1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_extent_busy.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_log.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_bmap.h" 29 #include "xfs_health.h" 30 #include "xfs_extfree_item.h" 31 32 struct kmem_cache *xfs_extfree_item_cache; 33 34 struct workqueue_struct *xfs_alloc_wq; 35 36 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) 37 38 #define XFSA_FIXUP_BNO_OK 1 39 #define XFSA_FIXUP_CNT_OK 2 40 41 /* 42 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in 43 * the beginning of the block for a proper header with the location information 44 * and CRC. 45 */ 46 unsigned int 47 xfs_agfl_size( 48 struct xfs_mount *mp) 49 { 50 unsigned int size = mp->m_sb.sb_sectsize; 51 52 if (xfs_has_crc(mp)) 53 size -= sizeof(struct xfs_agfl); 54 55 return size / sizeof(xfs_agblock_t); 56 } 57 58 unsigned int 59 xfs_refc_block( 60 struct xfs_mount *mp) 61 { 62 if (xfs_has_rmapbt(mp)) 63 return XFS_RMAP_BLOCK(mp) + 1; 64 if (xfs_has_finobt(mp)) 65 return XFS_FIBT_BLOCK(mp) + 1; 66 return XFS_IBT_BLOCK(mp) + 1; 67 } 68 69 xfs_extlen_t 70 xfs_prealloc_blocks( 71 struct xfs_mount *mp) 72 { 73 if (xfs_has_reflink(mp)) 74 return xfs_refc_block(mp) + 1; 75 if (xfs_has_rmapbt(mp)) 76 return XFS_RMAP_BLOCK(mp) + 1; 77 if (xfs_has_finobt(mp)) 78 return XFS_FIBT_BLOCK(mp) + 1; 79 return XFS_IBT_BLOCK(mp) + 1; 80 } 81 82 /* 83 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to 84 * guarantee that we can refill the AGFL prior to allocating space in a nearly 85 * full AG. Although the space described by the free space btrees, the 86 * blocks used by the freesp btrees themselves, and the blocks owned by the 87 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk 88 * free space in the AG drop so low that the free space btrees cannot refill an 89 * empty AGFL up to the minimum level. Rather than grind through empty AGs 90 * until the fs goes down, we subtract this many AG blocks from the incore 91 * fdblocks to ensure user allocation does not overcommit the space the 92 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to 93 * withhold space from xfs_dec_fdblocks, so we do not account for that here. 94 */ 95 #define XFS_ALLOCBT_AGFL_RESERVE 4 96 97 /* 98 * Compute the number of blocks that we set aside to guarantee the ability to 99 * refill the AGFL and handle a full bmap btree split. 100 * 101 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of 102 * AGF buffer (PV 947395), we place constraints on the relationship among 103 * actual allocations for data blocks, freelist blocks, and potential file data 104 * bmap btree blocks. However, these restrictions may result in no actual space 105 * allocated for a delayed extent, for example, a data block in a certain AG is 106 * allocated but there is no additional block for the additional bmap btree 107 * block due to a split of the bmap btree of the file. The result of this may 108 * lead to an infinite loop when the file gets flushed to disk and all delayed 109 * extents need to be actually allocated. To get around this, we explicitly set 110 * aside a few blocks which will not be reserved in delayed allocation. 111 * 112 * For each AG, we need to reserve enough blocks to replenish a totally empty 113 * AGFL and 4 more to handle a potential split of the file's bmap btree. 114 */ 115 unsigned int 116 xfs_alloc_set_aside( 117 struct xfs_mount *mp) 118 { 119 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4); 120 } 121 122 /* 123 * When deciding how much space to allocate out of an AG, we limit the 124 * allocation maximum size to the size the AG. However, we cannot use all the 125 * blocks in the AG - some are permanently used by metadata. These 126 * blocks are generally: 127 * - the AG superblock, AGF, AGI and AGFL 128 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally 129 * the AGI free inode and rmap btree root blocks. 