1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 #include "xfs_health.h" 30 #include "xfs_extfree_item.h" 31 32 struct kmem_cache *xfs_extfree_item_cache; 33 34 struct workqueue_struct *xfs_alloc_wq; 35 36 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 37 38 #define XFSA_FIXUP_BNO_OK 1 39 #define XFSA_FIXUP_CNT_OK 2 40 41 /* 42 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 43 * the beginning of the block for a proper header with the location information 44 * and CRC. 45 */ 46 unsigned int 47 xfs_agfl_size( 48 struct xfs_mount *mp) 49 { 50 unsigned int size = mp->m_sb.sb_sectsize; 51 52 if (xfs_has_crc(mp)) 53 size -= sizeof(struct xfs_agfl); 54 55 return size / sizeof(xfs_agblock_t); 56 } 57 58 unsigned int 59 xfs_refc_block( 60 struct xfs_mount *mp) 61 { 62 if (xfs_has_rmapbt(mp)) 63 return XFS_RMAP_BLOCK(mp) + 1; 64 if (xfs_has_finobt(mp)) 65 return XFS_FIBT_BLOCK(mp) + 1; 66 return XFS_IBT_BLOCK(mp) + 1; 67 } 68 69 xfs_extlen_t 70 xfs_prealloc_blocks( 71 struct xfs_mount *mp) 72 { 73 if (xfs_has_reflink(mp)) 74 return xfs_refc_block(mp) + 1; 75 if (xfs_has_rmapbt(mp)) 76 return XFS_RMAP_BLOCK(mp) + 1; 77 if (xfs_has_finobt(mp)) 78 return XFS_FIBT_BLOCK(mp) + 1; 79 return XFS_IBT_BLOCK(mp) + 1; 80 } 81 82 /* 83 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to 84 * guarantee that we can refill the AGFL prior to allocating space in a nearly 85 * full AG. Although the space described by the free space btrees, the 86 * blocks used by the freesp btrees themselves, and the blocks owned by the 87 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk 88 * free space in the AG drop so low that the free space btrees cannot refill an 89 * empty AGFL up to the minimum level. Rather than grind through empty AGs 90 * until the fs goes down, we subtract this many AG blocks from the incore 91 * fdblocks to ensure user allocation does not overcommit the space the 92 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to 93 * withhold space from xfs_dec_fdblocks, so we do not account for that here. 94 */ 95 #define XFS_ALLOCBT_AGFL_RESERVE 4 96 97 /* 98 * Compute the number of blocks that we set aside to guarantee the ability to 99 * refill the AGFL and handle a full bmap btree split. 100 * 101 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 102 * AGF buffer (PV 947395), we place constraints on the relationship among 103 * actual allocations for data blocks, freelist blocks, and potential file data 104 * bmap btree blocks. However, these restrictions may result in no actual space 105 * allocated for a delayed extent, for example, a data block in a certain AG is 106 * allocated but there is no additional block for the additional bmap btree 107 * block due to a split of the bmap btree of the file. The result of this may 108 * lead to an infinite loop when the file gets flushed to disk and all delayed 109 * extents need to be actually allocated. To get around this, we explicitly set 110 * aside a few blocks which will not be reserved in delayed allocation. 111 * 112 * For each AG, we need to reserve enough blocks to replenish a totally empty 113 * AGFL and 4 more to handle a potential split of the file's bmap btree. 114 */ 115 unsigned int 116 xfs_alloc_set_aside( 117 struct xfs_mount *mp) 118 { 119 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); 120 } 121 122 /* 123 * When deciding how much space to allocate out of an AG, we limit the 124 * allocation maximum size to the size the AG. However, we cannot use all the 125 * blocks in the AG - some are permanently used by metadata. These 126 * blocks are generally: 127 * - the AG superblock, AGF, AGI and AGFL 128 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 129 * the AGI free inode and rmap btree root blocks. 130 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 131 * - the rmapbt root block 132 * 133 * The AG headers are sector sized, so the amount of space they take up is 134 * dependent on filesystem geometry. The others are all single blocks. 135 */ 136 unsigned int 137 xfs_alloc_ag_max_usable( 138 struct xfs_mount *mp) 139 { 140 unsigned int blocks; 141 142 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 143 blocks += XFS_ALLOCBT_AGFL_RESERVE; 144 blocks += 3; /* AGF, AGI btree root blocks */ 145 if (xfs_has_finobt(mp)) 146 blocks++; /* finobt root block */ 147 if (xfs_has_rmapbt(mp)) 148 blocks++; /* rmap root block */ 149 if (xfs_has_reflink(mp)) 150 blocks++; /* refcount root block */ 151 152 return mp->m_sb.sb_agblocks - blocks; 153 } 154 155 156 static int 157 xfs_alloc_lookup( 158 struct xfs_btree_cur *cur, 159 xfs_lookup_t dir, 160 xfs_agblock_t bno, 161 xfs_extlen_t len, 162 int *stat) 163 { 164 int error; 165 166 cur->bc_rec.a.ar_startblock = bno; 167 cur->bc_rec.a.ar_blockcount = len; 168 error = xfs_btree_lookup(cur, dir, stat); 169 if (*stat == 1) 170 cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; 171 else 172 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 173 return error; 174 } 175 176 /* 177 * Lookup the record equal to [bno, len] in the btree given by cur. 178 */ 179 static inline int /* error */ 180 xfs_alloc_lookup_eq( 181 struct xfs_btree_cur *cur, /* btree cursor */ 182 xfs_agblock_t bno, /* starting block of extent */ 183 xfs_extlen_t len, /* length of extent */ 184 int *stat) /* success/failure */ 185 { 186 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat); 187 } 188 189 /* 190 * Lookup the first record greater than or equal to [bno, len] 191 * in the btree given by cur. 192 */ 193 int /* error */ 194 xfs_alloc_lookup_ge( 195 struct xfs_btree_cur *cur, /* btree cursor */ 196 xfs_agblock_t bno, /* starting block of extent */ 197 xfs_extlen_t len, /* length of extent */ 198 int *stat) /* success/failure */ 199 { 200 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat); 201 } 202 203 /* 204 * Lookup the first record less than or equal to [bno, len] 205 * in the btree given by cur. 206 */ 207 int /* error */ 208 xfs_alloc_lookup_le( 209 struct xfs_btree_cur *cur, /* btree cursor */ 210 xfs_agblock_t bno, /* starting block of extent */ 211 xfs_extlen_t len, /* length of extent */ 212 int *stat) /* success/failure */ 213 { 214 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat); 215 } 216 217 static inline bool 218 xfs_alloc_cur_active( 219 struct xfs_btree_cur *cur) 220 { 221 return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE); 222 } 223 224 /* 225 * Update the record referred to by cur to the value given 226 * by [bno, len]. 227 * This either works (return 0) or gets an EFSCORRUPTED error. 228 */ 229 STATIC int /* error */ 230 xfs_alloc_update( 231 struct xfs_btree_cur *cur, /* btree cursor */ 232 xfs_agblock_t bno, /* starting block of extent */ 233 xfs_extlen_t len) /* length of extent */ 234 { 235 union xfs_btree_rec rec; 236 237 rec.alloc.ar_startblock = cpu_to_be32(bno); 238 rec.alloc.ar_blockcount = cpu_to_be32(len); 239 return xfs_btree_update(cur, &rec); 240 } 241 242 /* Convert the ondisk btree record to its incore representation. */ 243 void 244 xfs_alloc_btrec_to_irec( 245 const union xfs_btree_rec *rec, 246 struct xfs_alloc_rec_incore *irec) 247 { 248 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 249 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 250 } 251 252 /* Simple checks for free space records. */ 253 xfs_failaddr_t 254 xfs_alloc_check_irec( 255 struct xfs_perag *pag, 256 const struct xfs_alloc_rec_incore *irec) 257 { 258 if (irec->ar_blockcount == 0) 259 return __this_address; 260 261 /* check for valid extent range, including overflow */ 262 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount)) 263 return __this_address; 264 265 return NULL; 266 } 267 268 static inline int 269 xfs_alloc_complain_bad_rec( 270 struct xfs_btree_cur *cur, 271 xfs_failaddr_t fa, 272 const struct xfs_alloc_rec_incore *irec) 273 { 274 struct xfs_mount *mp = cur->bc_mp; 275 276 xfs_warn(mp, 277 "%sbt record corruption in AG %d detected at %pS!", 278 cur->bc_ops->name, cur->bc_group->xg_gno, fa); 279 xfs_warn(mp, 280 "start block 0x%x block count 0x%x", irec->ar_startblock, 281 irec->ar_blockcount); 282 xfs_btree_mark_sick(cur); 283 return -EFSCORRUPTED; 284 } 285 286 /* 287 * Get the data from the pointed-to record. 288 */ 289 int /* error */ 290 xfs_alloc_get_rec( 291 struct xfs_btree_cur *cur, /* btree cursor */ 292 xfs_agblock_t *bno, /* output: starting block of extent */ 293 xfs_extlen_t *len, /* output: length of extent */ 294 int *stat) /* output: success/failure */ 295 { 296 struct xfs_alloc_rec_incore irec; 297 union xfs_btree_rec *rec; 298 xfs_failaddr_t fa; 299 int error; 300 301 error = xfs_btree_get_rec(cur, &rec, stat); 302 if (error || !(*stat)) 303 return error; 304 305 xfs_alloc_btrec_to_irec(rec, &irec); 306 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec); 307 if (fa) 308 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 309 310 *bno = irec.ar_startblock; 311 *len = irec.ar_blockcount; 312 return 0; 313 } 314 315 /* 316 * Compute aligned version of the found extent. 317 * Takes alignment and min length into account. 318 */ 319 STATIC bool 320 xfs_alloc_compute_aligned( 321 xfs_alloc_arg_t *args, /* allocation argument structure */ 322 xfs_agblock_t foundbno, /* starting block in found extent */ 323 xfs_extlen_t foundlen, /* length in found extent */ 324 xfs_agblock_t *resbno, /* result block number */ 325 xfs_extlen_t *reslen, /* result length */ 326 unsigned *busy_gen) 327 { 328 xfs_agblock_t bno = foundbno; 329 xfs_extlen_t len = foundlen; 330 xfs_extlen_t diff; 331 bool busy; 332 333 /* Trim busy sections out of found extent */ 334 busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen, 335 args->maxlen, &bno, &len, busy_gen); 336 337 /* 338 * If we have a largish extent that happens to start before min_agbno, 339 * see if we can shift it into range... 340 */ 341 if (bno < args->min_agbno && bno + len > args->min_agbno) { 342 diff = args->min_agbno - bno; 343 if (len > diff) { 344 bno += diff; 345 len -= diff; 346 } 347 } 348 349 if (args->alignment > 1 && len >= args->minlen) { 350 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 351 352 diff = aligned_bno - bno; 353 354 *resbno = aligned_bno; 355 *reslen = diff >= len ? 0 : len - diff; 356 } else { 357 *resbno = bno; 358 *reslen = len; 359 } 360 361 return busy; 362 } 363 364 /* 365 * Compute best start block and diff for "near" allocations. 366 * freelen >= wantlen already checked by caller. 367 */ 368 STATIC xfs_extlen_t /* difference value (absolute) */ 369 xfs_alloc_compute_diff( 370 xfs_agblock_t wantbno, /* target starting block */ 371 xfs_extlen_t wantlen, /* target length */ 372 xfs_extlen_t alignment, /* target alignment */ 373 int datatype, /* are we allocating data? */ 374 xfs_agblock_t freebno, /* freespace's starting block */ 375 xfs_extlen_t freelen, /* freespace's length */ 376 xfs_agblock_t *newbnop) /* result: best start block from free */ 377 { 378 xfs_agblock_t freeend; /* end of freespace extent */ 379 xfs_agblock_t newbno1; /* return block number */ 380 xfs_agblock_t newbno2; /* other new block number */ 381 xfs_extlen_t newlen1=0; /* length with newbno1 */ 382 xfs_extlen_t newlen2=0; /* length with newbno2 */ 383 xfs_agblock_t wantend; /* end of target extent */ 384 bool userdata = datatype & XFS_ALLOC_USERDATA; 385 386 ASSERT(freelen >= wantlen); 387 freeend = freebno + freelen; 388 wantend = wantbno + wantlen; 389 /* 390 * We want to allocate from the start of a free extent if it is past 391 * the desired block or if we are allocating user data and the free 392 * extent is before desired block. The second case is there to allow 393 * for contiguous allocation from the remaining free space if the file 394 * grows in the short term. 395 */ 396 if (freebno >= wantbno || (userdata && freeend < wantend)) { 397 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 398 newbno1 = NULLAGBLOCK; 399 } else if (freeend >= wantend && alignment > 1) { 400 newbno1 = roundup(wantbno, alignment); 401 newbno2 = newbno1 - alignment; 402 if (newbno1 >= freeend) 403 newbno1 = NULLAGBLOCK; 404 else 405 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 406 if (newbno2 < freebno) 407 newbno2 = NULLAGBLOCK; 408 else 409 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 410 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 411 if (newlen1 < newlen2 || 412 (newlen1 == newlen2 && 413 XFS_ABSDIFF(newbno1, wantbno) > 414 XFS_ABSDIFF(newbno2, wantbno))) 415 newbno1 = newbno2; 416 } else if (newbno2 != NULLAGBLOCK) 417 newbno1 = newbno2; 418 } else if (freeend >= wantend) { 419 newbno1 = wantbno; 420 } else if (alignment > 1) { 421 newbno1 = roundup(freeend - wantlen, alignment); 422 if (newbno1 > freeend - wantlen && 423 newbno1 - alignment >= freebno) 424 newbno1 -= alignment; 425 else if (newbno1 >= freeend) 426 newbno1 = NULLAGBLOCK; 427 } else 428 newbno1 = freeend - wantlen; 429 *newbnop = newbno1; 430 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 431 } 432 433 /* 434 * Fix up the length, based on mod and prod. 435 * len should be k * prod + mod for some k. 436 * If len is too small it is returned unchanged. 437 * If len hits maxlen it is left alone. 438 */ 439 STATIC void 440 xfs_alloc_fix_len( 441 xfs_alloc_arg_t *args) /* allocation argument structure */ 442 { 443 xfs_extlen_t k; 444 xfs_extlen_t rlen; 445 446 ASSERT(args->mod < args->prod); 447 rlen = args->len; 448 ASSERT(rlen >= args->minlen); 449 ASSERT(rlen <= args->maxlen); 450 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 451 (args->mod == 0 && rlen < args->prod)) 452 return; 453 k = rlen % args->prod; 454 if (k == args->mod) 455 return; 456 if (k > args->mod) 457 rlen = rlen - (k - args->mod); 458 else 459 rlen = rlen - args->prod + (args->mod - k); 460 /* casts to (int) catch length underflows */ 461 if ((int)rlen < (int)args->minlen) 462 return; 463 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 464 ASSERT(rlen % args->prod == args->mod); 465 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 466 rlen + args->minleft); 467 args->len = rlen; 468 } 469 470 /* 471 * Determine if the cursor points to the block that contains the right-most 472 * block of records in the by-count btree. This block contains the largest 473 * contiguous free extent in the AG, so if we modify a record in this block we 474 * need to call xfs_alloc_fixup_longest() once the modifications are done to 475 * ensure the agf->agf_longest field is kept up to date with the longest free 476 * extent tracked by the by-count btree. 477 */ 478 static bool 479 xfs_alloc_cursor_at_lastrec( 480 struct xfs_btree_cur *cnt_cur) 481 { 482 struct xfs_btree_block *block; 483 union xfs_btree_ptr ptr; 484 struct xfs_buf *bp; 485 486 block = xfs_btree_get_block(cnt_cur, 0, &bp); 487 488 xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB); 489 return xfs_btree_ptr_is_null(cnt_cur, &ptr); 490 } 491 492 /* 493 * Find the rightmost record of the cntbt, and return the longest free space 494 * recorded in it. Simply set both the block number and the length to their 495 * maximum values before searching. 496 */ 497 static int 498 xfs_cntbt_longest( 499 struct xfs_btree_cur *cnt_cur, 500 xfs_extlen_t *longest) 501 { 502 struct xfs_alloc_rec_incore irec; 503 union xfs_btree_rec *rec; 504 int stat = 0; 505 int error; 506 507 memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec)); 508 error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat); 509 if (error) 510 return error; 511 if (!stat) { 512 /* totally empty tree */ 513 *longest = 0; 514 return 0; 515 } 516 517 error = xfs_btree_get_rec(cnt_cur, &rec, &stat); 518 if (error) 519 return error; 520 if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) { 521 xfs_btree_mark_sick(cnt_cur); 522 return -EFSCORRUPTED; 523 } 524 525 xfs_alloc_btrec_to_irec(rec, &irec); 526 *longest = irec.ar_blockcount; 527 return 0; 528 } 529 530 /* 531 * Update the longest contiguous free extent in the AG from the by-count cursor 532 * that is passed to us. This should be done at the end of any allocation or 533 * freeing operation that touches the longest extent in the btree. 