xref: /linux/fs/xfs/libxfs/xfs_alloc.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29 #include "xfs_health.h"
30 #include "xfs_extfree_item.h"
31 
32 struct kmem_cache	*xfs_extfree_item_cache;
33 
34 struct workqueue_struct *xfs_alloc_wq;
35 
36 #define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
37 
38 #define	XFSA_FIXUP_BNO_OK	1
39 #define	XFSA_FIXUP_CNT_OK	2
40 
41 /*
42  * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
43  * the beginning of the block for a proper header with the location information
44  * and CRC.
45  */
46 unsigned int
47 xfs_agfl_size(
48 	struct xfs_mount	*mp)
49 {
50 	unsigned int		size = mp->m_sb.sb_sectsize;
51 
52 	if (xfs_has_crc(mp))
53 		size -= sizeof(struct xfs_agfl);
54 
55 	return size / sizeof(xfs_agblock_t);
56 }
57 
58 unsigned int
59 xfs_refc_block(
60 	struct xfs_mount	*mp)
61 {
62 	if (xfs_has_rmapbt(mp))
63 		return XFS_RMAP_BLOCK(mp) + 1;
64 	if (xfs_has_finobt(mp))
65 		return XFS_FIBT_BLOCK(mp) + 1;
66 	return XFS_IBT_BLOCK(mp) + 1;
67 }
68 
69 xfs_extlen_t
70 xfs_prealloc_blocks(
71 	struct xfs_mount	*mp)
72 {
73 	if (xfs_has_reflink(mp))
74 		return xfs_refc_block(mp) + 1;
75 	if (xfs_has_rmapbt(mp))
76 		return XFS_RMAP_BLOCK(mp) + 1;
77 	if (xfs_has_finobt(mp))
78 		return XFS_FIBT_BLOCK(mp) + 1;
79 	return XFS_IBT_BLOCK(mp) + 1;
80 }
81 
82 /*
83  * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
84  * guarantee that we can refill the AGFL prior to allocating space in a nearly
85  * full AG.  Although the space described by the free space btrees, the
86  * blocks used by the freesp btrees themselves, and the blocks owned by the
87  * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
88  * free space in the AG drop so low that the free space btrees cannot refill an
89  * empty AGFL up to the minimum level.  Rather than grind through empty AGs
90  * until the fs goes down, we subtract this many AG blocks from the incore
91  * fdblocks to ensure user allocation does not overcommit the space the
92  * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
93  * withhold space from xfs_dec_fdblocks, so we do not account for that here.
94  */
95 #define XFS_ALLOCBT_AGFL_RESERVE	4
96 
97 /*
98  * Compute the number of blocks that we set aside to guarantee the ability to
99  * refill the AGFL and handle a full bmap btree split.
100  *
101  * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
102  * AGF buffer (PV 947395), we place constraints on the relationship among
103  * actual allocations for data blocks, freelist blocks, and potential file data
104  * bmap btree blocks. However, these restrictions may result in no actual space
105  * allocated for a delayed extent, for example, a data block in a certain AG is
106  * allocated but there is no additional block for the additional bmap btree
107  * block due to a split of the bmap btree of the file. The result of this may
108  * lead to an infinite loop when the file gets flushed to disk and all delayed
109  * extents need to be actually allocated. To get around this, we explicitly set
110  * aside a few blocks which will not be reserved in delayed allocation.
111  *
112  * For each AG, we need to reserve enough blocks to replenish a totally empty
113  * AGFL and 4 more to handle a potential split of the file's bmap btree.
114  */
115 unsigned int
116 xfs_alloc_set_aside(
117 	struct xfs_mount	*mp)
118 {
119 	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
120 }
121 
122 /*
123  * When deciding how much space to allocate out of an AG, we limit the
124  * allocation maximum size to the size the AG. However, we cannot use all the
125  * blocks in the AG - some are permanently used by metadata. These
126  * blocks are generally:
127  *	- the AG superblock, AGF, AGI and AGFL
128  *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
129  *	  the AGI free inode and rmap btree root blocks.
130  *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
131  *	- the rmapbt root block
132  *
133  * The AG headers are sector sized, so the amount of space they take up is
134  * dependent on filesystem geometry. The others are all single blocks.
135  */
136 unsigned int
137 xfs_alloc_ag_max_usable(
138 	struct xfs_mount	*mp)
139 {
140 	unsigned int		blocks;
141 
142 	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
143 	blocks += XFS_ALLOCBT_AGFL_RESERVE;
144 	blocks += 3;			/* AGF, AGI btree root blocks */
145 	if (xfs_has_finobt(mp))
146 		blocks++;		/* finobt root block */
147 	if (xfs_has_rmapbt(mp))
148 		blocks++;		/* rmap root block */
149 	if (xfs_has_reflink(mp))
150 		blocks++;		/* refcount root block */
151 
152 	return mp->m_sb.sb_agblocks - blocks;
153 }
154 
155 
156 static int
157 xfs_alloc_lookup(
158 	struct xfs_btree_cur	*cur,
159 	xfs_lookup_t		dir,
160 	xfs_agblock_t		bno,
161 	xfs_extlen_t		len,
162 	int			*stat)
163 {
164 	int			error;
165 
166 	cur->bc_rec.a.ar_startblock = bno;
167 	cur->bc_rec.a.ar_blockcount = len;
168 	error = xfs_btree_lookup(cur, dir, stat);
169 	if (*stat == 1)
170 		cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
171 	else
172 		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
173 	return error;
174 }
175 
176 /*
177  * Lookup the record equal to [bno, len] in the btree given by cur.
178  */
179 static inline int				/* error */
180 xfs_alloc_lookup_eq(
181 	struct xfs_btree_cur	*cur,	/* btree cursor */
182 	xfs_agblock_t		bno,	/* starting block of extent */
183 	xfs_extlen_t		len,	/* length of extent */
184 	int			*stat)	/* success/failure */
185 {
186 	return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
187 }
188 
189 /*
190  * Lookup the first record greater than or equal to [bno, len]
191  * in the btree given by cur.
192  */
193 int				/* error */
194 xfs_alloc_lookup_ge(
195 	struct xfs_btree_cur	*cur,	/* btree cursor */
196 	xfs_agblock_t		bno,	/* starting block of extent */
197 	xfs_extlen_t		len,	/* length of extent */
198 	int			*stat)	/* success/failure */
199 {
200 	return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
201 }
202 
203 /*
204  * Lookup the first record less than or equal to [bno, len]
205  * in the btree given by cur.
206  */
207 int					/* error */
208 xfs_alloc_lookup_le(
209 	struct xfs_btree_cur	*cur,	/* btree cursor */
210 	xfs_agblock_t		bno,	/* starting block of extent */
211 	xfs_extlen_t		len,	/* length of extent */
212 	int			*stat)	/* success/failure */
213 {
214 	return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
215 }
216 
217 static inline bool
218 xfs_alloc_cur_active(
219 	struct xfs_btree_cur	*cur)
220 {
221 	return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
222 }
223 
224 /*
225  * Update the record referred to by cur to the value given
226  * by [bno, len].
227  * This either works (return 0) or gets an EFSCORRUPTED error.
228  */
229 STATIC int				/* error */
230 xfs_alloc_update(
231 	struct xfs_btree_cur	*cur,	/* btree cursor */
232 	xfs_agblock_t		bno,	/* starting block of extent */
233 	xfs_extlen_t		len)	/* length of extent */
234 {
235 	union xfs_btree_rec	rec;
236 
237 	rec.alloc.ar_startblock = cpu_to_be32(bno);
238 	rec.alloc.ar_blockcount = cpu_to_be32(len);
239 	return xfs_btree_update(cur, &rec);
240 }
241 
242 /* Convert the ondisk btree record to its incore representation. */
243 void
244 xfs_alloc_btrec_to_irec(
245 	const union xfs_btree_rec	*rec,
246 	struct xfs_alloc_rec_incore	*irec)
247 {
248 	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
249 	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
250 }
251 
252 /* Simple checks for free space records. */
253 xfs_failaddr_t
254 xfs_alloc_check_irec(
255 	struct xfs_perag			*pag,
256 	const struct xfs_alloc_rec_incore	*irec)
257 {
258 	if (irec->ar_blockcount == 0)
259 		return __this_address;
260 
261 	/* check for valid extent range, including overflow */
262 	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
263 		return __this_address;
264 
265 	return NULL;
266 }
267 
268 static inline int
269 xfs_alloc_complain_bad_rec(
270 	struct xfs_btree_cur		*cur,
271 	xfs_failaddr_t			fa,
272 	const struct xfs_alloc_rec_incore *irec)
273 {
274 	struct xfs_mount		*mp = cur->bc_mp;
275 
276 	xfs_warn(mp,
277 		"%sbt record corruption in AG %d detected at %pS!",
278 		cur->bc_ops->name, cur->bc_group->xg_gno, fa);
279 	xfs_warn(mp,
280 		"start block 0x%x block count 0x%x", irec->ar_startblock,
281 		irec->ar_blockcount);
282 	xfs_btree_mark_sick(cur);
283 	return -EFSCORRUPTED;
284 }
285 
286 /*
287  * Get the data from the pointed-to record.
288  */
289 int					/* error */
290 xfs_alloc_get_rec(
291 	struct xfs_btree_cur	*cur,	/* btree cursor */
292 	xfs_agblock_t		*bno,	/* output: starting block of extent */
293 	xfs_extlen_t		*len,	/* output: length of extent */
294 	int			*stat)	/* output: success/failure */
295 {
296 	struct xfs_alloc_rec_incore irec;
297 	union xfs_btree_rec	*rec;
298 	xfs_failaddr_t		fa;
299 	int			error;
300 
301 	error = xfs_btree_get_rec(cur, &rec, stat);
302 	if (error || !(*stat))
303 		return error;
304 
305 	xfs_alloc_btrec_to_irec(rec, &irec);
306 	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
307 	if (fa)
308 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
309 
310 	*bno = irec.ar_startblock;
311 	*len = irec.ar_blockcount;
312 	return 0;
313 }
314 
315 /*
316  * Compute aligned version of the found extent.
317  * Takes alignment and min length into account.
318  */
319 STATIC bool
320 xfs_alloc_compute_aligned(
321 	xfs_alloc_arg_t	*args,		/* allocation argument structure */
322 	xfs_agblock_t	foundbno,	/* starting block in found extent */
323 	xfs_extlen_t	foundlen,	/* length in found extent */
324 	xfs_agblock_t	*resbno,	/* result block number */
325 	xfs_extlen_t	*reslen,	/* result length */
326 	unsigned	*busy_gen)
327 {
328 	xfs_agblock_t	bno = foundbno;
329 	xfs_extlen_t	len = foundlen;
330 	xfs_extlen_t	diff;
331 	bool		busy;
332 
333 	/* Trim busy sections out of found extent */
334 	busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen,
335 			args->maxlen, &bno, &len, busy_gen);
336 
337 	/*
338 	 * If we have a largish extent that happens to start before min_agbno,
339 	 * see if we can shift it into range...
340 	 */
341 	if (bno < args->min_agbno && bno + len > args->min_agbno) {
342 		diff = args->min_agbno - bno;
343 		if (len > diff) {
344 			bno += diff;
345 			len -= diff;
346 		}
347 	}
348 
349 	if (args->alignment > 1 && len >= args->minlen) {
350 		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
351 
352 		diff = aligned_bno - bno;
353 
354 		*resbno = aligned_bno;
355 		*reslen = diff >= len ? 0 : len - diff;
356 	} else {
357 		*resbno = bno;
358 		*reslen = len;
359 	}
360 
361 	return busy;
362 }
363 
364 /*
365  * Compute best start block and diff for "near" allocations.
366  * freelen >= wantlen already checked by caller.
367  */
368 STATIC xfs_extlen_t			/* difference value (absolute) */
369 xfs_alloc_compute_diff(
370 	xfs_agblock_t	wantbno,	/* target starting block */
371 	xfs_extlen_t	wantlen,	/* target length */
372 	xfs_extlen_t	alignment,	/* target alignment */
373 	int		datatype,	/* are we allocating data? */
374 	xfs_agblock_t	freebno,	/* freespace's starting block */
375 	xfs_extlen_t	freelen,	/* freespace's length */
376 	xfs_agblock_t	*newbnop)	/* result: best start block from free */
377 {
378 	xfs_agblock_t	freeend;	/* end of freespace extent */
379 	xfs_agblock_t	newbno1;	/* return block number */
380 	xfs_agblock_t	newbno2;	/* other new block number */
381 	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
382 	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
383 	xfs_agblock_t	wantend;	/* end of target extent */
384 	bool		userdata = datatype & XFS_ALLOC_USERDATA;
385 
386 	ASSERT(freelen >= wantlen);
387 	freeend = freebno + freelen;
388 	wantend = wantbno + wantlen;
389 	/*
390 	 * We want to allocate from the start of a free extent if it is past
391 	 * the desired block or if we are allocating user data and the free
392 	 * extent is before desired block. The second case is there to allow
393 	 * for contiguous allocation from the remaining free space if the file
394 	 * grows in the short term.
395 	 */
396 	if (freebno >= wantbno || (userdata && freeend < wantend)) {
397 		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
398 			newbno1 = NULLAGBLOCK;
399 	} else if (freeend >= wantend && alignment > 1) {
400 		newbno1 = roundup(wantbno, alignment);
401 		newbno2 = newbno1 - alignment;
402 		if (newbno1 >= freeend)
403 			newbno1 = NULLAGBLOCK;
404 		else
405 			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
406 		if (newbno2 < freebno)
407 			newbno2 = NULLAGBLOCK;
408 		else
409 			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
410 		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
411 			if (newlen1 < newlen2 ||
412 			    (newlen1 == newlen2 &&
413 			     XFS_ABSDIFF(newbno1, wantbno) >
414 			     XFS_ABSDIFF(newbno2, wantbno)))
415 				newbno1 = newbno2;
416 		} else if (newbno2 != NULLAGBLOCK)
417 			newbno1 = newbno2;
418 	} else if (freeend >= wantend) {
419 		newbno1 = wantbno;
420 	} else if (alignment > 1) {
421 		newbno1 = roundup(freeend - wantlen, alignment);
422 		if (newbno1 > freeend - wantlen &&
423 		    newbno1 - alignment >= freebno)
424 			newbno1 -= alignment;
425 		else if (newbno1 >= freeend)
426 			newbno1 = NULLAGBLOCK;
427 	} else
428 		newbno1 = freeend - wantlen;
429 	*newbnop = newbno1;
430 	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
431 }
432 
433 /*
434  * Fix up the length, based on mod and prod.
435  * len should be k * prod + mod for some k.
436  * If len is too small it is returned unchanged.
437  * If len hits maxlen it is left alone.
438  */
439 STATIC void
440 xfs_alloc_fix_len(
441 	xfs_alloc_arg_t	*args)		/* allocation argument structure */
442 {
443 	xfs_extlen_t	k;
444 	xfs_extlen_t	rlen;
445 
446 	ASSERT(args->mod < args->prod);
447 	rlen = args->len;
448 	ASSERT(rlen >= args->minlen);
449 	ASSERT(rlen <= args->maxlen);
450 	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
451 	    (args->mod == 0 && rlen < args->prod))
452 		return;
453 	k = rlen % args->prod;
454 	if (k == args->mod)
455 		return;
456 	if (k > args->mod)
457 		rlen = rlen - (k - args->mod);
458 	else
459 		rlen = rlen - args->prod + (args->mod - k);
460 	/* casts to (int) catch length underflows */
461 	if ((int)rlen < (int)args->minlen)
462 		return;
463 	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
464 	ASSERT(rlen % args->prod == args->mod);
465 	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
466 		rlen + args->minleft);
467 	args->len = rlen;
468 }
469 
470 /*
471  * Determine if the cursor points to the block that contains the right-most
472  * block of records in the by-count btree. This block contains the largest
473  * contiguous free extent in the AG, so if we modify a record in this block we
474  * need to call xfs_alloc_fixup_longest() once the modifications are done to
475  * ensure the agf->agf_longest field is kept up to date with the longest free
476  * extent tracked by the by-count btree.
477  */
478 static bool
479 xfs_alloc_cursor_at_lastrec(
480 	struct xfs_btree_cur	*cnt_cur)
481 {
482 	struct xfs_btree_block	*block;
483 	union xfs_btree_ptr	ptr;
484 	struct xfs_buf		*bp;
485 
486 	block = xfs_btree_get_block(cnt_cur, 0, &bp);
487 
488 	xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
489 	return xfs_btree_ptr_is_null(cnt_cur, &ptr);
490 }
491 
492 /*
493  * Find the rightmost record of the cntbt, and return the longest free space
494  * recorded in it. Simply set both the block number and the length to their
495  * maximum values before searching.
