs_agblock_t); 54 } 55 56 unsigned int 57 xfs_refc_block( 58 struct xfs_mount *mp) 59 { 60 if (xfs_has_rmapbt(mp)) 61 return XFS_RMAP_BLOCK(mp) + 1; 62 if (xfs_has_finobt(mp)) 63 return XFS_FIBT_BLOCK(mp) + 1; 64 return XFS_IBT_BLOCK(mp) + 1; 65 } 66 67 xfs_extlen_t 68 xfs_prealloc_blocks( 69 struct xfs_mount *mp) 70 { 71 if (xfs_has_reflink(mp)) 72 return xfs_refc_block(mp) + 1; 73 if (xfs_has_rmapbt(mp)) 74 return XFS_RMAP_BLOCK(mp) + 1; 75 if (xfs_has_finobt(mp)) 76 return XFS_FIBT_BLOCK(mp) + 1; 77 return XFS_IBT_BLOCK(mp) + 1; 78 } 79 80 /* 81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to 82 * guarantee that we can refill the AGFL prior to allocating space in a nearly 83 * full AG. Although the space described by the free space btrees, the 84 * blocks used by the freesp btrees themselves, and the blocks owned by the 85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk 86 * free space in the AG drop so low that the free space btrees cannot refill an 87 * empty AGFL up to the minimum level. Rather than grind through empty AGs 88 * until the fs goes down, we subtract this many AG blocks from the incore 89 * fdblocks to ensure user allocation does not overcommit the space the 90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to 91 * withhold space from xfs_mod_fdblocks, so we do not account for that here. 92 */ 93 #define XFS_ALLOCBT_AGFL_RESERVE 4 94 95 /* 96 * Compute the number of blocks that we set aside to guarantee the ability to 97 * refill the AGFL and handle a full bmap btree split. 98 * 99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 100 * AGF buffer (PV 947395), we place constraints on the relationship among 101 * actual allocations for data blocks, freelist blocks, and potential file data 102 * bmap btree blocks. However, these restrictions may result in no actual space 103 * allocated for a delayed extent, for example, a data block in a certain AG is 104 * allocated but there is no additional block for the additional bmap btree 105 * block due to a split of the bmap btree of the file. The result of this may 106 * lead to an infinite loop when the file gets flushed to disk and all delayed 107 * extents need to be actually allocated. To get around this, we explicitly set 108 * aside a few blocks which will not be reserved in delayed allocation. 109 * 110 * For each AG, we need to reserve enough blocks to replenish a totally empty 111 * AGFL and 4 more to handle a potential split of the file's bmap btree. 112 */ 113 unsigned int 114 xfs_alloc_set_aside( 115 struct xfs_mount *mp) 116 { 117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); 118 } 119 120 /* 121 * When deciding how much space to allocate out of an AG, we limit the 122 * allocation maximum size to the size the AG. However, we cannot use all the 123 * blocks in the AG - some are permanently used by metadata. These 124 * blocks are generally: 125 * - the AG superblock, AGF, AGI and AGFL 126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 127 * the AGI free inode and rmap btree root blocks. 128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 129 * - the rmapbt root block 130 * 131 * The AG headers are sector sized, so the amount of space they take up is 132 * dependent on filesystem geometry. The others are all single blocks. 133 */ 134 unsigned int 135 xfs_alloc_ag_max_usable( 136 struct xfs_mount *mp) 137 { 138 unsigned int blocks; 139 140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 141 blocks += XFS_ALLOCBT_AGFL_RESERVE; 142 blocks += 3; /* AGF, AGI btree root blocks */ 143 if (xfs_has_finobt(mp)) 144 blocks++; /* finobt root block */ 145 if (xfs_has_rmapbt(mp)) 146 blocks++; /* rmap root block */ 147 if (xfs_has_reflink(mp)) 148 blocks++; /* refcount root block */ 149 150 return mp->m_sb.sb_agblocks - blocks; 151 } 152 153 /* 154 * Lookup the record equal to [bno, len] in the btree given by cur. 155 */ 156 STATIC int /* error */ 157 xfs_alloc_lookup_eq( 158 struct xfs_btree_cur *cur, /* btree cursor */ 159 xfs_agblock_t bno, /* starting block of extent */ 160 xfs_extlen_t len, /* length of extent */ 161 int *stat) /* success/failure */ 162 { 163 int error; 164 165 cur->bc_rec.a.ar_startblock = bno; 166 cur->bc_rec.a.ar_blockcount = len; 167 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); 168 cur->bc_ag.abt.active = (*stat == 1); 169 return error; 170 } 171 172 /* 173 * Lookup the first record greater than or equal to [bno, len] 174 * in the btree given by cur. 175 */ 176 int /* error */ 177 xfs_alloc_lookup_ge( 178 struct xfs_btree_cur *cur, /* btree cursor */ 179 xfs_agblock_t bno, /* starting block of extent */ 180 xfs_extlen_t len, /* length of extent */ 181 int *stat) /* success/failure */ 182 { 183 int error; 184 185 cur->bc_rec.a.ar_startblock = bno; 186 cur->bc_rec.a.ar_blockcount = len; 187 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); 188 cur->bc_ag.abt.active = (*stat == 1); 189 return error; 190 } 191 192 /* 193 * Lookup the first record less than or equal to [bno, len] 194 * in the btree given by cur. 195 */ 196 int /* error */ 197 xfs_alloc_lookup_le( 198 struct xfs_btree_cur *cur, /* btree cursor */ 199 xfs_agblock_t bno, /* starting block of extent */ 200 xfs_extlen_t len, /* length of extent */ 201 int *stat) /* success/failure */ 202 { 203 int error; 204 cur->bc_rec.a.ar_startblock = bno; 205 cur->bc_rec.a.ar_blockcount = len; 206 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); 207 cur->bc_ag.abt.active = (*stat == 1); 208 return error; 209 } 210 211 static inline bool 212 xfs_alloc_cur_active( 213 struct xfs_btree_cur *cur) 214 { 215 return cur && cur->bc_ag.abt.active; 216 } 217 218 /* 219 * Update the record referred to by cur to the value given 220 * by [bno, len]. 221 * This either works (return 0) or gets an EFSCORRUPTED error. 222 */ 223 STATIC int /* error */ 224 xfs_alloc_update( 225 struct xfs_btree_cur *cur, /* btree cursor */ 226 xfs_agblock_t bno, /* starting block of extent */ 227 xfs_extlen_t len) /* length of extent */ 228 { 229 union xfs_btree_rec rec; 230 231 rec.alloc.ar_startblock = cpu_to_be32(bno); 232 rec.alloc.ar_blockcount = cpu_to_be32(len); 233 return xfs_btree_update(cur, &rec); 234 } 235 236 /* Convert the ondisk btree record to its incore representation. */ 237 void 238 xfs_alloc_btrec_to_irec( 239 const union xfs_btree_rec *rec, 240 struct xfs_alloc_rec_incore *irec) 241 { 242 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 243 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 244 } 245 246 /* Simple checks for free space records. */ 247 xfs_failaddr_t 248 xfs_alloc_check_irec( 249 struct xfs_perag *pag, 250 const struct xfs_alloc_rec_incore *irec) 251 { 252 if (irec->ar_blockcount == 0) 253 return __this_address; 254 255 /* check for valid extent range, including overflow */ 256 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount)) 257 return __this_address; 258 259 return NULL; 260 } 261 262 static inline int 263 xfs_alloc_complain_bad_rec( 264 struct xfs_btree_cur *cur, 265 xfs_failaddr_t fa, 266 const struct xfs_alloc_rec_incore *irec) 267 { 268 struct xfs_mount *mp = cur->bc_mp; 269 270 xfs_warn(mp, 271 "%s Freespace BTree record corruption in AG %d detected at %pS!", 272 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", 273 cur->bc_ag.pag->pag_agno, fa); 274 xfs_warn(mp, 275 "start block 0x%x block count 0x%x", irec->ar_startblock, 276 irec->ar_blockcount); 277 return -EFSCORRUPTED; 278 } 279 280 /* 281 * Get the data from the pointed-to record. 282 */ 283 int /* error */ 284 xfs_alloc_get_rec( 285 struct xfs_btree_cur *cur, /* btree cursor */ 286 xfs_agblock_t *bno, /* output: starting block of extent */ 287 xfs_extlen_t *len, /* output: length of extent */ 288 int *stat) /* output: success/failure */ 289 { 290 struct xfs_alloc_rec_incore irec; 291 union xfs_btree_rec *rec; 292 xfs_failaddr_t fa; 293 int error; 294 295 error = xfs_btree_get_rec(cur, &rec, stat); 296 if (error || !(*stat)) 297 return error; 298 299 xfs_alloc_btrec_to_irec(rec, &irec); 300 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); 301 if (fa) 302 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 303 304 *bno = irec.ar_startblock; 305 *len = irec.ar_blockcount; 306 return 0; 307 } 308 309 /* 310 * Compute aligned version of the found extent. 311 * Takes alignment and min length into account. 312 */ 313 STATIC bool 314 xfs_alloc_compute_aligned( 315 xfs_alloc_arg_t *args, /* allocation argument structure */ 316 xfs_agblock_t foundbno, /* starting block in found extent */ 317 xfs_extlen_t foundlen, /* length in found extent */ 318 xfs_agblock_t *resbno, /* result block number */ 319 xfs_extlen_t *reslen, /* result length */ 320 unsigned *busy_gen) 321 { 322 xfs_agblock_t bno = foundbno; 323 xfs_extlen_t len = foundlen; 324 xfs_extlen_t diff; 325 bool busy; 326 327 /* Trim busy sections out of found extent */ 328 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); 329 330 /* 331 * If we have a largish extent that happens to start before min_agbno, 332 * see if we can shift it into range... 333 */ 334 if (bno < args->min_agbno && bno + len > args->min_agbno) { 335 diff = args->min_agbno - bno; 336 if (len > diff) { 337 bno += diff; 338 len -= diff; 339 } 340 } 341 342 if (args->alignment > 1 && len >= args->minlen) { 343 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 344 345 diff = aligned_bno - bno; 346 347 *resbno = aligned_bno; 348 *reslen = diff >= len ? 0 : len - diff; 349 } else { 350 *resbno = bno; 351 *reslen = len; 352 } 353 354 return busy; 355 } 356 357 /* 358 * Compute best start block and diff for "near" allocations. 359 * freelen >= wantlen already checked by caller. 360 */ 361 STATIC xfs_extlen_t /* difference value (absolute) */ 362 xfs_alloc_compute_diff( 363 xfs_agblock_t wantbno, /* target starting block */ 364 xfs_extlen_t wantlen, /* target length */ 365 xfs_extlen_t alignment, /* target alignment */ 366 int datatype, /* are we allocating data? */ 367 xfs_agblock_t freebno, /* freespace's starting block */ 368 xfs_extlen_t freelen, /* freespace's length */ 369 xfs_agblock_t *newbnop) /* result: best start block from free */ 370 { 371 xfs_agblock_t freeend; /* end of freespace extent */ 372 xfs_agblock_t newbno1; /* return block number */ 373 xfs_agblock_t newbno2; /* other new block number */ 374 xfs_extlen_t newlen1=0; /* length with newbno1 */ 375 xfs_extlen_t newlen2=0; /* length with newbno2 */ 376 xfs_agblock_t wantend; /* end of target extent */ 377 bool userdata = datatype & XFS_ALLOC_USERDATA; 378 379 ASSERT(freelen >= wantlen); 380 freeend = freebno + freelen; 381 wantend = wantbno + wantlen; 382 /* 383 * We want to allocate from the start of a free extent if it is past 384 * the desired block or if we are allocating user data and the free 385 * extent is before desired block. The second case is there to allow 386 * for contiguous allocation from the remaining free space if the file 387 * grows in the short term. 388 */ 389 if (freebno >= wantbno || (userdata && freeend < wantend)) { 390 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 391 newbno1 = NULLAGBLOCK; 392 } else if (freeend >= wantend && alignment > 1) { 393 newbno1 = roundup(wantbno, alignment); 394 newbno2 = newbno1 - alignment; 395 if (newbno1 >= freeend) 396 newbno1 = NULLAGBLOCK; 397 else 398 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 399 if (newbno2 < freebno) 400 newbno2 = NULLAGBLOCK; 401 else 402 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 403 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 404 if (newlen1 < newlen2 || 405 (newlen1 == newlen2 && 406 XFS_ABSDIFF(newbno1, wantbno) > 407 XFS_ABSDIFF(newbno2, wantbno))) 408 newbno1 = newbno2; 409 } else if (newbno2 != NULLAGBLOCK) 410 newbno1 = newbno2; 411 } else if (freeend >= wantend) { 412 newbno1 = wantbno; 413 } else if (alignment > 1) { 414 newbno1 = roundup(freeend - wantlen, alignment); 415 if (newbno1 > freeend - wantlen && 416 newbno1 - alignment >= freebno) 417 newbno1 -= alignment; 418 else if (newbno1 >= freeend) 419 newbno1 = NULLAGBLOCK; 420 } else 421 newbno1 = freeend - wantlen; 422 *newbnop = newbno1; 423 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 424 } 425 426 /* 427 * Fix up the length, based on mod and prod. 428 * len should be k * prod + mod for some k. 429 * If len is too small it is returned unchanged. 430 * If len hits maxlen it is left alone. 431 */ 432 STATIC void 433 xfs_alloc_fix_len( 434 xfs_alloc_arg_t *args) /* allocation argument structure */ 435 { 436 xfs_extlen_t k; 437 xfs_extlen_t rlen; 438 439 ASSERT(args->mod < args->prod); 440 rlen = args->len; 441 ASSERT(rlen >= args->minlen); 442 ASSERT(rlen <= args->maxlen); 443 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 444 (args->mod == 0 && rlen < args->prod)) 445 return; 446 k = rlen % args->prod; 447 if (k == args->mod) 448 return; 449 if (k > args->mod) 450 rlen = rlen - (k - args->mod); 451 else 452 rlen = rlen - args->prod + (args->mod - k); 453 /* casts to (int) catch length underflows */ 454 if ((int)rlen < (int)args->minlen) 455 return; 456 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 457 ASSERT(rlen % args->prod == args->mod); 458 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 459 rlen + args->minleft); 460 args->len = rlen; 461 } 462 463 /* 464 * Update the two btrees, logically removing from freespace the extent 465 * starting at rbno, rlen blocks. The extent is contained within the 466 * actual (current) free extent fbno for flen blocks. 467 * Flags are passed in indicating whether the cursors are set to the 468 * relevant records. 469 */ 470 STATIC int /* error code */ 471 xfs_alloc_fixup_trees( 472 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 473 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 474 xfs_agblock_t fbno, /* starting block of free extent */ 475 xfs_extlen_t flen, /* length of free extent */ 476 xfs_agblock_t rbno, /* starting block of returned extent */ 477 xfs_extlen_t rlen, /* length of returned extent */ 478 int flags) /* flags, XFSA_FIXUP_... */ 479 { 480 int error; /* error code */ 481 int i; /* operation results */ 482 xfs_agblock_t nfbno1; /* first new free startblock */ 483 xfs_agblock_t nfbno2; /* second new free startblock */ 484 xfs_extlen_t nflen1=0; /* first new free length */ 485 xfs_extlen_t nflen2=0; /* second new free length */ 486 struct xfs_mount *mp; 487 488 mp = cnt_cur->bc_mp; 489 490 /* 491 * Look up the record in the by-size tree if necessary. 492 */ 493 if (flags & XFSA_FIXUP_CNT_OK) { 494 #ifdef DEBUG 495 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 496 return error; 497 if (XFS_IS_CORRUPT(mp, 498 i != 1 || 499 nfbno1 != fbno || 500 nflen1 != flen)) 501 return -EFSCORRUPTED; 502 #endif 503 } else { 504 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 505 return error; 506 if (XFS_IS_CORRUPT(mp, i != 1)) 507 return -EFSCORRUPTED; 508 } 509 /* 510 * Look up the record in the by-block tree if necessary. 