534 * 535 * Needing to update the longest extent can be determined by calling 536 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record 537 * modification but before the modification begins. 538 */ 539 static int 540 xfs_alloc_fixup_longest( 541 struct xfs_btree_cur *cnt_cur) 542 { 543 struct xfs_perag *pag = to_perag(cnt_cur->bc_group); 544 struct xfs_buf *bp = cnt_cur->bc_ag.agbp; 545 struct xfs_agf *agf = bp->b_addr; 546 xfs_extlen_t longest = 0; 547 int error; 548 549 /* Lookup last rec in order to update AGF. */ 550 error = xfs_cntbt_longest(cnt_cur, &longest); 551 if (error) 552 return error; 553 554 pag->pagf_longest = longest; 555 agf->agf_longest = cpu_to_be32(pag->pagf_longest); 556 xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST); 557 558 return 0; 559 } 560 561 /* 562 * Update the two btrees, logically removing from freespace the extent 563 * starting at rbno, rlen blocks. The extent is contained within the 564 * actual (current) free extent fbno for flen blocks. 565 * Flags are passed in indicating whether the cursors are set to the 566 * relevant records. 567 */ 568 STATIC int /* error code */ 569 xfs_alloc_fixup_trees( 570 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 571 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 572 xfs_agblock_t fbno, /* starting block of free extent */ 573 xfs_extlen_t flen, /* length of free extent */ 574 xfs_agblock_t rbno, /* starting block of returned extent */ 575 xfs_extlen_t rlen, /* length of returned extent */ 576 int flags) /* flags, XFSA_FIXUP_... */ 577 { 578 int error; /* error code */ 579 int i; /* operation results */ 580 xfs_agblock_t nfbno1; /* first new free startblock */ 581 xfs_agblock_t nfbno2; /* second new free startblock */ 582 xfs_extlen_t nflen1=0; /* first new free length */ 583 xfs_extlen_t nflen2=0; /* second new free length */ 584 struct xfs_mount *mp; 585 bool fixup_longest = false; 586 587 mp = cnt_cur->bc_mp; 588 589 /* 590 * Look up the record in the by-size tree if necessary. 591 */ 592 if (flags & XFSA_FIXUP_CNT_OK) { 593 #ifdef DEBUG 594 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 595 return error; 596 if (XFS_IS_CORRUPT(mp, 597 i != 1 || 598 nfbno1 != fbno || 599 nflen1 != flen)) { 600 xfs_btree_mark_sick(cnt_cur); 601 return -EFSCORRUPTED; 602 } 603 #endif 604 } else { 605 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 606 return error; 607 if (XFS_IS_CORRUPT(mp, i != 1)) { 608 xfs_btree_mark_sick(cnt_cur); 609 return -EFSCORRUPTED; 610 } 611 } 612 /* 613 * Look up the record in the by-block tree if necessary. 614 */ 615 if (flags & XFSA_FIXUP_BNO_OK) { 616 #ifdef DEBUG 617 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 618 return error; 619 if (XFS_IS_CORRUPT(mp, 620 i != 1 || 621 nfbno1 != fbno || 622 nflen1 != flen)) { 623 xfs_btree_mark_sick(bno_cur); 624 return -EFSCORRUPTED; 625 } 626 #endif 627 } else { 628 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 629 return error; 630 if (XFS_IS_CORRUPT(mp, i != 1)) { 631 xfs_btree_mark_sick(bno_cur); 632 return -EFSCORRUPTED; 633 } 634 } 635 636 #ifdef DEBUG 637 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 638 struct xfs_btree_block *bnoblock; 639 struct xfs_btree_block *cntblock; 640 641 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 642 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 643 644 if (XFS_IS_CORRUPT(mp, 645 bnoblock->bb_numrecs != 646 cntblock->bb_numrecs)) { 647 xfs_btree_mark_sick(bno_cur); 648 return -EFSCORRUPTED; 649 } 650 } 651 #endif 652 653 /* 654 * Deal with all four cases: the allocated record is contained 655 * within the freespace record, so we can have new freespace 656 * at either (or both) end, or no freespace remaining. 657 */ 658 if (rbno == fbno && rlen == flen) 659 nfbno1 = nfbno2 = NULLAGBLOCK; 660 else if (rbno == fbno) { 661 nfbno1 = rbno + rlen; 662 nflen1 = flen - rlen; 663 nfbno2 = NULLAGBLOCK; 664 } else if (rbno + rlen == fbno + flen) { 665 nfbno1 = fbno; 666 nflen1 = flen - rlen; 667 nfbno2 = NULLAGBLOCK; 668 } else { 669 nfbno1 = fbno; 670 nflen1 = rbno - fbno; 671 nfbno2 = rbno + rlen; 672 nflen2 = (fbno + flen) - nfbno2; 673 } 674 675 if (xfs_alloc_cursor_at_lastrec(cnt_cur)) 676 fixup_longest = true; 677 678 /* 679 * Delete the entry from the by-size btree. 680 */ 681 if ((error = xfs_btree_delete(cnt_cur, &i))) 682 return error; 683 if (XFS_IS_CORRUPT(mp, i != 1)) { 684 xfs_btree_mark_sick(cnt_cur); 685 return -EFSCORRUPTED; 686 } 687 /* 688 * Add new by-size btree entry(s). 689 */ 690 if (nfbno1 != NULLAGBLOCK) { 691 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 692 return error; 693 if (XFS_IS_CORRUPT(mp, i != 0)) { 694 xfs_btree_mark_sick(cnt_cur); 695 return -EFSCORRUPTED; 696 } 697 if ((error = xfs_btree_insert(cnt_cur, &i))) 698 return error; 699 if (XFS_IS_CORRUPT(mp, i != 1)) { 700 xfs_btree_mark_sick(cnt_cur); 701 return -EFSCORRUPTED; 702 } 703 } 704 if (nfbno2 != NULLAGBLOCK) { 705 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 706 return error; 707 if (XFS_IS_CORRUPT(mp, i != 0)) { 708 xfs_btree_mark_sick(cnt_cur); 709 return -EFSCORRUPTED; 710 } 711 if ((error = xfs_btree_insert(cnt_cur, &i))) 712 return error; 713 if (XFS_IS_CORRUPT(mp, i != 1)) { 714 xfs_btree_mark_sick(cnt_cur); 715 return -EFSCORRUPTED; 716 } 717 } 718 /* 719 * Fix up the by-block btree entry(s). 720 */ 721 if (nfbno1 == NULLAGBLOCK) { 722 /* 723 * No remaining freespace, just delete the by-block tree entry. 724 */ 725 if ((error = xfs_btree_delete(bno_cur, &i))) 726 return error; 727 if (XFS_IS_CORRUPT(mp, i != 1)) { 728 xfs_btree_mark_sick(bno_cur); 729 return -EFSCORRUPTED; 730 } 731 } else { 732 /* 733 * Update the by-block entry to start later|be shorter. 734 */ 735 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 736 return error; 737 } 738 if (nfbno2 != NULLAGBLOCK) { 739 /* 740 * 2 resulting free entries, need to add one. 741 */ 742 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 743 return error; 744 if (XFS_IS_CORRUPT(mp, i != 0)) { 745 xfs_btree_mark_sick(bno_cur); 746 return -EFSCORRUPTED; 747 } 748 if ((error = xfs_btree_insert(bno_cur, &i))) 749 return error; 750 if (XFS_IS_CORRUPT(mp, i != 1)) { 751 xfs_btree_mark_sick(bno_cur); 752 return -EFSCORRUPTED; 753 } 754 } 755 756 if (fixup_longest) 757 return xfs_alloc_fixup_longest(cnt_cur); 758 759 return 0; 760 } 761 762 /* 763 * We do not verify the AGFL contents against AGF-based index counters here, 764 * even though we may have access to the perag that contains shadow copies. We 765 * don't know if the AGF based counters have been checked, and if they have they 766 * still may be inconsistent because they haven't yet been reset on the first 767 * allocation after the AGF has been read in. 768 * 769 * This means we can only check that all agfl entries contain valid or null 770 * values because we can't reliably determine the active range to exclude 771 * NULLAGBNO as a valid value. 772 * 773 * However, we can't even do that for v4 format filesystems because there are 774 * old versions of mkfs out there that does not initialise the AGFL to known, 775 * verifiable values. HEnce we can't tell the difference between a AGFL block 776 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems. 777 * 778 * As a result, we can only fully validate AGFL block numbers when we pull them 779 * from the freelist in xfs_alloc_get_freelist(). 780 */ 781 static xfs_failaddr_t 782 xfs_agfl_verify( 783 struct xfs_buf *bp) 784 { 785 struct xfs_mount *mp = bp->b_mount; 786 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 787 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 788 int i; 789 790 if (!xfs_has_crc(mp)) 791 return NULL; 792 793 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 794 return __this_address; 795 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 796 return __this_address; 797 /* 798 * during growfs operations, the perag is not fully initialised, 799 * so we can't use it for any useful checking. growfs ensures we can't 800 * use it by using uncached buffers that don't have the perag attached 801 * so we can detect and avoid this problem. 802 */ 803 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag))) 804 return __this_address; 805 806 for (i = 0; i < xfs_agfl_size(mp); i++) { 807 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 808 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 809 return __this_address; 810 } 811 812 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 813 return __this_address; 814 return NULL; 815 } 816 817 static void 818 xfs_agfl_read_verify( 819 struct xfs_buf *bp) 820 { 821 struct xfs_mount *mp = bp->b_mount; 822 xfs_failaddr_t fa; 823 824 /* 825 * There is no verification of non-crc AGFLs because mkfs does not 826 * initialise the AGFL to zero or NULL. Hence the only valid part of the 827 * AGFL is what the AGF says is active. We can't get to the AGF, so we 828 * can't verify just those entries are valid. 829 */ 830 if (!xfs_has_crc(mp)) 831 return; 832 833 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 834 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 835 else { 836 fa = xfs_agfl_verify(bp); 837 if (fa) 838 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 839 } 840 } 841 842 static void 843 xfs_agfl_write_verify( 844 struct xfs_buf *bp) 845 { 846 struct xfs_mount *mp = bp->b_mount; 847 struct xfs_buf_log_item *bip = bp->b_log_item; 848 xfs_failaddr_t fa; 849 850 /* no verification of non-crc AGFLs */ 851 if (!xfs_has_crc(mp)) 852 return; 853 854 fa = xfs_agfl_verify(bp); 855 if (fa) { 856 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 857 return; 858 } 859 860 if (bip) 861 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 862 863 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 864 } 865 866 const struct xfs_buf_ops xfs_agfl_buf_ops = { 867 .name = "xfs_agfl", 868 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 869 .verify_read = xfs_agfl_read_verify, 870 .verify_write = xfs_agfl_write_verify, 871 .verify_struct = xfs_agfl_verify, 872 }; 873 874 /* 875 * Read in the allocation group free block array. 876 */ 877 int 878 xfs_alloc_read_agfl( 879 struct xfs_perag *pag, 880 struct xfs_trans *tp, 881 struct xfs_buf **bpp) 882 { 883 struct xfs_mount *mp = pag_mount(pag); 884 struct xfs_buf *bp; 885 int error; 886 887 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 888 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)), 889 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 890 if (xfs_metadata_is_sick(error)) 891 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL); 892 if (error) 893 return error; 894 xfs_buf_set_ref(bp, XFS_AGFL_REF); 895 *bpp = bp; 896 return 0; 897 } 898 899 STATIC int 900 xfs_alloc_update_counters( 901 struct xfs_trans *tp, 902 struct xfs_buf *agbp, 903 long len) 904 { 905 struct xfs_agf *agf = agbp->b_addr; 906 907 agbp->b_pag->pagf_freeblks += len; 908 be32_add_cpu(&agf->agf_freeblks, len); 909 910 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 911 be32_to_cpu(agf->agf_length))) { 912 xfs_buf_mark_corrupt(agbp); 913 xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF); 914 return -EFSCORRUPTED; 915 } 916 917 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 918 return 0; 919 } 920 921 /* 922 * Block allocation algorithm and data structures. 923 */ 924 struct xfs_alloc_cur { 925 struct xfs_btree_cur *cnt; /* btree cursors */ 926 struct xfs_btree_cur *bnolt; 927 struct xfs_btree_cur *bnogt; 928 xfs_extlen_t cur_len;/* current search length */ 929 xfs_agblock_t rec_bno;/* extent startblock */ 930 xfs_extlen_t rec_len;/* extent length */ 931 xfs_agblock_t bno; /* alloc bno */ 932 xfs_extlen_t len; /* alloc len */ 933 xfs_extlen_t diff; /* diff from search bno */ 934 unsigned int busy_gen;/* busy state */ 935 bool busy; 936 }; 937 938 /* 939 * Set up cursors, etc. in the extent allocation cursor. This function can be 940 * called multiple times to reset an initialized structure without having to 941 * reallocate cursors. 942 */ 943 static int 944 xfs_alloc_cur_setup( 945 struct xfs_alloc_arg *args, 946 struct xfs_alloc_cur *acur) 947 { 948 int error; 949 int i; 950 951 acur->cur_len = args->maxlen; 952 acur->rec_bno = 0; 953 acur->rec_len = 0; 954 acur->bno = 0; 955 acur->len = 0; 956 acur->diff = -1; 957 acur->busy = false; 958 acur->busy_gen = 0; 959 960 /* 961 * Perform an initial cntbt lookup to check for availability of maxlen 962 * extents. If this fails, we'll return -ENOSPC to signal the caller to 963 * attempt a small allocation. 964 */ 965 if (!acur->cnt) 966 acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp, 967 args->agbp, args->pag); 968 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 969 if (error) 970 return error; 971 972 /* 973 * Allocate the bnobt left and right search cursors. 974 */ 975 if (!acur->bnolt) 976 acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp, 977 args->agbp, args->pag); 978 if (!acur->bnogt) 979 acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp, 980 args->agbp, args->pag); 981 return i == 1 ? 0 : -ENOSPC; 982 } 983 984 static void 985 xfs_alloc_cur_close( 986 struct xfs_alloc_cur *acur, 987 bool error) 988 { 989 int cur_error = XFS_BTREE_NOERROR; 990 991 if (error) 992 cur_error = XFS_BTREE_ERROR; 993 994 if (acur->cnt) 995 xfs_btree_del_cursor(acur->cnt, cur_error); 996 if (acur->bnolt) 997 xfs_btree_del_cursor(acur->bnolt, cur_error); 998 if (acur->bnogt) 999 xfs_btree_del_cursor(acur->bnogt, cur_error); 1000 acur->cnt = acur->bnolt = acur->bnogt = NULL; 1001 } 1002 1003 /* 1004 * Check an extent for allocation and track the best available candidate in the 1005 * allocation structure. The cursor is deactivated if it has entered an out of 1006 * range state based on allocation arguments. Optionally return the extent 1007 * extent geometry and allocation status if requested by the caller. 1008 */ 1009 static int 1010 xfs_alloc_cur_check( 1011 struct xfs_alloc_arg *args, 1012 struct xfs_alloc_cur *acur, 1013 struct xfs_btree_cur *cur, 1014 int *new) 1015 { 1016 int error, i; 1017 xfs_agblock_t bno, bnoa, bnew; 1018 xfs_extlen_t len, lena, diff = -1; 1019 bool busy; 1020 unsigned busy_gen = 0; 1021 bool deactivate = false; 1022 bool isbnobt = xfs_btree_is_bno(cur->bc_ops); 1023 1024 *new = 0; 1025 1026 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1027 if (error) 1028 return error; 1029 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1030 xfs_btree_mark_sick(cur); 1031 return -EFSCORRUPTED; 1032 } 1033 1034 /* 1035 * Check minlen and deactivate a cntbt cursor if out of acceptable size 1036 * range (i.e., walking backwards looking for a minlen extent). 