496  */
497 static int
498 xfs_cntbt_longest(
499 	struct xfs_btree_cur	*cnt_cur,
500 	xfs_extlen_t		*longest)
501 {
502 	struct xfs_alloc_rec_incore irec;
503 	union xfs_btree_rec	    *rec;
504 	int			    stat = 0;
505 	int			    error;
506 
507 	memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
508 	error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
509 	if (error)
510 		return error;
511 	if (!stat) {
512 		/* totally empty tree */
513 		*longest = 0;
514 		return 0;
515 	}
516 
517 	error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
518 	if (error)
519 		return error;
520 	if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
521 		xfs_btree_mark_sick(cnt_cur);
522 		return -EFSCORRUPTED;
523 	}
524 
525 	xfs_alloc_btrec_to_irec(rec, &irec);
526 	*longest = irec.ar_blockcount;
527 	return 0;
528 }
529 
530 /*
531  * Update the longest contiguous free extent in the AG from the by-count cursor
532  * that is passed to us. This should be done at the end of any allocation or
533  * freeing operation that touches the longest extent in the btree.
534  *
535  * Needing to update the longest extent can be determined by calling
536  * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
537  * modification but before the modification begins.
538  */
539 static int
540 xfs_alloc_fixup_longest(
541 	struct xfs_btree_cur	*cnt_cur)
542 {
543 	struct xfs_perag	*pag = to_perag(cnt_cur->bc_group);
544 	struct xfs_buf		*bp = cnt_cur->bc_ag.agbp;
545 	struct xfs_agf		*agf = bp->b_addr;
546 	xfs_extlen_t		longest = 0;
547 	int			error;
548 
549 	/* Lookup last rec in order to update AGF. */
550 	error = xfs_cntbt_longest(cnt_cur, &longest);
551 	if (error)
552 		return error;
553 
554 	pag->pagf_longest = longest;
555 	agf->agf_longest = cpu_to_be32(pag->pagf_longest);
556 	xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
557 
558 	return 0;
559 }
560 
561 /*
562  * Update the two btrees, logically removing from freespace the extent
563  * starting at rbno, rlen blocks.  The extent is contained within the
564  * actual (current) free extent fbno for flen blocks.
565  * Flags are passed in indicating whether the cursors are set to the
566  * relevant records.
567  */
568 STATIC int				/* error code */
569 xfs_alloc_fixup_trees(
570 	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
571 	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
572 	xfs_agblock_t	fbno,		/* starting block of free extent */
573 	xfs_extlen_t	flen,		/* length of free extent */
574 	xfs_agblock_t	rbno,		/* starting block of returned extent */
575 	xfs_extlen_t	rlen,		/* length of returned extent */
576 	int		flags)		/* flags, XFSA_FIXUP_... */
577 {
578 	int		error;		/* error code */
579 	int		i;		/* operation results */
580 	xfs_agblock_t	nfbno1;		/* first new free startblock */
581 	xfs_agblock_t	nfbno2;		/* second new free startblock */
582 	xfs_extlen_t	nflen1=0;	/* first new free length */
583 	xfs_extlen_t	nflen2=0;	/* second new free length */
584 	struct xfs_mount *mp;
585 	bool		fixup_longest = false;
586 
587 	mp = cnt_cur->bc_mp;
588 
589 	/*
590 	 * Look up the record in the by-size tree if necessary.
591 	 */
592 	if (flags & XFSA_FIXUP_CNT_OK) {
593 #ifdef DEBUG
594 		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
595 			return error;
596 		if (XFS_IS_CORRUPT(mp,
597 				   i != 1 ||
598 				   nfbno1 != fbno ||
599 				   nflen1 != flen)) {
600 			xfs_btree_mark_sick(cnt_cur);
601 			return -EFSCORRUPTED;
602 		}
603 #endif
604 	} else {
605 		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
606 			return error;
607 		if (XFS_IS_CORRUPT(mp, i != 1)) {
608 			xfs_btree_mark_sick(cnt_cur);
609 			return -EFSCORRUPTED;
610 		}
611 	}
612 	/*
613 	 * Look up the record in the by-block tree if necessary.
614 	 */
615 	if (flags & XFSA_FIXUP_BNO_OK) {
616 #ifdef DEBUG
617 		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
618 			return error;
619 		if (XFS_IS_CORRUPT(mp,
620 				   i != 1 ||
621 				   nfbno1 != fbno ||
622 				   nflen1 != flen)) {
623 			xfs_btree_mark_sick(bno_cur);
624 			return -EFSCORRUPTED;
625 		}
626 #endif
627 	} else {
628 		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
629 			return error;
630 		if (XFS_IS_CORRUPT(mp, i != 1)) {
631 			xfs_btree_mark_sick(bno_cur);
632 			return -EFSCORRUPTED;
633 		}
634 	}
635 
636 #ifdef DEBUG
637 	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
638 		struct xfs_btree_block	*bnoblock;
639 		struct xfs_btree_block	*cntblock;
640 
641 		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
642 		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
643 
644 		if (XFS_IS_CORRUPT(mp,
645 				   bnoblock->bb_numrecs !=
646 				   cntblock->bb_numrecs)) {
647 			xfs_btree_mark_sick(bno_cur);
648 			return -EFSCORRUPTED;
649 		}
650 	}
651 #endif
652 
653 	/*
654 	 * Deal with all four cases: the allocated record is contained
655 	 * within the freespace record, so we can have new freespace
656 	 * at either (or both) end, or no freespace remaining.
657 	 */
658 	if (rbno == fbno && rlen == flen)
659 		nfbno1 = nfbno2 = NULLAGBLOCK;
660 	else if (rbno == fbno) {
661 		nfbno1 = rbno + rlen;
662 		nflen1 = flen - rlen;
663 		nfbno2 = NULLAGBLOCK;
664 	} else if (rbno + rlen == fbno + flen) {
665 		nfbno1 = fbno;
666 		nflen1 = flen - rlen;
667 		nfbno2 = NULLAGBLOCK;
668 	} else {
669 		nfbno1 = fbno;
670 		nflen1 = rbno - fbno;
671 		nfbno2 = rbno + rlen;
672 		nflen2 = (fbno + flen) - nfbno2;
673 	}
674 
675 	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
676 		fixup_longest = true;
677 
678 	/*
679 	 * Delete the entry from the by-size btree.
680 	 */
681 	if ((error = xfs_btree_delete(cnt_cur, &i)))
682 		return error;
683 	if (XFS_IS_CORRUPT(mp, i != 1)) {
684 		xfs_btree_mark_sick(cnt_cur);
685 		return -EFSCORRUPTED;
686 	}
687 	/*
688 	 * Add new by-size btree entry(s).
689 	 */
690 	if (nfbno1 != NULLAGBLOCK) {
691 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
692 			return error;
693 		if (XFS_IS_CORRUPT(mp, i != 0)) {
694 			xfs_btree_mark_sick(cnt_cur);
695 			return -EFSCORRUPTED;
696 		}
697 		if ((error = xfs_btree_insert(cnt_cur, &i)))
698 			return error;
699 		if (XFS_IS_CORRUPT(mp, i != 1)) {
700 			xfs_btree_mark_sick(cnt_cur);
701 			return -EFSCORRUPTED;
702 		}
703 	}
704 	if (nfbno2 != NULLAGBLOCK) {
705 		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
706 			return error;
707 		if (XFS_IS_CORRUPT(mp, i != 0)) {
708 			xfs_btree_mark_sick(cnt_cur);
709 			return -EFSCORRUPTED;
710 		}
711 		if ((error = xfs_btree_insert(cnt_cur, &i)))
712 			return error;
713 		if (XFS_IS_CORRUPT(mp, i != 1)) {
714 			xfs_btree_mark_sick(cnt_cur);
715 			return -EFSCORRUPTED;
716 		}
717 	}
718 	/*
719 	 * Fix up the by-block btree entry(s).
720 	 */
721 	if (nfbno1 == NULLAGBLOCK) {
722 		/*
723 		 * No remaining freespace, just delete the by-block tree entry.
724 		 */
725 		if ((error = xfs_btree_delete(bno_cur, &i)))
726 			return error;
727 		if (XFS_IS_CORRUPT(mp, i != 1)) {
728 			xfs_btree_mark_sick(bno_cur);
729 			return -EFSCORRUPTED;
730 		}
731 	} else {
732 		/*
733 		 * Update the by-block entry to start later|be shorter.
734 		 */
735 		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
736 			return error;
737 	}
738 	if (nfbno2 != NULLAGBLOCK) {
739 		/*
740 		 * 2 resulting free entries, need to add one.
741 		 */
742 		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
743 			return error;
744 		if (XFS_IS_CORRUPT(mp, i != 0)) {
745 			xfs_btree_mark_sick(bno_cur);
746 			return -EFSCORRUPTED;
747 		}
748 		if ((error = xfs_btree_insert(bno_cur, &i)))
749 			return error;
750 		if (XFS_IS_CORRUPT(mp, i != 1)) {
751 			xfs_btree_mark_sick(bno_cur);
752 			return -EFSCORRUPTED;
753 		}
754 	}
755 
756 	if (fixup_longest)
757 		return xfs_alloc_fixup_longest(cnt_cur);
758 
759 	return 0;
760 }
761 
762 /*
763  * We do not verify the AGFL contents against AGF-based index counters here,
764  * even though we may have access to the perag that contains shadow copies. We
765  * don't know if the AGF based counters have been checked, and if they have they
766  * still may be inconsistent because they haven't yet been reset on the first
767  * allocation after the AGF has been read in.
768  *
769  * This means we can only check that all agfl entries contain valid or null
770  * values because we can't reliably determine the active range to exclude
771  * NULLAGBNO as a valid value.
772  *
773  * However, we can't even do that for v4 format filesystems because there are
774  * old versions of mkfs out there that does not initialise the AGFL to known,
775  * verifiable values. HEnce we can't tell the difference between a AGFL block
776  * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
777  *
778  * As a result, we can only fully validate AGFL block numbers when we pull them
779  * from the freelist in xfs_alloc_get_freelist().
780  */
781 static xfs_failaddr_t
782 xfs_agfl_verify(
783 	struct xfs_buf	*bp)
784 {
785 	struct xfs_mount *mp = bp->b_mount;
786 	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
787 	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
788 	int		i;
789 
790 	if (!xfs_has_crc(mp))
791 		return NULL;
792 
793 	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
794 		return __this_address;
795 	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
796 		return __this_address;
797 	/*
798 	 * during growfs operations, the perag is not fully initialised,
799 	 * so we can't use it for any useful checking. growfs ensures we can't
800 	 * use it by using uncached buffers that don't have the perag attached
801 	 * so we can detect and avoid this problem.
802 	 */
803 	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag)))
804 		return __this_address;
805 
806 	for (i = 0; i < xfs_agfl_size(mp); i++) {
807 		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
808 		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
809 			return __this_address;
810 	}
811 
812 	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
813 		return __this_address;
814 	return NULL;
815 }
816 
817 static void
818 xfs_agfl_read_verify(
819 	struct xfs_buf	*bp)
820 {
821 	struct xfs_mount *mp = bp->b_mount;
822 	xfs_failaddr_t	fa;
823 
824 	/*
825 	 * There is no verification of non-crc AGFLs because mkfs does not
826 	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
827 	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
828 	 * can't verify just those entries are valid.
829 	 */
830 	if (!xfs_has_crc(mp))
831 		return;
832 
833 	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
834 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
835 	else {
836 		fa = xfs_agfl_verify(bp);
837 		if (fa)
838 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
839 	}
840 }
841 
842 static void
843 xfs_agfl_write_verify(
844 	struct xfs_buf	*bp)
845 {
846 	struct xfs_mount	*mp = bp->b_mount;
847 	struct xfs_buf_log_item	*bip = bp->b_log_item;
848 	xfs_failaddr_t		fa;
849 
850 	/* no verification of non-crc AGFLs */
851 	if (!xfs_has_crc(mp))
852 		return;
853 
854 	fa = xfs_agfl_verify(bp);
855 	if (fa) {
856 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
857 		return;
858 	}
859 
860 	if (bip)
861 		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
862 
863 	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
864 }
865 
866 const struct xfs_buf_ops xfs_agfl_buf_ops = {
867 	.name = "xfs_agfl",
868 	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
869 	.verify_read = xfs_agfl_read_verify,
870 	.verify_write = xfs_agfl_write_verify,
871 	.verify_struct = xfs_agfl_verify,
872 };
873 
874 /*
875  * Read in the allocation group free block array.
876  */
877 int
878 xfs_alloc_read_agfl(
879 	struct xfs_perag	*pag,
880 	struct xfs_trans	*tp,
881 	struct xfs_buf		**bpp)
882 {
883 	struct xfs_mount	*mp = pag_mount(pag);
884 	struct xfs_buf		*bp;
885 	int			error;
886 
887 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
888 			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)),
889 			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
890 	if (xfs_metadata_is_sick(error))
891 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
892 	if (error)
893 		return error;
894 	xfs_buf_set_ref(bp, XFS_AGFL_REF);
895 	*bpp = bp;
896 	return 0;
897 }
898 
899 STATIC int
900 xfs_alloc_update_counters(
901 	struct xfs_trans	*tp,
902 	struct xfs_buf		*agbp,
903 	long			len)
904 {
905 	struct xfs_agf		*agf = agbp->b_addr;
906 
907 	agbp->b_pag->pagf_freeblks += len;
908 	be32_add_cpu(&agf->agf_freeblks, len);
909 
910 	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
911 		     be32_to_cpu(agf->agf_length))) {
912 		xfs_buf_mark_corrupt(agbp);
913 		xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
914 		return -EFSCORRUPTED;
915 	}
916 
917 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
918 	return 0;
919 }
920 
921 /*
922  * Block allocation algorithm and data structures.
923  */
924 struct xfs_alloc_cur {
925 	struct xfs_btree_cur		*cnt;	/* btree cursors */
926 	struct xfs_btree_cur		*bnolt;
927 	struct xfs_btree_cur		*bnogt;
928 	xfs_extlen_t			cur_len;/* current search length */
929 	xfs_agblock_t			rec_bno;/* extent startblock */
930 	xfs_extlen_t			rec_len;/* extent length */
931 	xfs_agblock_t			bno;	/* alloc bno */
932 	xfs_extlen_t			len;	/* alloc len */
933 	xfs_extlen_t			diff;	/* diff from search bno */
934 	unsigned int			busy_gen;/* busy state */
935 	bool				busy;
936 };
937 
938 /*
939  * Set up cursors, etc. in the extent allocation cursor. This function can be
940  * called multiple times to reset an initialized structure without having to
941  * reallocate cursors.
942  */
943 static int
944 xfs_alloc_cur_setup(
945 	struct xfs_alloc_arg	*args,
946 	struct xfs_alloc_cur	*acur)
947 {
948 	int			error;
949 	int			i;
950 
951 	acur->cur_len = args->maxlen;
952 	acur->rec_bno = 0;
953 	acur->rec_len = 0;
954 	acur->bno = 0;
955 	acur->len = 0;
956 	acur->diff = -1;
957 	acur->busy = false;
958 	acur->busy_gen = 0;
959 
960 	/*
961 	 * Perform an initial cntbt lookup to check for availability of maxlen
962 	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
963 	 * attempt a small allocation.
964 	 */
965 	if (!acur->cnt)
966 		acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
967 					args->agbp, args->pag);
968 	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
969 	if (error)
970 		return error;
971 
972 	/*
973 	 * Allocate the bnobt left and right search cursors.
974 	 */
975 	if (!acur->bnolt)
976 		acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
977 					args->agbp, args->pag);
978 	if (!acur->bnogt)
979 		acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
980 					args->agbp, args->pag);
981 	return i == 1 ? 0 : -ENOSPC;
982 }
983 
984 static void
985 xfs_alloc_cur_close(
986 	struct xfs_alloc_cur	*acur,
987 	bool			error)
988 {
989 	int			cur_error = XFS_BTREE_NOERROR;
990 
991 	if (error)
992 		cur_error = XFS_BTREE_ERROR;
993 
994 	if (acur->cnt)
995 		xfs_btree_del_cursor(acur->cnt, cur_error);
996 	if (acur->bnolt)
997 		xfs_btree_del_cursor(acur->bnolt, cur_error);
998 	if (acur->bnogt)
999 		xfs_btree_del_cursor(acur->bnogt, cur_error);
1000 	acur->cnt = acur->bnolt = acur->bnogt = NULL;
1001 }
1002 
1003 /*
1004  * Check an extent for allocation and track the best available candidate in the
1005  * allocation structure. The cursor is deactivated if it has entered an out of
1006  * range state based on allocation arguments. Optionally return the extent
1007  * extent geometry and allocation status if requested by the caller.
1008  */
1009 static int
1010 xfs_alloc_cur_check(
1011 	struct xfs_alloc_arg	*args,
1012 	struct xfs_alloc_cur	*acur,
1013 	struct xfs_btree_cur	*cur,
1014 	int			*new)
1015 {
1016 	int			error, i;
1017 	xfs_agblock_t		bno, bnoa, bnew;
1018 	xfs_extlen_t		len, lena, diff = -1;
1019 	bool			busy;
1020 	unsigned		busy_gen = 0;
1021 	bool			deactivate = false;
1022 	bool			isbnobt = xfs_btree_is_bno(cur->bc_ops);
1023 
1024 	*new = 0;
1025 
1026 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1027 	if (error)
1028 		return error;
1029 	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1030 		xfs_btree_mark_sick(cur);
1031 		return -EFSCORRUPTED;
1032 	}
1033 
1034 	/*
1035 	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
1036 	 * range (i.e., walking backwards looking for a minlen extent).