511 */ 512 if (flags & XFSA_FIXUP_BNO_OK) { 513 #ifdef DEBUG 514 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 515 return error; 516 if (XFS_IS_CORRUPT(mp, 517 i != 1 || 518 nfbno1 != fbno || 519 nflen1 != flen)) 520 return -EFSCORRUPTED; 521 #endif 522 } else { 523 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 524 return error; 525 if (XFS_IS_CORRUPT(mp, i != 1)) 526 return -EFSCORRUPTED; 527 } 528 529 #ifdef DEBUG 530 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 531 struct xfs_btree_block *bnoblock; 532 struct xfs_btree_block *cntblock; 533 534 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 535 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 536 537 if (XFS_IS_CORRUPT(mp, 538 bnoblock->bb_numrecs != 539 cntblock->bb_numrecs)) 540 return -EFSCORRUPTED; 541 } 542 #endif 543 544 /* 545 * Deal with all four cases: the allocated record is contained 546 * within the freespace record, so we can have new freespace 547 * at either (or both) end, or no freespace remaining. 548 */ 549 if (rbno == fbno && rlen == flen) 550 nfbno1 = nfbno2 = NULLAGBLOCK; 551 else if (rbno == fbno) { 552 nfbno1 = rbno + rlen; 553 nflen1 = flen - rlen; 554 nfbno2 = NULLAGBLOCK; 555 } else if (rbno + rlen == fbno + flen) { 556 nfbno1 = fbno; 557 nflen1 = flen - rlen; 558 nfbno2 = NULLAGBLOCK; 559 } else { 560 nfbno1 = fbno; 561 nflen1 = rbno - fbno; 562 nfbno2 = rbno + rlen; 563 nflen2 = (fbno + flen) - nfbno2; 564 } 565 /* 566 * Delete the entry from the by-size btree. 567 */ 568 if ((error = xfs_btree_delete(cnt_cur, &i))) 569 return error; 570 if (XFS_IS_CORRUPT(mp, i != 1)) 571 return -EFSCORRUPTED; 572 /* 573 * Add new by-size btree entry(s). 574 */ 575 if (nfbno1 != NULLAGBLOCK) { 576 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 577 return error; 578 if (XFS_IS_CORRUPT(mp, i != 0)) 579 return -EFSCORRUPTED; 580 if ((error = xfs_btree_insert(cnt_cur, &i))) 581 return error; 582 if (XFS_IS_CORRUPT(mp, i != 1)) 583 return -EFSCORRUPTED; 584 } 585 if (nfbno2 != NULLAGBLOCK) { 586 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 587 return error; 588 if (XFS_IS_CORRUPT(mp, i != 0)) 589 return -EFSCORRUPTED; 590 if ((error = xfs_btree_insert(cnt_cur, &i))) 591 return error; 592 if (XFS_IS_CORRUPT(mp, i != 1)) 593 return -EFSCORRUPTED; 594 } 595 /* 596 * Fix up the by-block btree entry(s). 597 */ 598 if (nfbno1 == NULLAGBLOCK) { 599 /* 600 * No remaining freespace, just delete the by-block tree entry. 601 */ 602 if ((error = xfs_btree_delete(bno_cur, &i))) 603 return error; 604 if (XFS_IS_CORRUPT(mp, i != 1)) 605 return -EFSCORRUPTED; 606 } else { 607 /* 608 * Update the by-block entry to start later|be shorter. 609 */ 610 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 611 return error; 612 } 613 if (nfbno2 != NULLAGBLOCK) { 614 /* 615 * 2 resulting free entries, need to add one. 616 */ 617 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 618 return error; 619 if (XFS_IS_CORRUPT(mp, i != 0)) 620 return -EFSCORRUPTED; 621 if ((error = xfs_btree_insert(bno_cur, &i))) 622 return error; 623 if (XFS_IS_CORRUPT(mp, i != 1)) 624 return -EFSCORRUPTED; 625 } 626 return 0; 627 } 628 629 /* 630 * We do not verify the AGFL contents against AGF-based index counters here, 631 * even though we may have access to the perag that contains shadow copies. We 632 * don't know if the AGF based counters have been checked, and if they have they 633 * still may be inconsistent because they haven't yet been reset on the first 634 * allocation after the AGF has been read in. 635 * 636 * This means we can only check that all agfl entries contain valid or null 637 * values because we can't reliably determine the active range to exclude 638 * NULLAGBNO as a valid value. 639 * 640 * However, we can't even do that for v4 format filesystems because there are 641 * old versions of mkfs out there that does not initialise the AGFL to known, 642 * verifiable values. HEnce we can't tell the difference between a AGFL block 643 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems. 644 * 645 * As a result, we can only fully validate AGFL block numbers when we pull them 646 * from the freelist in xfs_alloc_get_freelist(). 647 */ 648 static xfs_failaddr_t 649 xfs_agfl_verify( 650 struct xfs_buf *bp) 651 { 652 struct xfs_mount *mp = bp->b_mount; 653 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 654 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 655 int i; 656 657 if (!xfs_has_crc(mp)) 658 return NULL; 659 660 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 661 return __this_address; 662 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 663 return __this_address; 664 /* 665 * during growfs operations, the perag is not fully initialised, 666 * so we can't use it for any useful checking. growfs ensures we can't 667 * use it by using uncached buffers that don't have the perag attached 668 * so we can detect and avoid this problem. 669 */ 670 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) 671 return __this_address; 672 673 for (i = 0; i < xfs_agfl_size(mp); i++) { 674 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 675 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 676 return __this_address; 677 } 678 679 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 680 return __this_address; 681 return NULL; 682 } 683 684 static void 685 xfs_agfl_read_verify( 686 struct xfs_buf *bp) 687 { 688 struct xfs_mount *mp = bp->b_mount; 689 xfs_failaddr_t fa; 690 691 /* 692 * There is no verification of non-crc AGFLs because mkfs does not 693 * initialise the AGFL to zero or NULL. Hence the only valid part of the 694 * AGFL is what the AGF says is active. We can't get to the AGF, so we 695 * can't verify just those entries are valid. 696 */ 697 if (!xfs_has_crc(mp)) 698 return; 699 700 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 701 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 702 else { 703 fa = xfs_agfl_verify(bp); 704 if (fa) 705 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 706 } 707 } 708 709 static void 710 xfs_agfl_write_verify( 711 struct xfs_buf *bp) 712 { 713 struct xfs_mount *mp = bp->b_mount; 714 struct xfs_buf_log_item *bip = bp->b_log_item; 715 xfs_failaddr_t fa; 716 717 /* no verification of non-crc AGFLs */ 718 if (!xfs_has_crc(mp)) 719 return; 720 721 fa = xfs_agfl_verify(bp); 722 if (fa) { 723 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 724 return; 725 } 726 727 if (bip) 728 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 729 730 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 731 } 732 733 const struct xfs_buf_ops xfs_agfl_buf_ops = { 734 .name = "xfs_agfl", 735 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 736 .verify_read = xfs_agfl_read_verify, 737 .verify_write = xfs_agfl_write_verify, 738 .verify_struct = xfs_agfl_verify, 739 }; 740 741 /* 742 * Read in the allocation group free block array. 743 */ 744 int 745 xfs_alloc_read_agfl( 746 struct xfs_perag *pag, 747 struct xfs_trans *tp, 748 struct xfs_buf **bpp) 749 { 750 struct xfs_mount *mp = pag->pag_mount; 751 struct xfs_buf *bp; 752 int error; 753 754 error = xfs_trans_read_buf( 755 mp, tp, mp->m_ddev_targp, 756 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)), 757 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 758 if (error) 759 return error; 760 xfs_buf_set_ref(bp, XFS_AGFL_REF); 761 *bpp = bp; 762 return 0; 763 } 764 765 STATIC int 766 xfs_alloc_update_counters( 767 struct xfs_trans *tp, 768 struct xfs_buf *agbp, 769 long len) 770 { 771 struct xfs_agf *agf = agbp->b_addr; 772 773 agbp->b_pag->pagf_freeblks += len; 774 be32_add_cpu(&agf->agf_freeblks, len); 775 776 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 777 be32_to_cpu(agf->agf_length))) { 778 xfs_buf_mark_corrupt(agbp); 779 return -EFSCORRUPTED; 780 } 781 782 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 783 return 0; 784 } 785 786 /* 787 * Block allocation algorithm and data structures. 788 */ 789 struct xfs_alloc_cur { 790 struct xfs_btree_cur *cnt; /* btree cursors */ 791 struct xfs_btree_cur *bnolt; 792 struct xfs_btree_cur *bnogt; 793 xfs_extlen_t cur_len;/* current search length */ 794 xfs_agblock_t rec_bno;/* extent startblock */ 795 xfs_extlen_t rec_len;/* extent length */ 796 xfs_agblock_t bno; /* alloc bno */ 797 xfs_extlen_t len; /* alloc len */ 798 xfs_extlen_t diff; /* diff from search bno */ 799 unsigned int busy_gen;/* busy state */ 800 bool busy; 801 }; 802 803 /* 804 * Set up cursors, etc. in the extent allocation cursor. This function can be 805 * called multiple times to reset an initialized structure without having to 806 * reallocate cursors. 807 */ 808 static int 809 xfs_alloc_cur_setup( 810 struct xfs_alloc_arg *args, 811 struct xfs_alloc_cur *acur) 812 { 813 int error; 814 int i; 815 816 acur->cur_len = args->maxlen; 817 acur->rec_bno = 0; 818 acur->rec_len = 0; 819 acur->bno = 0; 820 acur->len = 0; 821 acur->diff = -1; 822 acur->busy = false; 823 acur->busy_gen = 0; 824 825 /* 826 * Perform an initial cntbt lookup to check for availability of maxlen 827 * extents. If this fails, we'll return -ENOSPC to signal the caller to 828 * attempt a small allocation. 829 */ 830 if (!acur->cnt) 831 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp, 832 args->agbp, args->pag, XFS_BTNUM_CNT); 833 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 834 if (error) 835 return error; 836 837 /* 838 * Allocate the bnobt left and right search cursors. 839 */ 840 if (!acur->bnolt) 841 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp, 842 args->agbp, args->pag, XFS_BTNUM_BNO); 843 if (!acur->bnogt) 844 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp, 845 args->agbp, args->pag, XFS_BTNUM_BNO); 846 return i == 1 ? 0 : -ENOSPC; 847 } 848 849 static void 850 xfs_alloc_cur_close( 851 struct xfs_alloc_cur *acur, 852 bool error) 853 { 854 int cur_error = XFS_BTREE_NOERROR; 855 856 if (error) 857 cur_error = XFS_BTREE_ERROR; 858 859 if (acur->cnt) 860 xfs_btree_del_cursor(acur->cnt, cur_error); 861 if (acur->bnolt) 862 xfs_btree_del_cursor(acur->bnolt, cur_error); 863 if (acur->bnogt) 864 xfs_btree_del_cursor(acur->bnogt, cur_error); 865 acur->cnt = acur->bnolt = acur->bnogt = NULL; 866 } 867 868 /* 869 * Check an extent for allocation and track the best available candidate in the 870 * allocation structure. The cursor is deactivated if it has entered an out of 871 * range state based on allocation arguments. Optionally return the extent 872 * extent geometry and allocation status if requested by the caller. 873 */ 874 static int 875 xfs_alloc_cur_check( 876 struct xfs_alloc_arg *args, 877 struct xfs_alloc_cur *acur, 878 struct xfs_btree_cur *cur, 879 int *new) 880 { 881 int error, i; 882 xfs_agblock_t bno, bnoa, bnew; 883 xfs_extlen_t len, lena, diff = -1; 884 bool busy; 885 unsigned busy_gen = 0; 886 bool deactivate = false; 887 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO; 888 889 *new = 0; 890 891 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 892 if (error) 893 return error; 894 if (XFS_IS_CORRUPT(args->mp, i != 1)) 895 return -EFSCORRUPTED; 896 897 /* 898 * Check minlen and deactivate a cntbt cursor if out of acceptable size 899 * range (i.e., walking backwards looking for a minlen extent). 900 */ 901 if (len < args->minlen) { 902 deactivate = !isbnobt; 903 goto out; 904 } 905 906 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 907 &busy_gen); 908 acur->busy |= busy; 909 if (busy) 910 acur->busy_gen = busy_gen; 911 /* deactivate a bnobt cursor outside of locality range */ 912 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 913 deactivate = isbnobt; 914 goto out; 915 } 916 if (lena < args->minlen) 917 goto out; 918 919 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 920 xfs_alloc_fix_len(args); 921 ASSERT(args->len >= args->minlen); 922 if (args->len < acur->len) 923 goto out; 924 925 /* 926 * We have an aligned record that satisfies minlen and beats or matches 927 * the candidate extent size. Compare locality for near allocation mode. 928 */ 929 diff = xfs_alloc_compute_diff(args->agbno, args->len, 930 args->alignment, args->datatype, 931 bnoa, lena, &bnew); 932 if (bnew == NULLAGBLOCK) 933 goto out; 934 935 /* 936 * Deactivate a bnobt cursor with worse locality than the current best. 937 */ 938 if (diff > acur->diff) { 939 deactivate = isbnobt; 940 goto out; 941 } 942 943 ASSERT(args->len > acur->len || 944 (args->len == acur->len && diff <= acur->diff)); 945 acur->rec_bno = bno; 946 acur->rec_len = len; 947 acur->bno = bnew; 948 acur->len = args->len; 949 acur->diff = diff; 950 *new = 1; 951 952 /* 953 * We're done if we found a perfect allocation. This only deactivates 954 * the current cursor, but this is just an optimization to terminate a 955 * cntbt search that otherwise runs to the edge of the tree. 956 */ 957 if (acur->diff == 0 && acur->len == args->maxlen) 958 deactivate = true; 959 out: 960 if (deactivate) 961 cur->bc_ag.abt.active = false; 962 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff, 963 *new); 964 return 0; 965 } 966 967 /* 968 * Complete an allocation of a candidate extent. Remove the extent from both 969 * trees and update the args structure. 970 */ 971 STATIC int 972 xfs_alloc_cur_finish( 973 struct xfs_alloc_arg *args, 974 struct xfs_alloc_cur *acur) 975 { 976 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 977 int error; 978 979 ASSERT(acur->cnt && acur->bnolt); 980 ASSERT(acur->bno >= acur->rec_bno); 981 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 982 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length)); 983 984 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 985 acur->rec_len, acur->bno, acur->len, 0); 986 if (error) 987 return error; 988 989 args->agbno = acur->bno; 990 args->len = acur->len; 991 args->wasfromfl = 0; 992 993 trace_xfs_alloc_cur(args); 994 return 0; 995 } 996 997 /* 998 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 999 * bno optimized lookup to search for extents with ideal size and locality. 1000 */ 1001 STATIC int 1002 xfs_alloc_cntbt_iter( 1003 struct xfs_alloc_arg *args, 1004 struct xfs_alloc_cur *acur) 1005 { 1006 struct xfs_btree_cur *cur = acur->cnt; 1007 xfs_agblock_t bno; 1008 xfs_extlen_t len, cur_len; 1009 int error; 1010 int i; 1011 1012 if (!xfs_alloc_cur_active(cur)) 1013 return 0; 1014 1015 /* locality optimized lookup */ 1016 cur_len = acur->cur_len; 1017 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 1018 if (error) 1019 return error; 1020 if (i == 0) 1021 return 0; 1022 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1023 if (error) 1024 return error; 1025 1026 /* check the current record and update search length from it */ 1027 error = xfs_alloc_cur_check(args, acur, cur, &i); 1028 if (error) 1029 return error; 1030 ASSERT(len >= acur->cur_len); 1031 acur->cur_len = len; 1032 1033 /* 1034 * We looked up the first record >= [agbno, len] above. The agbno is a 1035 * secondary key and so the current record may lie just before or after 1036 * agbno. If it is past agbno, check the previous record too so long as 1037 * the length matches as it may be closer. Don't check a smaller record 1038 * because that could deactivate our cursor. 