130 * - blocks on the AGFL according to xfs_alloc_set_aside() limits 131 * - the rmapbt root block 132 * 133 * The AG headers are sector sized, so the amount of space they take up is 134 * dependent on filesystem geometry. The others are all single blocks. 135 */ 136 unsigned int 137 xfs_alloc_ag_max_usable( 138 struct xfs_mount *mp) 139 { 140 unsigned int blocks; 141 142 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */ 143 blocks += XFS_ALLOCBT_AGFL_RESERVE; 144 blocks += 3; /* AGF, AGI btree root blocks */ 145 if (xfs_has_finobt(mp)) 146 blocks++; /* finobt root block */ 147 if (xfs_has_rmapbt(mp)) 148 blocks++; /* rmap root block */ 149 if (xfs_has_reflink(mp)) 150 blocks++; /* refcount root block */ 151 152 return mp->m_sb.sb_agblocks - blocks; 153 } 154 155 156 static int 157 xfs_alloc_lookup( 158 struct xfs_btree_cur *cur, 159 xfs_lookup_t dir, 160 xfs_agblock_t bno, 161 xfs_extlen_t len, 162 int *stat) 163 { 164 int error; 165 166 cur->bc_rec.a.ar_startblock = bno; 167 cur->bc_rec.a.ar_blockcount = len; 168 error = xfs_btree_lookup(cur, dir, stat); 169 if (*stat == 1) 170 cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; 171 else 172 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 173 return error; 174 } 175 176 /* 177 * Lookup the record equal to [bno, len] in the btree given by cur. 178 */ 179 static inline int /* error */ 180 xfs_alloc_lookup_eq( 181 struct xfs_btree_cur *cur, /* btree cursor */ 182 xfs_agblock_t bno, /* starting block of extent */ 183 xfs_extlen_t len, /* length of extent */ 184 int *stat) /* success/failure */ 185 { 186 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat); 187 } 188 189 /* 190 * Lookup the first record greater than or equal to [bno, len] 191 * in the btree given by cur. 192 */ 193 int /* error */ 194 xfs_alloc_lookup_ge( 195 struct xfs_btree_cur *cur, /* btree cursor */ 196 xfs_agblock_t bno, /* starting block of extent */ 197 xfs_extlen_t len, /* length of extent */ 198 int *stat) /* success/failure */ 199 { 200 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat); 201 } 202 203 /* 204 * Lookup the first record less than or equal to [bno, len] 205 * in the btree given by cur. 206 */ 207 int /* error */ 208 xfs_alloc_lookup_le( 209 struct xfs_btree_cur *cur, /* btree cursor */ 210 xfs_agblock_t bno, /* starting block of extent */ 211 xfs_extlen_t len, /* length of extent */ 212 int *stat) /* success/failure */ 213 { 214 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat); 215 } 216 217 static inline bool 218 xfs_alloc_cur_active( 219 struct xfs_btree_cur *cur) 220 { 221 return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE); 222 } 223 224 /* 225 * Update the record referred to by cur to the value given 226 * by [bno, len]. 227 * This either works (return 0) or gets an EFSCORRUPTED error. 228 */ 229 STATIC int /* error */ 230 xfs_alloc_update( 231 struct xfs_btree_cur *cur, /* btree cursor */ 232 xfs_agblock_t bno, /* starting block of extent */ 233 xfs_extlen_t len) /* length of extent */ 234 { 235 union xfs_btree_rec rec; 236 237 rec.alloc.ar_startblock = cpu_to_be32(bno); 238 rec.alloc.ar_blockcount = cpu_to_be32(len); 239 return xfs_btree_update(cur, &rec); 240 } 241 242 /* Convert the ondisk btree record to its incore representation. */ 243 void 244 xfs_alloc_btrec_to_irec( 245 const union xfs_btree_rec *rec, 246 struct xfs_alloc_rec_incore *irec) 247 { 248 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock); 249 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount); 250 } 251 252 /* Simple checks for free space records. */ 253 xfs_failaddr_t 254 xfs_alloc_check_irec( 255 struct xfs_perag *pag, 256 const struct xfs_alloc_rec_incore *irec) 257 { 258 if (irec->ar_blockcount == 0) 259 return __this_address; 260 261 /* check for valid extent range, including overflow */ 262 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount)) 