1037 	 */
1038 	if (len < args->minlen) {
1039 		deactivate = !isbnobt;
1040 		goto out;
1041 	}
1042 
1043 	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
1044 					 &busy_gen);
1045 	acur->busy |= busy;
1046 	if (busy)
1047 		acur->busy_gen = busy_gen;
1048 	/* deactivate a bnobt cursor outside of locality range */
1049 	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
1050 		deactivate = isbnobt;
1051 		goto out;
1052 	}
1053 	if (lena < args->minlen)
1054 		goto out;
1055 
1056 	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
1057 	xfs_alloc_fix_len(args);
1058 	ASSERT(args->len >= args->minlen);
1059 	if (args->len < acur->len)
1060 		goto out;
1061 
1062 	/*
1063 	 * We have an aligned record that satisfies minlen and beats or matches
1064 	 * the candidate extent size. Compare locality for near allocation mode.
1065 	 */
1066 	diff = xfs_alloc_compute_diff(args->agbno, args->len,
1067 				      args->alignment, args->datatype,
1068 				      bnoa, lena, &bnew);
1069 	if (bnew == NULLAGBLOCK)
1070 		goto out;
1071 
1072 	/*
1073 	 * Deactivate a bnobt cursor with worse locality than the current best.
1074 	 */
1075 	if (diff > acur->diff) {
1076 		deactivate = isbnobt;
1077 		goto out;
1078 	}
1079 
1080 	ASSERT(args->len > acur->len ||
1081 	       (args->len == acur->len && diff <= acur->diff));
1082 	acur->rec_bno = bno;
1083 	acur->rec_len = len;
1084 	acur->bno = bnew;
1085 	acur->len = args->len;
1086 	acur->diff = diff;
1087 	*new = 1;
1088 
1089 	/*
1090 	 * We're done if we found a perfect allocation. This only deactivates
1091 	 * the current cursor, but this is just an optimization to terminate a
1092 	 * cntbt search that otherwise runs to the edge of the tree.
1093 	 */
1094 	if (acur->diff == 0 && acur->len == args->maxlen)
1095 		deactivate = true;
1096 out:
1097 	if (deactivate)
1098 		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1099 	trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Complete an allocation of a candidate extent. Remove the extent from both
1105  * trees and update the args structure.
1106  */
1107 STATIC int
1108 xfs_alloc_cur_finish(
1109 	struct xfs_alloc_arg	*args,
1110 	struct xfs_alloc_cur	*acur)
1111 {
1112 	int			error;
1113 
1114 	ASSERT(acur->cnt && acur->bnolt);
1115 	ASSERT(acur->bno >= acur->rec_bno);
1116 	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1117 	ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
1118 
1119 	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1120 				      acur->rec_len, acur->bno, acur->len, 0);
1121 	if (error)
1122 		return error;
1123 
1124 	args->agbno = acur->bno;
1125 	args->len = acur->len;
1126 	args->wasfromfl = 0;
1127 
1128 	trace_xfs_alloc_cur(args);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1134  * bno optimized lookup to search for extents with ideal size and locality.
1135  */
1136 STATIC int
1137 xfs_alloc_cntbt_iter(
1138 	struct xfs_alloc_arg		*args,
1139 	struct xfs_alloc_cur		*acur)
1140 {
1141 	struct xfs_btree_cur	*cur = acur->cnt;
1142 	xfs_agblock_t		bno;
1143 	xfs_extlen_t		len, cur_len;
1144 	int			error;
1145 	int			i;
1146 
1147 	if (!xfs_alloc_cur_active(cur))
1148 		return 0;
1149 
1150 	/* locality optimized lookup */
1151 	cur_len = acur->cur_len;
1152 	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1153 	if (error)
1154 		return error;
1155 	if (i == 0)
1156 		return 0;
1157 	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1158 	if (error)
1159 		return error;
1160 
1161 	/* check the current record and update search length from it */
1162 	error = xfs_alloc_cur_check(args, acur, cur, &i);
1163 	if (error)
1164 		return error;
1165 	ASSERT(len >= acur->cur_len);
1166 	acur->cur_len = len;
1167 
1168 	/*
1169 	 * We looked up the first record >= [agbno, len] above. The agbno is a
1170 	 * secondary key and so the current record may lie just before or after
1171 	 * agbno. If it is past agbno, check the previous record too so long as
1172 	 * the length matches as it may be closer. Don't check a smaller record
1173 	 * because that could deactivate our cursor.
1174 	 */
1175 	if (bno > args->agbno) {
1176 		error = xfs_btree_decrement(cur, 0, &i);
1177 		if (!error && i) {
1178 			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1179 			if (!error && i && len == acur->cur_len)
1180 				error = xfs_alloc_cur_check(args, acur, cur,
1181 							    &i);
1182 		}
1183 		if (error)
1184 			return error;
1185 	}
1186 
1187 	/*
1188 	 * Increment the search key until we find at least one allocation
1189 	 * candidate or if the extent we found was larger. Otherwise, double the
1190 	 * search key to optimize the search. Efficiency is more important here
1191 	 * than absolute best locality.
1192 	 */
1193 	cur_len <<= 1;
1194 	if (!acur->len || acur->cur_len >= cur_len)
1195 		acur->cur_len++;
1196 	else
1197 		acur->cur_len = cur_len;
1198 
1199 	return error;
1200 }
1201 
1202 /*
1203  * Deal with the case where only small freespaces remain. Either return the
1204  * contents of the last freespace record, or allocate space from the freelist if
1205  * there is nothing in the tree.
1206  */
1207 STATIC int			/* error */
1208 xfs_alloc_ag_vextent_small(
1209 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1210 	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1211 	xfs_agblock_t		*fbnop,	/* result block number */
1212 	xfs_extlen_t		*flenp,	/* result length */
1213 	int			*stat)	/* status: 0-freelist, 1-normal/none */
1214 {
1215 	struct xfs_agf		*agf = args->agbp->b_addr;
1216 	int			error = 0;
1217 	xfs_agblock_t		fbno = NULLAGBLOCK;
1218 	xfs_extlen_t		flen = 0;
1219 	int			i = 0;
1220 
1221 	/*
1222 	 * If a cntbt cursor is provided, try to allocate the largest record in
1223 	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1224 	 * allocation. Make sure to respect minleft even when pulling from the
1225 	 * freelist.
1226 	 */
1227 	if (ccur)
1228 		error = xfs_btree_decrement(ccur, 0, &i);
1229 	if (error)
1230 		goto error;
1231 	if (i) {
1232 		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1233 		if (error)
1234 			goto error;
1235 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1236 			xfs_btree_mark_sick(ccur);
1237 			error = -EFSCORRUPTED;
1238 			goto error;
1239 		}
1240 		goto out;
1241 	}
1242 
1243 	if (args->minlen != 1 || args->alignment != 1 ||
1244 	    args->resv == XFS_AG_RESV_AGFL ||
1245 	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1246 		goto out;
1247 
1248 	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1249 			&fbno, 0);
1250 	if (error)
1251 		goto error;
1252 	if (fbno == NULLAGBLOCK)
1253 		goto out;
1254 
1255 	xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1,
1256 			      (args->datatype & XFS_ALLOC_NOBUSY));
1257 
1258 	if (args->datatype & XFS_ALLOC_USERDATA) {
1259 		struct xfs_buf	*bp;
1260 
1261 		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1262 				xfs_agbno_to_daddr(args->pag, fbno),
1263 				args->mp->m_bsize, 0, &bp);
1264 		if (error)
1265 			goto error;
1266 		xfs_trans_binval(args->tp, bp);
1267 	}
1268 	*fbnop = args->agbno = fbno;
1269 	*flenp = args->len = 1;
1270 	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1271 		xfs_btree_mark_sick(ccur);
1272 		error = -EFSCORRUPTED;
1273 		goto error;
1274 	}
1275 	args->wasfromfl = 1;
1276 	trace_xfs_alloc_small_freelist(args);
1277 
1278 	/*
1279 	 * If we're feeding an AGFL block to something that doesn't live in the
1280 	 * free space, we need to clear out the OWN_AG rmap.
1281 	 */
1282 	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1283 			      &XFS_RMAP_OINFO_AG);
1284 	if (error)
1285 		goto error;
1286 
1287 	*stat = 0;
1288 	return 0;
1289 
1290 out:
1291 	/*
1292 	 * Can't do the allocation, give up.
1293 	 */
1294 	if (flen < args->minlen) {
1295 		args->agbno = NULLAGBLOCK;
1296 		trace_xfs_alloc_small_notenough(args);
1297 		flen = 0;
1298 	}
1299 	*fbnop = fbno;
1300 	*flenp = flen;
1301 	*stat = 1;
1302 	trace_xfs_alloc_small_done(args);
1303 	return 0;
1304 
1305 error:
1306 	trace_xfs_alloc_small_error(args);
1307 	return error;
1308 }
1309 
1310 /*
1311  * Allocate a variable extent at exactly agno/bno.
1312  * Extent's length (returned in *len) will be between minlen and maxlen,
1313  * and of the form k * prod + mod unless there's nothing that large.
1314  * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1315  */
1316 STATIC int			/* error */
1317 xfs_alloc_ag_vextent_exact(
1318 	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1319 {
1320 	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1321 	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1322 	int		error;
1323 	xfs_agblock_t	fbno;	/* start block of found extent */
1324 	xfs_extlen_t	flen;	/* length of found extent */
1325 	xfs_agblock_t	tbno;	/* start block of busy extent */
1326 	xfs_extlen_t	tlen;	/* length of busy extent */
1327 	xfs_agblock_t	tend;	/* end block of busy extent */
1328 	int		i;	/* success/failure of operation */
1329 	unsigned	busy_gen;
1330 
1331 	ASSERT(args->alignment == 1);
1332 
1333 	/*
1334 	 * Allocate/initialize a cursor for the by-number freespace btree.
1335 	 */
1336 	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1337 					  args->pag);
1338 
1339 	/*
1340 	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1341 	 * Look for the closest free block <= bno, it must contain bno
1342 	 * if any free block does.
1343 	 */
1344 	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1345 	if (error)
1346 		goto error0;
1347 	if (!i)
1348 		goto not_found;
1349 
1350 	/*
1351 	 * Grab the freespace record.
1352 	 */
1353 	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1354 	if (error)
1355 		goto error0;
1356 	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1357 		xfs_btree_mark_sick(bno_cur);
1358 		error = -EFSCORRUPTED;
1359 		goto error0;
1360 	}
1361 	ASSERT(fbno <= args->agbno);
1362 
1363 	/*
1364 	 * Check for overlapping busy extents.
1365 	 */
1366 	tbno = fbno;
1367 	tlen = flen;
1368 	xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen,
1369 			&tbno, &tlen, &busy_gen);
1370 
1371 	/*
1372 	 * Give up if the start of the extent is busy, or the freespace isn't
1373 	 * long enough for the minimum request.
1374 	 */
1375 	if (tbno > args->agbno)
1376 		goto not_found;
1377 	if (tlen < args->minlen)
1378 		goto not_found;
1379 	tend = tbno + tlen;
1380 	if (tend < args->agbno + args->minlen)
1381 		goto not_found;
1382 
1383 	/*
1384 	 * End of extent will be smaller of the freespace end and the
1385 	 * maximal requested end.
1386 	 *
1387 	 * Fix the length according to mod and prod if given.
1388 	 */
1389 	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1390 						- args->agbno;
1391 	xfs_alloc_fix_len(args);
1392 	ASSERT(args->agbno + args->len <= tend);
1393 
1394 	/*
1395 	 * We are allocating agbno for args->len
1396 	 * Allocate/initialize a cursor for the by-size btree.
1397 	 */
1398 	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1399 					args->pag);
1400 	ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
1401 	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1402 				      args->len, XFSA_FIXUP_BNO_OK);
1403 	if (error) {
1404 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1405 		goto error0;
1406 	}
1407 
1408 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1409 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1410 
1411 	args->wasfromfl = 0;
1412 	trace_xfs_alloc_exact_done(args);
1413 	return 0;
1414 
1415 not_found:
1416 	/* Didn't find it, return null. */
1417 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1418 	args->agbno = NULLAGBLOCK;
1419 	trace_xfs_alloc_exact_notfound(args);
1420 	return 0;
1421 
1422 error0:
1423 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1424 	trace_xfs_alloc_exact_error(args);
1425 	return error;
1426 }
1427 
1428 /*
1429  * Search a given number of btree records in a given direction. Check each
1430  * record against the good extent we've already found.
1431  */
1432 STATIC int
1433 xfs_alloc_walk_iter(
1434 	struct xfs_alloc_arg	*args,
1435 	struct xfs_alloc_cur	*acur,
1436 	struct xfs_btree_cur	*cur,
1437 	bool			increment,
1438 	bool			find_one, /* quit on first candidate */
1439 	int			count,    /* rec count (-1 for infinite) */
1440 	int			*stat)
1441 {
1442 	int			error;
1443 	int			i;
1444 
1445 	*stat = 0;
1446 
1447 	/*
1448 	 * Search so long as the cursor is active or we find a better extent.
1449 	 * The cursor is deactivated if it extends beyond the range of the
1450 	 * current allocation candidate.
1451 	 */
1452 	while (xfs_alloc_cur_active(cur) && count) {
1453 		error = xfs_alloc_cur_check(args, acur, cur, &i);
1454 		if (error)
1455 			return error;
1456 		if (i == 1) {
1457 			*stat = 1;
1458 			if (find_one)
1459 				break;
1460 		}
1461 		if (!xfs_alloc_cur_active(cur))
1462 			break;
1463 
1464 		if (increment)
1465 			error = xfs_btree_increment(cur, 0, &i);
1466 		else
1467 			error = xfs_btree_decrement(cur, 0, &i);
1468 		if (error)
1469 			return error;
1470 		if (i == 0)
1471 			cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1472 
1473 		if (count > 0)
1474 			count--;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Search the by-bno and by-size btrees in parallel in search of an extent with
1482  * ideal locality based on the NEAR mode ->agbno locality hint.
1483  */
1484 STATIC int
1485 xfs_alloc_ag_vextent_locality(
1486 	struct xfs_alloc_arg	*args,
1487 	struct xfs_alloc_cur	*acur,
1488 	int			*stat)
1489 {
1490 	struct xfs_btree_cur	*fbcur = NULL;
1491 	int			error;
1492 	int			i;
1493 	bool			fbinc;
1494 
1495 	ASSERT(acur->len == 0);
1496 
1497 	*stat = 0;
1498 
1499 	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1500 	if (error)
1501 		return error;
1502 	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1503 	if (error)
1504 		return error;
1505 	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1506 	if (error)
1507 		return error;
1508 
1509 	/*
1510 	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1511 	 * right and lookup the closest extent to the locality hint for each
1512 	 * extent size key in the cntbt. The entire search terminates
1513 	 * immediately on a bnobt hit because that means we've found best case
1514 	 * locality. Otherwise the search continues until the cntbt cursor runs
1515 	 * off the end of the tree. If no allocation candidate is found at this
1516 	 * point, give up on locality, walk backwards from the end of the cntbt
1517 	 * and take the first available extent.
1518 	 *
1519 	 * The parallel tree searches balance each other out to provide fairly
1520 	 * consistent performance for various situations. The bnobt search can
1521 	 * have pathological behavior in the worst case scenario of larger
1522 	 * allocation requests and fragmented free space. On the other hand, the
1523 	 * bnobt is able to satisfy most smaller allocation requests much more
1524 	 * quickly than the cntbt. The cntbt search can sift through fragmented
1525 	 * free space and sets of free extents for larger allocation requests
1526 	 * more quickly than the bnobt. Since the locality hint is just a hint
1527 	 * and we don't want to scan the entire bnobt for perfect locality, the
1528 	 * cntbt search essentially bounds the bnobt search such that we can
1529 	 * find good enough locality at reasonable performance in most cases.
1530 	 */
1531 	while (xfs_alloc_cur_active(acur->bnolt) ||
1532 	       xfs_alloc_cur_active(acur->bnogt) ||
1533 	       xfs_alloc_cur_active(acur->cnt)) {
1534 
1535 		trace_xfs_alloc_cur_lookup(args);
1536 
1537 		/*
1538 		 * Search the bnobt left and right. In the case of a hit, finish
1539 		 * the search in the opposite direction and we're done.