1039 */ 1040 if (bno > args->agbno) { 1041 error = xfs_btree_decrement(cur, 0, &i); 1042 if (!error && i) { 1043 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1044 if (!error && i && len == acur->cur_len) 1045 error = xfs_alloc_cur_check(args, acur, cur, 1046 &i); 1047 } 1048 if (error) 1049 return error; 1050 } 1051 1052 /* 1053 * Increment the search key until we find at least one allocation 1054 * candidate or if the extent we found was larger. Otherwise, double the 1055 * search key to optimize the search. Efficiency is more important here 1056 * than absolute best locality. 1057 */ 1058 cur_len <<= 1; 1059 if (!acur->len || acur->cur_len >= cur_len) 1060 acur->cur_len++; 1061 else 1062 acur->cur_len = cur_len; 1063 1064 return error; 1065 } 1066 1067 /* 1068 * Deal with the case where only small freespaces remain. Either return the 1069 * contents of the last freespace record, or allocate space from the freelist if 1070 * there is nothing in the tree. 1071 */ 1072 STATIC int /* error */ 1073 xfs_alloc_ag_vextent_small( 1074 struct xfs_alloc_arg *args, /* allocation argument structure */ 1075 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1076 xfs_agblock_t *fbnop, /* result block number */ 1077 xfs_extlen_t *flenp, /* result length */ 1078 int *stat) /* status: 0-freelist, 1-normal/none */ 1079 { 1080 struct xfs_agf *agf = args->agbp->b_addr; 1081 int error = 0; 1082 xfs_agblock_t fbno = NULLAGBLOCK; 1083 xfs_extlen_t flen = 0; 1084 int i = 0; 1085 1086 /* 1087 * If a cntbt cursor is provided, try to allocate the largest record in 1088 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1089 * allocation. Make sure to respect minleft even when pulling from the 1090 * freelist. 1091 */ 1092 if (ccur) 1093 error = xfs_btree_decrement(ccur, 0, &i); 1094 if (error) 1095 goto error; 1096 if (i) { 1097 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1098 if (error) 1099 goto error; 1100 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1101 error = -EFSCORRUPTED; 1102 goto error; 1103 } 1104 goto out; 1105 } 1106 1107 if (args->minlen != 1 || args->alignment != 1 || 1108 args->resv == XFS_AG_RESV_AGFL || 1109 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1110 goto out; 1111 1112 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp, 1113 &fbno, 0); 1114 if (error) 1115 goto error; 1116 if (fbno == NULLAGBLOCK) 1117 goto out; 1118 1119 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, 1120 (args->datatype & XFS_ALLOC_NOBUSY)); 1121 1122 if (args->datatype & XFS_ALLOC_USERDATA) { 1123 struct xfs_buf *bp; 1124 1125 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1126 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), 1127 args->mp->m_bsize, 0, &bp); 1128 if (error) 1129 goto error; 1130 xfs_trans_binval(args->tp, bp); 1131 } 1132 *fbnop = args->agbno = fbno; 1133 *flenp = args->len = 1; 1134 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1135 error = -EFSCORRUPTED; 1136 goto error; 1137 } 1138 args->wasfromfl = 1; 1139 trace_xfs_alloc_small_freelist(args); 1140 1141 /* 1142 * If we're feeding an AGFL block to something that doesn't live in the 1143 * free space, we need to clear out the OWN_AG rmap. 1144 */ 1145 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1146 &XFS_RMAP_OINFO_AG); 1147 if (error) 1148 goto error; 1149 1150 *stat = 0; 1151 return 0; 1152 1153 out: 1154 /* 1155 * Can't do the allocation, give up. 1156 */ 1157 if (flen < args->minlen) { 1158 args->agbno = NULLAGBLOCK; 1159 trace_xfs_alloc_small_notenough(args); 1160 flen = 0; 1161 } 1162 *fbnop = fbno; 1163 *flenp = flen; 1164 *stat = 1; 1165 trace_xfs_alloc_small_done(args); 1166 return 0; 1167 1168 error: 1169 trace_xfs_alloc_small_error(args); 1170 return error; 1171 } 1172 1173 /* 1174 * Allocate a variable extent at exactly agno/bno. 1175 * Extent's length (returned in *len) will be between minlen and maxlen, 1176 * and of the form k * prod + mod unless there's nothing that large. 1177 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1178 */ 1179 STATIC int /* error */ 1180 xfs_alloc_ag_vextent_exact( 1181 xfs_alloc_arg_t *args) /* allocation argument structure */ 1182 { 1183 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr; 1184 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1185 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1186 int error; 1187 xfs_agblock_t fbno; /* start block of found extent */ 1188 xfs_extlen_t flen; /* length of found extent */ 1189 xfs_agblock_t tbno; /* start block of busy extent */ 1190 xfs_extlen_t tlen; /* length of busy extent */ 1191 xfs_agblock_t tend; /* end block of busy extent */ 1192 int i; /* success/failure of operation */ 1193 unsigned busy_gen; 1194 1195 ASSERT(args->alignment == 1); 1196 1197 /* 1198 * Allocate/initialize a cursor for the by-number freespace btree. 1199 */ 1200 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1201 args->pag, XFS_BTNUM_BNO); 1202 1203 /* 1204 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1205 * Look for the closest free block <= bno, it must contain bno 1206 * if any free block does. 1207 */ 1208 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1209 if (error) 1210 goto error0; 1211 if (!i) 1212 goto not_found; 1213 1214 /* 1215 * Grab the freespace record. 1216 */ 1217 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1218 if (error) 1219 goto error0; 1220 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1221 error = -EFSCORRUPTED; 1222 goto error0; 1223 } 1224 ASSERT(fbno <= args->agbno); 1225 1226 /* 1227 * Check for overlapping busy extents. 1228 */ 1229 tbno = fbno; 1230 tlen = flen; 1231 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); 1232 1233 /* 1234 * Give up if the start of the extent is busy, or the freespace isn't 1235 * long enough for the minimum request. 1236 */ 1237 if (tbno > args->agbno) 1238 goto not_found; 1239 if (tlen < args->minlen) 1240 goto not_found; 1241 tend = tbno + tlen; 1242 if (tend < args->agbno + args->minlen) 1243 goto not_found; 1244 1245 /* 1246 * End of extent will be smaller of the freespace end and the 1247 * maximal requested end. 1248 * 1249 * Fix the length according to mod and prod if given. 1250 */ 1251 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1252 - args->agbno; 1253 xfs_alloc_fix_len(args); 1254 ASSERT(args->agbno + args->len <= tend); 1255 1256 /* 1257 * We are allocating agbno for args->len 1258 * Allocate/initialize a cursor for the by-size btree. 1259 */ 1260 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1261 args->pag, XFS_BTNUM_CNT); 1262 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length)); 1263 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1264 args->len, XFSA_FIXUP_BNO_OK); 1265 if (error) { 1266 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1267 goto error0; 1268 } 1269 1270 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1271 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1272 1273 args->wasfromfl = 0; 1274 trace_xfs_alloc_exact_done(args); 1275 return 0; 1276 1277 not_found: 1278 /* Didn't find it, return null. */ 1279 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1280 args->agbno = NULLAGBLOCK; 1281 trace_xfs_alloc_exact_notfound(args); 1282 return 0; 1283 1284 error0: 1285 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1286 trace_xfs_alloc_exact_error(args); 1287 return error; 1288 } 1289 1290 /* 1291 * Search a given number of btree records in a given direction. Check each 1292 * record against the good extent we've already found. 1293 */ 1294 STATIC int 1295 xfs_alloc_walk_iter( 1296 struct xfs_alloc_arg *args, 1297 struct xfs_alloc_cur *acur, 1298 struct xfs_btree_cur *cur, 1299 bool increment, 1300 bool find_one, /* quit on first candidate */ 1301 int count, /* rec count (-1 for infinite) */ 1302 int *stat) 1303 { 1304 int error; 1305 int i; 1306 1307 *stat = 0; 1308 1309 /* 1310 * Search so long as the cursor is active or we find a better extent. 1311 * The cursor is deactivated if it extends beyond the range of the 1312 * current allocation candidate. 1313 */ 1314 while (xfs_alloc_cur_active(cur) && count) { 1315 error = xfs_alloc_cur_check(args, acur, cur, &i); 1316 if (error) 1317 return error; 1318 if (i == 1) { 1319 *stat = 1; 1320 if (find_one) 1321 break; 1322 } 1323 if (!xfs_alloc_cur_active(cur)) 1324 break; 1325 1326 if (increment) 1327 error = xfs_btree_increment(cur, 0, &i); 1328 else 1329 error = xfs_btree_decrement(cur, 0, &i); 1330 if (error) 1331 return error; 1332 if (i == 0) 1333 cur->bc_ag.abt.active = false; 1334 1335 if (count > 0) 1336 count--; 1337 } 1338 1339 return 0; 1340 } 1341 1342 /* 1343 * Search the by-bno and by-size btrees in parallel in search of an extent with 1344 * ideal locality based on the NEAR mode ->agbno locality hint. 1345 */ 1346 STATIC int 1347 xfs_alloc_ag_vextent_locality( 1348 struct xfs_alloc_arg *args, 1349 struct xfs_alloc_cur *acur, 1350 int *stat) 1351 { 1352 struct xfs_btree_cur *fbcur = NULL; 1353 int error; 1354 int i; 1355 bool fbinc; 1356 1357 ASSERT(acur->len == 0); 1358 1359 *stat = 0; 1360 1361 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1362 if (error) 1363 return error; 1364 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1365 if (error) 1366 return error; 1367 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1368 if (error) 1369 return error; 1370 1371 /* 1372 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1373 * right and lookup the closest extent to the locality hint for each 1374 * extent size key in the cntbt. The entire search terminates 1375 * immediately on a bnobt hit because that means we've found best case 1376 * locality. Otherwise the search continues until the cntbt cursor runs 1377 * off the end of the tree. If no allocation candidate is found at this 1378 * point, give up on locality, walk backwards from the end of the cntbt 1379 * and take the first available extent. 1380 * 1381 * The parallel tree searches balance each other out to provide fairly 1382 * consistent performance for various situations. The bnobt search can 1383 * have pathological behavior in the worst case scenario of larger 1384 * allocation requests and fragmented free space. On the other hand, the 1385 * bnobt is able to satisfy most smaller allocation requests much more 1386 * quickly than the cntbt. The cntbt search can sift through fragmented 1387 * free space and sets of free extents for larger allocation requests 1388 * more quickly than the bnobt. Since the locality hint is just a hint 1389 * and we don't want to scan the entire bnobt for perfect locality, the 1390 * cntbt search essentially bounds the bnobt search such that we can 1391 * find good enough locality at reasonable performance in most cases. 1392 */ 1393 while (xfs_alloc_cur_active(acur->bnolt) || 1394 xfs_alloc_cur_active(acur->bnogt) || 1395 xfs_alloc_cur_active(acur->cnt)) { 1396 1397 trace_xfs_alloc_cur_lookup(args); 1398 1399 /* 1400 * Search the bnobt left and right. In the case of a hit, finish 1401 * the search in the opposite direction and we're done. 1402 */ 1403 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1404 true, 1, &i); 1405 if (error) 1406 return error; 1407 if (i == 1) { 1408 trace_xfs_alloc_cur_left(args); 1409 fbcur = acur->bnogt; 1410 fbinc = true; 1411 break; 1412 } 1413 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1414 1, &i); 1415 if (error) 1416 return error; 1417 if (i == 1) { 1418 trace_xfs_alloc_cur_right(args); 1419 fbcur = acur->bnolt; 1420 fbinc = false; 1421 break; 1422 } 1423 1424 /* 1425 * Check the extent with best locality based on the current 1426 * extent size search key and keep track of the best candidate. 1427 */ 1428 error = xfs_alloc_cntbt_iter(args, acur); 1429 if (error) 1430 return error; 1431 if (!xfs_alloc_cur_active(acur->cnt)) { 1432 trace_xfs_alloc_cur_lookup_done(args); 1433 break; 1434 } 1435 } 1436 1437 /* 1438 * If we failed to find anything due to busy extents, return empty 1439 * handed so the caller can flush and retry. If no busy extents were 1440 * found, walk backwards from the end of the cntbt as a last resort. 1441 */ 1442 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1443 error = xfs_btree_decrement(acur->cnt, 0, &i); 1444 if (error) 1445 return error; 1446 if (i) { 1447 acur->cnt->bc_ag.abt.active = true; 1448 fbcur = acur->cnt; 1449 fbinc = false; 1450 } 1451 } 1452 1453 /* 1454 * Search in the opposite direction for a better entry in the case of 1455 * a bnobt hit or walk backwards from the end of the cntbt. 1456 */ 1457 if (fbcur) { 1458 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1459 &i); 1460 if (error) 1461 return error; 1462 } 1463 1464 if (acur->len) 1465 *stat = 1; 1466 1467 return 0; 1468 } 1469 1470 /* Check the last block of the cnt btree for allocations. */ 1471 static int 1472 xfs_alloc_ag_vextent_lastblock( 1473 struct xfs_alloc_arg *args, 1474 struct xfs_alloc_cur *acur, 1475 xfs_agblock_t *bno, 1476 xfs_extlen_t *len, 1477 bool *allocated) 1478 { 1479 int error; 1480 int i; 1481 1482 #ifdef DEBUG 1483 /* Randomly don't execute the first algorithm. */ 1484 if (get_random_u32_below(2)) 1485 return 0; 1486 #endif 1487 1488 /* 1489 * Start from the entry that lookup found, sequence through all larger 1490 * free blocks. If we're actually pointing at a record smaller than 1491 * maxlen, go to the start of this block, and skip all those smaller 1492 * than minlen. 1493 */ 1494 if (*len || args->alignment > 1) { 1495 acur->cnt->bc_levels[0].ptr = 1; 1496 do { 1497 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1498 if (error) 1499 return error; 1500 if (XFS_IS_CORRUPT(args->mp, i != 1)) 1501 return -EFSCORRUPTED; 1502 if (*len >= args->minlen) 1503 break; 1504 error = xfs_btree_increment(acur->cnt, 0, &i); 1505 if (error) 1506 return error; 1507 } while (i); 1508 ASSERT(*len >= args->minlen); 1509 if (!i) 1510 return 0; 1511 } 1512 1513 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1514 if (error) 1515 return error; 1516 1517 /* 1518 * It didn't work. We COULD be in a case where there's a good record 1519 * somewhere, so try again. 1520 */ 1521 if (acur->len == 0) 1522 return 0; 1523 1524 trace_xfs_alloc_near_first(args); 1525 *allocated = true; 1526 return 0; 1527 } 1528 1529 /* 1530 * Allocate a variable extent near bno in the allocation group agno. 1531 * Extent's length (returned in len) will be between minlen and maxlen, 1532 * and of the form k * prod + mod unless there's nothing that large. 1533 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1534 */ 1535 STATIC int 1536 xfs_alloc_ag_vextent_near( 1537 struct xfs_alloc_arg *args, 1538 uint32_t alloc_flags) 1539 { 1540 struct xfs_alloc_cur acur = {}; 1541 int error; /* error code */ 1542 int i; /* result code, temporary */ 1543 xfs_agblock_t bno; 1544 xfs_extlen_t len; 1545 1546 /* handle uninitialized agbno range so caller doesn't have to */ 1547 if (!args->min_agbno && !args->max_agbno) 1548 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1549 ASSERT(args->min_agbno <= args->max_agbno); 1550 1551 /* clamp agbno to the range if it's outside */ 1552 if (args->agbno < args->min_agbno) 1553 args->agbno = args->min_agbno; 1554 if (args->agbno > args->max_agbno) 1555 args->agbno = args->max_agbno; 1556 1557 /* Retry once quickly if we find busy extents before blocking. */ 1558 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1559 restart: 1560 len = 0; 1561 1562 /* 1563 * Set up cursors and see if there are any free extents as big as 1564 * maxlen. If not, pick the last entry in the tree unless the tree is 1565 * empty. 