1037 */ 1038 if (len < args->minlen) { 1039 deactivate = !isbnobt; 1040 goto out; 1041 } 1042 1043 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 1044 &busy_gen); 1045 acur->busy |= busy; 1046 if (busy) 1047 acur->busy_gen = busy_gen; 1048 /* deactivate a bnobt cursor outside of locality range */ 1049 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 1050 deactivate = isbnobt; 1051 goto out; 1052 } 1053 if (lena < args->minlen) 1054 goto out; 1055 1056 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 1057 xfs_alloc_fix_len(args); 1058 ASSERT(args->len >= args->minlen); 1059 if (args->len < acur->len) 1060 goto out; 1061 1062 /* 1063 * We have an aligned record that satisfies minlen and beats or matches 1064 * the candidate extent size. Compare locality for near allocation mode. 1065 */ 1066 diff = xfs_alloc_compute_diff(args->agbno, args->len, 1067 args->alignment, args->datatype, 1068 bnoa, lena, &bnew); 1069 if (bnew == NULLAGBLOCK) 1070 goto out; 1071 1072 /* 1073 * Deactivate a bnobt cursor with worse locality than the current best. 1074 */ 1075 if (diff > acur->diff) { 1076 deactivate = isbnobt; 1077 goto out; 1078 } 1079 1080 ASSERT(args->len > acur->len || 1081 (args->len == acur->len && diff <= acur->diff)); 1082 acur->rec_bno = bno; 1083 acur->rec_len = len; 1084 acur->bno = bnew; 1085 acur->len = args->len; 1086 acur->diff = diff; 1087 *new = 1; 1088 1089 /* 1090 * We're done if we found a perfect allocation. This only deactivates 1091 * the current cursor, but this is just an optimization to terminate a 1092 * cntbt search that otherwise runs to the edge of the tree. 1093 */ 1094 if (acur->diff == 0 && acur->len == args->maxlen) 1095 deactivate = true; 1096 out: 1097 if (deactivate) 1098 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 1099 trace_xfs_alloc_cur_check(cur, bno, len, diff, *new); 1100 return 0; 1101 } 1102 1103 /* 1104 * Complete an allocation of a candidate extent. Remove the extent from both 1105 * trees and update the args structure. 1106 */ 1107 STATIC int 1108 xfs_alloc_cur_finish( 1109 struct xfs_alloc_arg *args, 1110 struct xfs_alloc_cur *acur) 1111 { 1112 int error; 1113 1114 ASSERT(acur->cnt && acur->bnolt); 1115 ASSERT(acur->bno >= acur->rec_bno); 1116 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 1117 ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len)); 1118 1119 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 1120 acur->rec_len, acur->bno, acur->len, 0); 1121 if (error) 1122 return error; 1123 1124 args->agbno = acur->bno; 1125 args->len = acur->len; 1126 args->wasfromfl = 0; 1127 1128 trace_xfs_alloc_cur(args); 1129 return 0; 1130 } 1131 1132 /* 1133 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 1134 * bno optimized lookup to search for extents with ideal size and locality. 1135 */ 1136 STATIC int 1137 xfs_alloc_cntbt_iter( 1138 struct xfs_alloc_arg *args, 1139 struct xfs_alloc_cur *acur) 1140 { 1141 struct xfs_btree_cur *cur = acur->cnt; 1142 xfs_agblock_t bno; 1143 xfs_extlen_t len, cur_len; 1144 int error; 1145 int i; 1146 1147 if (!xfs_alloc_cur_active(cur)) 1148 return 0; 1149 1150 /* locality optimized lookup */ 1151 cur_len = acur->cur_len; 1152 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 1153 if (error) 1154 return error; 1155 if (i == 0) 1156 return 0; 1157 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1158 if (error) 1159 return error; 1160 1161 /* check the current record and update search length from it */ 1162 error = xfs_alloc_cur_check(args, acur, cur, &i); 1163 if (error) 1164 return error; 1165 ASSERT(len >= acur->cur_len); 1166 acur->cur_len = len; 1167 1168 /* 1169 * We looked up the first record >= [agbno, len] above. The agbno is a 1170 * secondary key and so the current record may lie just before or after 1171 * agbno. If it is past agbno, check the previous record too so long as 1172 * the length matches as it may be closer. Don't check a smaller record 1173 * because that could deactivate our cursor. 1174 */ 1175 if (bno > args->agbno) { 1176 error = xfs_btree_decrement(cur, 0, &i); 1177 if (!error && i) { 1178 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1179 if (!error && i && len == acur->cur_len) 1180 error = xfs_alloc_cur_check(args, acur, cur, 1181 &i); 1182 } 1183 if (error) 1184 return error; 1185 } 1186 1187 /* 1188 * Increment the search key until we find at least one allocation 1189 * candidate or if the extent we found was larger. Otherwise, double the 1190 * search key to optimize the search. Efficiency is more important here 1191 * than absolute best locality. 1192 */ 1193 cur_len <<= 1; 1194 if (!acur->len || acur->cur_len >= cur_len) 1195 acur->cur_len++; 1196 else 1197 acur->cur_len = cur_len; 1198 1199 return error; 1200 } 1201 1202 /* 1203 * Deal with the case where only small freespaces remain. Either return the 1204 * contents of the last freespace record, or allocate space from the freelist if 1205 * there is nothing in the tree. 1206 */ 1207 STATIC int /* error */ 1208 xfs_alloc_ag_vextent_small( 1209 struct xfs_alloc_arg *args, /* allocation argument structure */ 1210 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1211 xfs_agblock_t *fbnop, /* result block number */ 1212 xfs_extlen_t *flenp, /* result length */ 1213 int *stat) /* status: 0-freelist, 1-normal/none */ 1214 { 1215 struct xfs_agf *agf = args->agbp->b_addr; 1216 int error = 0; 1217 xfs_agblock_t fbno = NULLAGBLOCK; 1218 xfs_extlen_t flen = 0; 1219 int i = 0; 1220 1221 /* 1222 * If a cntbt cursor is provided, try to allocate the largest record in 1223 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1224 * allocation. Make sure to respect minleft even when pulling from the 1225 * freelist. 1226 */ 1227 if (ccur) 1228 error = xfs_btree_decrement(ccur, 0, &i); 1229 if (error) 1230 goto error; 1231 if (i) { 1232 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1233 if (error) 1234 goto error; 1235 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1236 xfs_btree_mark_sick(ccur); 1237 error = -EFSCORRUPTED; 1238 goto error; 1239 } 1240 goto out; 1241 } 1242 1243 if (args->minlen != 1 || args->alignment != 1 || 1244 args->resv == XFS_AG_RESV_AGFL || 1245 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1246 goto out; 1247 1248 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp, 1249 &fbno, 0); 1250 if (error) 1251 goto error; 1252 if (fbno == NULLAGBLOCK) 1253 goto out; 1254 1255 xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1, 1256 (args->datatype & XFS_ALLOC_NOBUSY)); 1257 1258 if (args->datatype & XFS_ALLOC_USERDATA) { 1259 struct xfs_buf *bp; 1260 1261 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1262 xfs_agbno_to_daddr(args->pag, fbno), 1263 args->mp->m_bsize, 0, &bp); 1264 if (error) 1265 goto error; 1266 xfs_trans_binval(args->tp, bp); 1267 } 1268 *fbnop = args->agbno = fbno; 1269 *flenp = args->len = 1; 1270 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1271 xfs_btree_mark_sick(ccur); 1272 error = -EFSCORRUPTED; 1273 goto error; 1274 } 1275 args->wasfromfl = 1; 1276 trace_xfs_alloc_small_freelist(args); 1277 1278 /* 1279 * If we're feeding an AGFL block to something that doesn't live in the 1280 * free space, we need to clear out the OWN_AG rmap. 1281 */ 1282 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1283 &XFS_RMAP_OINFO_AG); 1284 if (error) 1285 goto error; 1286 1287 *stat = 0; 1288 return 0; 1289 1290 out: 1291 /* 1292 * Can't do the allocation, give up. 1293 */ 1294 if (flen < args->minlen) { 1295 args->agbno = NULLAGBLOCK; 1296 trace_xfs_alloc_small_notenough(args); 1297 flen = 0; 1298 } 1299 *fbnop = fbno; 1300 *flenp = flen; 1301 *stat = 1; 1302 trace_xfs_alloc_small_done(args); 1303 return 0; 1304 1305 error: 1306 trace_xfs_alloc_small_error(args); 1307 return error; 1308 } 1309 1310 /* 1311 * Allocate a variable extent at exactly agno/bno. 1312 * Extent's length (returned in *len) will be between minlen and maxlen, 1313 * and of the form k * prod + mod unless there's nothing that large. 1314 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1315 */ 1316 STATIC int /* error */ 1317 xfs_alloc_ag_vextent_exact( 1318 xfs_alloc_arg_t *args) /* allocation argument structure */ 1319 { 1320 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1321 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1322 int error; 1323 xfs_agblock_t fbno; /* start block of found extent */ 1324 xfs_extlen_t flen; /* length of found extent */ 1325 xfs_agblock_t tbno; /* start block of busy extent */ 1326 xfs_extlen_t tlen; /* length of busy extent */ 1327 xfs_agblock_t tend; /* end block of busy extent */ 1328 int i; /* success/failure of operation */ 1329 unsigned busy_gen; 1330 1331 ASSERT(args->alignment == 1); 1332 1333 /* 1334 * Allocate/initialize a cursor for the by-number freespace btree. 1335 */ 1336 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, 1337 args->pag); 1338 1339 /* 1340 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1341 * Look for the closest free block <= bno, it must contain bno 1342 * if any free block does. 1343 */ 1344 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1345 if (error) 1346 goto error0; 1347 if (!i) 1348 goto not_found; 1349 1350 /* 1351 * Grab the freespace record. 1352 */ 1353 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1354 if (error) 1355 goto error0; 1356 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1357 xfs_btree_mark_sick(bno_cur); 1358 error = -EFSCORRUPTED; 1359 goto error0; 1360 } 1361 ASSERT(fbno <= args->agbno); 1362 1363 /* 1364 * Check for overlapping busy extents. 1365 */ 1366 tbno = fbno; 1367 tlen = flen; 1368 xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen, 1369 &tbno, &tlen, &busy_gen); 1370 1371 /* 1372 * Give up if the start of the extent is busy, or the freespace isn't 1373 * long enough for the minimum request. 1374 */ 1375 if (tbno > args->agbno) 1376 goto not_found; 1377 if (tlen < args->minlen) 1378 goto not_found; 1379 tend = tbno + tlen; 1380 if (tend < args->agbno + args->minlen) 1381 goto not_found; 1382 1383 /* 1384 * End of extent will be smaller of the freespace end and the 1385 * maximal requested end. 1386 * 1387 * Fix the length according to mod and prod if given. 1388 */ 1389 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1390 - args->agbno; 1391 xfs_alloc_fix_len(args); 1392 ASSERT(args->agbno + args->len <= tend); 1393 1394 /* 1395 * We are allocating agbno for args->len 1396 * Allocate/initialize a cursor for the by-size btree. 1397 */ 1398 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, 1399 args->pag); 1400 ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len)); 1401 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1402 args->len, XFSA_FIXUP_BNO_OK); 1403 if (error) { 1404 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1405 goto error0; 1406 } 1407 1408 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1409 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1410 1411 args->wasfromfl = 0; 1412 trace_xfs_alloc_exact_done(args); 1413 return 0; 1414 1415 not_found: 1416 /* Didn't find it, return null. */ 1417 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1418 args->agbno = NULLAGBLOCK; 1419 trace_xfs_alloc_exact_notfound(args); 1420 return 0; 1421 1422 error0: 1423 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1424 trace_xfs_alloc_exact_error(args); 1425 return error; 1426 } 1427 1428 /* 1429 * Search a given number of btree records in a given direction. Check each 1430 * record against the good extent we've already found. 1431 */ 1432 STATIC int 1433 xfs_alloc_walk_iter( 1434 struct xfs_alloc_arg *args, 1435 struct xfs_alloc_cur *acur, 1436 struct xfs_btree_cur *cur, 1437 bool increment, 1438 bool find_one, /* quit on first candidate */ 1439 int count, /* rec count (-1 for infinite) */ 1440 int *stat) 1441 { 1442 int error; 1443 int i; 1444 1445 *stat = 0; 1446 1447 /* 1448 * Search so long as the cursor is active or we find a better extent. 1449 * The cursor is deactivated if it extends beyond the range of the 1450 * current allocation candidate. 1451 */ 1452 while (xfs_alloc_cur_active(cur) && count) { 1453 error = xfs_alloc_cur_check(args, acur, cur, &i); 1454 if (error) 1455 return error; 1456 if (i == 1) { 1457 *stat = 1; 1458 if (find_one) 1459 break; 1460 } 1461 if (!xfs_alloc_cur_active(cur)) 1462 break; 1463 1464 if (increment) 1465 error = xfs_btree_increment(cur, 0, &i); 1466 else 1467 error = xfs_btree_decrement(cur, 0, &i); 1468 if (error) 1469 return error; 1470 if (i == 0) 1471 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 1472 1473 if (count > 0) 1474 count--; 1475 } 1476 1477 return 0; 1478 } 1479 1480 /* 1481 * Search the by-bno and by-size btrees in parallel in search of an extent with 1482 * ideal locality based on the NEAR mode ->agbno locality hint. 1483 */ 1484 STATIC int 1485 xfs_alloc_ag_vextent_locality( 1486 struct xfs_alloc_arg *args, 1487 struct xfs_alloc_cur *acur, 1488 int *stat) 1489 { 1490 struct xfs_btree_cur *fbcur = NULL; 1491 int error; 1492 int i; 1493 bool fbinc; 1494 1495 ASSERT(acur->len == 0); 1496 1497 *stat = 0; 1498 1499 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1500 if (error) 1501 return error; 1502 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1503 if (error) 1504 return error; 1505 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1506 if (error) 1507 return error; 1508 1509 /* 1510 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1511 * right and lookup the closest extent to the locality hint for each 1512 * extent size key in the cntbt. The entire search terminates 1513 * immediately on a bnobt hit because that means we've found best case 1514 * locality. Otherwise the search continues until the cntbt cursor runs 1515 * off the end of the tree. If no allocation candidate is found at this 1516 * point, give up on locality, walk backwards from the end of the cntbt 1517 * and take the first available extent. 1518 * 1519 * The parallel tree searches balance each other out to provide fairly 1520 * consistent performance for various situations. The bnobt search can 1521 * have pathological behavior in the worst case scenario of larger 1522 * allocation requests and fragmented free space. On the other hand, the 1523 * bnobt is able to satisfy most smaller allocation requests much more 1524 * quickly than the cntbt. The cntbt search can sift through fragmented 1525 * free space and sets of free extents for larger allocation requests 1526 * more quickly than the bnobt. Since the locality hint is just a hint 1527 * and we don't want to scan the entire bnobt for perfect locality, the 1528 * cntbt search essentially bounds the bnobt search such that we can 1529 * find good enough locality at reasonable performance in most cases. 1530 */ 1531 while (xfs_alloc_cur_active(acur->bnolt) || 1532 xfs_alloc_cur_active(acur->bnogt) || 1533 xfs_alloc_cur_active(acur->cnt)) { 1534 1535 trace_xfs_alloc_cur_lookup(args); 1536 1537 /* 1538 * Search the bnobt left and right. In the case of a hit, finish 1539 * the search in the opposite direction and we're done. 1540 */ 1541 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1542 true, 1, &i); 1543 if (error) 1544 return error; 1545 if (i == 1) { 1546 trace_xfs_alloc_cur_left(args); 1547 fbcur = acur->bnogt; 1548 fbinc = true; 1549 break; 1550 } 1551 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1552 1, &i); 1553 if (error) 1554 return error; 1555 if (i == 1) { 1556 trace_xfs_alloc_cur_right(args); 1557 fbcur = acur->bnolt; 1558 fbinc = false; 1559 break; 1560 } 1561 1562 /* 1563 * Check the extent with best locality based on the current 1564 * extent size search key and keep track of the best candidate. 1565 */ 1566 error = xfs_alloc_cntbt_iter(args, acur); 1567 if (error) 1568 return error; 1569 if (!xfs_alloc_cur_active(acur->cnt)) { 1570 trace_xfs_alloc_cur_lookup_done(args); 1571 break; 1572 } 1573 } 1574 1575 /* 1576 * If we failed to find anything due to busy extents, return empty 1577 * handed so the caller can flush and retry. If no busy extents were 1578 * found, walk backwards from the end of the cntbt as a last resort. 