1540 		 */
1541 		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1542 					    true, 1, &i);
1543 		if (error)
1544 			return error;
1545 		if (i == 1) {
1546 			trace_xfs_alloc_cur_left(args);
1547 			fbcur = acur->bnogt;
1548 			fbinc = true;
1549 			break;
1550 		}
1551 		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1552 					    1, &i);
1553 		if (error)
1554 			return error;
1555 		if (i == 1) {
1556 			trace_xfs_alloc_cur_right(args);
1557 			fbcur = acur->bnolt;
1558 			fbinc = false;
1559 			break;
1560 		}
1561 
1562 		/*
1563 		 * Check the extent with best locality based on the current
1564 		 * extent size search key and keep track of the best candidate.
1565 		 */
1566 		error = xfs_alloc_cntbt_iter(args, acur);
1567 		if (error)
1568 			return error;
1569 		if (!xfs_alloc_cur_active(acur->cnt)) {
1570 			trace_xfs_alloc_cur_lookup_done(args);
1571 			break;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * If we failed to find anything due to busy extents, return empty
1577 	 * handed so the caller can flush and retry. If no busy extents were
1578 	 * found, walk backwards from the end of the cntbt as a last resort.
1579 	 */
1580 	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1581 		error = xfs_btree_decrement(acur->cnt, 0, &i);
1582 		if (error)
1583 			return error;
1584 		if (i) {
1585 			acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1586 			fbcur = acur->cnt;
1587 			fbinc = false;
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Search in the opposite direction for a better entry in the case of
1593 	 * a bnobt hit or walk backwards from the end of the cntbt.
1594 	 */
1595 	if (fbcur) {
1596 		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1597 					    &i);
1598 		if (error)
1599 			return error;
1600 	}
1601 
1602 	if (acur->len)
1603 		*stat = 1;
1604 
1605 	return 0;
1606 }
1607 
1608 /* Check the last block of the cnt btree for allocations. */
1609 static int
1610 xfs_alloc_ag_vextent_lastblock(
1611 	struct xfs_alloc_arg	*args,
1612 	struct xfs_alloc_cur	*acur,
1613 	xfs_agblock_t		*bno,
1614 	xfs_extlen_t		*len,
1615 	bool			*allocated)
1616 {
1617 	int			error;
1618 	int			i;
1619 
1620 #ifdef DEBUG
1621 	/* Randomly don't execute the first algorithm. */
1622 	if (get_random_u32_below(2))
1623 		return 0;
1624 #endif
1625 
1626 	/*
1627 	 * Start from the entry that lookup found, sequence through all larger
1628 	 * free blocks.  If we're actually pointing at a record smaller than
1629 	 * maxlen, go to the start of this block, and skip all those smaller
1630 	 * than minlen.
1631 	 */
1632 	if (*len || args->alignment > 1) {
1633 		acur->cnt->bc_levels[0].ptr = 1;
1634 		do {
1635 			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1636 			if (error)
1637 				return error;
1638 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1639 				xfs_btree_mark_sick(acur->cnt);
1640 				return -EFSCORRUPTED;
1641 			}
1642 			if (*len >= args->minlen)
1643 				break;
1644 			error = xfs_btree_increment(acur->cnt, 0, &i);
1645 			if (error)
1646 				return error;
1647 		} while (i);
1648 		ASSERT(*len >= args->minlen);
1649 		if (!i)
1650 			return 0;
1651 	}
1652 
1653 	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1654 	if (error)
1655 		return error;
1656 
1657 	/*
1658 	 * It didn't work.  We COULD be in a case where there's a good record
1659 	 * somewhere, so try again.
1660 	 */
1661 	if (acur->len == 0)
1662 		return 0;
1663 
1664 	trace_xfs_alloc_near_first(args);
1665 	*allocated = true;
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Allocate a variable extent near bno in the allocation group agno.
1671  * Extent's length (returned in len) will be between minlen and maxlen,
1672  * and of the form k * prod + mod unless there's nothing that large.
1673  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1674  */
1675 STATIC int
1676 xfs_alloc_ag_vextent_near(
1677 	struct xfs_alloc_arg	*args,
1678 	uint32_t		alloc_flags)
1679 {
1680 	struct xfs_alloc_cur	acur = {};
1681 	int			error;		/* error code */
1682 	int			i;		/* result code, temporary */
1683 	xfs_agblock_t		bno;
1684 	xfs_extlen_t		len;
1685 
1686 	/* handle uninitialized agbno range so caller doesn't have to */
1687 	if (!args->min_agbno && !args->max_agbno)
1688 		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1689 	ASSERT(args->min_agbno <= args->max_agbno);
1690 
1691 	/* clamp agbno to the range if it's outside */
1692 	if (args->agbno < args->min_agbno)
1693 		args->agbno = args->min_agbno;
1694 	if (args->agbno > args->max_agbno)
1695 		args->agbno = args->max_agbno;
1696 
1697 	/* Retry once quickly if we find busy extents before blocking. */
1698 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1699 restart:
1700 	len = 0;
1701 
1702 	/*
1703 	 * Set up cursors and see if there are any free extents as big as
1704 	 * maxlen. If not, pick the last entry in the tree unless the tree is
1705 	 * empty.
1706 	 */
1707 	error = xfs_alloc_cur_setup(args, &acur);
1708 	if (error == -ENOSPC) {
1709 		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1710 				&len, &i);
1711 		if (error)
1712 			goto out;
1713 		if (i == 0 || len == 0) {
1714 			trace_xfs_alloc_near_noentry(args);
1715 			goto out;
1716 		}
1717 		ASSERT(i == 1);
1718 	} else if (error) {
1719 		goto out;
1720 	}
1721 
1722 	/*
1723 	 * First algorithm.
1724 	 * If the requested extent is large wrt the freespaces available
1725 	 * in this a.g., then the cursor will be pointing to a btree entry
1726 	 * near the right edge of the tree.  If it's in the last btree leaf
1727 	 * block, then we just examine all the entries in that block
1728 	 * that are big enough, and pick the best one.
1729 	 */
1730 	if (xfs_btree_islastblock(acur.cnt, 0)) {
1731 		bool		allocated = false;
1732 
1733 		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1734 				&allocated);
1735 		if (error)
1736 			goto out;
1737 		if (allocated)
1738 			goto alloc_finish;
1739 	}
1740 
1741 	/*
1742 	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1743 	 * locality.
1744 	 */
1745 	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1746 	if (error)
1747 		goto out;
1748 
1749 	/*
1750 	 * If we couldn't get anything, give up.
1751 	 */
1752 	if (!acur.len) {
1753 		if (acur.busy) {
1754 			/*
1755 			 * Our only valid extents must have been busy. Flush and
1756 			 * retry the allocation again. If we get an -EAGAIN
1757 			 * error, we're being told that a deadlock was avoided
1758 			 * and the current transaction needs committing before
1759 			 * the allocation can be retried.
1760 			 */
1761 			trace_xfs_alloc_near_busy(args);
1762 			error = xfs_extent_busy_flush(args->tp,
1763 					pag_group(args->pag), acur.busy_gen,
1764 					alloc_flags);
1765 			if (error)
1766 				goto out;
1767 
1768 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1769 			goto restart;
1770 		}
1771 		trace_xfs_alloc_size_neither(args);
1772 		args->agbno = NULLAGBLOCK;
1773 		goto out;
1774 	}
1775 
1776 alloc_finish:
1777 	/* fix up btrees on a successful allocation */
1778 	error = xfs_alloc_cur_finish(args, &acur);
1779 
1780 out:
1781 	xfs_alloc_cur_close(&acur, error);
1782 	return error;
1783 }
1784 
1785 /*
1786  * Allocate a variable extent anywhere in the allocation group agno.
1787  * Extent's length (returned in len) will be between minlen and maxlen,
1788  * and of the form k * prod + mod unless there's nothing that large.
1789  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1790  */
1791 static int
1792 xfs_alloc_ag_vextent_size(
1793 	struct xfs_alloc_arg	*args,
1794 	uint32_t		alloc_flags)
1795 {
1796 	struct xfs_agf		*agf = args->agbp->b_addr;
1797 	struct xfs_btree_cur	*bno_cur;
1798 	struct xfs_btree_cur	*cnt_cur;
1799 	xfs_agblock_t		fbno;		/* start of found freespace */
1800 	xfs_extlen_t		flen;		/* length of found freespace */
1801 	xfs_agblock_t		rbno;		/* returned block number */
1802 	xfs_extlen_t		rlen;		/* length of returned extent */
1803 	bool			busy;
1804 	unsigned		busy_gen;
1805 	int			error;
1806 	int			i;
1807 
1808 	/* Retry once quickly if we find busy extents before blocking. */
1809 	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1810 restart:
1811 	/*
1812 	 * Allocate and initialize a cursor for the by-size btree.
1813 	 */
1814 	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1815 					args->pag);
1816 	bno_cur = NULL;
1817 
1818 	/*
1819 	 * Look for an entry >= maxlen+alignment-1 blocks.
1820 	 */
1821 	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1822 			args->maxlen + args->alignment - 1, &i)))
1823 		goto error0;
1824 
1825 	/*
1826 	 * If none then we have to settle for a smaller extent. In the case that
1827 	 * there are no large extents, this will return the last entry in the
1828 	 * tree unless the tree is empty. In the case that there are only busy
1829 	 * large extents, this will return the largest small extent unless there
1830 	 * are no smaller extents available.
1831 	 */
1832 	if (!i) {
1833 		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1834 						   &fbno, &flen, &i);
1835 		if (error)
1836 			goto error0;
1837 		if (i == 0 || flen == 0) {
1838 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1839 			trace_xfs_alloc_size_noentry(args);
1840 			return 0;
1841 		}
1842 		ASSERT(i == 1);
1843 		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1844 				&rlen, &busy_gen);
1845 	} else {
1846 		/*
1847 		 * Search for a non-busy extent that is large enough.
1848 		 */
1849 		for (;;) {
1850 			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1851 			if (error)
1852 				goto error0;
1853 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1854 				xfs_btree_mark_sick(cnt_cur);
1855 				error = -EFSCORRUPTED;
1856 				goto error0;
1857 			}
1858 
1859 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1860 					&rbno, &rlen, &busy_gen);
1861 
1862 			if (rlen >= args->maxlen)
1863 				break;
1864 
1865 			error = xfs_btree_increment(cnt_cur, 0, &i);
1866 			if (error)
1867 				goto error0;
1868 			if (i)
1869 				continue;
1870 
1871 			/*
1872 			 * Our only valid extents must have been busy. Flush and
1873 			 * retry the allocation again. If we get an -EAGAIN
1874 			 * error, we're being told that a deadlock was avoided
1875 			 * and the current transaction needs committing before
1876 			 * the allocation can be retried.
1877 			 */
1878 			trace_xfs_alloc_size_busy(args);
1879 			error = xfs_extent_busy_flush(args->tp,
1880 					pag_group(args->pag), busy_gen,
1881 					alloc_flags);
1882 			if (error)
1883 				goto error0;
1884 
1885 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1886 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1887 			goto restart;
1888 		}
1889 	}
1890 
1891 	/*
1892 	 * In the first case above, we got the last entry in the
1893 	 * by-size btree.  Now we check to see if the space hits maxlen
1894 	 * once aligned; if not, we search left for something better.
1895 	 * This can't happen in the second case above.
1896 	 */
1897 	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1898 	if (XFS_IS_CORRUPT(args->mp,
1899 			   rlen != 0 &&
1900 			   (rlen > flen ||
1901 			    rbno + rlen > fbno + flen))) {
1902 		xfs_btree_mark_sick(cnt_cur);
1903 		error = -EFSCORRUPTED;
1904 		goto error0;
1905 	}
1906 	if (rlen < args->maxlen) {
1907 		xfs_agblock_t	bestfbno;
1908 		xfs_extlen_t	bestflen;
1909 		xfs_agblock_t	bestrbno;
1910 		xfs_extlen_t	bestrlen;
1911 
1912 		bestrlen = rlen;
1913 		bestrbno = rbno;
1914 		bestflen = flen;
1915 		bestfbno = fbno;
1916 		for (;;) {
1917 			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1918 				goto error0;
1919 			if (i == 0)
1920 				break;
1921 			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1922 					&i)))
1923 				goto error0;
1924 			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1925 				xfs_btree_mark_sick(cnt_cur);
1926 				error = -EFSCORRUPTED;
1927 				goto error0;
1928 			}
1929 			if (flen <= bestrlen)
1930 				break;
1931 			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1932 					&rbno, &rlen, &busy_gen);
1933 			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1934 			if (XFS_IS_CORRUPT(args->mp,
1935 					   rlen != 0 &&
1936 					   (rlen > flen ||
1937 					    rbno + rlen > fbno + flen))) {
1938 				xfs_btree_mark_sick(cnt_cur);
1939 				error = -EFSCORRUPTED;
1940 				goto error0;
1941 			}
1942 			if (rlen > bestrlen) {
1943 				bestrlen = rlen;
1944 				bestrbno = rbno;
1945 				bestflen = flen;
1946 				bestfbno = fbno;
1947 				if (rlen == args->maxlen)
1948 					break;
1949 			}
1950 		}
1951 		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1952 				&i)))
1953 			goto error0;
1954 		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1955 			xfs_btree_mark_sick(cnt_cur);
1956 			error = -EFSCORRUPTED;
1957 			goto error0;
1958 		}
1959 		rlen = bestrlen;
1960 		rbno = bestrbno;
1961 		flen = bestflen;
1962 		fbno = bestfbno;
1963 	}
1964 	args->wasfromfl = 0;
1965 	/*
1966 	 * Fix up the length.
1967 	 */
1968 	args->len = rlen;
1969 	if (rlen < args->minlen) {
1970 		if (busy) {
1971 			/*
1972 			 * Our only valid extents must have been busy. Flush and
1973 			 * retry the allocation again. If we get an -EAGAIN
1974 			 * error, we're being told that a deadlock was avoided
1975 			 * and the current transaction needs committing before
1976 			 * the allocation can be retried.
1977 			 */
1978 			trace_xfs_alloc_size_busy(args);
1979 			error = xfs_extent_busy_flush(args->tp,
1980 					pag_group(args->pag), busy_gen,
1981 					alloc_flags);
1982 			if (error)
1983 				goto error0;
1984 
1985 			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1986 			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1987 			goto restart;
1988 		}
1989 		goto out_nominleft;
1990 	}
1991 	xfs_alloc_fix_len(args);
1992 
1993 	rlen = args->len;
1994 	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1995 		xfs_btree_mark_sick(cnt_cur);
1996 		error = -EFSCORRUPTED;
1997 		goto error0;
1998 	}
1999 	/*
2000 	 * Allocate and initialize a cursor for the by-block tree.
2001 	 */
2002 	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
2003 					args->pag);
2004 	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
2005 			rbno, rlen, XFSA_FIXUP_CNT_OK)))
2006 		goto error0;
2007 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2008 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2009 	cnt_cur = bno_cur = NULL;
2010 	args->len = rlen;
2011 	args->agbno = rbno;
2012 	if (XFS_IS_CORRUPT(args->mp,
2013 			   args->agbno + args->len >
2014 			   be32_to_cpu(agf->agf_length))) {
2015 		xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
2016 		error = -EFSCORRUPTED;
2017 		goto error0;
2018 	}
2019 	trace_xfs_alloc_size_done(args);
2020 	return 0;
2021 
2022 error0:
2023 	trace_xfs_alloc_size_error(args);
2024 	if (cnt_cur)
2025 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2026 	if (bno_cur)
2027 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2028 	return error;
2029 
2030 out_nominleft:
2031 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2032 	trace_xfs_alloc_size_nominleft(args);
2033 	args->agbno = NULLAGBLOCK;
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Free the extent starting at agno/bno for length.
2039  */
2040 int
2041 xfs_free_ag_extent(
2042 	struct xfs_trans		*tp,
2043 	struct xfs_buf			*agbp,
2044 	xfs_agblock_t			bno,
2045 	xfs_extlen_t			len,
2046 	const struct xfs_owner_info	*oinfo,
2047 	enum xfs_ag_resv_type		type)
2048 {
2049 	struct xfs_mount		*mp;
2050 	struct xfs_btree_cur		*bno_cur;
2051 	struct xfs_btree_cur		*cnt_cur;
2052 	xfs_agblock_t			gtbno; /* start of right neighbor */
2053 	xfs_extlen_t			gtlen; /* length of right neighbor */
2054 	xfs_agblock_t			ltbno; /* start of left neighbor */
2055 	xfs_extlen_t			ltlen; /* length of left neighbor */
2056 	xfs_agblock_t			nbno; /* new starting block of freesp */
2057 	xfs_extlen_t			nlen; /* new length of freespace */
2058 	int				haveleft; /* have a left neighbor */
2059 	int				haveright; /* have a right neighbor */
2060 	int				i;
2061 	int				error;
2062 	struct xfs_perag		*pag = agbp->b_pag;
2063 	bool				fixup_longest = false;
2064 
2065 	bno_cur = cnt_cur = NULL;
2066 	mp = tp->t_mountp;
2067 
2068 	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
2069 		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
2070 		if (error)
2071 			goto error0;
2072 	}
2073 
2074 	/*
2075 	 * Allocate and initialize a cursor for the by-block btree.