1566 */ 1567 error = xfs_alloc_cur_setup(args, &acur); 1568 if (error == -ENOSPC) { 1569 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1570 &len, &i); 1571 if (error) 1572 goto out; 1573 if (i == 0 || len == 0) { 1574 trace_xfs_alloc_near_noentry(args); 1575 goto out; 1576 } 1577 ASSERT(i == 1); 1578 } else if (error) { 1579 goto out; 1580 } 1581 1582 /* 1583 * First algorithm. 1584 * If the requested extent is large wrt the freespaces available 1585 * in this a.g., then the cursor will be pointing to a btree entry 1586 * near the right edge of the tree. If it's in the last btree leaf 1587 * block, then we just examine all the entries in that block 1588 * that are big enough, and pick the best one. 1589 */ 1590 if (xfs_btree_islastblock(acur.cnt, 0)) { 1591 bool allocated = false; 1592 1593 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1594 &allocated); 1595 if (error) 1596 goto out; 1597 if (allocated) 1598 goto alloc_finish; 1599 } 1600 1601 /* 1602 * Second algorithm. Combined cntbt and bnobt search to find ideal 1603 * locality. 1604 */ 1605 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1606 if (error) 1607 goto out; 1608 1609 /* 1610 * If we couldn't get anything, give up. 1611 */ 1612 if (!acur.len) { 1613 if (acur.busy) { 1614 /* 1615 * Our only valid extents must have been busy. Flush and 1616 * retry the allocation again. If we get an -EAGAIN 1617 * error, we're being told that a deadlock was avoided 1618 * and the current transaction needs committing before 1619 * the allocation can be retried. 1620 */ 1621 trace_xfs_alloc_near_busy(args); 1622 error = xfs_extent_busy_flush(args->tp, args->pag, 1623 acur.busy_gen, alloc_flags); 1624 if (error) 1625 goto out; 1626 1627 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1628 goto restart; 1629 } 1630 trace_xfs_alloc_size_neither(args); 1631 args->agbno = NULLAGBLOCK; 1632 goto out; 1633 } 1634 1635 alloc_finish: 1636 /* fix up btrees on a successful allocation */ 1637 error = xfs_alloc_cur_finish(args, &acur); 1638 1639 out: 1640 xfs_alloc_cur_close(&acur, error); 1641 return error; 1642 } 1643 1644 /* 1645 * Allocate a variable extent anywhere in the allocation group agno. 1646 * Extent's length (returned in len) will be between minlen and maxlen, 1647 * and of the form k * prod + mod unless there's nothing that large. 1648 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1649 */ 1650 static int 1651 xfs_alloc_ag_vextent_size( 1652 struct xfs_alloc_arg *args, 1653 uint32_t alloc_flags) 1654 { 1655 struct xfs_agf *agf = args->agbp->b_addr; 1656 struct xfs_btree_cur *bno_cur; 1657 struct xfs_btree_cur *cnt_cur; 1658 xfs_agblock_t fbno; /* start of found freespace */ 1659 xfs_extlen_t flen; /* length of found freespace */ 1660 xfs_agblock_t rbno; /* returned block number */ 1661 xfs_extlen_t rlen; /* length of returned extent */ 1662 bool busy; 1663 unsigned busy_gen; 1664 int error; 1665 int i; 1666 1667 /* Retry once quickly if we find busy extents before blocking. */ 1668 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1669 restart: 1670 /* 1671 * Allocate and initialize a cursor for the by-size btree. 1672 */ 1673 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1674 args->pag, XFS_BTNUM_CNT); 1675 bno_cur = NULL; 1676 1677 /* 1678 * Look for an entry >= maxlen+alignment-1 blocks. 1679 */ 1680 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1681 args->maxlen + args->alignment - 1, &i))) 1682 goto error0; 1683 1684 /* 1685 * If none then we have to settle for a smaller extent. In the case that 1686 * there are no large extents, this will return the last entry in the 1687 * tree unless the tree is empty. In the case that there are only busy 1688 * large extents, this will return the largest small extent unless there 1689 * are no smaller extents available. 1690 */ 1691 if (!i) { 1692 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1693 &fbno, &flen, &i); 1694 if (error) 1695 goto error0; 1696 if (i == 0 || flen == 0) { 1697 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1698 trace_xfs_alloc_size_noentry(args); 1699 return 0; 1700 } 1701 ASSERT(i == 1); 1702 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1703 &rlen, &busy_gen); 1704 } else { 1705 /* 1706 * Search for a non-busy extent that is large enough. 1707 */ 1708 for (;;) { 1709 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1710 if (error) 1711 goto error0; 1712 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1713 error = -EFSCORRUPTED; 1714 goto error0; 1715 } 1716 1717 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1718 &rbno, &rlen, &busy_gen); 1719 1720 if (rlen >= args->maxlen) 1721 break; 1722 1723 error = xfs_btree_increment(cnt_cur, 0, &i); 1724 if (error) 1725 goto error0; 1726 if (i) 1727 continue; 1728 1729 /* 1730 * Our only valid extents must have been busy. Flush and 1731 * retry the allocation again. If we get an -EAGAIN 1732 * error, we're being told that a deadlock was avoided 1733 * and the current transaction needs committing before 1734 * the allocation can be retried. 1735 */ 1736 trace_xfs_alloc_size_busy(args); 1737 error = xfs_extent_busy_flush(args->tp, args->pag, 1738 busy_gen, alloc_flags); 1739 if (error) 1740 goto error0; 1741 1742 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1743 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1744 goto restart; 1745 } 1746 } 1747 1748 /* 1749 * In the first case above, we got the last entry in the 1750 * by-size btree. Now we check to see if the space hits maxlen 1751 * once aligned; if not, we search left for something better. 1752 * This can't happen in the second case above. 1753 */ 1754 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1755 if (XFS_IS_CORRUPT(args->mp, 1756 rlen != 0 && 1757 (rlen > flen || 1758 rbno + rlen > fbno + flen))) { 1759 error = -EFSCORRUPTED; 1760 goto error0; 1761 } 1762 if (rlen < args->maxlen) { 1763 xfs_agblock_t bestfbno; 1764 xfs_extlen_t bestflen; 1765 xfs_agblock_t bestrbno; 1766 xfs_extlen_t bestrlen; 1767 1768 bestrlen = rlen; 1769 bestrbno = rbno; 1770 bestflen = flen; 1771 bestfbno = fbno; 1772 for (;;) { 1773 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1774 goto error0; 1775 if (i == 0) 1776 break; 1777 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1778 &i))) 1779 goto error0; 1780 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1781 error = -EFSCORRUPTED; 1782 goto error0; 1783 } 1784 if (flen < bestrlen) 1785 break; 1786 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1787 &rbno, &rlen, &busy_gen); 1788 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1789 if (XFS_IS_CORRUPT(args->mp, 1790 rlen != 0 && 1791 (rlen > flen || 1792 rbno + rlen > fbno + flen))) { 1793 error = -EFSCORRUPTED; 1794 goto error0; 1795 } 1796 if (rlen > bestrlen) { 1797 bestrlen = rlen; 1798 bestrbno = rbno; 1799 bestflen = flen; 1800 bestfbno = fbno; 1801 if (rlen == args->maxlen) 1802 break; 1803 } 1804 } 1805 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1806 &i))) 1807 goto error0; 1808 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1809 error = -EFSCORRUPTED; 1810 goto error0; 1811 } 1812 rlen = bestrlen; 1813 rbno = bestrbno; 1814 flen = bestflen; 1815 fbno = bestfbno; 1816 } 1817 args->wasfromfl = 0; 1818 /* 1819 * Fix up the length. 1820 */ 1821 args->len = rlen; 1822 if (rlen < args->minlen) { 1823 if (busy) { 1824 /* 1825 * Our only valid extents must have been busy. Flush and 1826 * retry the allocation again. If we get an -EAGAIN 1827 * error, we're being told that a deadlock was avoided 1828 * and the current transaction needs committing before 1829 * the allocation can be retried. 1830 */ 1831 trace_xfs_alloc_size_busy(args); 1832 error = xfs_extent_busy_flush(args->tp, args->pag, 1833 busy_gen, alloc_flags); 1834 if (error) 1835 goto error0; 1836 1837 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1838 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1839 goto restart; 1840 } 1841 goto out_nominleft; 1842 } 1843 xfs_alloc_fix_len(args); 1844 1845 rlen = args->len; 1846 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1847 error = -EFSCORRUPTED; 1848 goto error0; 1849 } 1850 /* 1851 * Allocate and initialize a cursor for the by-block tree. 1852 */ 1853 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, 1854 args->pag, XFS_BTNUM_BNO); 1855 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 1856 rbno, rlen, XFSA_FIXUP_CNT_OK))) 1857 goto error0; 1858 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1859 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1860 cnt_cur = bno_cur = NULL; 1861 args->len = rlen; 1862 args->agbno = rbno; 1863 if (XFS_IS_CORRUPT(args->mp, 1864 args->agbno + args->len > 1865 be32_to_cpu(agf->agf_length))) { 1866 error = -EFSCORRUPTED; 1867 goto error0; 1868 } 1869 trace_xfs_alloc_size_done(args); 1870 return 0; 1871 1872 error0: 1873 trace_xfs_alloc_size_error(args); 1874 if (cnt_cur) 1875 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1876 if (bno_cur) 1877 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1878 return error; 1879 1880 out_nominleft: 1881 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1882 trace_xfs_alloc_size_nominleft(args); 1883 args->agbno = NULLAGBLOCK; 1884 return 0; 1885 } 1886 1887 /* 1888 * Free the extent starting at agno/bno for length. 1889 */ 1890 STATIC int 1891 xfs_free_ag_extent( 1892 struct xfs_trans *tp, 1893 struct xfs_buf *agbp, 1894 xfs_agnumber_t agno, 1895 xfs_agblock_t bno, 1896 xfs_extlen_t len, 1897 const struct xfs_owner_info *oinfo, 1898 enum xfs_ag_resv_type type) 1899 { 1900 struct xfs_mount *mp; 1901 struct xfs_btree_cur *bno_cur; 1902 struct xfs_btree_cur *cnt_cur; 1903 xfs_agblock_t gtbno; /* start of right neighbor */ 1904 xfs_extlen_t gtlen; /* length of right neighbor */ 1905 xfs_agblock_t ltbno; /* start of left neighbor */ 1906 xfs_extlen_t ltlen; /* length of left neighbor */ 1907 xfs_agblock_t nbno; /* new starting block of freesp */ 1908 xfs_extlen_t nlen; /* new length of freespace */ 1909 int haveleft; /* have a left neighbor */ 1910 int haveright; /* have a right neighbor */ 1911 int i; 1912 int error; 1913 struct xfs_perag *pag = agbp->b_pag; 1914 1915 bno_cur = cnt_cur = NULL; 1916 mp = tp->t_mountp; 1917 1918 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 1919 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 1920 if (error) 1921 goto error0; 1922 } 1923 1924 /* 1925 * Allocate and initialize a cursor for the by-block btree. 1926 */ 1927 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO); 1928 /* 1929 * Look for a neighboring block on the left (lower block numbers) 1930 * that is contiguous with this space. 1931 */ 1932 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 1933 goto error0; 1934 if (haveleft) { 1935 /* 1936 * There is a block to our left. 1937 */ 1938 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 1939 goto error0; 1940 if (XFS_IS_CORRUPT(mp, i != 1)) { 1941 error = -EFSCORRUPTED; 1942 goto error0; 1943 } 1944 /* 1945 * It's not contiguous, though. 1946 */ 1947 if (ltbno + ltlen < bno) 1948 haveleft = 0; 1949 else { 1950 /* 1951 * If this failure happens the request to free this 1952 * space was invalid, it's (partly) already free. 1953 * Very bad. 1954 */ 1955 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 1956 error = -EFSCORRUPTED; 1957 goto error0; 1958 } 1959 } 1960 } 1961 /* 1962 * Look for a neighboring block on the right (higher block numbers) 1963 * that is contiguous with this space. 1964 */ 1965 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 1966 goto error0; 1967 if (haveright) { 1968 /* 1969 * There is a block to our right. 1970 */ 1971 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 1972 goto error0; 1973 if (XFS_IS_CORRUPT(mp, i != 1)) { 1974 error = -EFSCORRUPTED; 1975 goto error0; 1976 } 1977 /* 1978 * It's not contiguous, though. 1979 */ 1980 if (bno + len < gtbno) 1981 haveright = 0; 1982 else { 1983 /* 1984 * If this failure happens the request to free this 1985 * space was invalid, it's (partly) already free. 1986 * Very bad. 1987 */ 1988 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 1989 error = -EFSCORRUPTED; 1990 goto error0; 1991 } 1992 } 1993 } 1994 /* 1995 * Now allocate and initialize a cursor for the by-size tree. 1996 */ 1997 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT); 1998 /* 1999 * Have both left and right contiguous neighbors. 2000 * Merge all three into a single free block. 2001 */ 2002 if (haveleft && haveright) { 2003 /* 2004 * Delete the old by-size entry on the left. 2005 */ 2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2007 goto error0; 2008 if (XFS_IS_CORRUPT(mp, i != 1)) { 2009 error = -EFSCORRUPTED; 2010 goto error0; 2011 } 2012 if ((error = xfs_btree_delete(cnt_cur, &i))) 2013 goto error0; 2014 if (XFS_IS_CORRUPT(mp, i != 1)) { 2015 error = -EFSCORRUPTED; 2016 goto error0; 2017 } 2018 /* 2019 * Delete the old by-size entry on the right. 2020 */ 2021 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2022 goto error0; 2023 if (XFS_IS_CORRUPT(mp, i != 1)) { 2024 error = -EFSCORRUPTED; 2025 goto error0; 2026 } 2027 if ((error = xfs_btree_delete(cnt_cur, &i))) 2028 goto error0; 2029 if (XFS_IS_CORRUPT(mp, i != 1)) { 2030 error = -EFSCORRUPTED; 2031 goto error0; 2032 } 2033 /* 2034 * Delete the old by-block entry for the right block. 2035 */ 2036 if ((error = xfs_btree_delete(bno_cur, &i))) 2037 goto error0; 2038 if (XFS_IS_CORRUPT(mp, i != 1)) { 2039 error = -EFSCORRUPTED; 2040 goto error0; 2041 } 2042 /* 2043 * Move the by-block cursor back to the left neighbor. 2044 */ 2045 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2046 goto error0; 2047 if (XFS_IS_CORRUPT(mp, i != 1)) { 2048 error = -EFSCORRUPTED; 2049 goto error0; 2050 } 2051 #ifdef DEBUG 2052 /* 2053 * Check that this is the right record: delete didn't 2054 * mangle the cursor. 2055 */ 2056 { 2057 xfs_agblock_t xxbno; 2058 xfs_extlen_t xxlen; 2059 2060 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2061 &i))) 2062 goto error0; 2063 if (XFS_IS_CORRUPT(mp, 2064 i != 1 || 2065 xxbno != ltbno || 2066 xxlen != ltlen)) { 2067 error = -EFSCORRUPTED; 2068 goto error0; 2069 } 2070 } 2071 #endif 2072 /* 2073 * Update remaining by-block entry to the new, joined block. 2074 */ 2075 nbno = ltbno; 2076 nlen = len + ltlen + gtlen; 2077 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2078 goto error0; 2079 } 2080 /* 2081 * Have only a left contiguous neighbor. 2082 * Merge it together with the new freespace. 