1579 */ 1580 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1581 error = xfs_btree_decrement(acur->cnt, 0, &i); 1582 if (error) 1583 return error; 1584 if (i) { 1585 acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; 1586 fbcur = acur->cnt; 1587 fbinc = false; 1588 } 1589 } 1590 1591 /* 1592 * Search in the opposite direction for a better entry in the case of 1593 * a bnobt hit or walk backwards from the end of the cntbt. 1594 */ 1595 if (fbcur) { 1596 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1597 &i); 1598 if (error) 1599 return error; 1600 } 1601 1602 if (acur->len) 1603 *stat = 1; 1604 1605 return 0; 1606 } 1607 1608 /* Check the last block of the cnt btree for allocations. */ 1609 static int 1610 xfs_alloc_ag_vextent_lastblock( 1611 struct xfs_alloc_arg *args, 1612 struct xfs_alloc_cur *acur, 1613 xfs_agblock_t *bno, 1614 xfs_extlen_t *len, 1615 bool *allocated) 1616 { 1617 int error; 1618 int i; 1619 1620 #ifdef DEBUG 1621 /* Randomly don't execute the first algorithm. */ 1622 if (get_random_u32_below(2)) 1623 return 0; 1624 #endif 1625 1626 /* 1627 * Start from the entry that lookup found, sequence through all larger 1628 * free blocks. If we're actually pointing at a record smaller than 1629 * maxlen, go to the start of this block, and skip all those smaller 1630 * than minlen. 1631 */ 1632 if (*len || args->alignment > 1) { 1633 acur->cnt->bc_levels[0].ptr = 1; 1634 do { 1635 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1636 if (error) 1637 return error; 1638 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1639 xfs_btree_mark_sick(acur->cnt); 1640 return -EFSCORRUPTED; 1641 } 1642 if (*len >= args->minlen) 1643 break; 1644 error = xfs_btree_increment(acur->cnt, 0, &i); 1645 if (error) 1646 return error; 1647 } while (i); 1648 ASSERT(*len >= args->minlen); 1649 if (!i) 1650 return 0; 1651 } 1652 1653 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1654 if (error) 1655 return error; 1656 1657 /* 1658 * It didn't work. We COULD be in a case where there's a good record 1659 * somewhere, so try again. 1660 */ 1661 if (acur->len == 0) 1662 return 0; 1663 1664 trace_xfs_alloc_near_first(args); 1665 *allocated = true; 1666 return 0; 1667 } 1668 1669 /* 1670 * Allocate a variable extent near bno in the allocation group agno. 1671 * Extent's length (returned in len) will be between minlen and maxlen, 1672 * and of the form k * prod + mod unless there's nothing that large. 1673 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1674 */ 1675 STATIC int 1676 xfs_alloc_ag_vextent_near( 1677 struct xfs_alloc_arg *args, 1678 uint32_t alloc_flags) 1679 { 1680 struct xfs_alloc_cur acur = {}; 1681 int error; /* error code */ 1682 int i; /* result code, temporary */ 1683 xfs_agblock_t bno; 1684 xfs_extlen_t len; 1685 1686 /* handle uninitialized agbno range so caller doesn't have to */ 1687 if (!args->min_agbno && !args->max_agbno) 1688 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1689 ASSERT(args->min_agbno <= args->max_agbno); 1690 1691 /* clamp agbno to the range if it's outside */ 1692 if (args->agbno < args->min_agbno) 1693 args->agbno = args->min_agbno; 1694 if (args->agbno > args->max_agbno) 1695 args->agbno = args->max_agbno; 1696 1697 /* Retry once quickly if we find busy extents before blocking. */ 1698 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1699 restart: 1700 len = 0; 1701 1702 /* 1703 * Set up cursors and see if there are any free extents as big as 1704 * maxlen. If not, pick the last entry in the tree unless the tree is 1705 * empty. 1706 */ 1707 error = xfs_alloc_cur_setup(args, &acur); 1708 if (error == -ENOSPC) { 1709 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1710 &len, &i); 1711 if (error) 1712 goto out; 1713 if (i == 0 || len == 0) { 1714 trace_xfs_alloc_near_noentry(args); 1715 goto out; 1716 } 1717 ASSERT(i == 1); 1718 } else if (error) { 1719 goto out; 1720 } 1721 1722 /* 1723 * First algorithm. 1724 * If the requested extent is large wrt the freespaces available 1725 * in this a.g., then the cursor will be pointing to a btree entry 1726 * near the right edge of the tree. If it's in the last btree leaf 1727 * block, then we just examine all the entries in that block 1728 * that are big enough, and pick the best one. 1729 */ 1730 if (xfs_btree_islastblock(acur.cnt, 0)) { 1731 bool allocated = false; 1732 1733 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1734 &allocated); 1735 if (error) 1736 goto out; 1737 if (allocated) 1738 goto alloc_finish; 1739 } 1740 1741 /* 1742 * Second algorithm. Combined cntbt and bnobt search to find ideal 1743 * locality. 1744 */ 1745 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1746 if (error) 1747 goto out; 1748 1749 /* 1750 * If we couldn't get anything, give up. 1751 */ 1752 if (!acur.len) { 1753 if (acur.busy) { 1754 /* 1755 * Our only valid extents must have been busy. Flush and 1756 * retry the allocation again. If we get an -EAGAIN 1757 * error, we're being told that a deadlock was avoided 1758 * and the current transaction needs committing before 1759 * the allocation can be retried. 1760 */ 1761 trace_xfs_alloc_near_busy(args); 1762 error = xfs_extent_busy_flush(args->tp, 1763 pag_group(args->pag), acur.busy_gen, 1764 alloc_flags); 1765 if (error) 1766 goto out; 1767 1768 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1769 goto restart; 1770 } 1771 trace_xfs_alloc_size_neither(args); 1772 args->agbno = NULLAGBLOCK; 1773 goto out; 1774 } 1775 1776 alloc_finish: 1777 /* fix up btrees on a successful allocation */ 1778 error = xfs_alloc_cur_finish(args, &acur); 1779 1780 out: 1781 xfs_alloc_cur_close(&acur, error); 1782 return error; 1783 } 1784 1785 /* 1786 * Allocate a variable extent anywhere in the allocation group agno. 1787 * Extent's length (returned in len) will be between minlen and maxlen, 1788 * and of the form k * prod + mod unless there's nothing that large. 1789 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1790 */ 1791 static int 1792 xfs_alloc_ag_vextent_size( 1793 struct xfs_alloc_arg *args, 1794 uint32_t alloc_flags) 1795 { 1796 struct xfs_agf *agf = args->agbp->b_addr; 1797 struct xfs_btree_cur *bno_cur; 1798 struct xfs_btree_cur *cnt_cur; 1799 xfs_agblock_t fbno; /* start of found freespace */ 1800 xfs_extlen_t flen; /* length of found freespace */ 1801 xfs_agblock_t rbno; /* returned block number */ 1802 xfs_extlen_t rlen; /* length of returned extent */ 1803 bool busy; 1804 unsigned busy_gen; 1805 int error; 1806 int i; 1807 1808 /* Retry once quickly if we find busy extents before blocking. */ 1809 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1810 restart: 1811 /* 1812 * Allocate and initialize a cursor for the by-size btree. 1813 */ 1814 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, 1815 args->pag); 1816 bno_cur = NULL; 1817 1818 /* 1819 * Look for an entry >= maxlen+alignment-1 blocks. 1820 */ 1821 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1822 args->maxlen + args->alignment - 1, &i))) 1823 goto error0; 1824 1825 /* 1826 * If none then we have to settle for a smaller extent. In the case that 1827 * there are no large extents, this will return the last entry in the 1828 * tree unless the tree is empty. In the case that there are only busy 1829 * large extents, this will return the largest small extent unless there 1830 * are no smaller extents available. 1831 */ 1832 if (!i) { 1833 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1834 &fbno, &flen, &i); 1835 if (error) 1836 goto error0; 1837 if (i == 0 || flen == 0) { 1838 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1839 trace_xfs_alloc_size_noentry(args); 1840 return 0; 1841 } 1842 ASSERT(i == 1); 1843 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1844 &rlen, &busy_gen); 1845 } else { 1846 /* 1847 * Search for a non-busy extent that is large enough. 1848 */ 1849 for (;;) { 1850 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1851 if (error) 1852 goto error0; 1853 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1854 xfs_btree_mark_sick(cnt_cur); 1855 error = -EFSCORRUPTED; 1856 goto error0; 1857 } 1858 1859 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1860 &rbno, &rlen, &busy_gen); 1861 1862 if (rlen >= args->maxlen) 1863 break; 1864 1865 error = xfs_btree_increment(cnt_cur, 0, &i); 1866 if (error) 1867 goto error0; 1868 if (i) 1869 continue; 1870 1871 /* 1872 * Our only valid extents must have been busy. Flush and 1873 * retry the allocation again. If we get an -EAGAIN 1874 * error, we're being told that a deadlock was avoided 1875 * and the current transaction needs committing before 1876 * the allocation can be retried. 1877 */ 1878 trace_xfs_alloc_size_busy(args); 1879 error = xfs_extent_busy_flush(args->tp, 1880 pag_group(args->pag), busy_gen, 1881 alloc_flags); 1882 if (error) 1883 goto error0; 1884 1885 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1886 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1887 goto restart; 1888 } 1889 } 1890 1891 /* 1892 * In the first case above, we got the last entry in the 1893 * by-size btree. Now we check to see if the space hits maxlen 1894 * once aligned; if not, we search left for something better. 1895 * This can't happen in the second case above. 1896 */ 1897 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1898 if (XFS_IS_CORRUPT(args->mp, 1899 rlen != 0 && 1900 (rlen > flen || 1901 rbno + rlen > fbno + flen))) { 1902 xfs_btree_mark_sick(cnt_cur); 1903 error = -EFSCORRUPTED; 1904 goto error0; 1905 } 1906 if (rlen < args->maxlen) { 1907 xfs_agblock_t bestfbno; 1908 xfs_extlen_t bestflen; 1909 xfs_agblock_t bestrbno; 1910 xfs_extlen_t bestrlen; 1911 1912 bestrlen = rlen; 1913 bestrbno = rbno; 1914 bestflen = flen; 1915 bestfbno = fbno; 1916 for (;;) { 1917 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1918 goto error0; 1919 if (i == 0) 1920 break; 1921 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1922 &i))) 1923 goto error0; 1924 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1925 xfs_btree_mark_sick(cnt_cur); 1926 error = -EFSCORRUPTED; 1927 goto error0; 1928 } 1929 if (flen <= bestrlen) 1930 break; 1931 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1932 &rbno, &rlen, &busy_gen); 1933 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1934 if (XFS_IS_CORRUPT(args->mp, 1935 rlen != 0 && 1936 (rlen > flen || 1937 rbno + rlen > fbno + flen))) { 1938 xfs_btree_mark_sick(cnt_cur); 1939 error = -EFSCORRUPTED; 1940 goto error0; 1941 } 1942 if (rlen > bestrlen) { 1943 bestrlen = rlen; 1944 bestrbno = rbno; 1945 bestflen = flen; 1946 bestfbno = fbno; 1947 if (rlen == args->maxlen) 1948 break; 1949 } 1950 } 1951 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1952 &i))) 1953 goto error0; 1954 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1955 xfs_btree_mark_sick(cnt_cur); 1956 error = -EFSCORRUPTED; 1957 goto error0; 1958 } 1959 rlen = bestrlen; 1960 rbno = bestrbno; 1961 flen = bestflen; 1962 fbno = bestfbno; 1963 } 1964 args->wasfromfl = 0; 1965 /* 1966 * Fix up the length. 1967 */ 1968 args->len = rlen; 1969 if (rlen < args->minlen) { 1970 if (busy) { 1971 /* 1972 * Our only valid extents must have been busy. Flush and 1973 * retry the allocation again. If we get an -EAGAIN 1974 * error, we're being told that a deadlock was avoided 1975 * and the current transaction needs committing before 1976 * the allocation can be retried. 1977 */ 1978 trace_xfs_alloc_size_busy(args); 1979 error = xfs_extent_busy_flush(args->tp, 1980 pag_group(args->pag), busy_gen, 1981 alloc_flags); 1982 if (error) 1983 goto error0; 1984 1985 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1986 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1987 goto restart; 1988 } 1989 goto out_nominleft; 1990 } 1991 xfs_alloc_fix_len(args); 1992 1993 rlen = args->len; 1994 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1995 xfs_btree_mark_sick(cnt_cur); 1996 error = -EFSCORRUPTED; 1997 goto error0; 1998 } 1999 /* 2000 * Allocate and initialize a cursor for the by-block tree. 2001 */ 2002 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, 2003 args->pag); 2004 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 2005 rbno, rlen, XFSA_FIXUP_CNT_OK))) 2006 goto error0; 2007 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2008 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2009 cnt_cur = bno_cur = NULL; 2010 args->len = rlen; 2011 args->agbno = rbno; 2012 if (XFS_IS_CORRUPT(args->mp, 2013 args->agbno + args->len > 2014 be32_to_cpu(agf->agf_length))) { 2015 xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT); 2016 error = -EFSCORRUPTED; 2017 goto error0; 2018 } 2019 trace_xfs_alloc_size_done(args); 2020 return 0; 2021 2022 error0: 2023 trace_xfs_alloc_size_error(args); 2024 if (cnt_cur) 2025 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2026 if (bno_cur) 2027 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2028 return error; 2029 2030 out_nominleft: 2031 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2032 trace_xfs_alloc_size_nominleft(args); 2033 args->agbno = NULLAGBLOCK; 2034 return 0; 2035 } 2036 2037 /* 2038 * Free the extent starting at agno/bno for length. 2039 */ 2040 int 2041 xfs_free_ag_extent( 2042 struct xfs_trans *tp, 2043 struct xfs_buf *agbp, 2044 xfs_agblock_t bno, 2045 xfs_extlen_t len, 2046 const struct xfs_owner_info *oinfo, 2047 enum xfs_ag_resv_type type) 2048 { 2049 struct xfs_mount *mp; 2050 struct xfs_btree_cur *bno_cur; 2051 struct xfs_btree_cur *cnt_cur; 2052 xfs_agblock_t gtbno; /* start of right neighbor */ 2053 xfs_extlen_t gtlen; /* length of right neighbor */ 2054 xfs_agblock_t ltbno; /* start of left neighbor */ 2055 xfs_extlen_t ltlen; /* length of left neighbor */ 2056 xfs_agblock_t nbno; /* new starting block of freesp */ 2057 xfs_extlen_t nlen; /* new length of freespace */ 2058 int haveleft; /* have a left neighbor */ 2059 int haveright; /* have a right neighbor */ 2060 int i; 2061 int error; 2062 struct xfs_perag *pag = agbp->b_pag; 2063 bool fixup_longest = false; 2064 2065 bno_cur = cnt_cur = NULL; 2066 mp = tp->t_mountp; 2067 2068 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 2069 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 2070 if (error) 2071 goto error0; 2072 } 2073 2074 /* 2075 * Allocate and initialize a cursor for the by-block btree. 2076 */ 2077 bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); 2078 /* 2079 * Look for a neighboring block on the left (lower block numbers) 2080 * that is contiguous with this space. 2081 */ 2082 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 2083 goto error0; 2084 if (haveleft) { 2085 /* 2086 * There is a block to our left. 2087 */ 2088 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 2089 goto error0; 2090 if (XFS_IS_CORRUPT(mp, i != 1)) { 2091 xfs_btree_mark_sick(bno_cur); 2092 error = -EFSCORRUPTED; 2093 goto error0; 2094 } 2095 /* 2096 * It's not contiguous, though. 2097 */ 2098 if (ltbno + ltlen < bno) 2099 haveleft = 0; 2100 else { 2101 /* 2102 * If this failure happens the request to free this 2103 * space was invalid, it's (partly) already free. 2104 * Very bad. 2105 */ 2106 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 2107 xfs_btree_mark_sick(bno_cur); 2108 error = -EFSCORRUPTED; 2109 goto error0; 2110 } 2111 } 2112 } 2113 /* 2114 * Look for a neighboring block on the right (higher block numbers) 2115 * that is contiguous with this space. 2116 */ 2117 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 2118 goto error0; 2119 if (haveright) { 2120 /* 2121 * There is a block to our right. 