2076 	 */
2077 	bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
2078 	/*
2079 	 * Look for a neighboring block on the left (lower block numbers)
2080 	 * that is contiguous with this space.
2081 	 */
2082 	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
2083 		goto error0;
2084 	if (haveleft) {
2085 		/*
2086 		 * There is a block to our left.
2087 		 */
2088 		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
2089 			goto error0;
2090 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2091 			xfs_btree_mark_sick(bno_cur);
2092 			error = -EFSCORRUPTED;
2093 			goto error0;
2094 		}
2095 		/*
2096 		 * It's not contiguous, though.
2097 		 */
2098 		if (ltbno + ltlen < bno)
2099 			haveleft = 0;
2100 		else {
2101 			/*
2102 			 * If this failure happens the request to free this
2103 			 * space was invalid, it's (partly) already free.
2104 			 * Very bad.
2105 			 */
2106 			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2107 				xfs_btree_mark_sick(bno_cur);
2108 				error = -EFSCORRUPTED;
2109 				goto error0;
2110 			}
2111 		}
2112 	}
2113 	/*
2114 	 * Look for a neighboring block on the right (higher block numbers)
2115 	 * that is contiguous with this space.
2116 	 */
2117 	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2118 		goto error0;
2119 	if (haveright) {
2120 		/*
2121 		 * There is a block to our right.
2122 		 */
2123 		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2124 			goto error0;
2125 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2126 			xfs_btree_mark_sick(bno_cur);
2127 			error = -EFSCORRUPTED;
2128 			goto error0;
2129 		}
2130 		/*
2131 		 * It's not contiguous, though.
2132 		 */
2133 		if (bno + len < gtbno)
2134 			haveright = 0;
2135 		else {
2136 			/*
2137 			 * If this failure happens the request to free this
2138 			 * space was invalid, it's (partly) already free.
2139 			 * Very bad.
2140 			 */
2141 			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2142 				xfs_btree_mark_sick(bno_cur);
2143 				error = -EFSCORRUPTED;
2144 				goto error0;
2145 			}
2146 		}
2147 	}
2148 	/*
2149 	 * Now allocate and initialize a cursor for the by-size tree.
2150 	 */
2151 	cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2152 	/*
2153 	 * Have both left and right contiguous neighbors.
2154 	 * Merge all three into a single free block.
2155 	 */
2156 	if (haveleft && haveright) {
2157 		/*
2158 		 * Delete the old by-size entry on the left.
2159 		 */
2160 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2161 			goto error0;
2162 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2163 			xfs_btree_mark_sick(cnt_cur);
2164 			error = -EFSCORRUPTED;
2165 			goto error0;
2166 		}
2167 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2168 			goto error0;
2169 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2170 			xfs_btree_mark_sick(cnt_cur);
2171 			error = -EFSCORRUPTED;
2172 			goto error0;
2173 		}
2174 		/*
2175 		 * Delete the old by-size entry on the right.
2176 		 */
2177 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2178 			goto error0;
2179 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2180 			xfs_btree_mark_sick(cnt_cur);
2181 			error = -EFSCORRUPTED;
2182 			goto error0;
2183 		}
2184 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2185 			goto error0;
2186 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2187 			xfs_btree_mark_sick(cnt_cur);
2188 			error = -EFSCORRUPTED;
2189 			goto error0;
2190 		}
2191 		/*
2192 		 * Delete the old by-block entry for the right block.
2193 		 */
2194 		if ((error = xfs_btree_delete(bno_cur, &i)))
2195 			goto error0;
2196 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2197 			xfs_btree_mark_sick(bno_cur);
2198 			error = -EFSCORRUPTED;
2199 			goto error0;
2200 		}
2201 		/*
2202 		 * Move the by-block cursor back to the left neighbor.
2203 		 */
2204 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2205 			goto error0;
2206 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2207 			xfs_btree_mark_sick(bno_cur);
2208 			error = -EFSCORRUPTED;
2209 			goto error0;
2210 		}
2211 #ifdef DEBUG
2212 		/*
2213 		 * Check that this is the right record: delete didn't
2214 		 * mangle the cursor.
2215 		 */
2216 		{
2217 			xfs_agblock_t	xxbno;
2218 			xfs_extlen_t	xxlen;
2219 
2220 			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2221 					&i)))
2222 				goto error0;
2223 			if (XFS_IS_CORRUPT(mp,
2224 					   i != 1 ||
2225 					   xxbno != ltbno ||
2226 					   xxlen != ltlen)) {
2227 				xfs_btree_mark_sick(bno_cur);
2228 				error = -EFSCORRUPTED;
2229 				goto error0;
2230 			}
2231 		}
2232 #endif
2233 		/*
2234 		 * Update remaining by-block entry to the new, joined block.
2235 		 */
2236 		nbno = ltbno;
2237 		nlen = len + ltlen + gtlen;
2238 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2239 			goto error0;
2240 	}
2241 	/*
2242 	 * Have only a left contiguous neighbor.
2243 	 * Merge it together with the new freespace.
2244 	 */
2245 	else if (haveleft) {
2246 		/*
2247 		 * Delete the old by-size entry on the left.
2248 		 */
2249 		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2250 			goto error0;
2251 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2252 			xfs_btree_mark_sick(cnt_cur);
2253 			error = -EFSCORRUPTED;
2254 			goto error0;
2255 		}
2256 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2257 			goto error0;
2258 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2259 			xfs_btree_mark_sick(cnt_cur);
2260 			error = -EFSCORRUPTED;
2261 			goto error0;
2262 		}
2263 		/*
2264 		 * Back up the by-block cursor to the left neighbor, and
2265 		 * update its length.
2266 		 */
2267 		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2268 			goto error0;
2269 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2270 			xfs_btree_mark_sick(bno_cur);
2271 			error = -EFSCORRUPTED;
2272 			goto error0;
2273 		}
2274 		nbno = ltbno;
2275 		nlen = len + ltlen;
2276 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2277 			goto error0;
2278 	}
2279 	/*
2280 	 * Have only a right contiguous neighbor.
2281 	 * Merge it together with the new freespace.
2282 	 */
2283 	else if (haveright) {
2284 		/*
2285 		 * Delete the old by-size entry on the right.
2286 		 */
2287 		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2288 			goto error0;
2289 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2290 			xfs_btree_mark_sick(cnt_cur);
2291 			error = -EFSCORRUPTED;
2292 			goto error0;
2293 		}
2294 		if ((error = xfs_btree_delete(cnt_cur, &i)))
2295 			goto error0;
2296 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2297 			xfs_btree_mark_sick(cnt_cur);
2298 			error = -EFSCORRUPTED;
2299 			goto error0;
2300 		}
2301 		/*
2302 		 * Update the starting block and length of the right
2303 		 * neighbor in the by-block tree.
2304 		 */
2305 		nbno = bno;
2306 		nlen = len + gtlen;
2307 		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2308 			goto error0;
2309 	}
2310 	/*
2311 	 * No contiguous neighbors.
2312 	 * Insert the new freespace into the by-block tree.
2313 	 */
2314 	else {
2315 		nbno = bno;
2316 		nlen = len;
2317 		if ((error = xfs_btree_insert(bno_cur, &i)))
2318 			goto error0;
2319 		if (XFS_IS_CORRUPT(mp, i != 1)) {
2320 			xfs_btree_mark_sick(bno_cur);
2321 			error = -EFSCORRUPTED;
2322 			goto error0;
2323 		}
2324 	}
2325 	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2326 	bno_cur = NULL;
2327 
2328 	/*
2329 	 * In all cases we need to insert the new freespace in the by-size tree.
2330 	 *
2331 	 * If this new freespace is being inserted in the block that contains
2332 	 * the largest free space in the btree, make sure we also fix up the
2333 	 * agf->agf-longest tracker field.
2334 	 */
2335 	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2336 		goto error0;
2337 	if (XFS_IS_CORRUPT(mp, i != 0)) {
2338 		xfs_btree_mark_sick(cnt_cur);
2339 		error = -EFSCORRUPTED;
2340 		goto error0;
2341 	}
2342 	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
2343 		fixup_longest = true;
2344 	if ((error = xfs_btree_insert(cnt_cur, &i)))
2345 		goto error0;
2346 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2347 		xfs_btree_mark_sick(cnt_cur);
2348 		error = -EFSCORRUPTED;
2349 		goto error0;
2350 	}
2351 	if (fixup_longest) {
2352 		error = xfs_alloc_fixup_longest(cnt_cur);
2353 		if (error)
2354 			goto error0;
2355 	}
2356 
2357 	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2358 	cnt_cur = NULL;
2359 
2360 	/*
2361 	 * Update the freespace totals in the ag and superblock.
2362 	 */
2363 	error = xfs_alloc_update_counters(tp, agbp, len);
2364 	xfs_ag_resv_free_extent(pag, type, tp, len);
2365 	if (error)
2366 		goto error0;
2367 
2368 	XFS_STATS_INC(mp, xs_freex);
2369 	XFS_STATS_ADD(mp, xs_freeb, len);
2370 
2371 	trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright);
2372 
2373 	return 0;
2374 
2375  error0:
2376 	trace_xfs_free_extent(pag, bno, len, type, -1, -1);
2377 	if (bno_cur)
2378 		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2379 	if (cnt_cur)
2380 		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2381 	return error;
2382 }
2383 
2384 /*
2385  * Visible (exported) allocation/free functions.
2386  * Some of these are used just by xfs_alloc_btree.c and this file.
2387  */
2388 
2389 /*
2390  * Compute and fill in value of m_alloc_maxlevels.
2391  */
2392 void
2393 xfs_alloc_compute_maxlevels(
2394 	xfs_mount_t	*mp)	/* file system mount structure */
2395 {
2396 	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2397 			(mp->m_sb.sb_agblocks + 1) / 2);
2398 	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2399 }
2400 
2401 /*
2402  * Find the length of the longest extent in an AG.  The 'need' parameter
2403  * specifies how much space we're going to need for the AGFL and the
2404  * 'reserved' parameter tells us how many blocks in this AG are reserved for
2405  * other callers.
2406  */
2407 xfs_extlen_t
2408 xfs_alloc_longest_free_extent(
2409 	struct xfs_perag	*pag,
2410 	xfs_extlen_t		need,
2411 	xfs_extlen_t		reserved)
2412 {
2413 	xfs_extlen_t		delta = 0;
2414 
2415 	/*
2416 	 * If the AGFL needs a recharge, we'll have to subtract that from the
2417 	 * longest extent.
2418 	 */
2419 	if (need > pag->pagf_flcount)
2420 		delta = need - pag->pagf_flcount;
2421 
2422 	/*
2423 	 * If we cannot maintain others' reservations with space from the
2424 	 * not-longest freesp extents, we'll have to subtract /that/ from
2425 	 * the longest extent too.
2426 	 */
2427 	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2428 		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2429 
2430 	/*
2431 	 * If the longest extent is long enough to satisfy all the
2432 	 * reservations and AGFL rules in place, we can return this extent.
2433 	 */
2434 	if (pag->pagf_longest > delta)
2435 		return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable,
2436 				pag->pagf_longest - delta);
2437 
2438 	/* Otherwise, let the caller try for 1 block if there's space. */
2439 	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2440 }
2441 
2442 /*
2443  * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2444  * return the largest possible minimum length.
2445  */
2446 unsigned int
2447 xfs_alloc_min_freelist(
2448 	struct xfs_mount	*mp,
2449 	struct xfs_perag	*pag)
2450 {
2451 	/* AG btrees have at least 1 level. */
2452 	const unsigned int	bno_level = pag ? pag->pagf_bno_level : 1;
2453 	const unsigned int	cnt_level = pag ? pag->pagf_cnt_level : 1;
2454 	const unsigned int	rmap_level = pag ? pag->pagf_rmap_level : 1;
2455 	unsigned int		min_free;
2456 
2457 	ASSERT(mp->m_alloc_maxlevels > 0);
2458 
2459 	/*
2460 	 * For a btree shorter than the maximum height, the worst case is that
2461 	 * every level gets split and a new level is added, then while inserting
2462 	 * another entry to refill the AGFL, every level under the old root gets
2463 	 * split again. This is:
2464 	 *
2465 	 *   (full height split reservation) + (AGFL refill split height)
2466 	 * = (current height + 1) + (current height - 1)
2467 	 * = (new height) + (new height - 2)
2468 	 * = 2 * new height - 2
2469 	 *
2470 	 * For a btree of maximum height, the worst case is that every level
2471 	 * under the root gets split, then while inserting another entry to
2472 	 * refill the AGFL, every level under the root gets split again. This is
2473 	 * also:
2474 	 *
2475 	 *   2 * (current height - 1)
2476 	 * = 2 * (new height - 1)
2477 	 * = 2 * new height - 2
2478 	 */
2479 
2480 	/* space needed by-bno freespace btree */
2481 	min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2482 	/* space needed by-size freespace btree */
2483 	min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2484 	/* space needed reverse mapping used space btree */
2485 	if (xfs_has_rmapbt(mp))
2486 		min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
2487 	return min_free;
2488 }
2489 
2490 /*
2491  * Check if the operation we are fixing up the freelist for should go ahead or
2492  * not. If we are freeing blocks, we always allow it, otherwise the allocation
2493  * is dependent on whether the size and shape of free space available will
2494  * permit the requested allocation to take place.
2495  */
2496 static bool
2497 xfs_alloc_space_available(
2498 	struct xfs_alloc_arg	*args,
2499 	xfs_extlen_t		min_free,
2500 	int			flags)
2501 {
2502 	struct xfs_perag	*pag = args->pag;
2503 	xfs_extlen_t		alloc_len, longest;
2504 	xfs_extlen_t		reservation; /* blocks that are still reserved */
2505 	int			available;
2506 	xfs_extlen_t		agflcount;
2507 
2508 	if (flags & XFS_ALLOC_FLAG_FREEING)
2509 		return true;
2510 
2511 	reservation = xfs_ag_resv_needed(pag, args->resv);
2512 
2513 	/* do we have enough contiguous free space for the allocation? */
2514 	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2515 	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2516 	if (longest < alloc_len)
2517 		return false;
2518 
2519 	/*
2520 	 * Do we have enough free space remaining for the allocation? Don't
2521 	 * account extra agfl blocks because we are about to defer free them,
2522 	 * making them unavailable until the current transaction commits.
2523 	 */
2524 	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2525 	available = (int)(pag->pagf_freeblks + agflcount -
2526 			  reservation - min_free - args->minleft);
2527 	if (available < (int)max(args->total, alloc_len))
2528 		return false;
2529 
2530 	/*
2531 	 * Clamp maxlen to the amount of free space available for the actual
2532 	 * extent allocation.
2533 	 */
2534 	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2535 		args->maxlen = available;
2536 		ASSERT(args->maxlen > 0);
2537 		ASSERT(args->maxlen >= args->minlen);
2538 	}
2539 
2540 	return true;
2541 }
2542 
2543 /*
2544  * Check the agfl fields of the agf for inconsistency or corruption.
2545  *
2546  * The original purpose was to detect an agfl header padding mismatch between
2547  * current and early v5 kernels. This problem manifests as a 1-slot size
2548  * difference between the on-disk flcount and the active [first, last] range of
2549  * a wrapped agfl.
2550  *
2551  * However, we need to use these same checks to catch agfl count corruptions
2552  * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2553  * way, we need to reset the agfl and warn the user.
2554  *
2555  * Return true if a reset is required before the agfl can be used, false
2556  * otherwise.
2557  */
2558 static bool
2559 xfs_agfl_needs_reset(
2560 	struct xfs_mount	*mp,
2561 	struct xfs_agf		*agf)
2562 {
2563 	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2564 	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2565 	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2566 	int			agfl_size = xfs_agfl_size(mp);
2567 	int			active;
2568 
2569 	/*
2570 	 * The agf read verifier catches severe corruption of these fields.
2571 	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2572 	 * the verifier allows it.
2573 	 */
2574 	if (f >= agfl_size || l >= agfl_size)
2575 		return true;
2576 	if (c > agfl_size)
2577 		return true;
2578 
2579 	/*
2580 	 * Check consistency between the on-disk count and the active range. An
2581 	 * agfl padding mismatch manifests as an inconsistent flcount.
2582 	 */
2583 	if (c && l >= f)
2584 		active = l - f + 1;
2585 	else if (c)
2586 		active = agfl_size - f + l + 1;
2587 	else
2588 		active = 0;
2589 
2590 	return active != c;
2591 }
2592 
2593 /*
2594  * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2595  * agfl content cannot be trusted. Warn the user that a repair is required to
2596  * recover leaked blocks.
2597  *
2598  * The purpose of this mechanism is to handle filesystems affected by the agfl
2599  * header padding mismatch problem. A reset keeps the filesystem online with a
2600  * relatively minor free space accounting inconsistency rather than suffer the
2601  * inevitable crash from use of an invalid agfl block.