2083 */ 2084 else if (haveleft) { 2085 /* 2086 * Delete the old by-size entry on the left. 2087 */ 2088 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2089 goto error0; 2090 if (XFS_IS_CORRUPT(mp, i != 1)) { 2091 error = -EFSCORRUPTED; 2092 goto error0; 2093 } 2094 if ((error = xfs_btree_delete(cnt_cur, &i))) 2095 goto error0; 2096 if (XFS_IS_CORRUPT(mp, i != 1)) { 2097 error = -EFSCORRUPTED; 2098 goto error0; 2099 } 2100 /* 2101 * Back up the by-block cursor to the left neighbor, and 2102 * update its length. 2103 */ 2104 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2105 goto error0; 2106 if (XFS_IS_CORRUPT(mp, i != 1)) { 2107 error = -EFSCORRUPTED; 2108 goto error0; 2109 } 2110 nbno = ltbno; 2111 nlen = len + ltlen; 2112 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2113 goto error0; 2114 } 2115 /* 2116 * Have only a right contiguous neighbor. 2117 * Merge it together with the new freespace. 2118 */ 2119 else if (haveright) { 2120 /* 2121 * Delete the old by-size entry on the right. 2122 */ 2123 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2124 goto error0; 2125 if (XFS_IS_CORRUPT(mp, i != 1)) { 2126 error = -EFSCORRUPTED; 2127 goto error0; 2128 } 2129 if ((error = xfs_btree_delete(cnt_cur, &i))) 2130 goto error0; 2131 if (XFS_IS_CORRUPT(mp, i != 1)) { 2132 error = -EFSCORRUPTED; 2133 goto error0; 2134 } 2135 /* 2136 * Update the starting block and length of the right 2137 * neighbor in the by-block tree. 2138 */ 2139 nbno = bno; 2140 nlen = len + gtlen; 2141 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2142 goto error0; 2143 } 2144 /* 2145 * No contiguous neighbors. 2146 * Insert the new freespace into the by-block tree. 2147 */ 2148 else { 2149 nbno = bno; 2150 nlen = len; 2151 if ((error = xfs_btree_insert(bno_cur, &i))) 2152 goto error0; 2153 if (XFS_IS_CORRUPT(mp, i != 1)) { 2154 error = -EFSCORRUPTED; 2155 goto error0; 2156 } 2157 } 2158 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2159 bno_cur = NULL; 2160 /* 2161 * In all cases we need to insert the new freespace in the by-size tree. 2162 */ 2163 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2164 goto error0; 2165 if (XFS_IS_CORRUPT(mp, i != 0)) { 2166 error = -EFSCORRUPTED; 2167 goto error0; 2168 } 2169 if ((error = xfs_btree_insert(cnt_cur, &i))) 2170 goto error0; 2171 if (XFS_IS_CORRUPT(mp, i != 1)) { 2172 error = -EFSCORRUPTED; 2173 goto error0; 2174 } 2175 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2176 cnt_cur = NULL; 2177 2178 /* 2179 * Update the freespace totals in the ag and superblock. 2180 */ 2181 error = xfs_alloc_update_counters(tp, agbp, len); 2182 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); 2183 if (error) 2184 goto error0; 2185 2186 XFS_STATS_INC(mp, xs_freex); 2187 XFS_STATS_ADD(mp, xs_freeb, len); 2188 2189 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); 2190 2191 return 0; 2192 2193 error0: 2194 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); 2195 if (bno_cur) 2196 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2197 if (cnt_cur) 2198 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2199 return error; 2200 } 2201 2202 /* 2203 * Visible (exported) allocation/free functions. 2204 * Some of these are used just by xfs_alloc_btree.c and this file. 2205 */ 2206 2207 /* 2208 * Compute and fill in value of m_alloc_maxlevels. 2209 */ 2210 void 2211 xfs_alloc_compute_maxlevels( 2212 xfs_mount_t *mp) /* file system mount structure */ 2213 { 2214 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2215 (mp->m_sb.sb_agblocks + 1) / 2); 2216 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2217 } 2218 2219 /* 2220 * Find the length of the longest extent in an AG. The 'need' parameter 2221 * specifies how much space we're going to need for the AGFL and the 2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2223 * other callers. 2224 */ 2225 xfs_extlen_t 2226 xfs_alloc_longest_free_extent( 2227 struct xfs_perag *pag, 2228 xfs_extlen_t need, 2229 xfs_extlen_t reserved) 2230 { 2231 xfs_extlen_t delta = 0; 2232 2233 /* 2234 * If the AGFL needs a recharge, we'll have to subtract that from the 2235 * longest extent. 2236 */ 2237 if (need > pag->pagf_flcount) 2238 delta = need - pag->pagf_flcount; 2239 2240 /* 2241 * If we cannot maintain others' reservations with space from the 2242 * not-longest freesp extents, we'll have to subtract /that/ from 2243 * the longest extent too. 2244 */ 2245 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2246 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2247 2248 /* 2249 * If the longest extent is long enough to satisfy all the 2250 * reservations and AGFL rules in place, we can return this extent. 2251 */ 2252 if (pag->pagf_longest > delta) 2253 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, 2254 pag->pagf_longest - delta); 2255 2256 /* Otherwise, let the caller try for 1 block if there's space. */ 2257 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2258 } 2259 2260 /* 2261 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2262 * return the largest possible minimum length. 2263 */ 2264 unsigned int 2265 xfs_alloc_min_freelist( 2266 struct xfs_mount *mp, 2267 struct xfs_perag *pag) 2268 { 2269 /* AG btrees have at least 1 level. */ 2270 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1}; 2271 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels; 2272 unsigned int min_free; 2273 2274 ASSERT(mp->m_alloc_maxlevels > 0); 2275 2276 /* 2277 * For a btree shorter than the maximum height, the worst case is that 2278 * every level gets split and a new level is added, then while inserting 2279 * another entry to refill the AGFL, every level under the old root gets 2280 * split again. This is: 2281 * 2282 * (full height split reservation) + (AGFL refill split height) 2283 * = (current height + 1) + (current height - 1) 2284 * = (new height) + (new height - 2) 2285 * = 2 * new height - 2 2286 * 2287 * For a btree of maximum height, the worst case is that every level 2288 * under the root gets split, then while inserting another entry to 2289 * refill the AGFL, every level under the root gets split again. This is 2290 * also: 2291 * 2292 * 2 * (current height - 1) 2293 * = 2 * (new height - 1) 2294 * = 2 * new height - 2 2295 */ 2296 2297 /* space needed by-bno freespace btree */ 2298 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1, 2299 mp->m_alloc_maxlevels) * 2 - 2; 2300 /* space needed by-size freespace btree */ 2301 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1, 2302 mp->m_alloc_maxlevels) * 2 - 2; 2303 /* space needed reverse mapping used space btree */ 2304 if (xfs_has_rmapbt(mp)) 2305 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1, 2306 mp->m_rmap_maxlevels) * 2 - 2; 2307 2308 return min_free; 2309 } 2310 2311 /* 2312 * Check if the operation we are fixing up the freelist for should go ahead or 2313 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2314 * is dependent on whether the size and shape of free space available will 2315 * permit the requested allocation to take place. 2316 */ 2317 static bool 2318 xfs_alloc_space_available( 2319 struct xfs_alloc_arg *args, 2320 xfs_extlen_t min_free, 2321 int flags) 2322 { 2323 struct xfs_perag *pag = args->pag; 2324 xfs_extlen_t alloc_len, longest; 2325 xfs_extlen_t reservation; /* blocks that are still reserved */ 2326 int available; 2327 xfs_extlen_t agflcount; 2328 2329 if (flags & XFS_ALLOC_FLAG_FREEING) 2330 return true; 2331 2332 reservation = xfs_ag_resv_needed(pag, args->resv); 2333 2334 /* do we have enough contiguous free space for the allocation? */ 2335 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2336 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2337 if (longest < alloc_len) 2338 return false; 2339 2340 /* 2341 * Do we have enough free space remaining for the allocation? Don't 2342 * account extra agfl blocks because we are about to defer free them, 2343 * making them unavailable until the current transaction commits. 2344 */ 2345 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2346 available = (int)(pag->pagf_freeblks + agflcount - 2347 reservation - min_free - args->minleft); 2348 if (available < (int)max(args->total, alloc_len)) 2349 return false; 2350 2351 /* 2352 * Clamp maxlen to the amount of free space available for the actual 2353 * extent allocation. 2354 */ 2355 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2356 args->maxlen = available; 2357 ASSERT(args->maxlen > 0); 2358 ASSERT(args->maxlen >= args->minlen); 2359 } 2360 2361 return true; 2362 } 2363 2364 int 2365 xfs_free_agfl_block( 2366 struct xfs_trans *tp, 2367 xfs_agnumber_t agno, 2368 xfs_agblock_t agbno, 2369 struct xfs_buf *agbp, 2370 struct xfs_owner_info *oinfo) 2371 { 2372 int error; 2373 struct xfs_buf *bp; 2374 2375 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo, 2376 XFS_AG_RESV_AGFL); 2377 if (error) 2378 return error; 2379 2380 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp, 2381 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno), 2382 tp->t_mountp->m_bsize, 0, &bp); 2383 if (error) 2384 return error; 2385 xfs_trans_binval(tp, bp); 2386 2387 return 0; 2388 } 2389 2390 /* 2391 * Check the agfl fields of the agf for inconsistency or corruption. 2392 * 2393 * The original purpose was to detect an agfl header padding mismatch between 2394 * current and early v5 kernels. This problem manifests as a 1-slot size 2395 * difference between the on-disk flcount and the active [first, last] range of 2396 * a wrapped agfl. 2397 * 2398 * However, we need to use these same checks to catch agfl count corruptions 2399 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either 2400 * way, we need to reset the agfl and warn the user. 2401 * 2402 * Return true if a reset is required before the agfl can be used, false 2403 * otherwise. 2404 */ 2405 static bool 2406 xfs_agfl_needs_reset( 2407 struct xfs_mount *mp, 2408 struct xfs_agf *agf) 2409 { 2410 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2411 uint32_t l = be32_to_cpu(agf->agf_fllast); 2412 uint32_t c = be32_to_cpu(agf->agf_flcount); 2413 int agfl_size = xfs_agfl_size(mp); 2414 int active; 2415 2416 /* 2417 * The agf read verifier catches severe corruption of these fields. 2418 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2419 * the verifier allows it. 2420 */ 2421 if (f >= agfl_size || l >= agfl_size) 2422 return true; 2423 if (c > agfl_size) 2424 return true; 2425 2426 /* 2427 * Check consistency between the on-disk count and the active range. An 2428 * agfl padding mismatch manifests as an inconsistent flcount. 2429 */ 2430 if (c && l >= f) 2431 active = l - f + 1; 2432 else if (c) 2433 active = agfl_size - f + l + 1; 2434 else 2435 active = 0; 2436 2437 return active != c; 2438 } 2439 2440 /* 2441 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2442 * agfl content cannot be trusted. Warn the user that a repair is required to 2443 * recover leaked blocks. 2444 * 2445 * The purpose of this mechanism is to handle filesystems affected by the agfl 2446 * header padding mismatch problem. A reset keeps the filesystem online with a 2447 * relatively minor free space accounting inconsistency rather than suffer the 2448 * inevitable crash from use of an invalid agfl block. 2449 */ 2450 static void 2451 xfs_agfl_reset( 2452 struct xfs_trans *tp, 2453 struct xfs_buf *agbp, 2454 struct xfs_perag *pag) 2455 { 2456 struct xfs_mount *mp = tp->t_mountp; 2457 struct xfs_agf *agf = agbp->b_addr; 2458 2459 ASSERT(xfs_perag_agfl_needs_reset(pag)); 2460 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2461 2462 xfs_warn(mp, 2463 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2464 "Please unmount and run xfs_repair.", 2465 pag->pag_agno, pag->pagf_flcount); 2466 2467 agf->agf_flfirst = 0; 2468 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2469 agf->agf_flcount = 0; 2470 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2471 XFS_AGF_FLCOUNT); 2472 2473 pag->pagf_flcount = 0; 2474 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 2475 } 2476 2477 /* 2478 * Defer an AGFL block free. This is effectively equivalent to 2479 * xfs_free_extent_later() with some special handling particular to AGFL blocks. 2480 * 2481 * Deferring AGFL frees helps prevent log reservation overruns due to too many 2482 * allocation operations in a transaction. AGFL frees are prone to this problem 2483 * because for one they are always freed one at a time. Further, an immediate 2484 * AGFL block free can cause a btree join and require another block free before 2485 * the real allocation can proceed. Deferring the free disconnects freeing up 2486 * the AGFL slot from freeing the block. 2487 */ 2488 static int 2489 xfs_defer_agfl_block( 2490 struct xfs_trans *tp, 2491 xfs_agnumber_t agno, 2492 xfs_agblock_t agbno, 2493 struct xfs_owner_info *oinfo) 2494 { 2495 struct xfs_mount *mp = tp->t_mountp; 2496 struct xfs_extent_free_item *xefi; 2497 xfs_fsblock_t fsbno = XFS_AGB_TO_FSB(mp, agno, agbno); 2498 2499 ASSERT(xfs_extfree_item_cache != NULL); 2500 ASSERT(oinfo != NULL); 2501 2502 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno))) 2503 return -EFSCORRUPTED; 2504 2505 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2506 GFP_KERNEL | __GFP_NOFAIL); 2507 xefi->xefi_startblock = fsbno; 2508 xefi->xefi_blockcount = 1; 2509 xefi->xefi_owner = oinfo->oi_owner; 2510 xefi->xefi_agresv = XFS_AG_RESV_AGFL; 2511 2512 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1); 2513 2514 xfs_extent_free_get_group(mp, xefi); 2515 xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type); 2516 return 0; 2517 } 2518 2519 /* 2520 * Add the extent to the list of extents to be free at transaction end. 2521 * The list is maintained sorted (by block number). 2522 */ 2523 static int 2524 xfs_defer_extent_free( 2525 struct xfs_trans *tp, 2526 xfs_fsblock_t bno, 2527 xfs_filblks_t len, 2528 const struct xfs_owner_info *oinfo, 2529 enum xfs_ag_resv_type type, 2530 bool skip_discard, 2531 struct xfs_defer_pending **dfpp) 2532 { 2533 struct xfs_extent_free_item *xefi; 2534 struct xfs_mount *mp = tp->t_mountp; 2535 #ifdef DEBUG 2536 xfs_agnumber_t agno; 2537 xfs_agblock_t agbno; 2538 2539 ASSERT(bno != NULLFSBLOCK); 2540 ASSERT(len > 0); 2541 ASSERT(len <= XFS_MAX_BMBT_EXTLEN); 2542 ASSERT(!isnullstartblock(bno)); 2543 agno = XFS_FSB_TO_AGNO(mp, bno); 2544 agbno = XFS_FSB_TO_AGBNO(mp, bno); 2545 ASSERT(agno < mp->m_sb.sb_agcount); 2546 ASSERT(agbno < mp->m_sb.sb_agblocks); 2547 ASSERT(len < mp->m_sb.sb_agblocks); 2548 ASSERT(agbno + len <= mp->m_sb.sb_agblocks); 2549 #endif 2550 ASSERT(xfs_extfree_item_cache != NULL); 2551 ASSERT(type != XFS_AG_RESV_AGFL); 2552 2553 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len))) 2554 return -EFSCORRUPTED; 2555 2556 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2557 GFP_KERNEL | __GFP_NOFAIL); 2558 xefi->xefi_startblock = bno; 2559 xefi->xefi_blockcount = (xfs_extlen_t)len; 2560 xefi->xefi_agresv = type; 2561 if (skip_discard) 2562 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2563 if (oinfo) { 2564 ASSERT(oinfo->oi_offset == 0); 2565 2566 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2567 xefi->xefi_flags |= XFS_EFI_ATTR_FORK; 2568 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2569 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2570 xefi->xefi_owner = oinfo->oi_owner; 2571 } else { 2572 xefi->xefi_owner = XFS_RMAP_OWN_NULL; 2573 } 2574 trace_xfs_bmap_free_defer(mp, 2575 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0, 2576 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len); 2577 2578 xfs_extent_free_get_group(mp, xefi); 2579 *dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type); 2580 return 0; 2581 } 2582 2583 int 2584 xfs_free_extent_later( 2585 struct xfs_trans *tp, 2586 xfs_fsblock_t bno, 2587 xfs_filblks_t len, 2588 const struct xfs_owner_info *oinfo, 2589 enum xfs_ag_resv_type type, 2590 bool skip_discard) 2591 { 2592 struct xfs_defer_pending *dontcare = NULL; 2593 2594 return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard, 2595 &dontcare); 2596 } 2597 2598 /* 2599 * Set up automatic freeing of unwritten space in the filesystem. 