263 return __this_address; 264 265 return NULL; 266 } 267 268 static inline int 269 xfs_alloc_complain_bad_rec( 270 struct xfs_btree_cur *cur, 271 xfs_failaddr_t fa, 272 const struct xfs_alloc_rec_incore *irec) 273 { 274 struct xfs_mount *mp = cur->bc_mp; 275 276 xfs_warn(mp, 277 "%sbt record corruption in AG %d detected at %pS!", 278 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); 279 xfs_warn(mp, 280 "start block 0x%x block count 0x%x", irec->ar_startblock, 281 irec->ar_blockcount); 282 xfs_btree_mark_sick(cur); 283 return -EFSCORRUPTED; 284 } 285 286 /* 287 * Get the data from the pointed-to record. 288 */ 289 int /* error */ 290 xfs_alloc_get_rec( 291 struct xfs_btree_cur *cur, /* btree cursor */ 292 xfs_agblock_t *bno, /* output: starting block of extent */ 293 xfs_extlen_t *len, /* output: length of extent */ 294 int *stat) /* output: success/failure */ 295 { 296 struct xfs_alloc_rec_incore irec; 297 union xfs_btree_rec *rec; 298 xfs_failaddr_t fa; 299 int error; 300 301 error = xfs_btree_get_rec(cur, &rec, stat); 302 if (error || !(*stat)) 303 return error; 304 305 xfs_alloc_btrec_to_irec(rec, &irec); 306 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); 307 if (fa) 308 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 309 310 *bno = irec.ar_startblock; 311 *len = irec.ar_blockcount; 312 return 0; 313 } 314 315 /* 316 * Compute aligned version of the found extent. 317 * Takes alignment and min length into account. 318 */ 319 STATIC bool 320 xfs_alloc_compute_aligned( 321 xfs_alloc_arg_t *args, /* allocation argument structure */ 322 xfs_agblock_t foundbno, /* starting block in found extent */ 323 xfs_extlen_t foundlen, /* length in found extent */ 324 xfs_agblock_t *resbno, /* result block number */ 325 xfs_extlen_t *reslen, /* result length */ 326 unsigned *busy_gen) 327 { 328 xfs_agblock_t bno = foundbno; 329 xfs_extlen_t len = foundlen; 330 xfs_extlen_t diff; 331 bool busy; 332 333 /* Trim busy sections out of found extent */ 334 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen); 335 336 /* 337 * If we have a largish extent that happens to start before min_agbno, 338 * see if we can shift it into range... 339 */ 340 if (bno < args->min_agbno && bno + len > args->min_agbno) { 341 diff = args->min_agbno - bno; 342 if (len > diff) { 343 bno += diff; 344 len -= diff; 345 } 346 } 347 348 if (args->alignment > 1 && len >= args->minlen) { 349 xfs_agblock_t aligned_bno = roundup(bno, args->alignment); 350 351 diff = aligned_bno - bno; 352 353 *resbno = aligned_bno; 354 *reslen = diff >= len ? 0 : len - diff; 355 } else { 356 *resbno = bno; 357 *reslen = len; 358 } 359 360 return busy; 361 } 362 363 /* 364 * Compute best start block and diff for "near" allocations. 365 * freelen >= wantlen already checked by caller. 366 */ 367 STATIC xfs_extlen_t /* difference value (absolute) */ 368 xfs_alloc_compute_diff( 369 xfs_agblock_t wantbno, /* target starting block */ 370 xfs_extlen_t wantlen, /* target length */ 371 xfs_extlen_t alignment, /* target alignment */ 372 int datatype, /* are we allocating data? */ 373 xfs_agblock_t freebno, /* freespace's starting block */ 374 xfs_extlen_t freelen, /* freespace's length */ 375 xfs_agblock_t *newbnop) /* result: best start block from free */ 376 { 377 xfs_agblock_t freeend; /* end of freespace extent */ 378 xfs_agblock_t newbno1; /* return block number */ 379 xfs_agblock_t newbno2; /* other new block number */ 380 xfs_extlen_t newlen1=0; /* length with newbno1 */ 381 xfs_extlen_t newlen2=0; /* length with newbno2 */ 382 xfs_agblock_t wantend; /* end of target extent */ 383 bool userdata = datatype & XFS_ALLOC_USERDATA; 384 385 ASSERT(freelen >= wantlen); 386 freeend = freebno + freelen; 387 wantend = wantbno + wantlen; 388 /* 389 * We want to allocate from the start of a free extent if it is past 390 * the desired block or if we are allocating user