2602  */
2603 static void
2604 xfs_agfl_reset(
2605 	struct xfs_trans	*tp,
2606 	struct xfs_buf		*agbp,
2607 	struct xfs_perag	*pag)
2608 {
2609 	struct xfs_mount	*mp = tp->t_mountp;
2610 	struct xfs_agf		*agf = agbp->b_addr;
2611 
2612 	ASSERT(xfs_perag_agfl_needs_reset(pag));
2613 	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2614 
2615 	xfs_warn(mp,
2616 	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2617 	       "Please unmount and run xfs_repair.",
2618 		pag_agno(pag), pag->pagf_flcount);
2619 
2620 	agf->agf_flfirst = 0;
2621 	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2622 	agf->agf_flcount = 0;
2623 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2624 				    XFS_AGF_FLCOUNT);
2625 
2626 	pag->pagf_flcount = 0;
2627 	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2628 }
2629 
2630 /*
2631  * Add the extent to the list of extents to be free at transaction end.
2632  * The list is maintained sorted (by block number).
2633  */
2634 static int
2635 xfs_defer_extent_free(
2636 	struct xfs_trans		*tp,
2637 	xfs_fsblock_t			bno,
2638 	xfs_filblks_t			len,
2639 	const struct xfs_owner_info	*oinfo,
2640 	enum xfs_ag_resv_type		type,
2641 	unsigned int			free_flags,
2642 	struct xfs_defer_pending	**dfpp)
2643 {
2644 	struct xfs_extent_free_item	*xefi;
2645 	struct xfs_mount		*mp = tp->t_mountp;
2646 
2647 	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2648 	ASSERT(!isnullstartblock(bno));
2649 	ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
2650 
2651 	if (free_flags & XFS_FREE_EXTENT_REALTIME) {
2652 		if (type != XFS_AG_RESV_NONE) {
2653 			ASSERT(type == XFS_AG_RESV_NONE);
2654 			return -EFSCORRUPTED;
2655 		}
2656 		if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len)))
2657 			return -EFSCORRUPTED;
2658 	} else {
2659 		if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2660 			return -EFSCORRUPTED;
2661 	}
2662 
2663 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2664 			       GFP_KERNEL | __GFP_NOFAIL);
2665 	xefi->xefi_startblock = bno;
2666 	xefi->xefi_blockcount = (xfs_extlen_t)len;
2667 	xefi->xefi_agresv = type;
2668 	if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
2669 		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2670 	if (free_flags & XFS_FREE_EXTENT_REALTIME)
2671 		xefi->xefi_flags |= XFS_EFI_REALTIME;
2672 	if (oinfo) {
2673 		ASSERT(oinfo->oi_offset == 0);
2674 
2675 		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2676 			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2677 		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2678 			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2679 		xefi->xefi_owner = oinfo->oi_owner;
2680 	} else {
2681 		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2682 	}
2683 
2684 	xfs_extent_free_defer_add(tp, xefi, dfpp);
2685 	return 0;
2686 }
2687 
2688 int
2689 xfs_free_extent_later(
2690 	struct xfs_trans		*tp,
2691 	xfs_fsblock_t			bno,
2692 	xfs_filblks_t			len,
2693 	const struct xfs_owner_info	*oinfo,
2694 	enum xfs_ag_resv_type		type,
2695 	unsigned int			free_flags)
2696 {
2697 	struct xfs_defer_pending	*dontcare = NULL;
2698 
2699 	return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
2700 			&dontcare);
2701 }
2702 
2703 /*
2704  * Set up automatic freeing of unwritten space in the filesystem.
2705  *
2706  * This function attached a paused deferred extent free item to the
2707  * transaction.  Pausing means that the EFI will be logged in the next
2708  * transaction commit, but the pending EFI will not be finished until the
2709  * pending item is unpaused.
2710  *
2711  * If the system goes down after the EFI has been persisted to the log but
2712  * before the pending item is unpaused, log recovery will find the EFI, fail to
2713  * find the EFD, and free the space.
2714  *
2715  * If the pending item is unpaused, the next transaction commit will log an EFD
2716  * without freeing the space.
2717  *
2718  * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2719  * @args structure are set to the relevant values.
2720  */
2721 int
2722 xfs_alloc_schedule_autoreap(
2723 	const struct xfs_alloc_arg	*args,
2724 	unsigned int			free_flags,
2725 	struct xfs_alloc_autoreap	*aarp)
2726 {
2727 	int				error;
2728 
2729 	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2730 			&args->oinfo, args->resv, free_flags, &aarp->dfp);
2731 	if (error)
2732 		return error;
2733 
2734 	xfs_defer_item_pause(args->tp, aarp->dfp);
2735 	return 0;
2736 }
2737 
2738 /*
2739  * Cancel automatic freeing of unwritten space in the filesystem.
2740  *
2741  * Earlier, we created a paused deferred extent free item and attached it to
2742  * this transaction so that we could automatically roll back a new space
2743  * allocation if the system went down.  Now we want to cancel the paused work
2744  * item by marking the EFI stale so we don't actually free the space, unpausing
2745  * the pending item and logging an EFD.
2746  *
2747  * The caller generally should have already mapped the space into the ondisk
2748  * filesystem.  If the reserved space was partially used, the caller must call
2749  * xfs_free_extent_later to create a new EFI to free the unused space.
2750  */
2751 void
2752 xfs_alloc_cancel_autoreap(
2753 	struct xfs_trans		*tp,
2754 	struct xfs_alloc_autoreap	*aarp)
2755 {
2756 	struct xfs_defer_pending	*dfp = aarp->dfp;
2757 	struct xfs_extent_free_item	*xefi;
2758 
2759 	if (!dfp)
2760 		return;
2761 
2762 	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2763 		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2764 
2765 	xfs_defer_item_unpause(tp, dfp);
2766 }
2767 
2768 /*
2769  * Commit automatic freeing of unwritten space in the filesystem.
2770  *
2771  * This unpauses an earlier _schedule_autoreap and commits to freeing the
2772  * allocated space.  Call this if none of the reserved space was used.
2773  */
2774 void
2775 xfs_alloc_commit_autoreap(
2776 	struct xfs_trans		*tp,
2777 	struct xfs_alloc_autoreap	*aarp)
2778 {
2779 	if (aarp->dfp)
2780 		xfs_defer_item_unpause(tp, aarp->dfp);
2781 }
2782 
2783 /*
2784  * Check if an AGF has a free extent record whose length is equal to
2785  * args->minlen.
2786  */
2787 STATIC int
2788 xfs_exact_minlen_extent_available(
2789 	struct xfs_alloc_arg	*args,
2790 	struct xfs_buf		*agbp,
2791 	int			*stat)
2792 {
2793 	struct xfs_btree_cur	*cnt_cur;
2794 	xfs_agblock_t		fbno;
2795 	xfs_extlen_t		flen;
2796 	int			error = 0;
2797 
2798 	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2799 					args->pag);
2800 	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2801 	if (error)
2802 		goto out;
2803 
2804 	if (*stat == 0) {
2805 		xfs_btree_mark_sick(cnt_cur);
2806 		error = -EFSCORRUPTED;
2807 		goto out;
2808 	}
2809 
2810 	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2811 	if (error)
2812 		goto out;
2813 
2814 	if (*stat == 1 && flen != args->minlen)
2815 		*stat = 0;
2816 
2817 out:
2818 	xfs_btree_del_cursor(cnt_cur, error);
2819 
2820 	return error;
2821 }
2822 
2823 /*
2824  * Decide whether to use this allocation group for this allocation.
2825  * If so, fix up the btree freelist's size.
2826  */
2827 int			/* error */
2828 xfs_alloc_fix_freelist(
2829 	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2830 	uint32_t		alloc_flags)
2831 {
2832 	struct xfs_mount	*mp = args->mp;
2833 	struct xfs_perag	*pag = args->pag;
2834 	struct xfs_trans	*tp = args->tp;
2835 	struct xfs_buf		*agbp = NULL;
2836 	struct xfs_buf		*agflbp = NULL;
2837 	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2838 	xfs_agblock_t		bno;	/* freelist block */
2839 	xfs_extlen_t		need;	/* total blocks needed in freelist */
2840 	int			error = 0;
2841 
2842 	/* deferred ops (AGFL block frees) require permanent transactions */
2843 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2844 
2845 	if (!xfs_perag_initialised_agf(pag)) {
2846 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2847 		if (error) {
2848 			/* Couldn't lock the AGF so skip this AG. */
2849 			if (error == -EAGAIN)
2850 				error = 0;
2851 			goto out_no_agbp;
2852 		}
2853 	}
2854 
2855 	/*
2856 	 * If this is a metadata preferred pag and we are user data then try
2857 	 * somewhere else if we are not being asked to try harder at this
2858 	 * point
2859 	 */
2860 	if (xfs_perag_prefers_metadata(pag) &&
2861 	    (args->datatype & XFS_ALLOC_USERDATA) &&
2862 	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2863 		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2864 		goto out_agbp_relse;
2865 	}
2866 
2867 	need = xfs_alloc_min_freelist(mp, pag);
2868 	if (!xfs_alloc_space_available(args, need, alloc_flags |
2869 			XFS_ALLOC_FLAG_CHECK))
2870 		goto out_agbp_relse;
2871 
2872 	/*
2873 	 * Get the a.g. freespace buffer.
2874 	 * Can fail if we're not blocking on locks, and it's held.
2875 	 */
2876 	if (!agbp) {
2877 		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2878 		if (error) {
2879 			/* Couldn't lock the AGF so skip this AG. */
2880 			if (error == -EAGAIN)
2881 				error = 0;
2882 			goto out_no_agbp;
2883 		}
2884 	}
2885 
2886 	/* reset a padding mismatched agfl before final free space check */
2887 	if (xfs_perag_agfl_needs_reset(pag))
2888 		xfs_agfl_reset(tp, agbp, pag);
2889 
2890 	/* If there isn't enough total space or single-extent, reject it. */
2891 	need = xfs_alloc_min_freelist(mp, pag);
2892 	if (!xfs_alloc_space_available(args, need, alloc_flags))
2893 		goto out_agbp_relse;
2894 
2895 	if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
2896 		int stat;
2897 
2898 		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2899 		if (error || !stat)
2900 			goto out_agbp_relse;
2901 	}
2902 
2903 	/*
2904 	 * Make the freelist shorter if it's too long.
2905 	 *
2906 	 * Note that from this point onwards, we will always release the agf and
2907 	 * agfl buffers on error. This handles the case where we error out and
2908 	 * the buffers are clean or may not have been joined to the transaction
2909 	 * and hence need to be released manually. If they have been joined to
2910 	 * the transaction, then xfs_trans_brelse() will handle them
2911 	 * appropriately based on the recursion count and dirty state of the
2912 	 * buffer.
2913 	 *
2914 	 * XXX (dgc): When we have lots of free space, does this buy us
2915 	 * anything other than extra overhead when we need to put more blocks
2916 	 * back on the free list? Maybe we should only do this when space is
2917 	 * getting low or the AGFL is more than half full?
2918 	 *
2919 	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2920 	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2921 	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2922 	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2923 	 * both required to ensure that rmaps are correctly recorded for the
2924 	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2925 	 * repair/rmap.c in xfsprogs for details.
2926 	 */
2927 	memset(&targs, 0, sizeof(targs));
2928 	/* struct copy below */
2929 	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2930 		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2931 	else
2932 		targs.oinfo = XFS_RMAP_OINFO_AG;
2933 	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2934 			pag->pagf_flcount > need) {
2935 		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2936 		if (error)
2937 			goto out_agbp_relse;
2938 
2939 		/*
2940 		 * Defer the AGFL block free.
2941 		 *
2942 		 * This helps to prevent log reservation overruns due to too
2943 		 * many allocation operations in a transaction. AGFL frees are
2944 		 * prone to this problem because for one they are always freed
2945 		 * one at a time.  Further, an immediate AGFL block free can
2946 		 * cause a btree join and require another block free before the
2947 		 * real allocation can proceed.
2948 		 * Deferring the free disconnects freeing up the AGFL slot from
2949 		 * freeing the block.
2950 		 */
2951 		error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno),
2952 				1, &targs.oinfo, XFS_AG_RESV_AGFL, 0);
2953 		if (error)
2954 			goto out_agbp_relse;
2955 	}
2956 
2957 	targs.tp = tp;
2958 	targs.mp = mp;
2959 	targs.agbp = agbp;
2960 	targs.agno = args->agno;
2961 	targs.alignment = targs.minlen = targs.prod = 1;
2962 	targs.pag = pag;
2963 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2964 	if (error)
2965 		goto out_agbp_relse;
2966 
2967 	/* Make the freelist longer if it's too short. */
2968 	while (pag->pagf_flcount < need) {
2969 		targs.agbno = 0;
2970 		targs.maxlen = need - pag->pagf_flcount;
2971 		targs.resv = XFS_AG_RESV_AGFL;
2972 
2973 		/* Allocate as many blocks as possible at once. */
2974 		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2975 		if (error)
2976 			goto out_agflbp_relse;
2977 
2978 		/*
2979 		 * Stop if we run out.  Won't happen if callers are obeying
2980 		 * the restrictions correctly.  Can happen for free calls
2981 		 * on a completely full ag.
2982 		 */
2983 		if (targs.agbno == NULLAGBLOCK) {
2984 			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2985 				break;
2986 			goto out_agflbp_relse;
2987 		}
2988 
2989 		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2990 			error = xfs_rmap_alloc(tp, agbp, pag,
2991 				       targs.agbno, targs.len, &targs.oinfo);
2992 			if (error)
2993 				goto out_agflbp_relse;
2994 		}
2995 		error = xfs_alloc_update_counters(tp, agbp,
2996 						  -((long)(targs.len)));
2997 		if (error)
2998 			goto out_agflbp_relse;
2999 
3000 		/*
3001 		 * Put each allocated block on the list.
3002 		 */
3003 		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
3004 			error = xfs_alloc_put_freelist(pag, tp, agbp,
3005 							agflbp, bno, 0);
3006 			if (error)
3007 				goto out_agflbp_relse;
3008 		}
3009 	}
3010 	xfs_trans_brelse(tp, agflbp);
3011 	args->agbp = agbp;
3012 	return 0;
3013 
3014 out_agflbp_relse:
3015 	xfs_trans_brelse(tp, agflbp);
3016 out_agbp_relse:
3017 	if (agbp)
3018 		xfs_trans_brelse(tp, agbp);
3019 out_no_agbp:
3020 	args->agbp = NULL;
3021 	return error;
3022 }
3023 
3024 /*
3025  * Get a block from the freelist.
3026  * Returns with the buffer for the block gotten.
3027  */
3028 int
3029 xfs_alloc_get_freelist(
3030 	struct xfs_perag	*pag,
3031 	struct xfs_trans	*tp,
3032 	struct xfs_buf		*agbp,
3033 	xfs_agblock_t		*bnop,
3034 	int			btreeblk)
3035 {
3036 	struct xfs_agf		*agf = agbp->b_addr;
3037 	struct xfs_buf		*agflbp;
3038 	xfs_agblock_t		bno;
3039 	__be32			*agfl_bno;
3040 	int			error;
3041 	uint32_t		logflags;
3042 	struct xfs_mount	*mp = tp->t_mountp;
3043 
3044 	/*
3045 	 * Freelist is empty, give up.
3046 	 */
3047 	if (!agf->agf_flcount) {
3048 		*bnop = NULLAGBLOCK;
3049 		return 0;
3050 	}
3051 	/*
3052 	 * Read the array of free blocks.
3053 	 */
3054 	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3055 	if (error)
3056 		return error;
3057 
3058 
3059 	/*
3060 	 * Get the block number and update the data structures.
3061 	 */
3062 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3063 	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3064 	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3065 		return -EFSCORRUPTED;
3066 
3067 	be32_add_cpu(&agf->agf_flfirst, 1);
3068 	xfs_trans_brelse(tp, agflbp);
3069 	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3070 		agf->agf_flfirst = 0;
3071 
3072 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3073 	be32_add_cpu(&agf->agf_flcount, -1);
3074 	pag->pagf_flcount--;
3075 
3076 	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3077 	if (btreeblk) {
3078 		be32_add_cpu(&agf->agf_btreeblks, 1);
3079 		pag->pagf_btreeblks++;
3080 		logflags |= XFS_AGF_BTREEBLKS;
3081 	}
3082 
3083 	xfs_alloc_log_agf(tp, agbp, logflags);
3084 	*bnop = bno;
3085 
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Log the given fields from the agf structure.