2122 */ 2123 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 2124 goto error0; 2125 if (XFS_IS_CORRUPT(mp, i != 1)) { 2126 xfs_btree_mark_sick(bno_cur); 2127 error = -EFSCORRUPTED; 2128 goto error0; 2129 } 2130 /* 2131 * It's not contiguous, though. 2132 */ 2133 if (bno + len < gtbno) 2134 haveright = 0; 2135 else { 2136 /* 2137 * If this failure happens the request to free this 2138 * space was invalid, it's (partly) already free. 2139 * Very bad. 2140 */ 2141 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 2142 xfs_btree_mark_sick(bno_cur); 2143 error = -EFSCORRUPTED; 2144 goto error0; 2145 } 2146 } 2147 } 2148 /* 2149 * Now allocate and initialize a cursor for the by-size tree. 2150 */ 2151 cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); 2152 /* 2153 * Have both left and right contiguous neighbors. 2154 * Merge all three into a single free block. 2155 */ 2156 if (haveleft && haveright) { 2157 /* 2158 * Delete the old by-size entry on the left. 2159 */ 2160 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2161 goto error0; 2162 if (XFS_IS_CORRUPT(mp, i != 1)) { 2163 xfs_btree_mark_sick(cnt_cur); 2164 error = -EFSCORRUPTED; 2165 goto error0; 2166 } 2167 if ((error = xfs_btree_delete(cnt_cur, &i))) 2168 goto error0; 2169 if (XFS_IS_CORRUPT(mp, i != 1)) { 2170 xfs_btree_mark_sick(cnt_cur); 2171 error = -EFSCORRUPTED; 2172 goto error0; 2173 } 2174 /* 2175 * Delete the old by-size entry on the right. 2176 */ 2177 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2178 goto error0; 2179 if (XFS_IS_CORRUPT(mp, i != 1)) { 2180 xfs_btree_mark_sick(cnt_cur); 2181 error = -EFSCORRUPTED; 2182 goto error0; 2183 } 2184 if ((error = xfs_btree_delete(cnt_cur, &i))) 2185 goto error0; 2186 if (XFS_IS_CORRUPT(mp, i != 1)) { 2187 xfs_btree_mark_sick(cnt_cur); 2188 error = -EFSCORRUPTED; 2189 goto error0; 2190 } 2191 /* 2192 * Delete the old by-block entry for the right block. 2193 */ 2194 if ((error = xfs_btree_delete(bno_cur, &i))) 2195 goto error0; 2196 if (XFS_IS_CORRUPT(mp, i != 1)) { 2197 xfs_btree_mark_sick(bno_cur); 2198 error = -EFSCORRUPTED; 2199 goto error0; 2200 } 2201 /* 2202 * Move the by-block cursor back to the left neighbor. 2203 */ 2204 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2205 goto error0; 2206 if (XFS_IS_CORRUPT(mp, i != 1)) { 2207 xfs_btree_mark_sick(bno_cur); 2208 error = -EFSCORRUPTED; 2209 goto error0; 2210 } 2211 #ifdef DEBUG 2212 /* 2213 * Check that this is the right record: delete didn't 2214 * mangle the cursor. 2215 */ 2216 { 2217 xfs_agblock_t xxbno; 2218 xfs_extlen_t xxlen; 2219 2220 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2221 &i))) 2222 goto error0; 2223 if (XFS_IS_CORRUPT(mp, 2224 i != 1 || 2225 xxbno != ltbno || 2226 xxlen != ltlen)) { 2227 xfs_btree_mark_sick(bno_cur); 2228 error = -EFSCORRUPTED; 2229 goto error0; 2230 } 2231 } 2232 #endif 2233 /* 2234 * Update remaining by-block entry to the new, joined block. 2235 */ 2236 nbno = ltbno; 2237 nlen = len + ltlen + gtlen; 2238 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2239 goto error0; 2240 } 2241 /* 2242 * Have only a left contiguous neighbor. 2243 * Merge it together with the new freespace. 2244 */ 2245 else if (haveleft) { 2246 /* 2247 * Delete the old by-size entry on the left. 2248 */ 2249 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2250 goto error0; 2251 if (XFS_IS_CORRUPT(mp, i != 1)) { 2252 xfs_btree_mark_sick(cnt_cur); 2253 error = -EFSCORRUPTED; 2254 goto error0; 2255 } 2256 if ((error = xfs_btree_delete(cnt_cur, &i))) 2257 goto error0; 2258 if (XFS_IS_CORRUPT(mp, i != 1)) { 2259 xfs_btree_mark_sick(cnt_cur); 2260 error = -EFSCORRUPTED; 2261 goto error0; 2262 } 2263 /* 2264 * Back up the by-block cursor to the left neighbor, and 2265 * update its length. 2266 */ 2267 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2268 goto error0; 2269 if (XFS_IS_CORRUPT(mp, i != 1)) { 2270 xfs_btree_mark_sick(bno_cur); 2271 error = -EFSCORRUPTED; 2272 goto error0; 2273 } 2274 nbno = ltbno; 2275 nlen = len + ltlen; 2276 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2277 goto error0; 2278 } 2279 /* 2280 * Have only a right contiguous neighbor. 2281 * Merge it together with the new freespace. 2282 */ 2283 else if (haveright) { 2284 /* 2285 * Delete the old by-size entry on the right. 2286 */ 2287 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2288 goto error0; 2289 if (XFS_IS_CORRUPT(mp, i != 1)) { 2290 xfs_btree_mark_sick(cnt_cur); 2291 error = -EFSCORRUPTED; 2292 goto error0; 2293 } 2294 if ((error = xfs_btree_delete(cnt_cur, &i))) 2295 goto error0; 2296 if (XFS_IS_CORRUPT(mp, i != 1)) { 2297 xfs_btree_mark_sick(cnt_cur); 2298 error = -EFSCORRUPTED; 2299 goto error0; 2300 } 2301 /* 2302 * Update the starting block and length of the right 2303 * neighbor in the by-block tree. 2304 */ 2305 nbno = bno; 2306 nlen = len + gtlen; 2307 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2308 goto error0; 2309 } 2310 /* 2311 * No contiguous neighbors. 2312 * Insert the new freespace into the by-block tree. 2313 */ 2314 else { 2315 nbno = bno; 2316 nlen = len; 2317 if ((error = xfs_btree_insert(bno_cur, &i))) 2318 goto error0; 2319 if (XFS_IS_CORRUPT(mp, i != 1)) { 2320 xfs_btree_mark_sick(bno_cur); 2321 error = -EFSCORRUPTED; 2322 goto error0; 2323 } 2324 } 2325 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2326 bno_cur = NULL; 2327 2328 /* 2329 * In all cases we need to insert the new freespace in the by-size tree. 2330 * 2331 * If this new freespace is being inserted in the block that contains 2332 * the largest free space in the btree, make sure we also fix up the 2333 * agf->agf-longest tracker field. 2334 */ 2335 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2336 goto error0; 2337 if (XFS_IS_CORRUPT(mp, i != 0)) { 2338 xfs_btree_mark_sick(cnt_cur); 2339 error = -EFSCORRUPTED; 2340 goto error0; 2341 } 2342 if (xfs_alloc_cursor_at_lastrec(cnt_cur)) 2343 fixup_longest = true; 2344 if ((error = xfs_btree_insert(cnt_cur, &i))) 2345 goto error0; 2346 if (XFS_IS_CORRUPT(mp, i != 1)) { 2347 xfs_btree_mark_sick(cnt_cur); 2348 error = -EFSCORRUPTED; 2349 goto error0; 2350 } 2351 if (fixup_longest) { 2352 error = xfs_alloc_fixup_longest(cnt_cur); 2353 if (error) 2354 goto error0; 2355 } 2356 2357 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2358 cnt_cur = NULL; 2359 2360 /* 2361 * Update the freespace totals in the ag and superblock. 2362 */ 2363 error = xfs_alloc_update_counters(tp, agbp, len); 2364 xfs_ag_resv_free_extent(pag, type, tp, len); 2365 if (error) 2366 goto error0; 2367 2368 XFS_STATS_INC(mp, xs_freex); 2369 XFS_STATS_ADD(mp, xs_freeb, len); 2370 2371 trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright); 2372 2373 return 0; 2374 2375 error0: 2376 trace_xfs_free_extent(pag, bno, len, type, -1, -1); 2377 if (bno_cur) 2378 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2379 if (cnt_cur) 2380 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2381 return error; 2382 } 2383 2384 /* 2385 * Visible (exported) allocation/free functions. 2386 * Some of these are used just by xfs_alloc_btree.c and this file. 2387 */ 2388 2389 /* 2390 * Compute and fill in value of m_alloc_maxlevels. 2391 */ 2392 void 2393 xfs_alloc_compute_maxlevels( 2394 xfs_mount_t *mp) /* file system mount structure */ 2395 { 2396 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2397 (mp->m_sb.sb_agblocks + 1) / 2); 2398 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2399 } 2400 2401 /* 2402 * Find the length of the longest extent in an AG. The 'need' parameter 2403 * specifies how much space we're going to need for the AGFL and the 2404 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2405 * other callers. 2406 */ 2407 xfs_extlen_t 2408 xfs_alloc_longest_free_extent( 2409 struct xfs_perag *pag, 2410 xfs_extlen_t need, 2411 xfs_extlen_t reserved) 2412 { 2413 xfs_extlen_t delta = 0; 2414 2415 /* 2416 * If the AGFL needs a recharge, we'll have to subtract that from the 2417 * longest extent. 2418 */ 2419 if (need > pag->pagf_flcount) 2420 delta = need - pag->pagf_flcount; 2421 2422 /* 2423 * If we cannot maintain others' reservations with space from the 2424 * not-longest freesp extents, we'll have to subtract /that/ from 2425 * the longest extent too. 2426 */ 2427 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2428 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2429 2430 /* 2431 * If the longest extent is long enough to satisfy all the 2432 * reservations and AGFL rules in place, we can return this extent. 2433 */ 2434 if (pag->pagf_longest > delta) 2435 return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable, 2436 pag->pagf_longest - delta); 2437 2438 /* Otherwise, let the caller try for 1 block if there's space. */ 2439 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2440 } 2441 2442 /* 2443 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2444 * return the largest possible minimum length. 2445 */ 2446 unsigned int 2447 xfs_alloc_min_freelist( 2448 struct xfs_mount *mp, 2449 struct xfs_perag *pag) 2450 { 2451 /* AG btrees have at least 1 level. */ 2452 const unsigned int bno_level = pag ? pag->pagf_bno_level : 1; 2453 const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1; 2454 const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1; 2455 unsigned int min_free; 2456 2457 ASSERT(mp->m_alloc_maxlevels > 0); 2458 2459 /* 2460 * For a btree shorter than the maximum height, the worst case is that 2461 * every level gets split and a new level is added, then while inserting 2462 * another entry to refill the AGFL, every level under the old root gets 2463 * split again. This is: 2464 * 2465 * (full height split reservation) + (AGFL refill split height) 2466 * = (current height + 1) + (current height - 1) 2467 * = (new height) + (new height - 2) 2468 * = 2 * new height - 2 2469 * 2470 * For a btree of maximum height, the worst case is that every level 2471 * under the root gets split, then while inserting another entry to 2472 * refill the AGFL, every level under the root gets split again. This is 2473 * also: 2474 * 2475 * 2 * (current height - 1) 2476 * = 2 * (new height - 1) 2477 * = 2 * new height - 2 2478 */ 2479 2480 /* space needed by-bno freespace btree */ 2481 min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2; 2482 /* space needed by-size freespace btree */ 2483 min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2; 2484 /* space needed reverse mapping used space btree */ 2485 if (xfs_has_rmapbt(mp)) 2486 min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2; 2487 return min_free; 2488 } 2489 2490 /* 2491 * Check if the operation we are fixing up the freelist for should go ahead or 2492 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2493 * is dependent on whether the size and shape of free space available will 2494 * permit the requested allocation to take place. 2495 */ 2496 static bool 2497 xfs_alloc_space_available( 2498 struct xfs_alloc_arg *args, 2499 xfs_extlen_t min_free, 2500 int flags) 2501 { 2502 struct xfs_perag *pag = args->pag; 2503 xfs_extlen_t alloc_len, longest; 2504 xfs_extlen_t reservation; /* blocks that are still reserved */ 2505 int available; 2506 xfs_extlen_t agflcount; 2507 2508 if (flags & XFS_ALLOC_FLAG_FREEING) 2509 return true; 2510 2511 reservation = xfs_ag_resv_needed(pag, args->resv); 2512 2513 /* do we have enough contiguous free space for the allocation? */ 2514 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2515 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2516 if (longest < alloc_len) 2517 return false; 2518 2519 /* 2520 * Do we have enough free space remaining for the allocation? Don't 2521 * account extra agfl blocks because we are about to defer free them, 2522 * making them unavailable until the current transaction commits. 2523 */ 2524 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2525 available = (int)(pag->pagf_freeblks + agflcount - 2526 reservation - min_free - args->minleft); 2527 if (available < (int)max(args->total, alloc_len)) 2528 return false; 2529 2530 /* 2531 * Clamp maxlen to the amount of free space available for the actual 2532 * extent allocation. 2533 */ 2534 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2535 args->maxlen = available; 2536 ASSERT(args->maxlen > 0); 2537 ASSERT(args->maxlen >= args->minlen); 2538 } 2539 2540 return true; 2541 } 2542 2543 /* 2544 * Check the agfl fields of the agf for inconsistency or corruption. 2545 * 2546 * The original purpose was to detect an agfl header padding mismatch between 2547 * current and early v5 kernels. This problem manifests as a 1-slot size 2548 * difference between the on-disk flcount and the active [first, last] range of 2549 * a wrapped agfl. 2550 * 2551 * However, we need to use these same checks to catch agfl count corruptions 2552 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either 2553 * way, we need to reset the agfl and warn the user. 2554 * 2555 * Return true if a reset is required before the agfl can be used, false 2556 * otherwise. 2557 */ 2558 static bool 2559 xfs_agfl_needs_reset( 2560 struct xfs_mount *mp, 2561 struct xfs_agf *agf) 2562 { 2563 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2564 uint32_t l = be32_to_cpu(agf->agf_fllast); 2565 uint32_t c = be32_to_cpu(agf->agf_flcount); 2566 int agfl_size = xfs_agfl_size(mp); 2567 int active; 2568 2569 /* 2570 * The agf read verifier catches severe corruption of these fields. 2571 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2572 * the verifier allows it. 2573 */ 2574 if (f >= agfl_size || l >= agfl_size) 2575 return true; 2576 if (c > agfl_size) 2577 return true; 2578 2579 /* 2580 * Check consistency between the on-disk count and the active range. An 2581 * agfl padding mismatch manifests as an inconsistent flcount. 2582 */ 2583 if (c && l >= f) 2584 active = l - f + 1; 2585 else if (c) 2586 active = agfl_size - f + l + 1; 2587 else 2588 active = 0; 2589 2590 return active != c; 2591 } 2592 2593 /* 2594 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2595 * agfl content cannot be trusted. Warn the user that a repair is required to 2596 * recover leaked blocks. 2597 * 2598 * The purpose of this mechanism is to handle filesystems affected by the agfl 2599 * header padding mismatch problem. A reset keeps the filesystem online with a 2600 * relatively minor free space accounting inconsistency rather than suffer the 2601 * inevitable crash from use of an invalid agfl block. 2602 */ 2603 static void 2604 xfs_agfl_reset( 2605 struct xfs_trans *tp, 2606 struct xfs_buf *agbp, 2607 struct xfs_perag *pag) 2608 { 2609 struct xfs_mount *mp = tp->t_mountp; 2610 struct xfs_agf *agf = agbp->b_addr; 2611 2612 ASSERT(xfs_perag_agfl_needs_reset(pag)); 2613 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2614 2615 xfs_warn(mp, 2616 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2617 "Please unmount and run xfs_repair.", 2618 pag_agno(pag), pag->pagf_flcount); 2619 2620 agf->agf_flfirst = 0; 2621 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2622 agf->agf_flcount = 0; 2623 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2624 XFS_AGF_FLCOUNT); 2625 2626 pag->pagf_flcount = 0; 2627 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 2628 } 2629 2630 /* 2631 * Add the extent to the list of extents to be free at transaction end. 2632 * The list is maintained sorted (by block number). 