data and the free 391 * extent is before desired block. The second case is there to allow 392 * for contiguous allocation from the remaining free space if the file 393 * grows in the short term. 394 */ 395 if (freebno >= wantbno || (userdata && freeend < wantend)) { 396 if ((newbno1 = roundup(freebno, alignment)) >= freeend) 397 newbno1 = NULLAGBLOCK; 398 } else if (freeend >= wantend && alignment > 1) { 399 newbno1 = roundup(wantbno, alignment); 400 newbno2 = newbno1 - alignment; 401 if (newbno1 >= freeend) 402 newbno1 = NULLAGBLOCK; 403 else 404 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); 405 if (newbno2 < freebno) 406 newbno2 = NULLAGBLOCK; 407 else 408 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); 409 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { 410 if (newlen1 < newlen2 || 411 (newlen1 == newlen2 && 412 XFS_ABSDIFF(newbno1, wantbno) > 413 XFS_ABSDIFF(newbno2, wantbno))) 414 newbno1 = newbno2; 415 } else if (newbno2 != NULLAGBLOCK) 416 newbno1 = newbno2; 417 } else if (freeend >= wantend) { 418 newbno1 = wantbno; 419 } else if (alignment > 1) { 420 newbno1 = roundup(freeend - wantlen, alignment); 421 if (newbno1 > freeend - wantlen && 422 newbno1 - alignment >= freebno) 423 newbno1 -= alignment; 424 else if (newbno1 >= freeend) 425 newbno1 = NULLAGBLOCK; 426 } else 427 newbno1 = freeend - wantlen; 428 *newbnop = newbno1; 429 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); 430 } 431 432 /* 433 * Fix up the length, based on mod and prod. 434 * len should be k * prod + mod for some k. 435 * If len is too small it is returned unchanged. 436 * If len hits maxlen it is left alone. 437 */ 438 STATIC void 439 xfs_alloc_fix_len( 440 xfs_alloc_arg_t *args) /* allocation argument structure */ 441 { 442 xfs_extlen_t k; 443 xfs_extlen_t rlen; 444 445 ASSERT(args->mod < args->prod); 446 rlen = args->len; 447 ASSERT(rlen >= args->minlen); 448 ASSERT(rlen <= args->maxlen); 449 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || 450 (args->mod == 0 && rlen < args->prod)) 451 return; 452 k = rlen % args->prod; 453 if (k == args->mod) 454 return; 455 if (k > args->mod) 456 rlen = rlen - (k - args->mod); 457 else 458 rlen = rlen - args->prod + (args->mod - k); 459 /* casts to (int) catch length underflows */ 460 if ((int)rlen < (int)args->minlen) 461 return; 462 ASSERT(rlen >= args->minlen && rlen <= args->maxlen); 463 ASSERT(rlen % args->prod == args->mod); 464 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >= 465 rlen + args->minleft); 466 args->len = rlen; 467 } 468 469 /* 470 * Determine if the cursor points to the block that contains the right-most 471 * block of records in the by-count btree. This block contains the largest 472 * contiguous free extent in the AG, so if we modify a record in this block we 473 * need to call xfs_alloc_fixup_longest() once the modifications are done to 474 * ensure the agf->agf_longest field is kept up to date with the longest free 475 * extent tracked by the by-count btree. 476 */ 477 static bool 478 xfs_alloc_cursor_at_lastrec( 479 struct xfs_btree_cur *cnt_cur) 480 { 481 struct xfs_btree_block *block; 482 union xfs_btree_ptr ptr; 483 struct xfs_buf *bp; 484 485 block = xfs_btree_get_block(cnt_cur, 0, &bp); 486 487 xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB); 488 return xfs_btree_ptr_is_null(cnt_cur, &ptr); 489 } 490 491 /* 492 * Find the rightmost record of the cntbt, and return the longest free space 493 * recorded in it. Simply set both the block number and the length to their 494 * maximum values before searching. 