3091  */
3092 void
3093 xfs_alloc_log_agf(
3094 	struct xfs_trans	*tp,
3095 	struct xfs_buf		*bp,
3096 	uint32_t		fields)
3097 {
3098 	int	first;		/* first byte offset */
3099 	int	last;		/* last byte offset */
3100 	static const short	offsets[] = {
3101 		offsetof(xfs_agf_t, agf_magicnum),
3102 		offsetof(xfs_agf_t, agf_versionnum),
3103 		offsetof(xfs_agf_t, agf_seqno),
3104 		offsetof(xfs_agf_t, agf_length),
3105 		offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
3106 		offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
3107 		offsetof(xfs_agf_t, agf_flfirst),
3108 		offsetof(xfs_agf_t, agf_fllast),
3109 		offsetof(xfs_agf_t, agf_flcount),
3110 		offsetof(xfs_agf_t, agf_freeblks),
3111 		offsetof(xfs_agf_t, agf_longest),
3112 		offsetof(xfs_agf_t, agf_btreeblks),
3113 		offsetof(xfs_agf_t, agf_uuid),
3114 		offsetof(xfs_agf_t, agf_rmap_blocks),
3115 		offsetof(xfs_agf_t, agf_refcount_blocks),
3116 		offsetof(xfs_agf_t, agf_refcount_root),
3117 		offsetof(xfs_agf_t, agf_refcount_level),
3118 		/* needed so that we don't log the whole rest of the structure: */
3119 		offsetof(xfs_agf_t, agf_spare64),
3120 		sizeof(xfs_agf_t)
3121 	};
3122 
3123 	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3124 
3125 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3126 
3127 	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3128 	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3129 }
3130 
3131 /*
3132  * Put the block on the freelist for the allocation group.
3133  */
3134 int
3135 xfs_alloc_put_freelist(
3136 	struct xfs_perag	*pag,
3137 	struct xfs_trans	*tp,
3138 	struct xfs_buf		*agbp,
3139 	struct xfs_buf		*agflbp,
3140 	xfs_agblock_t		bno,
3141 	int			btreeblk)
3142 {
3143 	struct xfs_mount	*mp = tp->t_mountp;
3144 	struct xfs_agf		*agf = agbp->b_addr;
3145 	__be32			*blockp;
3146 	int			error;
3147 	uint32_t		logflags;
3148 	__be32			*agfl_bno;
3149 	int			startoff;
3150 
3151 	if (!agflbp) {
3152 		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3153 		if (error)
3154 			return error;
3155 	}
3156 
3157 	be32_add_cpu(&agf->agf_fllast, 1);
3158 	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3159 		agf->agf_fllast = 0;
3160 
3161 	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3162 	be32_add_cpu(&agf->agf_flcount, 1);
3163 	pag->pagf_flcount++;
3164 
3165 	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3166 	if (btreeblk) {
3167 		be32_add_cpu(&agf->agf_btreeblks, -1);
3168 		pag->pagf_btreeblks--;
3169 		logflags |= XFS_AGF_BTREEBLKS;
3170 	}
3171 
3172 	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3173 
3174 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3175 	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3176 	*blockp = cpu_to_be32(bno);
3177 	startoff = (char *)blockp - (char *)agflbp->b_addr;
3178 
3179 	xfs_alloc_log_agf(tp, agbp, logflags);
3180 
3181 	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3182 	xfs_trans_log_buf(tp, agflbp, startoff,
3183 			  startoff + sizeof(xfs_agblock_t) - 1);
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Check that this AGF/AGI header's sequence number and length matches the AG
3189  * number and size in fsblocks.
3190  */
3191 xfs_failaddr_t
3192 xfs_validate_ag_length(
3193 	struct xfs_buf		*bp,
3194 	uint32_t		seqno,
3195 	uint32_t		length)
3196 {
3197 	struct xfs_mount	*mp = bp->b_mount;
3198 	/*
3199 	 * During growfs operations, the perag is not fully initialised,
3200 	 * so we can't use it for any useful checking. growfs ensures we can't
3201 	 * use it by using uncached buffers that don't have the perag attached
3202 	 * so we can detect and avoid this problem.
3203 	 */
3204 	if (bp->b_pag && seqno != pag_agno(bp->b_pag))
3205 		return __this_address;
3206 
3207 	/*
3208 	 * Only the last AG in the filesystem is allowed to be shorter
3209 	 * than the AG size recorded in the superblock.
3210 	 */
3211 	if (length != mp->m_sb.sb_agblocks) {
3212 		/*
3213 		 * During growfs, the new last AG can get here before we
3214 		 * have updated the superblock. Give it a pass on the seqno
3215 		 * check.
3216 		 */
3217 		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3218 			return __this_address;
3219 		if (length < XFS_MIN_AG_BLOCKS)
3220 			return __this_address;
3221 		if (length > mp->m_sb.sb_agblocks)
3222 			return __this_address;
3223 	}
3224 
3225 	return NULL;
3226 }
3227 
3228 /*
3229  * Verify the AGF is consistent.
3230  *
3231  * We do not verify the AGFL indexes in the AGF are fully consistent here
3232  * because of issues with variable on-disk structure sizes. Instead, we check
3233  * the agfl indexes for consistency when we initialise the perag from the AGF
3234  * information after a read completes.
3235  *
3236  * If the index is inconsistent, then we mark the perag as needing an AGFL
3237  * reset. The first AGFL update performed then resets the AGFL indexes and
3238  * refills the AGFL with known good free blocks, allowing the filesystem to
3239  * continue operating normally at the cost of a few leaked free space blocks.
3240  */
3241 static xfs_failaddr_t
3242 xfs_agf_verify(
3243 	struct xfs_buf		*bp)
3244 {
3245 	struct xfs_mount	*mp = bp->b_mount;
3246 	struct xfs_agf		*agf = bp->b_addr;
3247 	xfs_failaddr_t		fa;
3248 	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3249 	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3250 
3251 	if (xfs_has_crc(mp)) {
3252 		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3253 			return __this_address;
3254 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3255 			return __this_address;
3256 	}
3257 
3258 	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3259 		return __this_address;
3260 
3261 	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3262 		return __this_address;
3263 
3264 	/*
3265 	 * Both agf_seqno and agf_length need to validated before anything else
3266 	 * block number related in the AGF or AGFL can be checked.
3267 	 */
3268 	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3269 	if (fa)
3270 		return fa;
3271 
3272 	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3273 		return __this_address;
3274 	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3275 		return __this_address;
3276 	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3277 		return __this_address;
3278 
3279 	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3280 	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3281 		return __this_address;
3282 
3283 	if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3284 	    be32_to_cpu(agf->agf_cnt_level) < 1 ||
3285 	    be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3286 	    be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
3287 		return __this_address;
3288 
3289 	if (xfs_has_lazysbcount(mp) &&
3290 	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3291 		return __this_address;
3292 
3293 	if (xfs_has_rmapbt(mp)) {
3294 		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3295 			return __this_address;
3296 
3297 		if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3298 		    be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
3299 			return __this_address;
3300 	}
3301 
3302 	if (xfs_has_reflink(mp)) {
3303 		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3304 			return __this_address;
3305 
3306 		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3307 		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3308 			return __this_address;
3309 	}
3310 
3311 	return NULL;
3312 }
3313 
3314 static void
3315 xfs_agf_read_verify(
3316 	struct xfs_buf	*bp)
3317 {
3318 	struct xfs_mount *mp = bp->b_mount;
3319 	xfs_failaddr_t	fa;
3320 
3321 	if (xfs_has_crc(mp) &&
3322 	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3323 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3324 	else {
3325 		fa = xfs_agf_verify(bp);
3326 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3327 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3328 	}
3329 }
3330 
3331 static void
3332 xfs_agf_write_verify(
3333 	struct xfs_buf	*bp)
3334 {
3335 	struct xfs_mount	*mp = bp->b_mount;
3336 	struct xfs_buf_log_item	*bip = bp->b_log_item;
3337 	struct xfs_agf		*agf = bp->b_addr;
3338 	xfs_failaddr_t		fa;
3339 
3340 	fa = xfs_agf_verify(bp);
3341 	if (fa) {
3342 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3343 		return;
3344 	}
3345 
3346 	if (!xfs_has_crc(mp))
3347 		return;
3348 
3349 	if (bip)
3350 		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3351 
3352 	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3353 }
3354 
3355 const struct xfs_buf_ops xfs_agf_buf_ops = {
3356 	.name = "xfs_agf",
3357 	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3358 	.verify_read = xfs_agf_read_verify,
3359 	.verify_write = xfs_agf_write_verify,
3360 	.verify_struct = xfs_agf_verify,
3361 };
3362 
3363 /*
3364  * Read in the allocation group header (free/alloc section).
3365  */
3366 int
3367 xfs_read_agf(
3368 	struct xfs_perag	*pag,
3369 	struct xfs_trans	*tp,
3370 	int			flags,
3371 	struct xfs_buf		**agfbpp)
3372 {
3373 	struct xfs_mount	*mp = pag_mount(pag);
3374 	int			error;
3375 
3376 	trace_xfs_read_agf(pag);
3377 
3378 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3379 			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)),
3380 			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3381 	if (xfs_metadata_is_sick(error))
3382 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3383 	if (error)
3384 		return error;
3385 
3386 	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3387 	return 0;
3388 }
3389 
3390 /*
3391  * Read in the allocation group header (free/alloc section) and initialise the
3392  * perag structure if necessary. If the caller provides @agfbpp, then return the
3393  * locked buffer to the caller, otherwise free it.
3394  */
3395 int
3396 xfs_alloc_read_agf(
3397 	struct xfs_perag	*pag,
3398 	struct xfs_trans	*tp,
3399 	int			flags,
3400 	struct xfs_buf		**agfbpp)
3401 {
3402 	struct xfs_mount	*mp = pag_mount(pag);
3403 	struct xfs_buf		*agfbp;
3404 	struct xfs_agf		*agf;
3405 	int			error;
3406 	int			allocbt_blks;
3407 
3408 	trace_xfs_alloc_read_agf(pag);
3409 
3410 	/* We don't support trylock when freeing. */
3411 	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3412 			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3413 	error = xfs_read_agf(pag, tp,
3414 			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3415 			&agfbp);
3416 	if (error)
3417 		return error;
3418 
3419 	agf = agfbp->b_addr;
3420 	if (!xfs_perag_initialised_agf(pag)) {
3421 		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3422 		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3423 		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3424 		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3425 		pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3426 		pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3427 		pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
3428 		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3429 		if (xfs_agfl_needs_reset(mp, agf))
3430 			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3431 		else
3432 			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3433 
3434 		/*
3435 		 * Update the in-core allocbt counter. Filter out the rmapbt
3436 		 * subset of the btreeblks counter because the rmapbt is managed
3437 		 * by perag reservation. Subtract one for the rmapbt root block
3438 		 * because the rmap counter includes it while the btreeblks
3439 		 * counter only tracks non-root blocks.
3440 		 */
3441 		allocbt_blks = pag->pagf_btreeblks;
3442 		if (xfs_has_rmapbt(mp))
3443 			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3444 		if (allocbt_blks > 0)
3445 			atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
3446 
3447 		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3448 	}
3449 #ifdef DEBUG
3450 	else if (!xfs_is_shutdown(mp)) {
3451 		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3452 		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3453 		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3454 		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3455 		ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3456 		ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
3457 	}
3458 #endif
3459 	if (agfbpp)
3460 		*agfbpp = agfbp;
3461 	else
3462 		xfs_trans_brelse(tp, agfbp);
3463 	return 0;
3464 }
3465 
3466 /*
3467  * Pre-proces allocation arguments to set initial state that we don't require
3468  * callers to set up correctly, as well as bounds check the allocation args
3469  * that are set up.
3470  */
3471 static int
3472 xfs_alloc_vextent_check_args(
3473 	struct xfs_alloc_arg	*args,
3474 	xfs_fsblock_t		target,
3475 	xfs_agnumber_t		*minimum_agno)
3476 {
3477 	struct xfs_mount	*mp = args->mp;
3478 	xfs_agblock_t		agsize;
3479 
3480 	args->fsbno = NULLFSBLOCK;
3481 
3482 	*minimum_agno = 0;
3483 	if (args->tp->t_highest_agno != NULLAGNUMBER)
3484 		*minimum_agno = args->tp->t_highest_agno;
3485 
3486 	/*
3487 	 * Just fix this up, for the case where the last a.g. is shorter
3488 	 * (or there's only one a.g.) and the caller couldn't easily figure
3489 	 * that out (xfs_bmap_alloc).
3490 	 */
3491 	agsize = mp->m_sb.sb_agblocks;
3492 	if (args->maxlen > agsize)
3493 		args->maxlen = agsize;
3494 	if (args->alignment == 0)
3495 		args->alignment = 1;
3496 
3497 	ASSERT(args->minlen > 0);
3498 	ASSERT(args->maxlen > 0);
3499 	ASSERT(args->alignment > 0);
3500 	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3501 
3502 	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3503 	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3504 	ASSERT(args->minlen <= args->maxlen);
3505 	ASSERT(args->minlen <= agsize);
3506 	ASSERT(args->mod < args->prod);
3507 
3508 	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3509 	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3510 	    args->minlen > args->maxlen || args->minlen > agsize ||
3511 	    args->mod >= args->prod) {
3512 		trace_xfs_alloc_vextent_badargs(args);
3513 		return -ENOSPC;
3514 	}
3515 
3516 	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3517 		trace_xfs_alloc_vextent_skip_deadlock(args);
3518 		return -ENOSPC;
3519 	}
3520 	return 0;
3521 
3522 }
3523 
3524 /*
3525  * Prepare an AG for allocation. If the AG is not prepared to accept the
3526  * allocation, return failure.
3527  *
3528  * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3529  * modified to hold their own perag references.
3530  */
3531 static int
3532 xfs_alloc_vextent_prepare_ag(
3533 	struct xfs_alloc_arg	*args,
3534 	uint32_t		alloc_flags)
3535 {
3536 	bool			need_pag = !args->pag;
3537 	int			error;
3538 
3539 	if (need_pag)
3540 		args->pag = xfs_perag_get(args->mp, args->agno);
3541 
3542 	args->agbp = NULL;
3543 	error = xfs_alloc_fix_freelist(args, alloc_flags);
3544 	if (error) {
3545 		trace_xfs_alloc_vextent_nofix(args);
3546 		if (need_pag)
3547 			xfs_perag_put(args->pag);
3548 		args->agbno = NULLAGBLOCK;
3549 		return error;
3550 	}
3551 	if (!args->agbp) {
3552 		/* cannot allocate in this AG at all */
3553 		trace_xfs_alloc_vextent_noagbp(args);
3554 		args->agbno = NULLAGBLOCK;
3555 		return 0;
3556 	}
3557 	args->wasfromfl = 0;
3558 	return 0;
3559 }
3560 
3561 /*
3562  * Post-process allocation results to account for the allocation if it succeed
3563  * and set the allocated block number correctly for the caller.
3564  *
3565  * XXX: we should really be returning ENOSPC for ENOSPC, not
3566  * hiding it behind a "successful" NULLFSBLOCK allocation.
3567  */
3568 static int
3569 xfs_alloc_vextent_finish(
3570 	struct xfs_alloc_arg	*args,
3571 	xfs_agnumber_t		minimum_agno,
3572 	int			alloc_error,
3573 	bool			drop_perag)
3574 {
3575 	struct xfs_mount	*mp = args->mp;
3576 	int			error = 0;
3577 
3578 	/*
3579 	 * We can end up here with a locked AGF. If we failed, the caller is
3580 	 * likely going to try to allocate again with different parameters, and
3581 	 * that can widen the AGs that are searched for free space. If we have
3582 	 * to do BMBT block allocation, we have to do a new allocation.
3583 	 *
3584 	 * Hence leaving this function with the AGF locked opens up potential
3585 	 * ABBA AGF deadlocks because a future allocation attempt in this
3586 	 * transaction may attempt to lock a lower number AGF.
3587 	 *
3588 	 * We can't release the AGF until the transaction is commited, so at
3589 	 * this point we must update the "first allocation" tracker to point at
3590 	 * this AG if the tracker is empty or points to a lower AG. This allows
3591 	 * the next allocation attempt to be modified appropriately to avoid
3592 	 * deadlocks.
3593 	 */
3594 	if (args->agbp &&
3595 	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3596 	     args->agno > minimum_agno))
3597 		args->tp->t_highest_agno = args->agno;
3598 
3599 	/*
3600 	 * If the allocation failed with an error or we had an ENOSPC result,
3601 	 * preserve the returned error whilst also marking the allocation result
3602 	 * as "no extent allocated". This ensures that callers that fail to
3603 	 * capture the error will still treat it as a failed allocation.