2633 */ 2634 static int 2635 xfs_defer_extent_free( 2636 struct xfs_trans *tp, 2637 xfs_fsblock_t bno, 2638 xfs_filblks_t len, 2639 const struct xfs_owner_info *oinfo, 2640 enum xfs_ag_resv_type type, 2641 unsigned int free_flags, 2642 struct xfs_defer_pending **dfpp) 2643 { 2644 struct xfs_extent_free_item *xefi; 2645 struct xfs_mount *mp = tp->t_mountp; 2646 2647 ASSERT(len <= XFS_MAX_BMBT_EXTLEN); 2648 ASSERT(!isnullstartblock(bno)); 2649 ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS)); 2650 2651 if (free_flags & XFS_FREE_EXTENT_REALTIME) { 2652 if (type != XFS_AG_RESV_NONE) { 2653 ASSERT(type == XFS_AG_RESV_NONE); 2654 return -EFSCORRUPTED; 2655 } 2656 if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len))) 2657 return -EFSCORRUPTED; 2658 } else { 2659 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len))) 2660 return -EFSCORRUPTED; 2661 } 2662 2663 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2664 GFP_KERNEL | __GFP_NOFAIL); 2665 xefi->xefi_startblock = bno; 2666 xefi->xefi_blockcount = (xfs_extlen_t)len; 2667 xefi->xefi_agresv = type; 2668 if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD) 2669 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2670 if (free_flags & XFS_FREE_EXTENT_REALTIME) 2671 xefi->xefi_flags |= XFS_EFI_REALTIME; 2672 if (oinfo) { 2673 ASSERT(oinfo->oi_offset == 0); 2674 2675 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2676 xefi->xefi_flags |= XFS_EFI_ATTR_FORK; 2677 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2678 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2679 xefi->xefi_owner = oinfo->oi_owner; 2680 } else { 2681 xefi->xefi_owner = XFS_RMAP_OWN_NULL; 2682 } 2683 2684 xfs_extent_free_defer_add(tp, xefi, dfpp); 2685 return 0; 2686 } 2687 2688 int 2689 xfs_free_extent_later( 2690 struct xfs_trans *tp, 2691 xfs_fsblock_t bno, 2692 xfs_filblks_t len, 2693 const struct xfs_owner_info *oinfo, 2694 enum xfs_ag_resv_type type, 2695 unsigned int free_flags) 2696 { 2697 struct xfs_defer_pending *dontcare = NULL; 2698 2699 return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags, 2700 &dontcare); 2701 } 2702 2703 /* 2704 * Set up automatic freeing of unwritten space in the filesystem. 2705 * 2706 * This function attached a paused deferred extent free item to the 2707 * transaction. Pausing means that the EFI will be logged in the next 2708 * transaction commit, but the pending EFI will not be finished until the 2709 * pending item is unpaused. 2710 * 2711 * If the system goes down after the EFI has been persisted to the log but 2712 * before the pending item is unpaused, log recovery will find the EFI, fail to 2713 * find the EFD, and free the space. 2714 * 2715 * If the pending item is unpaused, the next transaction commit will log an EFD 2716 * without freeing the space. 2717 * 2718 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the 2719 * @args structure are set to the relevant values. 2720 */ 2721 int 2722 xfs_alloc_schedule_autoreap( 2723 const struct xfs_alloc_arg *args, 2724 unsigned int free_flags, 2725 struct xfs_alloc_autoreap *aarp) 2726 { 2727 int error; 2728 2729 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len, 2730 &args->oinfo, args->resv, free_flags, &aarp->dfp); 2731 if (error) 2732 return error; 2733 2734 xfs_defer_item_pause(args->tp, aarp->dfp); 2735 return 0; 2736 } 2737 2738 /* 2739 * Cancel automatic freeing of unwritten space in the filesystem. 2740 * 2741 * Earlier, we created a paused deferred extent free item and attached it to 2742 * this transaction so that we could automatically roll back a new space 2743 * allocation if the system went down. Now we want to cancel the paused work 2744 * item by marking the EFI stale so we don't actually free the space, unpausing 2745 * the pending item and logging an EFD. 2746 * 2747 * The caller generally should have already mapped the space into the ondisk 2748 * filesystem. If the reserved space was partially used, the caller must call 2749 * xfs_free_extent_later to create a new EFI to free the unused space. 2750 */ 2751 void 2752 xfs_alloc_cancel_autoreap( 2753 struct xfs_trans *tp, 2754 struct xfs_alloc_autoreap *aarp) 2755 { 2756 struct xfs_defer_pending *dfp = aarp->dfp; 2757 struct xfs_extent_free_item *xefi; 2758 2759 if (!dfp) 2760 return; 2761 2762 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list) 2763 xefi->xefi_flags |= XFS_EFI_CANCELLED; 2764 2765 xfs_defer_item_unpause(tp, dfp); 2766 } 2767 2768 /* 2769 * Commit automatic freeing of unwritten space in the filesystem. 2770 * 2771 * This unpauses an earlier _schedule_autoreap and commits to freeing the 2772 * allocated space. Call this if none of the reserved space was used. 2773 */ 2774 void 2775 xfs_alloc_commit_autoreap( 2776 struct xfs_trans *tp, 2777 struct xfs_alloc_autoreap *aarp) 2778 { 2779 if (aarp->dfp) 2780 xfs_defer_item_unpause(tp, aarp->dfp); 2781 } 2782 2783 /* 2784 * Check if an AGF has a free extent record whose length is equal to 2785 * args->minlen. 2786 */ 2787 STATIC int 2788 xfs_exact_minlen_extent_available( 2789 struct xfs_alloc_arg *args, 2790 struct xfs_buf *agbp, 2791 int *stat) 2792 { 2793 struct xfs_btree_cur *cnt_cur; 2794 xfs_agblock_t fbno; 2795 xfs_extlen_t flen; 2796 int error = 0; 2797 2798 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp, 2799 args->pag); 2800 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2801 if (error) 2802 goto out; 2803 2804 if (*stat == 0) { 2805 xfs_btree_mark_sick(cnt_cur); 2806 error = -EFSCORRUPTED; 2807 goto out; 2808 } 2809 2810 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2811 if (error) 2812 goto out; 2813 2814 if (*stat == 1 && flen != args->minlen) 2815 *stat = 0; 2816 2817 out: 2818 xfs_btree_del_cursor(cnt_cur, error); 2819 2820 return error; 2821 } 2822 2823 /* 2824 * Decide whether to use this allocation group for this allocation. 2825 * If so, fix up the btree freelist's size. 2826 */ 2827 int /* error */ 2828 xfs_alloc_fix_freelist( 2829 struct xfs_alloc_arg *args, /* allocation argument structure */ 2830 uint32_t alloc_flags) 2831 { 2832 struct xfs_mount *mp = args->mp; 2833 struct xfs_perag *pag = args->pag; 2834 struct xfs_trans *tp = args->tp; 2835 struct xfs_buf *agbp = NULL; 2836 struct xfs_buf *agflbp = NULL; 2837 struct xfs_alloc_arg targs; /* local allocation arguments */ 2838 xfs_agblock_t bno; /* freelist block */ 2839 xfs_extlen_t need; /* total blocks needed in freelist */ 2840 int error = 0; 2841 2842 /* deferred ops (AGFL block frees) require permanent transactions */ 2843 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2844 2845 if (!xfs_perag_initialised_agf(pag)) { 2846 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2847 if (error) { 2848 /* Couldn't lock the AGF so skip this AG. */ 2849 if (error == -EAGAIN) 2850 error = 0; 2851 goto out_no_agbp; 2852 } 2853 } 2854 2855 /* 2856 * If this is a metadata preferred pag and we are user data then try 2857 * somewhere else if we are not being asked to try harder at this 2858 * point 2859 */ 2860 if (xfs_perag_prefers_metadata(pag) && 2861 (args->datatype & XFS_ALLOC_USERDATA) && 2862 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2863 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING)); 2864 goto out_agbp_relse; 2865 } 2866 2867 need = xfs_alloc_min_freelist(mp, pag); 2868 if (!xfs_alloc_space_available(args, need, alloc_flags | 2869 XFS_ALLOC_FLAG_CHECK)) 2870 goto out_agbp_relse; 2871 2872 /* 2873 * Get the a.g. freespace buffer. 2874 * Can fail if we're not blocking on locks, and it's held. 2875 */ 2876 if (!agbp) { 2877 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2878 if (error) { 2879 /* Couldn't lock the AGF so skip this AG. */ 2880 if (error == -EAGAIN) 2881 error = 0; 2882 goto out_no_agbp; 2883 } 2884 } 2885 2886 /* reset a padding mismatched agfl before final free space check */ 2887 if (xfs_perag_agfl_needs_reset(pag)) 2888 xfs_agfl_reset(tp, agbp, pag); 2889 2890 /* If there isn't enough total space or single-extent, reject it. */ 2891 need = xfs_alloc_min_freelist(mp, pag); 2892 if (!xfs_alloc_space_available(args, need, alloc_flags)) 2893 goto out_agbp_relse; 2894 2895 if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) { 2896 int stat; 2897 2898 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2899 if (error || !stat) 2900 goto out_agbp_relse; 2901 } 2902 2903 /* 2904 * Make the freelist shorter if it's too long. 2905 * 2906 * Note that from this point onwards, we will always release the agf and 2907 * agfl buffers on error. This handles the case where we error out and 2908 * the buffers are clean or may not have been joined to the transaction 2909 * and hence need to be released manually. If they have been joined to 2910 * the transaction, then xfs_trans_brelse() will handle them 2911 * appropriately based on the recursion count and dirty state of the 2912 * buffer. 2913 * 2914 * XXX (dgc): When we have lots of free space, does this buy us 2915 * anything other than extra overhead when we need to put more blocks 2916 * back on the free list? Maybe we should only do this when space is 2917 * getting low or the AGFL is more than half full? 2918 * 2919 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2920 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2921 * updating the rmapbt. Both flags are used in xfs_repair while we're 2922 * rebuilding the rmapbt, and neither are used by the kernel. They're 2923 * both required to ensure that rmaps are correctly recorded for the 2924 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2925 * repair/rmap.c in xfsprogs for details. 2926 */ 2927 memset(&targs, 0, sizeof(targs)); 2928 /* struct copy below */ 2929 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP) 2930 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2931 else 2932 targs.oinfo = XFS_RMAP_OINFO_AG; 2933 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) && 2934 pag->pagf_flcount > need) { 2935 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0); 2936 if (error) 2937 goto out_agbp_relse; 2938 2939 /* 2940 * Defer the AGFL block free. 2941 * 2942 * This helps to prevent log reservation overruns due to too 2943 * many allocation operations in a transaction. AGFL frees are 2944 * prone to this problem because for one they are always freed 2945 * one at a time. Further, an immediate AGFL block free can 2946 * cause a btree join and require another block free before the 2947 * real allocation can proceed. 2948 * Deferring the free disconnects freeing up the AGFL slot from 2949 * freeing the block. 2950 */ 2951 error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno), 2952 1, &targs.oinfo, XFS_AG_RESV_AGFL, 0); 2953 if (error) 2954 goto out_agbp_relse; 2955 } 2956 2957 targs.tp = tp; 2958 targs.mp = mp; 2959 targs.agbp = agbp; 2960 targs.agno = args->agno; 2961 targs.alignment = targs.minlen = targs.prod = 1; 2962 targs.pag = pag; 2963 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2964 if (error) 2965 goto out_agbp_relse; 2966 2967 /* Make the freelist longer if it's too short. */ 2968 while (pag->pagf_flcount < need) { 2969 targs.agbno = 0; 2970 targs.maxlen = need - pag->pagf_flcount; 2971 targs.resv = XFS_AG_RESV_AGFL; 2972 2973 /* Allocate as many blocks as possible at once. */ 2974 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags); 2975 if (error) 2976 goto out_agflbp_relse; 2977 2978 /* 2979 * Stop if we run out. Won't happen if callers are obeying 2980 * the restrictions correctly. Can happen for free calls 2981 * on a completely full ag. 2982 */ 2983 if (targs.agbno == NULLAGBLOCK) { 2984 if (alloc_flags & XFS_ALLOC_FLAG_FREEING) 2985 break; 2986 goto out_agflbp_relse; 2987 } 2988 2989 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) { 2990 error = xfs_rmap_alloc(tp, agbp, pag, 2991 targs.agbno, targs.len, &targs.oinfo); 2992 if (error) 2993 goto out_agflbp_relse; 2994 } 2995 error = xfs_alloc_update_counters(tp, agbp, 2996 -((long)(targs.len))); 2997 if (error) 2998 goto out_agflbp_relse; 2999 3000 /* 3001 * Put each allocated block on the list. 3002 */ 3003 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 3004 error = xfs_alloc_put_freelist(pag, tp, agbp, 3005 agflbp, bno, 0); 3006 if (error) 3007 goto out_agflbp_relse; 3008 } 3009 } 3010 xfs_trans_brelse(tp, agflbp); 3011 args->agbp = agbp; 3012 return 0; 3013 3014 out_agflbp_relse: 3015 xfs_trans_brelse(tp, agflbp); 3016 out_agbp_relse: 3017 if (agbp) 3018 xfs_trans_brelse(tp, agbp); 3019 out_no_agbp: 3020 args->agbp = NULL; 3021 return error; 3022 } 3023 3024 /* 3025 * Get a block from the freelist. 3026 * Returns with the buffer for the block gotten. 3027 */ 3028 int 3029 xfs_alloc_get_freelist( 3030 struct xfs_perag *pag, 3031 struct xfs_trans *tp, 3032 struct xfs_buf *agbp, 3033 xfs_agblock_t *bnop, 3034 int btreeblk) 3035 { 3036 struct xfs_agf *agf = agbp->b_addr; 3037 struct xfs_buf *agflbp; 3038 xfs_agblock_t bno; 3039 __be32 *agfl_bno; 3040 int error; 3041 uint32_t logflags; 3042 struct xfs_mount *mp = tp->t_mountp; 3043 3044 /* 3045 * Freelist is empty, give up. 3046 */ 3047 if (!agf->agf_flcount) { 3048 *bnop = NULLAGBLOCK; 3049 return 0; 3050 } 3051 /* 3052 * Read the array of free blocks. 3053 */ 3054 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 3055 if (error) 3056 return error; 3057 3058 3059 /* 3060 * Get the block number and update the data structures. 3061 */ 3062 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3063 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 3064 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno))) 3065 return -EFSCORRUPTED; 3066 3067 be32_add_cpu(&agf->agf_flfirst, 1); 3068 xfs_trans_brelse(tp, agflbp); 3069 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 3070 agf->agf_flfirst = 0; 3071 3072 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 3073 be32_add_cpu(&agf->agf_flcount, -1); 3074 pag->pagf_flcount--; 3075 3076 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 3077 if (btreeblk) { 3078 be32_add_cpu(&agf->agf_btreeblks, 1); 3079 pag->pagf_btreeblks++; 3080 logflags |= XFS_AGF_BTREEBLKS; 3081 } 3082 3083 xfs_alloc_log_agf(tp, agbp, logflags); 3084 *bnop = bno; 3085 3086 return 0; 3087 } 3088 3089 /* 3090 * Log the given fields from the agf structure. 3091 */ 3092 void 3093 xfs_alloc_log_agf( 3094 struct xfs_trans *tp, 3095 struct xfs_buf *bp, 3096 uint32_t fields) 3097 { 3098 int first; /* first byte offset */ 3099 int last; /* last byte offset */ 3100 static const short offsets[] = { 3101 offsetof(xfs_agf_t, agf_magicnum), 3102 offsetof(xfs_agf_t, agf_versionnum), 3103 offsetof(xfs_agf_t, agf_seqno), 3104 offsetof(xfs_agf_t, agf_length), 3105 offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */ 3106 offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */ 3107 offsetof(xfs_agf_t, agf_flfirst), 3108 offsetof(xfs_agf_t, agf_fllast), 3109 offsetof(xfs_agf_t, agf_flcount), 3110 offsetof(xfs_agf_t, agf_freeblks), 3111 offsetof(xfs_agf_t, agf_longest), 3112 offsetof(xfs_agf_t, agf_btreeblks), 3113 offsetof(xfs_agf_t, agf_uuid), 3114 offsetof(xfs_agf_t, agf_rmap_blocks), 3115 offsetof(xfs_agf_t, agf_refcount_blocks), 3116 offsetof(xfs_agf_t, agf_refcount_root), 3117 offsetof(xfs_agf_t, agf_refcount_level), 3118 /* needed so that we don't log the whole rest of the structure: */ 3119 offsetof(xfs_agf_t, agf_spare64), 3120 sizeof(xfs_agf_t) 3121 }; 3122 3123 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 3124 3125 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 3126 3127 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 3128 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 3129 } 3130 3131 /* 3132 * Put the block on the freelist for the allocation group. 