2600 * 2601 * This function attached a paused deferred extent free item to the 2602 * transaction. Pausing means that the EFI will be logged in the next 2603 * transaction commit, but the pending EFI will not be finished until the 2604 * pending item is unpaused. 2605 * 2606 * If the system goes down after the EFI has been persisted to the log but 2607 * before the pending item is unpaused, log recovery will find the EFI, fail to 2608 * find the EFD, and free the space. 2609 * 2610 * If the pending item is unpaused, the next transaction commit will log an EFD 2611 * without freeing the space. 2612 * 2613 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the 2614 * @args structure are set to the relevant values. 2615 */ 2616 int 2617 xfs_alloc_schedule_autoreap( 2618 const struct xfs_alloc_arg *args, 2619 bool skip_discard, 2620 struct xfs_alloc_autoreap *aarp) 2621 { 2622 int error; 2623 2624 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len, 2625 &args->oinfo, args->resv, skip_discard, &aarp->dfp); 2626 if (error) 2627 return error; 2628 2629 xfs_defer_item_pause(args->tp, aarp->dfp); 2630 return 0; 2631 } 2632 2633 /* 2634 * Cancel automatic freeing of unwritten space in the filesystem. 2635 * 2636 * Earlier, we created a paused deferred extent free item and attached it to 2637 * this transaction so that we could automatically roll back a new space 2638 * allocation if the system went down. Now we want to cancel the paused work 2639 * item by marking the EFI stale so we don't actually free the space, unpausing 2640 * the pending item and logging an EFD. 2641 * 2642 * The caller generally should have already mapped the space into the ondisk 2643 * filesystem. If the reserved space was partially used, the caller must call 2644 * xfs_free_extent_later to create a new EFI to free the unused space. 2645 */ 2646 void 2647 xfs_alloc_cancel_autoreap( 2648 struct xfs_trans *tp, 2649 struct xfs_alloc_autoreap *aarp) 2650 { 2651 struct xfs_defer_pending *dfp = aarp->dfp; 2652 struct xfs_extent_free_item *xefi; 2653 2654 if (!dfp) 2655 return; 2656 2657 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list) 2658 xefi->xefi_flags |= XFS_EFI_CANCELLED; 2659 2660 xfs_defer_item_unpause(tp, dfp); 2661 } 2662 2663 /* 2664 * Commit automatic freeing of unwritten space in the filesystem. 2665 * 2666 * This unpauses an earlier _schedule_autoreap and commits to freeing the 2667 * allocated space. Call this if none of the reserved space was used. 2668 */ 2669 void 2670 xfs_alloc_commit_autoreap( 2671 struct xfs_trans *tp, 2672 struct xfs_alloc_autoreap *aarp) 2673 { 2674 if (aarp->dfp) 2675 xfs_defer_item_unpause(tp, aarp->dfp); 2676 } 2677 2678 #ifdef DEBUG 2679 /* 2680 * Check if an AGF has a free extent record whose length is equal to 2681 * args->minlen. 2682 */ 2683 STATIC int 2684 xfs_exact_minlen_extent_available( 2685 struct xfs_alloc_arg *args, 2686 struct xfs_buf *agbp, 2687 int *stat) 2688 { 2689 struct xfs_btree_cur *cnt_cur; 2690 xfs_agblock_t fbno; 2691 xfs_extlen_t flen; 2692 int error = 0; 2693 2694 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp, 2695 args->pag, XFS_BTNUM_CNT); 2696 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2697 if (error) 2698 goto out; 2699 2700 if (*stat == 0) { 2701 error = -EFSCORRUPTED; 2702 goto out; 2703 } 2704 2705 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2706 if (error) 2707 goto out; 2708 2709 if (*stat == 1 && flen != args->minlen) 2710 *stat = 0; 2711 2712 out: 2713 xfs_btree_del_cursor(cnt_cur, error); 2714 2715 return error; 2716 } 2717 #endif 2718 2719 /* 2720 * Decide whether to use this allocation group for this allocation. 2721 * If so, fix up the btree freelist's size. 2722 */ 2723 int /* error */ 2724 xfs_alloc_fix_freelist( 2725 struct xfs_alloc_arg *args, /* allocation argument structure */ 2726 uint32_t alloc_flags) 2727 { 2728 struct xfs_mount *mp = args->mp; 2729 struct xfs_perag *pag = args->pag; 2730 struct xfs_trans *tp = args->tp; 2731 struct xfs_buf *agbp = NULL; 2732 struct xfs_buf *agflbp = NULL; 2733 struct xfs_alloc_arg targs; /* local allocation arguments */ 2734 xfs_agblock_t bno; /* freelist block */ 2735 xfs_extlen_t need; /* total blocks needed in freelist */ 2736 int error = 0; 2737 2738 /* deferred ops (AGFL block frees) require permanent transactions */ 2739 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2740 2741 if (!xfs_perag_initialised_agf(pag)) { 2742 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2743 if (error) { 2744 /* Couldn't lock the AGF so skip this AG. */ 2745 if (error == -EAGAIN) 2746 error = 0; 2747 goto out_no_agbp; 2748 } 2749 } 2750 2751 /* 2752 * If this is a metadata preferred pag and we are user data then try 2753 * somewhere else if we are not being asked to try harder at this 2754 * point 2755 */ 2756 if (xfs_perag_prefers_metadata(pag) && 2757 (args->datatype & XFS_ALLOC_USERDATA) && 2758 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2759 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING)); 2760 goto out_agbp_relse; 2761 } 2762 2763 need = xfs_alloc_min_freelist(mp, pag); 2764 if (!xfs_alloc_space_available(args, need, alloc_flags | 2765 XFS_ALLOC_FLAG_CHECK)) 2766 goto out_agbp_relse; 2767 2768 /* 2769 * Get the a.g. freespace buffer. 2770 * Can fail if we're not blocking on locks, and it's held. 2771 */ 2772 if (!agbp) { 2773 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2774 if (error) { 2775 /* Couldn't lock the AGF so skip this AG. */ 2776 if (error == -EAGAIN) 2777 error = 0; 2778 goto out_no_agbp; 2779 } 2780 } 2781 2782 /* reset a padding mismatched agfl before final free space check */ 2783 if (xfs_perag_agfl_needs_reset(pag)) 2784 xfs_agfl_reset(tp, agbp, pag); 2785 2786 /* If there isn't enough total space or single-extent, reject it. */ 2787 need = xfs_alloc_min_freelist(mp, pag); 2788 if (!xfs_alloc_space_available(args, need, alloc_flags)) 2789 goto out_agbp_relse; 2790 2791 #ifdef DEBUG 2792 if (args->alloc_minlen_only) { 2793 int stat; 2794 2795 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2796 if (error || !stat) 2797 goto out_agbp_relse; 2798 } 2799 #endif 2800 /* 2801 * Make the freelist shorter if it's too long. 2802 * 2803 * Note that from this point onwards, we will always release the agf and 2804 * agfl buffers on error. This handles the case where we error out and 2805 * the buffers are clean or may not have been joined to the transaction 2806 * and hence need to be released manually. If they have been joined to 2807 * the transaction, then xfs_trans_brelse() will handle them 2808 * appropriately based on the recursion count and dirty state of the 2809 * buffer. 2810 * 2811 * XXX (dgc): When we have lots of free space, does this buy us 2812 * anything other than extra overhead when we need to put more blocks 2813 * back on the free list? Maybe we should only do this when space is 2814 * getting low or the AGFL is more than half full? 2815 * 2816 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2817 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2818 * updating the rmapbt. Both flags are used in xfs_repair while we're 2819 * rebuilding the rmapbt, and neither are used by the kernel. They're 2820 * both required to ensure that rmaps are correctly recorded for the 2821 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2822 * repair/rmap.c in xfsprogs for details. 2823 */ 2824 memset(&targs, 0, sizeof(targs)); 2825 /* struct copy below */ 2826 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP) 2827 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2828 else 2829 targs.oinfo = XFS_RMAP_OINFO_AG; 2830 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) && 2831 pag->pagf_flcount > need) { 2832 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0); 2833 if (error) 2834 goto out_agbp_relse; 2835 2836 /* defer agfl frees */ 2837 error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo); 2838 if (error) 2839 goto out_agbp_relse; 2840 } 2841 2842 targs.tp = tp; 2843 targs.mp = mp; 2844 targs.agbp = agbp; 2845 targs.agno = args->agno; 2846 targs.alignment = targs.minlen = targs.prod = 1; 2847 targs.pag = pag; 2848 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2849 if (error) 2850 goto out_agbp_relse; 2851 2852 /* Make the freelist longer if it's too short. */ 2853 while (pag->pagf_flcount < need) { 2854 targs.agbno = 0; 2855 targs.maxlen = need - pag->pagf_flcount; 2856 targs.resv = XFS_AG_RESV_AGFL; 2857 2858 /* Allocate as many blocks as possible at once. */ 2859 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags); 2860 if (error) 2861 goto out_agflbp_relse; 2862 2863 /* 2864 * Stop if we run out. Won't happen if callers are obeying 2865 * the restrictions correctly. Can happen for free calls 2866 * on a completely full ag. 2867 */ 2868 if (targs.agbno == NULLAGBLOCK) { 2869 if (alloc_flags & XFS_ALLOC_FLAG_FREEING) 2870 break; 2871 goto out_agflbp_relse; 2872 } 2873 2874 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) { 2875 error = xfs_rmap_alloc(tp, agbp, pag, 2876 targs.agbno, targs.len, &targs.oinfo); 2877 if (error) 2878 goto out_agflbp_relse; 2879 } 2880 error = xfs_alloc_update_counters(tp, agbp, 2881 -((long)(targs.len))); 2882 if (error) 2883 goto out_agflbp_relse; 2884 2885 /* 2886 * Put each allocated block on the list. 2887 */ 2888 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 2889 error = xfs_alloc_put_freelist(pag, tp, agbp, 2890 agflbp, bno, 0); 2891 if (error) 2892 goto out_agflbp_relse; 2893 } 2894 } 2895 xfs_trans_brelse(tp, agflbp); 2896 args->agbp = agbp; 2897 return 0; 2898 2899 out_agflbp_relse: 2900 xfs_trans_brelse(tp, agflbp); 2901 out_agbp_relse: 2902 if (agbp) 2903 xfs_trans_brelse(tp, agbp); 2904 out_no_agbp: 2905 args->agbp = NULL; 2906 return error; 2907 } 2908 2909 /* 2910 * Get a block from the freelist. 2911 * Returns with the buffer for the block gotten. 2912 */ 2913 int 2914 xfs_alloc_get_freelist( 2915 struct xfs_perag *pag, 2916 struct xfs_trans *tp, 2917 struct xfs_buf *agbp, 2918 xfs_agblock_t *bnop, 2919 int btreeblk) 2920 { 2921 struct xfs_agf *agf = agbp->b_addr; 2922 struct xfs_buf *agflbp; 2923 xfs_agblock_t bno; 2924 __be32 *agfl_bno; 2925 int error; 2926 uint32_t logflags; 2927 struct xfs_mount *mp = tp->t_mountp; 2928 2929 /* 2930 * Freelist is empty, give up. 2931 */ 2932 if (!agf->agf_flcount) { 2933 *bnop = NULLAGBLOCK; 2934 return 0; 2935 } 2936 /* 2937 * Read the array of free blocks. 2938 */ 2939 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2940 if (error) 2941 return error; 2942 2943 2944 /* 2945 * Get the block number and update the data structures. 2946 */ 2947 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 2948 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 2949 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno))) 2950 return -EFSCORRUPTED; 2951 2952 be32_add_cpu(&agf->agf_flfirst, 1); 2953 xfs_trans_brelse(tp, agflbp); 2954 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 2955 agf->agf_flfirst = 0; 2956 2957 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 2958 be32_add_cpu(&agf->agf_flcount, -1); 2959 pag->pagf_flcount--; 2960 2961 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 2962 if (btreeblk) { 2963 be32_add_cpu(&agf->agf_btreeblks, 1); 2964 pag->pagf_btreeblks++; 2965 logflags |= XFS_AGF_BTREEBLKS; 2966 } 2967 2968 xfs_alloc_log_agf(tp, agbp, logflags); 2969 *bnop = bno; 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * Log the given fields from the agf structure. 2976 */ 2977 void 2978 xfs_alloc_log_agf( 2979 struct xfs_trans *tp, 2980 struct xfs_buf *bp, 2981 uint32_t fields) 2982 { 2983 int first; /* first byte offset */ 2984 int last; /* last byte offset */ 2985 static const short offsets[] = { 2986 offsetof(xfs_agf_t, agf_magicnum), 2987 offsetof(xfs_agf_t, agf_versionnum), 2988 offsetof(xfs_agf_t, agf_seqno), 2989 offsetof(xfs_agf_t, agf_length), 2990 offsetof(xfs_agf_t, agf_roots[0]), 2991 offsetof(xfs_agf_t, agf_levels[0]), 2992 offsetof(xfs_agf_t, agf_flfirst), 2993 offsetof(xfs_agf_t, agf_fllast), 2994 offsetof(xfs_agf_t, agf_flcount), 2995 offsetof(xfs_agf_t, agf_freeblks), 2996 offsetof(xfs_agf_t, agf_longest), 2997 offsetof(xfs_agf_t, agf_btreeblks), 2998 offsetof(xfs_agf_t, agf_uuid), 2999 offsetof(xfs_agf_t, agf_rmap_blocks), 3000 offsetof(xfs_agf_t, agf_refcount_blocks), 3001 offsetof(xfs_agf_t, agf_refcount_root), 3002 offsetof(xfs_agf_t, agf_refcount_level), 3003 /* needed so that we don't log the whole rest of the structure: */ 3004 offsetof(xfs_agf_t, agf_spare64), 3005 sizeof(xfs_agf_t) 3006 }; 3007 3008 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 3009 3010 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 3011 3012 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 3013 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 3014 } 3015 3016 /* 3017 * Put the block on the freelist for the allocation group. 3018 */ 3019 int 3020 xfs_alloc_put_freelist( 3021 struct xfs_perag *pag, 3022 struct xfs_trans *tp, 3023 struct xfs_buf *agbp, 3024 struct xfs_buf *agflbp, 3025 xfs_agblock_t bno, 3026 int btreeblk) 3027 { 3028 struct xfs_mount *mp = tp->t_mountp; 3029 struct xfs_agf *agf = agbp->b_addr; 3030 __be32 *blockp; 3031 int error; 3032 uint32_t logflags; 3033 __be32 *agfl_bno; 3034 int startoff; 3035 3036 if (!agflbp) { 3037 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 3038 if (error) 3039 return error; 3040 } 3041 3042 be32_add_cpu(&agf->agf_fllast, 1); 3043 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 3044 agf->agf_fllast = 0; 3045 3046 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 3047 be32_add_cpu(&agf->agf_flcount, 1); 3048 pag->pagf_flcount++; 3049 3050 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 3051 if (btreeblk) { 3052 be32_add_cpu(&agf->agf_btreeblks, -1); 3053 pag->pagf_btreeblks--; 3054 logflags |= XFS_AGF_BTREEBLKS; 3055 } 3056 3057 xfs_alloc_log_agf(tp, agbp, logflags); 3058 3059 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 3060 3061 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3062 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 3063 *blockp = cpu_to_be32(bno); 3064 startoff = (char *)blockp - (char *)agflbp->b_addr; 3065 3066 xfs_alloc_log_agf(tp, agbp, logflags); 3067 3068 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 3069 xfs_trans_log_buf(tp, agflbp, startoff, 3070 startoff + sizeof(xfs_agblock_t) - 1); 3071 return 0; 3072 } 3073 3074 /* 3075 * Check that this AGF/AGI header's sequence number and length matches the AG 3076 * number and size in fsblocks. 