3604 	 */
3605 	if (alloc_error || args->agbno == NULLAGBLOCK) {
3606 		args->fsbno = NULLFSBLOCK;
3607 		error = alloc_error;
3608 		goto out_drop_perag;
3609 	}
3610 
3611 	args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno);
3612 
3613 	ASSERT(args->len >= args->minlen);
3614 	ASSERT(args->len <= args->maxlen);
3615 	ASSERT(args->agbno % args->alignment == 0);
3616 	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3617 
3618 	/* if not file data, insert new block into the reverse map btree */
3619 	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3620 		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3621 				       args->agbno, args->len, &args->oinfo);
3622 		if (error)
3623 			goto out_drop_perag;
3624 	}
3625 
3626 	if (!args->wasfromfl) {
3627 		error = xfs_alloc_update_counters(args->tp, args->agbp,
3628 						  -((long)(args->len)));
3629 		if (error)
3630 			goto out_drop_perag;
3631 
3632 		ASSERT(!xfs_extent_busy_search(pag_group(args->pag),
3633 				args->agbno, args->len));
3634 	}
3635 
3636 	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3637 
3638 	XFS_STATS_INC(mp, xs_allocx);
3639 	XFS_STATS_ADD(mp, xs_allocb, args->len);
3640 
3641 	trace_xfs_alloc_vextent_finish(args);
3642 
3643 out_drop_perag:
3644 	if (drop_perag && args->pag) {
3645 		xfs_perag_rele(args->pag);
3646 		args->pag = NULL;
3647 	}
3648 	return error;
3649 }
3650 
3651 /*
3652  * Allocate within a single AG only. This uses a best-fit length algorithm so if
3653  * you need an exact sized allocation without locality constraints, this is the
3654  * fastest way to do it.
3655  *
3656  * Caller is expected to hold a perag reference in args->pag.
3657  */
3658 int
3659 xfs_alloc_vextent_this_ag(
3660 	struct xfs_alloc_arg	*args,
3661 	xfs_agnumber_t		agno)
3662 {
3663 	xfs_agnumber_t		minimum_agno;
3664 	uint32_t		alloc_flags = 0;
3665 	int			error;
3666 
3667 	ASSERT(args->pag != NULL);
3668 	ASSERT(pag_agno(args->pag) == agno);
3669 
3670 	args->agno = agno;
3671 	args->agbno = 0;
3672 
3673 	trace_xfs_alloc_vextent_this_ag(args);
3674 
3675 	error = xfs_alloc_vextent_check_args(args,
3676 			xfs_agbno_to_fsb(args->pag, 0), &minimum_agno);
3677 	if (error) {
3678 		if (error == -ENOSPC)
3679 			return 0;
3680 		return error;
3681 	}
3682 
3683 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3684 	if (!error && args->agbp)
3685 		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3686 
3687 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3688 }
3689 
3690 /*
3691  * Iterate all AGs trying to allocate an extent starting from @start_ag.
3692  *
3693  * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3694  * allocation attempts in @start_agno have locality information. If we fail to
3695  * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3696  * we attempt to allocation in as there is no locality optimisation possible for
3697  * those allocations.
3698  *
3699  * On return, args->pag may be left referenced if we finish before the "all
3700  * failed" return point. The allocation finish still needs the perag, and
3701  * so the caller will release it once they've finished the allocation.
3702  *
3703  * When we wrap the AG iteration at the end of the filesystem, we have to be
3704  * careful not to wrap into AGs below ones we already have locked in the
3705  * transaction if we are doing a blocking iteration. This will result in an
3706  * out-of-order locking of AGFs and hence can cause deadlocks.
3707  */
3708 static int
3709 xfs_alloc_vextent_iterate_ags(
3710 	struct xfs_alloc_arg	*args,
3711 	xfs_agnumber_t		minimum_agno,
3712 	xfs_agnumber_t		start_agno,
3713 	xfs_agblock_t		target_agbno,
3714 	uint32_t		alloc_flags)
3715 {
3716 	struct xfs_mount	*mp = args->mp;
3717 	xfs_agnumber_t		restart_agno = minimum_agno;
3718 	xfs_agnumber_t		agno;
3719 	int			error = 0;
3720 
3721 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3722 		restart_agno = 0;
3723 restart:
3724 	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3725 			mp->m_sb.sb_agcount, agno, args->pag) {
3726 		args->agno = agno;
3727 		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3728 		if (error)
3729 			break;
3730 		if (!args->agbp) {
3731 			trace_xfs_alloc_vextent_loopfailed(args);
3732 			continue;
3733 		}
3734 
3735 		/*
3736 		 * Allocation is supposed to succeed now, so break out of the
3737 		 * loop regardless of whether we succeed or not.
3738 		 */
3739 		if (args->agno == start_agno && target_agbno) {
3740 			args->agbno = target_agbno;
3741 			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3742 		} else {
3743 			args->agbno = 0;
3744 			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3745 		}
3746 		break;
3747 	}
3748 	if (error) {
3749 		xfs_perag_rele(args->pag);
3750 		args->pag = NULL;
3751 		return error;
3752 	}
3753 	if (args->agbp)
3754 		return 0;
3755 
3756 	/*
3757 	 * We didn't find an AG we can alloation from. If we were given
3758 	 * constraining flags by the caller, drop them and retry the allocation
3759 	 * without any constraints being set.
3760 	 */
3761 	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3762 		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3763 		restart_agno = minimum_agno;
3764 		goto restart;
3765 	}
3766 
3767 	ASSERT(args->pag == NULL);
3768 	trace_xfs_alloc_vextent_allfailed(args);
3769 	return 0;
3770 }
3771 
3772 /*
3773  * Iterate from the AGs from the start AG to the end of the filesystem, trying
3774  * to allocate blocks. It starts with a near allocation attempt in the initial
3775  * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3776  * back to zero if allowed by previous allocations in this transaction,
3777  * otherwise will wrap back to the start AG and run a second blocking pass to
3778  * the end of the filesystem.
3779  */
3780 int
3781 xfs_alloc_vextent_start_ag(
3782 	struct xfs_alloc_arg	*args,
3783 	xfs_fsblock_t		target)
3784 {
3785 	struct xfs_mount	*mp = args->mp;
3786 	xfs_agnumber_t		minimum_agno;
3787 	xfs_agnumber_t		start_agno;
3788 	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3789 	bool			bump_rotor = false;
3790 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3791 	int			error;
3792 
3793 	ASSERT(args->pag == NULL);
3794 
3795 	args->agno = NULLAGNUMBER;
3796 	args->agbno = NULLAGBLOCK;
3797 
3798 	trace_xfs_alloc_vextent_start_ag(args);
3799 
3800 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3801 	if (error) {
3802 		if (error == -ENOSPC)
3803 			return 0;
3804 		return error;
3805 	}
3806 
3807 	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3808 	    xfs_is_inode32(mp)) {
3809 		target = XFS_AGB_TO_FSB(mp,
3810 				((mp->m_agfrotor / rotorstep) %
3811 				mp->m_sb.sb_agcount), 0);
3812 		bump_rotor = 1;
3813 	}
3814 
3815 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3816 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3817 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3818 
3819 	if (bump_rotor) {
3820 		if (args->agno == start_agno)
3821 			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3822 				(mp->m_sb.sb_agcount * rotorstep);
3823 		else
3824 			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3825 				(mp->m_sb.sb_agcount * rotorstep);
3826 	}
3827 
3828 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3829 }
3830 
3831 /*
3832  * Iterate from the agno indicated via @target through to the end of the
3833  * filesystem attempting blocking allocation. This does not wrap or try a second
3834  * pass, so will not recurse into AGs lower than indicated by the target.
3835  */
3836 int
3837 xfs_alloc_vextent_first_ag(
3838 	struct xfs_alloc_arg	*args,
3839 	xfs_fsblock_t		target)
3840  {
3841 	struct xfs_mount	*mp = args->mp;
3842 	xfs_agnumber_t		minimum_agno;
3843 	xfs_agnumber_t		start_agno;
3844 	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3845 	int			error;
3846 
3847 	ASSERT(args->pag == NULL);
3848 
3849 	args->agno = NULLAGNUMBER;
3850 	args->agbno = NULLAGBLOCK;
3851 
3852 	trace_xfs_alloc_vextent_first_ag(args);
3853 
3854 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3855 	if (error) {
3856 		if (error == -ENOSPC)
3857 			return 0;
3858 		return error;
3859 	}
3860 
3861 	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3862 	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3863 			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3864 	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3865 }
3866 
3867 /*
3868  * Allocate at the exact block target or fail. Caller is expected to hold a
3869  * perag reference in args->pag.
3870  */
3871 int
3872 xfs_alloc_vextent_exact_bno(
3873 	struct xfs_alloc_arg	*args,
3874 	xfs_fsblock_t		target)
3875 {
3876 	struct xfs_mount	*mp = args->mp;
3877 	xfs_agnumber_t		minimum_agno;
3878 	int			error;
3879 
3880 	ASSERT(args->pag != NULL);
3881 	ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3882 
3883 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3884 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3885 
3886 	trace_xfs_alloc_vextent_exact_bno(args);
3887 
3888 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3889 	if (error) {
3890 		if (error == -ENOSPC)
3891 			return 0;
3892 		return error;
3893 	}
3894 
3895 	error = xfs_alloc_vextent_prepare_ag(args, 0);
3896 	if (!error && args->agbp)
3897 		error = xfs_alloc_ag_vextent_exact(args);
3898 
3899 	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3900 }
3901 
3902 /*
3903  * Allocate an extent as close to the target as possible. If there are not
3904  * viable candidates in the AG, then fail the allocation.
3905  *
3906  * Caller may or may not have a per-ag reference in args->pag.
3907  */
3908 int
3909 xfs_alloc_vextent_near_bno(
3910 	struct xfs_alloc_arg	*args,
3911 	xfs_fsblock_t		target)
3912 {
3913 	struct xfs_mount	*mp = args->mp;
3914 	xfs_agnumber_t		minimum_agno;
3915 	bool			needs_perag = args->pag == NULL;
3916 	uint32_t		alloc_flags = 0;
3917 	int			error;
3918 
3919 	if (!needs_perag)
3920 		ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3921 
3922 	args->agno = XFS_FSB_TO_AGNO(mp, target);
3923 	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3924 
3925 	trace_xfs_alloc_vextent_near_bno(args);
3926 
3927 	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3928 	if (error) {
3929 		if (error == -ENOSPC)
3930 			return 0;
3931 		return error;
3932 	}
3933 
3934 	if (needs_perag)
3935 		args->pag = xfs_perag_grab(mp, args->agno);
3936 
3937 	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3938 	if (!error && args->agbp)
3939 		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3940 
3941 	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3942 }
3943 
3944 /* Ensure that the freelist is at full capacity. */
3945 int
3946 xfs_free_extent_fix_freelist(
3947 	struct xfs_trans	*tp,
3948 	struct xfs_perag	*pag,
3949 	struct xfs_buf		**agbp)
3950 {
3951 	struct xfs_alloc_arg	args;
3952 	int			error;
3953 
3954 	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3955 	args.tp = tp;
3956 	args.mp = tp->t_mountp;
3957 	args.agno = pag_agno(pag);
3958 	args.pag = pag;
3959 
3960 	/*
3961 	 * validate that the block number is legal - the enables us to detect
3962 	 * and handle a silent filesystem corruption rather than crashing.
3963 	 */
3964 	if (args.agno >= args.mp->m_sb.sb_agcount)
3965 		return -EFSCORRUPTED;
3966 
3967 	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3968 	if (error)
3969 		return error;
3970 
3971 	*agbp = args.agbp;
3972 	return 0;
3973 }
3974 
3975 /*
3976  * Free an extent.
3977  * Just break up the extent address and hand off to xfs_free_ag_extent
3978  * after fixing up the freelist.
3979  */
3980 int
3981 __xfs_free_extent(
3982 	struct xfs_trans		*tp,
3983 	struct xfs_perag		*pag,
3984 	xfs_agblock_t			agbno,
3985 	xfs_extlen_t			len,
3986 	const struct xfs_owner_info	*oinfo,
3987 	enum xfs_ag_resv_type		type,
3988 	bool				skip_discard)
3989 {
3990 	struct xfs_mount		*mp = tp->t_mountp;
3991 	struct xfs_buf			*agbp;
3992 	struct xfs_agf			*agf;
3993 	int				error;
3994 	unsigned int			busy_flags = 0;
3995 
3996 	ASSERT(len != 0);
3997 	ASSERT(type != XFS_AG_RESV_AGFL);
3998 
3999 	if (XFS_TEST_ERROR(false, mp,
4000 			XFS_ERRTAG_FREE_EXTENT))
4001 		return -EIO;
4002 
4003 	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
4004 	if (error) {
4005 		if (xfs_metadata_is_sick(error))
4006 			xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4007 		return error;
4008 	}
4009 
4010 	agf = agbp->b_addr;
4011 
4012 	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
4013 		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4014 		error = -EFSCORRUPTED;
4015 		goto err_release;
4016 	}
4017 
4018 	/* validate the extent size is legal now we have the agf locked */
4019 	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
4020 		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4021 		error = -EFSCORRUPTED;
4022 		goto err_release;
4023 	}
4024 
4025 	error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type);
4026 	if (error)
4027 		goto err_release;
4028 
4029 	if (skip_discard)
4030 		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
4031 	xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags);
4032 	return 0;
4033 
4034 err_release:
4035 	xfs_trans_brelse(tp, agbp);
4036 	return error;
4037 }
4038 
4039 struct xfs_alloc_query_range_info {
4040 	xfs_alloc_query_range_fn	fn;
4041 	void				*priv;
4042 };
4043 
4044 /* Format btree record and pass to our callback. */
4045 STATIC int
4046 xfs_alloc_query_range_helper(
4047 	struct xfs_btree_cur		*cur,
4048 	const union xfs_btree_rec	*rec,
4049 	void				*priv)
4050 {
4051 	struct xfs_alloc_query_range_info	*query = priv;
4052 	struct xfs_alloc_rec_incore		irec;
4053 	xfs_failaddr_t				fa;
4054 
4055 	xfs_alloc_btrec_to_irec(rec, &irec);
4056 	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
4057 	if (fa)
4058 		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4059 
4060 	return query->fn(cur, &irec, query->priv);
4061 }
4062 
4063 /* Find all free space within a given range of blocks. */
4064 int
4065 xfs_alloc_query_range(
4066 	struct xfs_btree_cur			*cur,
4067 	const struct xfs_alloc_rec_incore	*low_rec,
4068 	const struct xfs_alloc_rec_incore	*high_rec,
4069 	xfs_alloc_query_range_fn		fn,
4070 	void					*priv)
4071 {
4072 	union xfs_btree_irec			low_brec = { .a = *low_rec };
4073 	union xfs_btree_irec			high_brec = { .a = *high_rec };
4074 	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
4075 
4076 	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4077 	return xfs_btree_query_range(cur, &low_brec, &high_brec,
4078 			xfs_alloc_query_range_helper, &query);
4079 }
4080 
4081 /* Find all free space records. */
4082 int
4083 xfs_alloc_query_all(
4084 	struct xfs_btree_cur			*cur,
4085 	xfs_alloc_query_range_fn		fn,
4086 	void					*priv)
4087 {
4088 	struct xfs_alloc_query_range_info	query;
4089 
4090 	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4091 	query.priv = priv;
4092 	query.fn = fn;
4093 	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4094 }
4095 
4096 /*
4097  * Scan part of the keyspace of the free space and tell us if the area has no
4098  * records, is fully mapped by records, or is partially filled.
4099  */
4100 int
4101 xfs_alloc_has_records(
4102 	struct xfs_btree_cur	*cur,
4103 	xfs_agblock_t		bno,
4104 	xfs_extlen_t		len,
4105 	enum xbtree_recpacking	*outcome)
4106 {
4107 	union xfs_btree_irec	low;
4108 	union xfs_btree_irec	high;
4109 
4110 	memset(&low, 0, sizeof(low));
4111 	low.a.ar_startblock = bno;
4112 	memset(&high, 0xFF, sizeof(high));
4113 	high.a.ar_startblock = bno + len - 1;
4114 
4115 	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4116 }
4117 
4118 /*
4119  * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4120  * error code or XFS_ITER_*.
4121  */
4122 int
4123 xfs_agfl_walk(
4124 	struct xfs_mount	*mp,
4125 	struct xfs_agf		*agf,
4126 	struct xfs_buf		*agflbp,
4127 	xfs_agfl_walk_fn	walk_fn,
4128 	void			*priv)
4129 {
4130 	__be32			*agfl_bno;
4131 	unsigned int		i;
4132 	int			error;
4133 
4134 	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4135 	i = be32_to_cpu(agf->agf_flfirst);
4136 
4137 	/* Nothing to walk in an empty AGFL. */
4138 	if (agf->agf_flcount == cpu_to_be32(0))
4139 		return 0;
4140 
4141 	/* Otherwise, walk from first to last, wrapping as needed. */
4142 	for (;;) {
4143 		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4144 		if (error)
4145 			return error;
4146 		if (i == be32_to_cpu(agf->agf_fllast))
4147 			break;
4148 		if (++i == xfs_agfl_size(mp))
4149 			i = 0;
4150 	}
4151 
4152 	return 0;
4153 }
4154 
4155 int __init
4156 xfs_extfree_intent_init_cache(void)
4157 {
4158 	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4159 			sizeof(struct xfs_extent_free_item),
4160 			0, 0, NULL);
4161 
4162 	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4163 }
4164 
4165 void
4166 xfs_extfree_intent_destroy_cache(void)
4167 {
4168 	kmem_cache_destroy(xfs_extfree_item_cache);
4169 	xfs_extfree_item_cache = NULL;
4170 }
4171