495 */ 496 static int 497 xfs_cntbt_longest( 498 struct xfs_btree_cur *cnt_cur, 499 xfs_extlen_t *longest) 500 { 501 struct xfs_alloc_rec_incore irec; 502 union xfs_btree_rec *rec; 503 int stat = 0; 504 int error; 505 506 memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec)); 507 error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat); 508 if (error) 509 return error; 510 if (!stat) { 511 /* totally empty tree */ 512 *longest = 0; 513 return 0; 514 } 515 516 error = xfs_btree_get_rec(cnt_cur, &rec, &stat); 517 if (error) 518 return error; 519 if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) { 520 xfs_btree_mark_sick(cnt_cur); 521 return -EFSCORRUPTED; 522 } 523 524 xfs_alloc_btrec_to_irec(rec, &irec); 525 *longest = irec.ar_blockcount; 526 return 0; 527 } 528 529 /* 530 * Update the longest contiguous free extent in the AG from the by-count cursor 531 * that is passed to us. This should be done at the end of any allocation or 532 * freeing operation that touches the longest extent in the btree. 533 * 534 * Needing to update the longest extent can be determined by calling 535 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record 536 * modification but before the modification begins. 537 */ 538 static int 539 xfs_alloc_fixup_longest( 540 struct xfs_btree_cur *cnt_cur) 541 { 542 struct xfs_perag *pag = cnt_cur->bc_ag.pag; 543 struct xfs_buf *bp = cnt_cur->bc_ag.agbp; 544 struct xfs_agf *agf = bp->b_addr; 545 xfs_extlen_t longest = 0; 546 int error; 547 548 /* Lookup last rec in order to update AGF. */ 549 error = xfs_cntbt_longest(cnt_cur, &longest); 550 if (error) 551 return error; 552 553 pag->pagf_longest = longest; 554 agf->agf_longest = cpu_to_be32(pag->pagf_longest); 555 xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST); 556 557 return 0; 558 } 559 560 /* 561 * Update the two btrees, logically removing from freespace the extent 562 * starting at rbno, rlen blocks. The extent is contained within the 563 * actual (current) free extent fbno for flen blocks. 564 * Flags are passed in indicating whether the cursors are set to the 565 * relevant records. 566 */ 567 STATIC int /* error code */ 568 xfs_alloc_fixup_trees( 569 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */ 570 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */ 571 xfs_agblock_t fbno, /* starting block of free extent */ 572 xfs_extlen_t flen, /* length of free extent */ 573 xfs_agblock_t rbno, /* starting block of returned extent */ 574 xfs_extlen_t rlen, /* length of returned extent */ 575 int flags) /* flags, XFSA_FIXUP_... */ 576 { 577 int error; /* error code */ 578 int i; /* operation results */ 579 xfs_agblock_t nfbno1; /* first new free startblock */ 580 xfs_agblock_t nfbno2; /* second new free startblock */ 581 xfs_extlen_t nflen1=0; /* first new free length */ 582 xfs_extlen_t nflen2=0; /* second new free length */ 583 struct xfs_mount *mp; 584 bool fixup_longest = false; 585 586 mp = cnt_cur->bc_mp; 587 588 /* 589 * Look up the record in the by-size tree if necessary. 590 */ 591 if (flags & XFSA_FIXUP_CNT_OK) { 592 #ifdef DEBUG 593 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) 594 return error; 595 if (XFS_IS_CORRUPT(mp, 596 i != 1 || 597 nfbno1 != fbno || 598 nflen1 != flen)) { 599 xfs_btree_mark_sick(cnt_cur); 600 return -EFSCORRUPTED; 601 } 602 #endif 603 } else { 604 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) 605 return error; 606 if (XFS_IS_CORRUPT(mp, i != 1)) { 607 xfs_btree_mark_sick(cnt_cur); 608 return -EFSCORRUPTED; 609 } 610 } 611 /* 612 * Look up the record in the by-block tree if necessary. 613 */ 614 if (flags & XFSA_FIXUP_BNO_OK) { 615 #ifdef DEBUG 616 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) 617 return error; 618 if (XFS_IS_CORRUPT(mp, 619 i != 1 || 620 nfbno1 != fbno || 621 nflen1 != flen)) { 622 xfs_btree_mark_sick(bno_cur); 623 return -EFSCORRUPTED; 624 } 625 #endif 626 } else { 627 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) 628 return error; 629 if (XFS_IS_CORRUPT(mp, i != 1)) { 630 xfs_btree_mark_sick(bno_cur); 631 return -EFSCORRUPTED; 632 } 633 } 634 635 #ifdef DEBUG 636 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { 637 struct xfs_btree_block *bnoblock; 638 struct xfs_btree_block *cntblock; 639 640 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp); 641 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp); 642 643 if (XFS_IS_CORRUPT(mp, 644 bnoblock->bb_numrecs != 645 cntblock->bb_numrecs)) { 646 xfs_btree_mark_sick(bno_cur); 647 return -EFSCORRUPTED; 648 } 649 } 650 #endif 651 652 /* 653 * Deal with all four cases: the allocated record is contained 654 * within the freespace record, so we can have new freespace 655 * at either (or both) end, or no freespace remaining. 