3077 */ 3078 xfs_failaddr_t 3079 xfs_validate_ag_length( 3080 struct xfs_buf *bp, 3081 uint32_t seqno, 3082 uint32_t length) 3083 { 3084 struct xfs_mount *mp = bp->b_mount; 3085 /* 3086 * During growfs operations, the perag is not fully initialised, 3087 * so we can't use it for any useful checking. growfs ensures we can't 3088 * use it by using uncached buffers that don't have the perag attached 3089 * so we can detect and avoid this problem. 3090 */ 3091 if (bp->b_pag && seqno != bp->b_pag->pag_agno) 3092 return __this_address; 3093 3094 /* 3095 * Only the last AG in the filesystem is allowed to be shorter 3096 * than the AG size recorded in the superblock. 3097 */ 3098 if (length != mp->m_sb.sb_agblocks) { 3099 /* 3100 * During growfs, the new last AG can get here before we 3101 * have updated the superblock. Give it a pass on the seqno 3102 * check. 3103 */ 3104 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1) 3105 return __this_address; 3106 if (length < XFS_MIN_AG_BLOCKS) 3107 return __this_address; 3108 if (length > mp->m_sb.sb_agblocks) 3109 return __this_address; 3110 } 3111 3112 return NULL; 3113 } 3114 3115 /* 3116 * Verify the AGF is consistent. 3117 * 3118 * We do not verify the AGFL indexes in the AGF are fully consistent here 3119 * because of issues with variable on-disk structure sizes. Instead, we check 3120 * the agfl indexes for consistency when we initialise the perag from the AGF 3121 * information after a read completes. 3122 * 3123 * If the index is inconsistent, then we mark the perag as needing an AGFL 3124 * reset. The first AGFL update performed then resets the AGFL indexes and 3125 * refills the AGFL with known good free blocks, allowing the filesystem to 3126 * continue operating normally at the cost of a few leaked free space blocks. 3127 */ 3128 static xfs_failaddr_t 3129 xfs_agf_verify( 3130 struct xfs_buf *bp) 3131 { 3132 struct xfs_mount *mp = bp->b_mount; 3133 struct xfs_agf *agf = bp->b_addr; 3134 xfs_failaddr_t fa; 3135 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno); 3136 uint32_t agf_length = be32_to_cpu(agf->agf_length); 3137 3138 if (xfs_has_crc(mp)) { 3139 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 3140 return __this_address; 3141 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 3142 return __this_address; 3143 } 3144 3145 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 3146 return __this_address; 3147 3148 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum))) 3149 return __this_address; 3150 3151 /* 3152 * Both agf_seqno and agf_length need to validated before anything else 3153 * block number related in the AGF or AGFL can be checked. 3154 */ 3155 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length); 3156 if (fa) 3157 return fa; 3158 3159 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp)) 3160 return __this_address; 3161 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp)) 3162 return __this_address; 3163 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp)) 3164 return __this_address; 3165 3166 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 3167 be32_to_cpu(agf->agf_freeblks) > agf_length) 3168 return __this_address; 3169 3170 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 || 3171 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 || 3172 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > 3173 mp->m_alloc_maxlevels || 3174 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > 3175 mp->m_alloc_maxlevels) 3176 return __this_address; 3177 3178 if (xfs_has_lazysbcount(mp) && 3179 be32_to_cpu(agf->agf_btreeblks) > agf_length) 3180 return __this_address; 3181 3182 if (xfs_has_rmapbt(mp)) { 3183 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length) 3184 return __this_address; 3185 3186 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 || 3187 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > 3188 mp->m_rmap_maxlevels) 3189 return __this_address; 3190 } 3191 3192 if (xfs_has_reflink(mp)) { 3193 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length) 3194 return __this_address; 3195 3196 if (be32_to_cpu(agf->agf_refcount_level) < 1 || 3197 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels) 3198 return __this_address; 3199 } 3200 3201 return NULL; 3202 } 3203 3204 static void 3205 xfs_agf_read_verify( 3206 struct xfs_buf *bp) 3207 { 3208 struct xfs_mount *mp = bp->b_mount; 3209 xfs_failaddr_t fa; 3210 3211 if (xfs_has_crc(mp) && 3212 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3213 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3214 else { 3215 fa = xfs_agf_verify(bp); 3216 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3217 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3218 } 3219 } 3220 3221 static void 3222 xfs_agf_write_verify( 3223 struct xfs_buf *bp) 3224 { 3225 struct xfs_mount *mp = bp->b_mount; 3226 struct xfs_buf_log_item *bip = bp->b_log_item; 3227 struct xfs_agf *agf = bp->b_addr; 3228 xfs_failaddr_t fa; 3229 3230 fa = xfs_agf_verify(bp); 3231 if (fa) { 3232 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3233 return; 3234 } 3235 3236 if (!xfs_has_crc(mp)) 3237 return; 3238 3239 if (bip) 3240 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3241 3242 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3243 } 3244 3245 const struct xfs_buf_ops xfs_agf_buf_ops = { 3246 .name = "xfs_agf", 3247 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3248 .verify_read = xfs_agf_read_verify, 3249 .verify_write = xfs_agf_write_verify, 3250 .verify_struct = xfs_agf_verify, 3251 }; 3252 3253 /* 3254 * Read in the allocation group header (free/alloc section). 3255 */ 3256 int 3257 xfs_read_agf( 3258 struct xfs_perag *pag, 3259 struct xfs_trans *tp, 3260 int flags, 3261 struct xfs_buf **agfbpp) 3262 { 3263 struct xfs_mount *mp = pag->pag_mount; 3264 int error; 3265 3266 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno); 3267 3268 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3269 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)), 3270 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops); 3271 if (error) 3272 return error; 3273 3274 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF); 3275 return 0; 3276 } 3277 3278 /* 3279 * Read in the allocation group header (free/alloc section) and initialise the 3280 * perag structure if necessary. If the caller provides @agfbpp, then return the 3281 * locked buffer to the caller, otherwise free it. 3282 */ 3283 int 3284 xfs_alloc_read_agf( 3285 struct xfs_perag *pag, 3286 struct xfs_trans *tp, 3287 int flags, 3288 struct xfs_buf **agfbpp) 3289 { 3290 struct xfs_buf *agfbp; 3291 struct xfs_agf *agf; 3292 int error; 3293 int allocbt_blks; 3294 3295 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno); 3296 3297 /* We don't support trylock when freeing. */ 3298 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3299 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3300 error = xfs_read_agf(pag, tp, 3301 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3302 &agfbp); 3303 if (error) 3304 return error; 3305 3306 agf = agfbp->b_addr; 3307 if (!xfs_perag_initialised_agf(pag)) { 3308 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3309 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3310 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3311 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3312 pag->pagf_levels[XFS_BTNUM_BNOi] = 3313 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); 3314 pag->pagf_levels[XFS_BTNUM_CNTi] = 3315 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); 3316 pag->pagf_levels[XFS_BTNUM_RMAPi] = 3317 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]); 3318 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3319 if (xfs_agfl_needs_reset(pag->pag_mount, agf)) 3320 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3321 else 3322 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3323 3324 /* 3325 * Update the in-core allocbt counter. Filter out the rmapbt 3326 * subset of the btreeblks counter because the rmapbt is managed 3327 * by perag reservation. Subtract one for the rmapbt root block 3328 * because the rmap counter includes it while the btreeblks 3329 * counter only tracks non-root blocks. 3330 */ 3331 allocbt_blks = pag->pagf_btreeblks; 3332 if (xfs_has_rmapbt(pag->pag_mount)) 3333 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3334 if (allocbt_blks > 0) 3335 atomic64_add(allocbt_blks, 3336 &pag->pag_mount->m_allocbt_blks); 3337 3338 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 3339 } 3340 #ifdef DEBUG 3341 else if (!xfs_is_shutdown(pag->pag_mount)) { 3342 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3343 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3344 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3345 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3346 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == 3347 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); 3348 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == 3349 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); 3350 } 3351 #endif 3352 if (agfbpp) 3353 *agfbpp = agfbp; 3354 else 3355 xfs_trans_brelse(tp, agfbp); 3356 return 0; 3357 } 3358 3359 /* 3360 * Pre-proces allocation arguments to set initial state that we don't require 3361 * callers to set up correctly, as well as bounds check the allocation args 3362 * that are set up. 3363 */ 3364 static int 3365 xfs_alloc_vextent_check_args( 3366 struct xfs_alloc_arg *args, 3367 xfs_fsblock_t target, 3368 xfs_agnumber_t *minimum_agno) 3369 { 3370 struct xfs_mount *mp = args->mp; 3371 xfs_agblock_t agsize; 3372 3373 args->fsbno = NULLFSBLOCK; 3374 3375 *minimum_agno = 0; 3376 if (args->tp->t_highest_agno != NULLAGNUMBER) 3377 *minimum_agno = args->tp->t_highest_agno; 3378 3379 /* 3380 * Just fix this up, for the case where the last a.g. is shorter 3381 * (or there's only one a.g.) and the caller couldn't easily figure 3382 * that out (xfs_bmap_alloc). 3383 */ 3384 agsize = mp->m_sb.sb_agblocks; 3385 if (args->maxlen > agsize) 3386 args->maxlen = agsize; 3387 if (args->alignment == 0) 3388 args->alignment = 1; 3389 3390 ASSERT(args->minlen > 0); 3391 ASSERT(args->maxlen > 0); 3392 ASSERT(args->alignment > 0); 3393 ASSERT(args->resv != XFS_AG_RESV_AGFL); 3394 3395 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount); 3396 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize); 3397 ASSERT(args->minlen <= args->maxlen); 3398 ASSERT(args->minlen <= agsize); 3399 ASSERT(args->mod < args->prod); 3400 3401 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount || 3402 XFS_FSB_TO_AGBNO(mp, target) >= agsize || 3403 args->minlen > args->maxlen || args->minlen > agsize || 3404 args->mod >= args->prod) { 3405 trace_xfs_alloc_vextent_badargs(args); 3406 return -ENOSPC; 3407 } 3408 3409 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) { 3410 trace_xfs_alloc_vextent_skip_deadlock(args); 3411 return -ENOSPC; 3412 } 3413 return 0; 3414 3415 } 3416 3417 /* 3418 * Prepare an AG for allocation. If the AG is not prepared to accept the 3419 * allocation, return failure. 3420 * 3421 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are 3422 * modified to hold their own perag references. 3423 */ 3424 static int 3425 xfs_alloc_vextent_prepare_ag( 3426 struct xfs_alloc_arg *args, 3427 uint32_t alloc_flags) 3428 { 3429 bool need_pag = !args->pag; 3430 int error; 3431 3432 if (need_pag) 3433 args->pag = xfs_perag_get(args->mp, args->agno); 3434 3435 args->agbp = NULL; 3436 error = xfs_alloc_fix_freelist(args, alloc_flags); 3437 if (error) { 3438 trace_xfs_alloc_vextent_nofix(args); 3439 if (need_pag) 3440 xfs_perag_put(args->pag); 3441 args->agbno = NULLAGBLOCK; 3442 return error; 3443 } 3444 if (!args->agbp) { 3445 /* cannot allocate in this AG at all */ 3446 trace_xfs_alloc_vextent_noagbp(args); 3447 args->agbno = NULLAGBLOCK; 3448 return 0; 3449 } 3450 args->wasfromfl = 0; 3451 return 0; 3452 } 3453 3454 /* 3455 * Post-process allocation results to account for the allocation if it succeed 3456 * and set the allocated block number correctly for the caller. 3457 * 3458 * XXX: we should really be returning ENOSPC for ENOSPC, not 3459 * hiding it behind a "successful" NULLFSBLOCK allocation. 3460 */ 3461 static int 3462 xfs_alloc_vextent_finish( 3463 struct xfs_alloc_arg *args, 3464 xfs_agnumber_t minimum_agno, 3465 int alloc_error, 3466 bool drop_perag) 3467 { 3468 struct xfs_mount *mp = args->mp; 3469 int error = 0; 3470 3471 /* 3472 * We can end up here with a locked AGF. If we failed, the caller is 3473 * likely going to try to allocate again with different parameters, and 3474 * that can widen the AGs that are searched for free space. If we have 3475 * to do BMBT block allocation, we have to do a new allocation. 3476 * 3477 * Hence leaving this function with the AGF locked opens up potential 3478 * ABBA AGF deadlocks because a future allocation attempt in this 3479 * transaction may attempt to lock a lower number AGF. 3480 * 3481 * We can't release the AGF until the transaction is commited, so at 3482 * this point we must update the "first allocation" tracker to point at 3483 * this AG if the tracker is empty or points to a lower AG. This allows 3484 * the next allocation attempt to be modified appropriately to avoid 3485 * deadlocks. 3486 */ 3487 if (args->agbp && 3488 (args->tp->t_highest_agno == NULLAGNUMBER || 3489 args->agno > minimum_agno)) 3490 args->tp->t_highest_agno = args->agno; 3491 3492 /* 3493 * If the allocation failed with an error or we had an ENOSPC result, 3494 * preserve the returned error whilst also marking the allocation result 3495 * as "no extent allocated". This ensures that callers that fail to 3496 * capture the error will still treat it as a failed allocation. 