3133 */ 3134 int 3135 xfs_alloc_put_freelist( 3136 struct xfs_perag *pag, 3137 struct xfs_trans *tp, 3138 struct xfs_buf *agbp, 3139 struct xfs_buf *agflbp, 3140 xfs_agblock_t bno, 3141 int btreeblk) 3142 { 3143 struct xfs_mount *mp = tp->t_mountp; 3144 struct xfs_agf *agf = agbp->b_addr; 3145 __be32 *blockp; 3146 int error; 3147 uint32_t logflags; 3148 __be32 *agfl_bno; 3149 int startoff; 3150 3151 if (!agflbp) { 3152 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 3153 if (error) 3154 return error; 3155 } 3156 3157 be32_add_cpu(&agf->agf_fllast, 1); 3158 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 3159 agf->agf_fllast = 0; 3160 3161 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 3162 be32_add_cpu(&agf->agf_flcount, 1); 3163 pag->pagf_flcount++; 3164 3165 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 3166 if (btreeblk) { 3167 be32_add_cpu(&agf->agf_btreeblks, -1); 3168 pag->pagf_btreeblks--; 3169 logflags |= XFS_AGF_BTREEBLKS; 3170 } 3171 3172 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 3173 3174 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3175 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 3176 *blockp = cpu_to_be32(bno); 3177 startoff = (char *)blockp - (char *)agflbp->b_addr; 3178 3179 xfs_alloc_log_agf(tp, agbp, logflags); 3180 3181 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 3182 xfs_trans_log_buf(tp, agflbp, startoff, 3183 startoff + sizeof(xfs_agblock_t) - 1); 3184 return 0; 3185 } 3186 3187 /* 3188 * Check that this AGF/AGI header's sequence number and length matches the AG 3189 * number and size in fsblocks. 3190 */ 3191 xfs_failaddr_t 3192 xfs_validate_ag_length( 3193 struct xfs_buf *bp, 3194 uint32_t seqno, 3195 uint32_t length) 3196 { 3197 struct xfs_mount *mp = bp->b_mount; 3198 /* 3199 * During growfs operations, the perag is not fully initialised, 3200 * so we can't use it for any useful checking. growfs ensures we can't 3201 * use it by using uncached buffers that don't have the perag attached 3202 * so we can detect and avoid this problem. 3203 */ 3204 if (bp->b_pag && seqno != pag_agno(bp->b_pag)) 3205 return __this_address; 3206 3207 /* 3208 * Only the last AG in the filesystem is allowed to be shorter 3209 * than the AG size recorded in the superblock. 3210 */ 3211 if (length != mp->m_sb.sb_agblocks) { 3212 /* 3213 * During growfs, the new last AG can get here before we 3214 * have updated the superblock. Give it a pass on the seqno 3215 * check. 3216 */ 3217 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1) 3218 return __this_address; 3219 if (length < XFS_MIN_AG_BLOCKS) 3220 return __this_address; 3221 if (length > mp->m_sb.sb_agblocks) 3222 return __this_address; 3223 } 3224 3225 return NULL; 3226 } 3227 3228 /* 3229 * Verify the AGF is consistent. 3230 * 3231 * We do not verify the AGFL indexes in the AGF are fully consistent here 3232 * because of issues with variable on-disk structure sizes. Instead, we check 3233 * the agfl indexes for consistency when we initialise the perag from the AGF 3234 * information after a read completes. 3235 * 3236 * If the index is inconsistent, then we mark the perag as needing an AGFL 3237 * reset. The first AGFL update performed then resets the AGFL indexes and 3238 * refills the AGFL with known good free blocks, allowing the filesystem to 3239 * continue operating normally at the cost of a few leaked free space blocks. 3240 */ 3241 static xfs_failaddr_t 3242 xfs_agf_verify( 3243 struct xfs_buf *bp) 3244 { 3245 struct xfs_mount *mp = bp->b_mount; 3246 struct xfs_agf *agf = bp->b_addr; 3247 xfs_failaddr_t fa; 3248 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno); 3249 uint32_t agf_length = be32_to_cpu(agf->agf_length); 3250 3251 if (xfs_has_crc(mp)) { 3252 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 3253 return __this_address; 3254 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 3255 return __this_address; 3256 } 3257 3258 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 3259 return __this_address; 3260 3261 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum))) 3262 return __this_address; 3263 3264 /* 3265 * Both agf_seqno and agf_length need to validated before anything else 3266 * block number related in the AGF or AGFL can be checked. 3267 */ 3268 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length); 3269 if (fa) 3270 return fa; 3271 3272 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp)) 3273 return __this_address; 3274 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp)) 3275 return __this_address; 3276 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp)) 3277 return __this_address; 3278 3279 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 3280 be32_to_cpu(agf->agf_freeblks) > agf_length) 3281 return __this_address; 3282 3283 if (be32_to_cpu(agf->agf_bno_level) < 1 || 3284 be32_to_cpu(agf->agf_cnt_level) < 1 || 3285 be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels || 3286 be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels) 3287 return __this_address; 3288 3289 if (xfs_has_lazysbcount(mp) && 3290 be32_to_cpu(agf->agf_btreeblks) > agf_length) 3291 return __this_address; 3292 3293 if (xfs_has_rmapbt(mp)) { 3294 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length) 3295 return __this_address; 3296 3297 if (be32_to_cpu(agf->agf_rmap_level) < 1 || 3298 be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels) 3299 return __this_address; 3300 } 3301 3302 if (xfs_has_reflink(mp)) { 3303 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length) 3304 return __this_address; 3305 3306 if (be32_to_cpu(agf->agf_refcount_level) < 1 || 3307 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels) 3308 return __this_address; 3309 } 3310 3311 return NULL; 3312 } 3313 3314 static void 3315 xfs_agf_read_verify( 3316 struct xfs_buf *bp) 3317 { 3318 struct xfs_mount *mp = bp->b_mount; 3319 xfs_failaddr_t fa; 3320 3321 if (xfs_has_crc(mp) && 3322 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3323 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3324 else { 3325 fa = xfs_agf_verify(bp); 3326 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3327 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3328 } 3329 } 3330 3331 static void 3332 xfs_agf_write_verify( 3333 struct xfs_buf *bp) 3334 { 3335 struct xfs_mount *mp = bp->b_mount; 3336 struct xfs_buf_log_item *bip = bp->b_log_item; 3337 struct xfs_agf *agf = bp->b_addr; 3338 xfs_failaddr_t fa; 3339 3340 fa = xfs_agf_verify(bp); 3341 if (fa) { 3342 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3343 return; 3344 } 3345 3346 if (!xfs_has_crc(mp)) 3347 return; 3348 3349 if (bip) 3350 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3351 3352 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3353 } 3354 3355 const struct xfs_buf_ops xfs_agf_buf_ops = { 3356 .name = "xfs_agf", 3357 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3358 .verify_read = xfs_agf_read_verify, 3359 .verify_write = xfs_agf_write_verify, 3360 .verify_struct = xfs_agf_verify, 3361 }; 3362 3363 /* 3364 * Read in the allocation group header (free/alloc section). 3365 */ 3366 int 3367 xfs_read_agf( 3368 struct xfs_perag *pag, 3369 struct xfs_trans *tp, 3370 int flags, 3371 struct xfs_buf **agfbpp) 3372 { 3373 struct xfs_mount *mp = pag_mount(pag); 3374 int error; 3375 3376 trace_xfs_read_agf(pag); 3377 3378 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3379 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)), 3380 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops); 3381 if (xfs_metadata_is_sick(error)) 3382 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); 3383 if (error) 3384 return error; 3385 3386 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF); 3387 return 0; 3388 } 3389 3390 /* 3391 * Read in the allocation group header (free/alloc section) and initialise the 3392 * perag structure if necessary. If the caller provides @agfbpp, then return the 3393 * locked buffer to the caller, otherwise free it. 3394 */ 3395 int 3396 xfs_alloc_read_agf( 3397 struct xfs_perag *pag, 3398 struct xfs_trans *tp, 3399 int flags, 3400 struct xfs_buf **agfbpp) 3401 { 3402 struct xfs_mount *mp = pag_mount(pag); 3403 struct xfs_buf *agfbp; 3404 struct xfs_agf *agf; 3405 int error; 3406 int allocbt_blks; 3407 3408 trace_xfs_alloc_read_agf(pag); 3409 3410 /* We don't support trylock when freeing. */ 3411 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3412 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3413 error = xfs_read_agf(pag, tp, 3414 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3415 &agfbp); 3416 if (error) 3417 return error; 3418 3419 agf = agfbp->b_addr; 3420 if (!xfs_perag_initialised_agf(pag)) { 3421 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3422 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3423 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3424 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3425 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level); 3426 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level); 3427 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level); 3428 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3429 if (xfs_agfl_needs_reset(mp, agf)) 3430 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3431 else 3432 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3433 3434 /* 3435 * Update the in-core allocbt counter. Filter out the rmapbt 3436 * subset of the btreeblks counter because the rmapbt is managed 3437 * by perag reservation. Subtract one for the rmapbt root block 3438 * because the rmap counter includes it while the btreeblks 3439 * counter only tracks non-root blocks. 3440 */ 3441 allocbt_blks = pag->pagf_btreeblks; 3442 if (xfs_has_rmapbt(mp)) 3443 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3444 if (allocbt_blks > 0) 3445 atomic64_add(allocbt_blks, &mp->m_allocbt_blks); 3446 3447 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 3448 } 3449 #ifdef DEBUG 3450 else if (!xfs_is_shutdown(mp)) { 3451 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3452 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3453 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3454 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3455 ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level)); 3456 ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level)); 3457 } 3458 #endif 3459 if (agfbpp) 3460 *agfbpp = agfbp; 3461 else 3462 xfs_trans_brelse(tp, agfbp); 3463 return 0; 3464 } 3465 3466 /* 3467 * Pre-proces allocation arguments to set initial state that we don't require 3468 * callers to set up correctly, as well as bounds check the allocation args 3469 * that are set up. 3470 */ 3471 static int 3472 xfs_alloc_vextent_check_args( 3473 struct xfs_alloc_arg *args, 3474 xfs_fsblock_t target, 3475 xfs_agnumber_t *minimum_agno) 3476 { 3477 struct xfs_mount *mp = args->mp; 3478 xfs_agblock_t agsize; 3479 3480 args->fsbno = NULLFSBLOCK; 3481 3482 *minimum_agno = 0; 3483 if (args->tp->t_highest_agno != NULLAGNUMBER) 3484 *minimum_agno = args->tp->t_highest_agno; 3485 3486 /* 3487 * Just fix this up, for the case where the last a.g. is shorter 3488 * (or there's only one a.g.) and the caller couldn't easily figure 3489 * that out (xfs_bmap_alloc). 3490 */ 3491 agsize = mp->m_sb.sb_agblocks; 3492 if (args->maxlen > agsize) 3493 args->maxlen = agsize; 3494 if (args->alignment == 0) 3495 args->alignment = 1; 3496 3497 ASSERT(args->minlen > 0); 3498 ASSERT(args->maxlen > 0); 3499 ASSERT(args->alignment > 0); 3500 ASSERT(args->resv != XFS_AG_RESV_AGFL); 3501 3502 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount); 3503 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize); 3504 ASSERT(args->minlen <= args->maxlen); 3505 ASSERT(args->minlen <= agsize); 3506 ASSERT(args->mod < args->prod); 3507 3508 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount || 3509 XFS_FSB_TO_AGBNO(mp, target) >= agsize || 3510 args->minlen > args->maxlen || args->minlen > agsize || 3511 args->mod >= args->prod) { 3512 trace_xfs_alloc_vextent_badargs(args); 3513 return -ENOSPC; 3514 } 3515 3516 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) { 3517 trace_xfs_alloc_vextent_skip_deadlock(args); 3518 return -ENOSPC; 3519 } 3520 return 0; 3521 3522 } 3523 3524 /* 3525 * Prepare an AG for allocation. If the AG is not prepared to accept the 3526 * allocation, return failure. 3527 * 3528 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are 3529 * modified to hold their own perag references. 3530 */ 3531 static int 3532 xfs_alloc_vextent_prepare_ag( 3533 struct xfs_alloc_arg *args, 3534 uint32_t alloc_flags) 3535 { 3536 bool need_pag = !args->pag; 3537 int error; 3538 3539 if (need_pag) 3540 args->pag = xfs_perag_get(args->mp, args->agno); 3541 3542 args->agbp = NULL; 3543 error = xfs_alloc_fix_freelist(args, alloc_flags); 3544 if (error) { 3545 trace_xfs_alloc_vextent_nofix(args); 3546 if (need_pag) 3547 xfs_perag_put(args->pag); 3548 args->agbno = NULLAGBLOCK; 3549 return error; 3550 } 3551 if (!args->agbp) { 3552 /* cannot allocate in this AG at all */ 3553 trace_xfs_alloc_vextent_noagbp(args); 3554 args->agbno = NULLAGBLOCK; 3555 return 0; 3556 } 3557 args->wasfromfl = 0; 3558 return 0; 3559 } 3560 3561 /* 3562 * Post-process allocation results to account for the allocation if it succeed 3563 * and set the allocated block number correctly for the caller. 3564 * 3565 * XXX: we should really be returning ENOSPC for ENOSPC, not 3566 * hiding it behind a "successful" NULLFSBLOCK allocation. 3567 */ 3568 static int 3569 xfs_alloc_vextent_finish( 3570 struct xfs_alloc_arg *args, 3571 xfs_agnumber_t minimum_agno, 3572 int alloc_error, 3573 bool drop_perag) 3574 { 3575 struct xfs_mount *mp = args->mp; 3576 int error = 0; 3577 3578 /* 3579 * We can end up here with a locked AGF. If we failed, the caller is 3580 * likely going to try to allocate again with different parameters, and 3581 * that can widen the AGs that are searched for free space. If we have 3582 * to do BMBT block allocation, we have to do a new allocation. 3583 * 3584 * Hence leaving this function with the AGF locked opens up potential 3585 * ABBA AGF deadlocks because a future allocation attempt in this 3586 * transaction may attempt to lock a lower number AGF. 3587 * 3588 * We can't release the AGF until the transaction is commited, so at 3589 * this point we must update the "first allocation" tracker to point at 3590 * this AG if the tracker is empty or points to a lower AG. This allows 3591 * the next allocation attempt to be modified appropriately to avoid 3592 * deadlocks. 3593 */ 3594 if (args->agbp && 3595 (args->tp->t_highest_agno == NULLAGNUMBER || 3596 args->agno > minimum_agno)) 3597 args->tp->t_highest_agno = args->agno; 3598 3599 /* 3600 * If the allocation failed with an error or we had an ENOSPC result, 3601 * preserve the returned error whilst also marking the allocation result 3602 * as "no extent allocated". This ensures that callers that fail to 3603 * capture the error will still treat it as a failed allocation. 