656 */ 657 if (rbno == fbno && rlen == flen) 658 nfbno1 = nfbno2 = NULLAGBLOCK; 659 else if (rbno == fbno) { 660 nfbno1 = rbno + rlen; 661 nflen1 = flen - rlen; 662 nfbno2 = NULLAGBLOCK; 663 } else if (rbno + rlen == fbno + flen) { 664 nfbno1 = fbno; 665 nflen1 = flen - rlen; 666 nfbno2 = NULLAGBLOCK; 667 } else { 668 nfbno1 = fbno; 669 nflen1 = rbno - fbno; 670 nfbno2 = rbno + rlen; 671 nflen2 = (fbno + flen) - nfbno2; 672 } 673 674 if (xfs_alloc_cursor_at_lastrec(cnt_cur)) 675 fixup_longest = true; 676 677 /* 678 * Delete the entry from the by-size btree. 679 */ 680 if ((error = xfs_btree_delete(cnt_cur, &i))) 681 return error; 682 if (XFS_IS_CORRUPT(mp, i != 1)) { 683 xfs_btree_mark_sick(cnt_cur); 684 return -EFSCORRUPTED; 685 } 686 /* 687 * Add new by-size btree entry(s). 688 */ 689 if (nfbno1 != NULLAGBLOCK) { 690 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) 691 return error; 692 if (XFS_IS_CORRUPT(mp, i != 0)) { 693 xfs_btree_mark_sick(cnt_cur); 694 return -EFSCORRUPTED; 695 } 696 if ((error = xfs_btree_insert(cnt_cur, &i))) 697 return error; 698 if (XFS_IS_CORRUPT(mp, i != 1)) { 699 xfs_btree_mark_sick(cnt_cur); 700 return -EFSCORRUPTED; 701 } 702 } 703 if (nfbno2 != NULLAGBLOCK) { 704 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) 705 return error; 706 if (XFS_IS_CORRUPT(mp, i != 0)) { 707 xfs_btree_mark_sick(cnt_cur); 708 return -EFSCORRUPTED; 709 } 710 if ((error = xfs_btree_insert(cnt_cur, &i))) 711 return error; 712 if (XFS_IS_CORRUPT(mp, i != 1)) { 713 xfs_btree_mark_sick(cnt_cur); 714 return -EFSCORRUPTED; 715 } 716 } 717 /* 718 * Fix up the by-block btree entry(s). 719 */ 720 if (nfbno1 == NULLAGBLOCK) { 721 /* 722 * No remaining freespace, just delete the by-block tree entry. 723 */ 724 if ((error = xfs_btree_delete(bno_cur, &i))) 725 return error; 726 if (XFS_IS_CORRUPT(mp, i != 1)) { 727 xfs_btree_mark_sick(bno_cur); 728 return -EFSCORRUPTED; 729 } 730 } else { 731 /* 732 * Update the by-block entry to start later|be shorter. 733 */ 734 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) 735 return error; 736 } 737 if (nfbno2 != NULLAGBLOCK) { 738 /* 739 * 2 resulting free entries, need to add one. 740 */ 741 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) 742 return error; 743 if (XFS_IS_CORRUPT(mp, i != 0)) { 744 xfs_btree_mark_sick(bno_cur); 745 return -EFSCORRUPTED; 746 } 747 if ((error = xfs_btree_insert(bno_cur, &i))) 748 return error; 749 if (XFS_IS_CORRUPT(mp, i != 1)) { 750 xfs_btree_mark_sick(bno_cur); 751 return -EFSCORRUPTED; 752 } 753 } 754 755 if (fixup_longest) 756 return xfs_alloc_fixup_longest(cnt_cur); 757 758 return 0; 759 } 760 761 /* 762 * We do not verify the AGFL contents against AGF-based index counters here, 763 * even though we may have access to the perag that contains shadow copies. We 764 * don't know if the AGF based counters have been checked, and if they have they 765 * still may be inconsistent because they haven't yet been reset on the first 766 * allocation after the AGF has been read in. 767 * 768 * This means we can only check that all agfl entries contain valid or null 769 * values because we can't reliably determine the active range to exclude 770 * NULLAGBNO as a valid value. 