3497 */ 3498 if (alloc_error || args->agbno == NULLAGBLOCK) { 3499 args->fsbno = NULLFSBLOCK; 3500 error = alloc_error; 3501 goto out_drop_perag; 3502 } 3503 3504 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); 3505 3506 ASSERT(args->len >= args->minlen); 3507 ASSERT(args->len <= args->maxlen); 3508 ASSERT(args->agbno % args->alignment == 0); 3509 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); 3510 3511 /* if not file data, insert new block into the reverse map btree */ 3512 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 3513 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 3514 args->agbno, args->len, &args->oinfo); 3515 if (error) 3516 goto out_drop_perag; 3517 } 3518 3519 if (!args->wasfromfl) { 3520 error = xfs_alloc_update_counters(args->tp, args->agbp, 3521 -((long)(args->len))); 3522 if (error) 3523 goto out_drop_perag; 3524 3525 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno, 3526 args->len)); 3527 } 3528 3529 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 3530 3531 XFS_STATS_INC(mp, xs_allocx); 3532 XFS_STATS_ADD(mp, xs_allocb, args->len); 3533 3534 trace_xfs_alloc_vextent_finish(args); 3535 3536 out_drop_perag: 3537 if (drop_perag && args->pag) { 3538 xfs_perag_rele(args->pag); 3539 args->pag = NULL; 3540 } 3541 return error; 3542 } 3543 3544 /* 3545 * Allocate within a single AG only. This uses a best-fit length algorithm so if 3546 * you need an exact sized allocation without locality constraints, this is the 3547 * fastest way to do it. 3548 * 3549 * Caller is expected to hold a perag reference in args->pag. 3550 */ 3551 int 3552 xfs_alloc_vextent_this_ag( 3553 struct xfs_alloc_arg *args, 3554 xfs_agnumber_t agno) 3555 { 3556 struct xfs_mount *mp = args->mp; 3557 xfs_agnumber_t minimum_agno; 3558 uint32_t alloc_flags = 0; 3559 int error; 3560 3561 ASSERT(args->pag != NULL); 3562 ASSERT(args->pag->pag_agno == agno); 3563 3564 args->agno = agno; 3565 args->agbno = 0; 3566 3567 trace_xfs_alloc_vextent_this_ag(args); 3568 3569 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0), 3570 &minimum_agno); 3571 if (error) { 3572 if (error == -ENOSPC) 3573 return 0; 3574 return error; 3575 } 3576 3577 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3578 if (!error && args->agbp) 3579 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3580 3581 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3582 } 3583 3584 /* 3585 * Iterate all AGs trying to allocate an extent starting from @start_ag. 3586 * 3587 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the 3588 * allocation attempts in @start_agno have locality information. If we fail to 3589 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs 3590 * we attempt to allocation in as there is no locality optimisation possible for 3591 * those allocations. 3592 * 3593 * On return, args->pag may be left referenced if we finish before the "all 3594 * failed" return point. The allocation finish still needs the perag, and 3595 * so the caller will release it once they've finished the allocation. 3596 * 3597 * When we wrap the AG iteration at the end of the filesystem, we have to be 3598 * careful not to wrap into AGs below ones we already have locked in the 3599 * transaction if we are doing a blocking iteration. This will result in an 3600 * out-of-order locking of AGFs and hence can cause deadlocks. 3601 */ 3602 static int 3603 xfs_alloc_vextent_iterate_ags( 3604 struct xfs_alloc_arg *args, 3605 xfs_agnumber_t minimum_agno, 3606 xfs_agnumber_t start_agno, 3607 xfs_agblock_t target_agbno, 3608 uint32_t alloc_flags) 3609 { 3610 struct xfs_mount *mp = args->mp; 3611 xfs_agnumber_t restart_agno = minimum_agno; 3612 xfs_agnumber_t agno; 3613 int error = 0; 3614 3615 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) 3616 restart_agno = 0; 3617 restart: 3618 for_each_perag_wrap_range(mp, start_agno, restart_agno, 3619 mp->m_sb.sb_agcount, agno, args->pag) { 3620 args->agno = agno; 3621 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3622 if (error) 3623 break; 3624 if (!args->agbp) { 3625 trace_xfs_alloc_vextent_loopfailed(args); 3626 continue; 3627 } 3628 3629 /* 3630 * Allocation is supposed to succeed now, so break out of the 3631 * loop regardless of whether we succeed or not. 3632 */ 3633 if (args->agno == start_agno && target_agbno) { 3634 args->agbno = target_agbno; 3635 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3636 } else { 3637 args->agbno = 0; 3638 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3639 } 3640 break; 3641 } 3642 if (error) { 3643 xfs_perag_rele(args->pag); 3644 args->pag = NULL; 3645 return error; 3646 } 3647 if (args->agbp) 3648 return 0; 3649 3650 /* 3651 * We didn't find an AG we can alloation from. If we were given 3652 * constraining flags by the caller, drop them and retry the allocation 3653 * without any constraints being set. 3654 */ 3655 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) { 3656 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK; 3657 restart_agno = minimum_agno; 3658 goto restart; 3659 } 3660 3661 ASSERT(args->pag == NULL); 3662 trace_xfs_alloc_vextent_allfailed(args); 3663 return 0; 3664 } 3665 3666 /* 3667 * Iterate from the AGs from the start AG to the end of the filesystem, trying 3668 * to allocate blocks. It starts with a near allocation attempt in the initial 3669 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap 3670 * back to zero if allowed by previous allocations in this transaction, 3671 * otherwise will wrap back to the start AG and run a second blocking pass to 3672 * the end of the filesystem. 3673 */ 3674 int 3675 xfs_alloc_vextent_start_ag( 3676 struct xfs_alloc_arg *args, 3677 xfs_fsblock_t target) 3678 { 3679 struct xfs_mount *mp = args->mp; 3680 xfs_agnumber_t minimum_agno; 3681 xfs_agnumber_t start_agno; 3682 xfs_agnumber_t rotorstep = xfs_rotorstep; 3683 bool bump_rotor = false; 3684 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3685 int error; 3686 3687 ASSERT(args->pag == NULL); 3688 3689 args->agno = NULLAGNUMBER; 3690 args->agbno = NULLAGBLOCK; 3691 3692 trace_xfs_alloc_vextent_start_ag(args); 3693 3694 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3695 if (error) { 3696 if (error == -ENOSPC) 3697 return 0; 3698 return error; 3699 } 3700 3701 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3702 xfs_is_inode32(mp)) { 3703 target = XFS_AGB_TO_FSB(mp, 3704 ((mp->m_agfrotor / rotorstep) % 3705 mp->m_sb.sb_agcount), 0); 3706 bump_rotor = 1; 3707 } 3708 3709 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3710 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3711 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3712 3713 if (bump_rotor) { 3714 if (args->agno == start_agno) 3715 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3716 (mp->m_sb.sb_agcount * rotorstep); 3717 else 3718 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3719 (mp->m_sb.sb_agcount * rotorstep); 3720 } 3721 3722 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3723 } 3724 3725 /* 3726 * Iterate from the agno indicated via @target through to the end of the 3727 * filesystem attempting blocking allocation. This does not wrap or try a second 3728 * pass, so will not recurse into AGs lower than indicated by the target. 3729 */ 3730 int 3731 xfs_alloc_vextent_first_ag( 3732 struct xfs_alloc_arg *args, 3733 xfs_fsblock_t target) 3734 { 3735 struct xfs_mount *mp = args->mp; 3736 xfs_agnumber_t minimum_agno; 3737 xfs_agnumber_t start_agno; 3738 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3739 int error; 3740 3741 ASSERT(args->pag == NULL); 3742 3743 args->agno = NULLAGNUMBER; 3744 args->agbno = NULLAGBLOCK; 3745 3746 trace_xfs_alloc_vextent_first_ag(args); 3747 3748 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3749 if (error) { 3750 if (error == -ENOSPC) 3751 return 0; 3752 return error; 3753 } 3754 3755 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3756 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3757 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3758 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3759 } 3760 3761 /* 3762 * Allocate at the exact block target or fail. Caller is expected to hold a 3763 * perag reference in args->pag. 3764 */ 3765 int 3766 xfs_alloc_vextent_exact_bno( 3767 struct xfs_alloc_arg *args, 3768 xfs_fsblock_t target) 3769 { 3770 struct xfs_mount *mp = args->mp; 3771 xfs_agnumber_t minimum_agno; 3772 int error; 3773 3774 ASSERT(args->pag != NULL); 3775 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3776 3777 args->agno = XFS_FSB_TO_AGNO(mp, target); 3778 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3779 3780 trace_xfs_alloc_vextent_exact_bno(args); 3781 3782 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3783 if (error) { 3784 if (error == -ENOSPC) 3785 return 0; 3786 return error; 3787 } 3788 3789 error = xfs_alloc_vextent_prepare_ag(args, 0); 3790 if (!error && args->agbp) 3791 error = xfs_alloc_ag_vextent_exact(args); 3792 3793 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3794 } 3795 3796 /* 3797 * Allocate an extent as close to the target as possible. If there are not 3798 * viable candidates in the AG, then fail the allocation. 3799 * 3800 * Caller may or may not have a per-ag reference in args->pag. 3801 */ 3802 int 3803 xfs_alloc_vextent_near_bno( 3804 struct xfs_alloc_arg *args, 3805 xfs_fsblock_t target) 3806 { 3807 struct xfs_mount *mp = args->mp; 3808 xfs_agnumber_t minimum_agno; 3809 bool needs_perag = args->pag == NULL; 3810 uint32_t alloc_flags = 0; 3811 int error; 3812 3813 if (!needs_perag) 3814 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3815 3816 args->agno = XFS_FSB_TO_AGNO(mp, target); 3817 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3818 3819 trace_xfs_alloc_vextent_near_bno(args); 3820 3821 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3822 if (error) { 3823 if (error == -ENOSPC) 3824 return 0; 3825 return error; 3826 } 3827 3828 if (needs_perag) 3829 args->pag = xfs_perag_grab(mp, args->agno); 3830 3831 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3832 if (!error && args->agbp) 3833 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3834 3835 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag); 3836 } 3837 3838 /* Ensure that the freelist is at full capacity. */ 3839 int 3840 xfs_free_extent_fix_freelist( 3841 struct xfs_trans *tp, 3842 struct xfs_perag *pag, 3843 struct xfs_buf **agbp) 3844 { 3845 struct xfs_alloc_arg args; 3846 int error; 3847 3848 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3849 args.tp = tp; 3850 args.mp = tp->t_mountp; 3851 args.agno = pag->pag_agno; 3852 args.pag = pag; 3853 3854 /* 3855 * validate that the block number is legal - the enables us to detect 3856 * and handle a silent filesystem corruption rather than crashing. 3857 */ 3858 if (args.agno >= args.mp->m_sb.sb_agcount) 3859 return -EFSCORRUPTED; 3860 3861 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3862 if (error) 3863 return error; 3864 3865 *agbp = args.agbp; 3866 return 0; 3867 } 3868 3869 /* 3870 * Free an extent. 3871 * Just break up the extent address and hand off to xfs_free_ag_extent 3872 * after fixing up the freelist. 3873 */ 3874 int 3875 __xfs_free_extent( 3876 struct xfs_trans *tp, 3877 struct xfs_perag *pag, 3878 xfs_agblock_t agbno, 3879 xfs_extlen_t len, 3880 const struct xfs_owner_info *oinfo, 3881 enum xfs_ag_resv_type type, 3882 bool skip_discard) 3883 { 3884 struct xfs_mount *mp = tp->t_mountp; 3885 struct xfs_buf *agbp; 3886 struct xfs_agf *agf; 3887 int error; 3888 unsigned int busy_flags = 0; 3889 3890 ASSERT(len != 0); 3891 ASSERT(type != XFS_AG_RESV_AGFL); 3892 3893 if (XFS_TEST_ERROR(false, mp, 3894 XFS_ERRTAG_FREE_EXTENT)) 3895 return -EIO; 3896 3897 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 3898 if (error) 3899 return error; 3900 agf = agbp->b_addr; 3901 3902 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 3903 error = -EFSCORRUPTED; 3904 goto err_release; 3905 } 3906 3907 /* validate the extent size is legal now we have the agf locked */ 3908 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 3909 error = -EFSCORRUPTED; 3910 goto err_release; 3911 } 3912 3913 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo, 3914 type); 3915 if (error) 3916 goto err_release; 3917 3918 if (skip_discard) 3919 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 3920 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); 3921 return 0; 3922 3923 err_release: 3924 xfs_trans_brelse(tp, agbp); 3925 return error; 3926 } 3927 3928 struct xfs_alloc_query_range_info { 3929 xfs_alloc_query_range_fn fn; 3930 void *priv; 3931 }; 3932 3933 /* Format btree record and pass to our callback. */ 3934 STATIC int 3935 xfs_alloc_query_range_helper( 3936 struct xfs_btree_cur *cur, 3937 const union xfs_btree_rec *rec, 3938 void *priv) 3939 { 3940 struct xfs_alloc_query_range_info *query = priv; 3941 struct xfs_alloc_rec_incore irec; 3942 xfs_failaddr_t fa; 3943 3944 xfs_alloc_btrec_to_irec(rec, &irec); 3945 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); 3946 if (fa) 3947 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 3948 3949 return query->fn(cur, &irec, query->priv); 3950 } 3951 3952 /* Find all free space within a given range of blocks. */ 3953 int 3954 xfs_alloc_query_range( 3955 struct xfs_btree_cur *cur, 3956 const struct xfs_alloc_rec_incore *low_rec, 3957 const struct xfs_alloc_rec_incore *high_rec, 3958 xfs_alloc_query_range_fn fn, 3959 void *priv) 3960 { 3961 union xfs_btree_irec low_brec = { .a = *low_rec }; 3962 union xfs_btree_irec high_brec = { .a = *high_rec }; 3963 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn }; 3964 3965 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3966 return xfs_btree_query_range(cur, &low_brec, &high_brec, 3967 xfs_alloc_query_range_helper, &query); 3968 } 3969 3970 /* Find all free space records. */ 3971 int 3972 xfs_alloc_query_all( 3973 struct xfs_btree_cur *cur, 3974 xfs_alloc_query_range_fn fn, 3975 void *priv) 3976 { 3977 struct xfs_alloc_query_range_info query; 3978 3979 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO); 3980 query.priv = priv; 3981 query.fn = fn; 3982 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 3983 } 3984 3985 /* 3986 * Scan part of the keyspace of the free space and tell us if the area has no 3987 * records, is fully mapped by records, or is partially filled. 3988 */ 3989 int 3990 xfs_alloc_has_records( 3991 struct xfs_btree_cur *cur, 3992 xfs_agblock_t bno, 3993 xfs_extlen_t len, 3994 enum xbtree_recpacking *outcome) 3995 { 3996 union xfs_btree_irec low; 3997 union xfs_btree_irec high; 3998 3999 memset(&low, 0, sizeof(low)); 4000 low.a.ar_startblock = bno; 4001 memset(&high, 0xFF, sizeof(high)); 4002 high.a.ar_startblock = bno + len - 1; 4003 4004 return xfs_btree_has_records(cur, &low, &high, NULL, outcome); 4005 } 4006 4007 /* 4008 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 4009 * error code or XFS_ITER_*. 4010 */ 4011 int 4012 xfs_agfl_walk( 4013 struct xfs_mount *mp, 4014 struct xfs_agf *agf, 4015 struct xfs_buf *agflbp, 4016 xfs_agfl_walk_fn walk_fn, 4017 void *priv) 4018 { 4019 __be32 *agfl_bno; 4020 unsigned int i; 4021 int error; 4022 4023 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 4024 i = be32_to_cpu(agf->agf_flfirst); 4025 4026 /* Nothing to walk in an empty AGFL. */ 4027 if (agf->agf_flcount == cpu_to_be32(0)) 4028 return 0; 4029 4030 /* Otherwise, walk from first to last, wrapping as needed. */ 4031 for (;;) { 4032 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 4033 if (error) 4034 return error; 4035 if (i == be32_to_cpu(agf->agf_fllast)) 4036 break; 4037 if (++i == xfs_agfl_size(mp)) 4038 i = 0; 4039 } 4040 4041 return 0; 4042 } 4043 4044 int __init 4045 xfs_extfree_intent_init_cache(void) 4046 { 4047 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 4048 sizeof(struct xfs_extent_free_item), 4049 0, 0, NULL); 4050 4051 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 4052 } 4053 4054 void 4055 xfs_extfree_intent_destroy_cache(void) 4056 { 4057 kmem_cache_destroy(xfs_extfree_item_cache); 4058 xfs_extfree_item_cache = NULL; 4059 } 4060