3604 */ 3605 if (alloc_error || args->agbno == NULLAGBLOCK) { 3606 args->fsbno = NULLFSBLOCK; 3607 error = alloc_error; 3608 goto out_drop_perag; 3609 } 3610 3611 args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno); 3612 3613 ASSERT(args->len >= args->minlen); 3614 ASSERT(args->len <= args->maxlen); 3615 ASSERT(args->agbno % args->alignment == 0); 3616 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); 3617 3618 /* if not file data, insert new block into the reverse map btree */ 3619 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 3620 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 3621 args->agbno, args->len, &args->oinfo); 3622 if (error) 3623 goto out_drop_perag; 3624 } 3625 3626 if (!args->wasfromfl) { 3627 error = xfs_alloc_update_counters(args->tp, args->agbp, 3628 -((long)(args->len))); 3629 if (error) 3630 goto out_drop_perag; 3631 3632 ASSERT(!xfs_extent_busy_search(pag_group(args->pag), 3633 args->agbno, args->len)); 3634 } 3635 3636 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 3637 3638 XFS_STATS_INC(mp, xs_allocx); 3639 XFS_STATS_ADD(mp, xs_allocb, args->len); 3640 3641 trace_xfs_alloc_vextent_finish(args); 3642 3643 out_drop_perag: 3644 if (drop_perag && args->pag) { 3645 xfs_perag_rele(args->pag); 3646 args->pag = NULL; 3647 } 3648 return error; 3649 } 3650 3651 /* 3652 * Allocate within a single AG only. This uses a best-fit length algorithm so if 3653 * you need an exact sized allocation without locality constraints, this is the 3654 * fastest way to do it. 3655 * 3656 * Caller is expected to hold a perag reference in args->pag. 3657 */ 3658 int 3659 xfs_alloc_vextent_this_ag( 3660 struct xfs_alloc_arg *args, 3661 xfs_agnumber_t agno) 3662 { 3663 xfs_agnumber_t minimum_agno; 3664 uint32_t alloc_flags = 0; 3665 int error; 3666 3667 ASSERT(args->pag != NULL); 3668 ASSERT(pag_agno(args->pag) == agno); 3669 3670 args->agno = agno; 3671 args->agbno = 0; 3672 3673 trace_xfs_alloc_vextent_this_ag(args); 3674 3675 error = xfs_alloc_vextent_check_args(args, 3676 xfs_agbno_to_fsb(args->pag, 0), &minimum_agno); 3677 if (error) { 3678 if (error == -ENOSPC) 3679 return 0; 3680 return error; 3681 } 3682 3683 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3684 if (!error && args->agbp) 3685 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3686 3687 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3688 } 3689 3690 /* 3691 * Iterate all AGs trying to allocate an extent starting from @start_ag. 3692 * 3693 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the 3694 * allocation attempts in @start_agno have locality information. If we fail to 3695 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs 3696 * we attempt to allocation in as there is no locality optimisation possible for 3697 * those allocations. 3698 * 3699 * On return, args->pag may be left referenced if we finish before the "all 3700 * failed" return point. The allocation finish still needs the perag, and 3701 * so the caller will release it once they've finished the allocation. 3702 * 3703 * When we wrap the AG iteration at the end of the filesystem, we have to be 3704 * careful not to wrap into AGs below ones we already have locked in the 3705 * transaction if we are doing a blocking iteration. This will result in an 3706 * out-of-order locking of AGFs and hence can cause deadlocks. 3707 */ 3708 static int 3709 xfs_alloc_vextent_iterate_ags( 3710 struct xfs_alloc_arg *args, 3711 xfs_agnumber_t minimum_agno, 3712 xfs_agnumber_t start_agno, 3713 xfs_agblock_t target_agbno, 3714 uint32_t alloc_flags) 3715 { 3716 struct xfs_mount *mp = args->mp; 3717 xfs_agnumber_t restart_agno = minimum_agno; 3718 xfs_agnumber_t agno; 3719 int error = 0; 3720 3721 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) 3722 restart_agno = 0; 3723 restart: 3724 for_each_perag_wrap_range(mp, start_agno, restart_agno, 3725 mp->m_sb.sb_agcount, agno, args->pag) { 3726 args->agno = agno; 3727 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3728 if (error) 3729 break; 3730 if (!args->agbp) { 3731 trace_xfs_alloc_vextent_loopfailed(args); 3732 continue; 3733 } 3734 3735 /* 3736 * Allocation is supposed to succeed now, so break out of the 3737 * loop regardless of whether we succeed or not. 3738 */ 3739 if (args->agno == start_agno && target_agbno) { 3740 args->agbno = target_agbno; 3741 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3742 } else { 3743 args->agbno = 0; 3744 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3745 } 3746 break; 3747 } 3748 if (error) { 3749 xfs_perag_rele(args->pag); 3750 args->pag = NULL; 3751 return error; 3752 } 3753 if (args->agbp) 3754 return 0; 3755 3756 /* 3757 * We didn't find an AG we can alloation from. If we were given 3758 * constraining flags by the caller, drop them and retry the allocation 3759 * without any constraints being set. 3760 */ 3761 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) { 3762 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK; 3763 restart_agno = minimum_agno; 3764 goto restart; 3765 } 3766 3767 ASSERT(args->pag == NULL); 3768 trace_xfs_alloc_vextent_allfailed(args); 3769 return 0; 3770 } 3771 3772 /* 3773 * Iterate from the AGs from the start AG to the end of the filesystem, trying 3774 * to allocate blocks. It starts with a near allocation attempt in the initial 3775 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap 3776 * back to zero if allowed by previous allocations in this transaction, 3777 * otherwise will wrap back to the start AG and run a second blocking pass to 3778 * the end of the filesystem. 3779 */ 3780 int 3781 xfs_alloc_vextent_start_ag( 3782 struct xfs_alloc_arg *args, 3783 xfs_fsblock_t target) 3784 { 3785 struct xfs_mount *mp = args->mp; 3786 xfs_agnumber_t minimum_agno; 3787 xfs_agnumber_t start_agno; 3788 xfs_agnumber_t rotorstep = xfs_rotorstep; 3789 bool bump_rotor = false; 3790 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3791 int error; 3792 3793 ASSERT(args->pag == NULL); 3794 3795 args->agno = NULLAGNUMBER; 3796 args->agbno = NULLAGBLOCK; 3797 3798 trace_xfs_alloc_vextent_start_ag(args); 3799 3800 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3801 if (error) { 3802 if (error == -ENOSPC) 3803 return 0; 3804 return error; 3805 } 3806 3807 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3808 xfs_is_inode32(mp)) { 3809 target = XFS_AGB_TO_FSB(mp, 3810 ((mp->m_agfrotor / rotorstep) % 3811 mp->m_sb.sb_agcount), 0); 3812 bump_rotor = 1; 3813 } 3814 3815 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3816 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3817 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3818 3819 if (bump_rotor) { 3820 if (args->agno == start_agno) 3821 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3822 (mp->m_sb.sb_agcount * rotorstep); 3823 else 3824 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3825 (mp->m_sb.sb_agcount * rotorstep); 3826 } 3827 3828 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3829 } 3830 3831 /* 3832 * Iterate from the agno indicated via @target through to the end of the 3833 * filesystem attempting blocking allocation. This does not wrap or try a second 3834 * pass, so will not recurse into AGs lower than indicated by the target. 3835 */ 3836 int 3837 xfs_alloc_vextent_first_ag( 3838 struct xfs_alloc_arg *args, 3839 xfs_fsblock_t target) 3840 { 3841 struct xfs_mount *mp = args->mp; 3842 xfs_agnumber_t minimum_agno; 3843 xfs_agnumber_t start_agno; 3844 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3845 int error; 3846 3847 ASSERT(args->pag == NULL); 3848 3849 args->agno = NULLAGNUMBER; 3850 args->agbno = NULLAGBLOCK; 3851 3852 trace_xfs_alloc_vextent_first_ag(args); 3853 3854 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3855 if (error) { 3856 if (error == -ENOSPC) 3857 return 0; 3858 return error; 3859 } 3860 3861 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3862 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3863 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3864 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3865 } 3866 3867 /* 3868 * Allocate at the exact block target or fail. Caller is expected to hold a 3869 * perag reference in args->pag. 3870 */ 3871 int 3872 xfs_alloc_vextent_exact_bno( 3873 struct xfs_alloc_arg *args, 3874 xfs_fsblock_t target) 3875 { 3876 struct xfs_mount *mp = args->mp; 3877 xfs_agnumber_t minimum_agno; 3878 int error; 3879 3880 ASSERT(args->pag != NULL); 3881 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target)); 3882 3883 args->agno = XFS_FSB_TO_AGNO(mp, target); 3884 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3885 3886 trace_xfs_alloc_vextent_exact_bno(args); 3887 3888 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3889 if (error) { 3890 if (error == -ENOSPC) 3891 return 0; 3892 return error; 3893 } 3894 3895 error = xfs_alloc_vextent_prepare_ag(args, 0); 3896 if (!error && args->agbp) 3897 error = xfs_alloc_ag_vextent_exact(args); 3898 3899 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3900 } 3901 3902 /* 3903 * Allocate an extent as close to the target as possible. If there are not 3904 * viable candidates in the AG, then fail the allocation. 3905 * 3906 * Caller may or may not have a per-ag reference in args->pag. 3907 */ 3908 int 3909 xfs_alloc_vextent_near_bno( 3910 struct xfs_alloc_arg *args, 3911 xfs_fsblock_t target) 3912 { 3913 struct xfs_mount *mp = args->mp; 3914 xfs_agnumber_t minimum_agno; 3915 bool needs_perag = args->pag == NULL; 3916 uint32_t alloc_flags = 0; 3917 int error; 3918 3919 if (!needs_perag) 3920 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target)); 3921 3922 args->agno = XFS_FSB_TO_AGNO(mp, target); 3923 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3924 3925 trace_xfs_alloc_vextent_near_bno(args); 3926 3927 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3928 if (error) { 3929 if (error == -ENOSPC) 3930 return 0; 3931 return error; 3932 } 3933 3934 if (needs_perag) 3935 args->pag = xfs_perag_grab(mp, args->agno); 3936 3937 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3938 if (!error && args->agbp) 3939 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3940 3941 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag); 3942 } 3943 3944 /* Ensure that the freelist is at full capacity. */ 3945 int 3946 xfs_free_extent_fix_freelist( 3947 struct xfs_trans *tp, 3948 struct xfs_perag *pag, 3949 struct xfs_buf **agbp) 3950 { 3951 struct xfs_alloc_arg args; 3952 int error; 3953 3954 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3955 args.tp = tp; 3956 args.mp = tp->t_mountp; 3957 args.agno = pag_agno(pag); 3958 args.pag = pag; 3959 3960 /* 3961 * validate that the block number is legal - the enables us to detect 3962 * and handle a silent filesystem corruption rather than crashing. 3963 */ 3964 if (args.agno >= args.mp->m_sb.sb_agcount) 3965 return -EFSCORRUPTED; 3966 3967 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3968 if (error) 3969 return error; 3970 3971 *agbp = args.agbp; 3972 return 0; 3973 } 3974 3975 /* 3976 * Free an extent. 3977 * Just break up the extent address and hand off to xfs_free_ag_extent 3978 * after fixing up the freelist. 3979 */ 3980 int 3981 __xfs_free_extent( 3982 struct xfs_trans *tp, 3983 struct xfs_perag *pag, 3984 xfs_agblock_t agbno, 3985 xfs_extlen_t len, 3986 const struct xfs_owner_info *oinfo, 3987 enum xfs_ag_resv_type type, 3988 bool skip_discard) 3989 { 3990 struct xfs_mount *mp = tp->t_mountp; 3991 struct xfs_buf *agbp; 3992 struct xfs_agf *agf; 3993 int error; 3994 unsigned int busy_flags = 0; 3995 3996 ASSERT(len != 0); 3997 ASSERT(type != XFS_AG_RESV_AGFL); 3998 3999 if (XFS_TEST_ERROR(false, mp, 4000 XFS_ERRTAG_FREE_EXTENT)) 4001 return -EIO; 4002 4003 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 4004 if (error) { 4005 if (xfs_metadata_is_sick(error)) 4006 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 4007 return error; 4008 } 4009 4010 agf = agbp->b_addr; 4011 4012 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 4013 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 4014 error = -EFSCORRUPTED; 4015 goto err_release; 4016 } 4017 4018 /* validate the extent size is legal now we have the agf locked */ 4019 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 4020 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 4021 error = -EFSCORRUPTED; 4022 goto err_release; 4023 } 4024 4025 error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type); 4026 if (error) 4027 goto err_release; 4028 4029 if (skip_discard) 4030 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 4031 xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags); 4032 return 0; 4033 4034 err_release: 4035 xfs_trans_brelse(tp, agbp); 4036 return error; 4037 } 4038 4039 struct xfs_alloc_query_range_info { 4040 xfs_alloc_query_range_fn fn; 4041 void *priv; 4042 }; 4043 4044 /* Format btree record and pass to our callback. */ 4045 STATIC int 4046 xfs_alloc_query_range_helper( 4047 struct xfs_btree_cur *cur, 4048 const union xfs_btree_rec *rec, 4049 void *priv) 4050 { 4051 struct xfs_alloc_query_range_info *query = priv; 4052 struct xfs_alloc_rec_incore irec; 4053 xfs_failaddr_t fa; 4054 4055 xfs_alloc_btrec_to_irec(rec, &irec); 4056 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec); 4057 if (fa) 4058 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 4059 4060 return query->fn(cur, &irec, query->priv); 4061 } 4062 4063 /* Find all free space within a given range of blocks. */ 4064 int 4065 xfs_alloc_query_range( 4066 struct xfs_btree_cur *cur, 4067 const struct xfs_alloc_rec_incore *low_rec, 4068 const struct xfs_alloc_rec_incore *high_rec, 4069 xfs_alloc_query_range_fn fn, 4070 void *priv) 4071 { 4072 union xfs_btree_irec low_brec = { .a = *low_rec }; 4073 union xfs_btree_irec high_brec = { .a = *high_rec }; 4074 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn }; 4075 4076 ASSERT(xfs_btree_is_bno(cur->bc_ops)); 4077 return xfs_btree_query_range(cur, &low_brec, &high_brec, 4078 xfs_alloc_query_range_helper, &query); 4079 } 4080 4081 /* Find all free space records. */ 4082 int 4083 xfs_alloc_query_all( 4084 struct xfs_btree_cur *cur, 4085 xfs_alloc_query_range_fn fn, 4086 void *priv) 4087 { 4088 struct xfs_alloc_query_range_info query; 4089 4090 ASSERT(xfs_btree_is_bno(cur->bc_ops)); 4091 query.priv = priv; 4092 query.fn = fn; 4093 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 4094 } 4095 4096 /* 4097 * Scan part of the keyspace of the free space and tell us if the area has no 4098 * records, is fully mapped by records, or is partially filled. 4099 */ 4100 int 4101 xfs_alloc_has_records( 4102 struct xfs_btree_cur *cur, 4103 xfs_agblock_t bno, 4104 xfs_extlen_t len, 4105 enum xbtree_recpacking *outcome) 4106 { 4107 union xfs_btree_irec low; 4108 union xfs_btree_irec high; 4109 4110 memset(&low, 0, sizeof(low)); 4111 low.a.ar_startblock = bno; 4112 memset(&high, 0xFF, sizeof(high)); 4113 high.a.ar_startblock = bno + len - 1; 4114 4115 return xfs_btree_has_records(cur, &low, &high, NULL, outcome); 4116 } 4117 4118 /* 4119 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 4120 * error code or XFS_ITER_*. 4121 */ 4122 int 4123 xfs_agfl_walk( 4124 struct xfs_mount *mp, 4125 struct xfs_agf *agf, 4126 struct xfs_buf *agflbp, 4127 xfs_agfl_walk_fn walk_fn, 4128 void *priv) 4129 { 4130 __be32 *agfl_bno; 4131 unsigned int i; 4132 int error; 4133 4134 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 4135 i = be32_to_cpu(agf->agf_flfirst); 4136 4137 /* Nothing to walk in an empty AGFL. */ 4138 if (agf->agf_flcount == cpu_to_be32(0)) 4139 return 0; 4140 4141 /* Otherwise, walk from first to last, wrapping as needed. */ 4142 for (;;) { 4143 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 4144 if (error) 4145 return error; 4146 if (i == be32_to_cpu(agf->agf_fllast)) 4147 break; 4148 if (++i == xfs_agfl_size(mp)) 4149 i = 0; 4150 } 4151 4152 return 0; 4153 } 4154 4155 int __init 4156 xfs_extfree_intent_init_cache(void) 4157 { 4158 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 4159 sizeof(struct xfs_extent_free_item), 4160 0, 0, NULL); 4161 4162 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 4163 } 4164 4165 void 4166 xfs_extfree_intent_destroy_cache(void) 4167 { 4168 kmem_cache_destroy(xfs_extfree_item_cache); 4169 xfs_extfree_item_cache = NULL; 4170 } 4171