771 * 772 * However, we can't even do that for v4 format filesystems because there are 773 * old versions of mkfs out there that does not initialise the AGFL to known, 774 * verifiable values. HEnce we can't tell the difference between a AGFL block 775 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems. 776 * 777 * As a result, we can only fully validate AGFL block numbers when we pull them 778 * from the freelist in xfs_alloc_get_freelist(). 779 */ 780 static xfs_failaddr_t 781 xfs_agfl_verify( 782 struct xfs_buf *bp) 783 { 784 struct xfs_mount *mp = bp->b_mount; 785 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 786 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp); 787 int i; 788 789 if (!xfs_has_crc(mp)) 790 return NULL; 791 792 if (!xfs_verify_magic(bp, agfl->agfl_magicnum)) 793 return __this_address; 794 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid)) 795 return __this_address; 796 /* 797 * during growfs operations, the perag is not fully initialised, 798 * so we can't use it for any useful checking. growfs ensures we can't 799 * use it by using uncached buffers that don't have the perag attached 800 * so we can detect and avoid this problem. 801 */ 802 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno) 803 return __this_address; 804 805 for (i = 0; i < xfs_agfl_size(mp); i++) { 806 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK && 807 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks) 808 return __this_address; 809 } 810 811 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn))) 812 return __this_address; 813 return NULL; 814 } 815 816 static void 817 xfs_agfl_read_verify( 818 struct xfs_buf *bp) 819 { 820 struct xfs_mount *mp = bp->b_mount; 821 xfs_failaddr_t fa; 822 823 /* 824 * There is no verification of non-crc AGFLs because mkfs does not 825 * initialise the AGFL to zero or NULL. Hence the only valid part of the 826 * AGFL is what the AGF says is active. We can't get to the AGF, so we 827 * can't verify just those entries are valid. 828 */ 829 if (!xfs_has_crc(mp)) 830 return; 831 832 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF)) 833 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 834 else { 835 fa = xfs_agfl_verify(bp); 836 if (fa) 837 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 838 } 839 } 840 841 static void 842 xfs_agfl_write_verify( 843 struct xfs_buf *bp) 844 { 845 struct xfs_mount *mp = bp->b_mount; 846 struct xfs_buf_log_item *bip = bp->b_log_item; 847 xfs_failaddr_t fa; 848 849 /* no verification of non-crc AGFLs */ 850 if (!xfs_has_crc(mp)) 851 return; 852 853 fa = xfs_agfl_verify(bp); 854 if (fa) { 855 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 856 return; 857 } 858 859 if (bip) 860 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn); 861 862 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF); 863 } 864 865 const struct xfs_buf_ops xfs_agfl_buf_ops = { 866 .name = "xfs_agfl", 867 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) }, 868 .verify_read = xfs_agfl_read_verify, 869 .verify_write = xfs_agfl_write_verify, 870 .verify_struct = xfs_agfl_verify, 871 }; 872 873 /* 874 * Read in the allocation group free block array. 875 */ 876 int 877 xfs_alloc_read_agfl( 878 struct xfs_perag *pag, 879 struct xfs_trans *tp, 880 struct xfs_buf **bpp) 881 { 882 struct xfs_mount *mp = pag->pag_mount; 883 struct xfs_buf *bp; 884 int error; 885 886 error = xfs_trans_read_buf( 887 mp, tp, mp->m_ddev_targp, 888 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)), 889 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops); 890 if (xfs_metadata_is_sick(error)) 891 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL); 892 if (error) 893 return error; 894 xfs_buf_set_ref(bp, XFS_AGFL_REF); 895 *bpp = bp; 896 return 0; 897 } 898 899 STATIC int 900 xfs_alloc_update_counters( 901 struct xfs_trans *tp, 902 struct xfs_buf *agbp, 903 long len) 904 { 905 struct xfs_agf *agf = agbp->b_addr; 906 907 agbp->b_pag->pagf_freeblks += len; 908 be32_add_cpu(&agf->agf_freeblks, len); 909 910 if (unlikely(be32_to_cpu(agf->agf_freeblks) > 911 be32_to_cpu(agf->agf_length))) { 912 xfs_buf_mark_corrupt(agbp); 913 xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF); 914 return -EFSCORRUPTED; 915 } 916 917 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); 918 return 0; 919 } 920 921 /* 922 * Block allocation algorithm and data structures. 923 */ 924 struct xfs_alloc_cur { 925 struct xfs_btree_cur *cnt; /* btree cursors */ 926 struct xfs_btree_cur *bnolt; 927 struct xfs_btree_cur *bnogt; 928 xfs_extlen_t cur_len;/* current search length */ 929 xfs_agblock_t rec_bno;/* extent startblock */ 930 xfs_extlen_t rec_len;/* extent length */ 931 xfs_agblock_t bno; /* alloc bno */ 932 xfs_extlen_t len; /* alloc len */ 933 xfs_extlen_t diff; /* diff from search bno */ 934 unsigned int busy_gen;/* busy state */ 935 bool busy; 936 }; 937 938 /* 939 * Set up cursors, etc. in the extent allocation cursor. This function can be 940 * called multiple times to reset an initialized structure without having to 941 * reallocate cursors. 942 */ 943 static int 944 xfs_alloc_cur_setup( 945 struct xfs_alloc_arg *args, 946 struct xfs_alloc_cur *acur) 947 { 948 int error; 949 int i; 950 951 acur->cur_len = args->maxlen; 952 acur->rec_bno = 0; 953 acur->rec_len = 0; 954 acur->bno = 0; 955 acur->len = 0; 956 acur->diff = -1; 957 acur->busy = false; 958 acur->busy_gen = 0; 959 960 /* 961 * Perform an initial cntbt lookup to check for availability of maxlen 962 * extents. If this fails, we'll return -ENOSPC to signal the caller to 963 * attempt a small allocation. 964 */ 965 if (!acur->cnt) 966 acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp, 967 args->agbp, args->pag); 968 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i); 969 if (error) 970 return error; 971 972 /* 973 * Allocate the bnobt left and right search cursors. 974 */ 975 if (!acur->bnolt) 976 acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp, 977 args->agbp, args->pag); 978 if (!acur->bnogt) 979 acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp, 980 args->agbp, args->pag); 981 return i == 1 ? 0 : -ENOSPC; 982 } 983 984 static void 985 xfs_alloc_cur_close( 986 struct xfs_alloc_cur *acur, 987 bool error) 988 { 989 int cur_error = XFS_BTREE_NOERROR; 990 991 if (error) 992 cur_error = XFS_BTREE_ERROR; 993 994 if (acur->cnt) 995 xfs_btree_del_cursor(acur->cnt, cur_error); 996 if (acur->bnolt) 997 xfs_btree_del_cursor(acur->bnolt, cur_error); 998 if (acur->bnogt) 999 xfs_btree_del_cursor(acur->bnogt, cur_error); 1000 acur->cnt = acur->bnolt = acur->bnogt = NULL; 1001 } 1002 1003 /* 1004 * Check an extent for allocation and track the best available candidate in the 1005 * allocation structure. The cursor is deactivated if it has entered an out of 1006 * range state based on allocation arguments. Optionally return the extent 1007 * extent geometry and allocation status if requested by the caller. 1008 */ 1009 static int 1010 xfs_alloc_cur_check( 1011 struct xfs_alloc_arg *args, 1012 struct xfs_alloc_cur *acur, 1013 struct xfs_btree_cur *cur, 1014 int *new) 1015 { 1016 int error, i; 1017 xfs_agblock_t bno, bnoa, bnew; 1018 xfs_extlen_t len, lena, diff = -1; 1019 bool busy; 1020 unsigned busy_gen = 0; 1021 bool deactivate = false; 1022 bool isbnobt = xfs_btree_is_bno(cur->bc_ops); 1023 1024 *new = 0; 1025 1026 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1027 if (error) 1028 return error; 1029 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1030 xfs_btree_mark_sick(cur); 1031 return -EFSCORRUPTED; 1032 } 1033 1034 /* 1035 * Check minlen and deactivate a cntbt cursor if out of acceptable size 1036 * range (i.e., walking backwards looking for a minlen extent). 1037 */ 1038 if (len < args->minlen) { 1039 deactivate = !isbnobt; 1040 goto out; 1041 } 1042 1043 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena, 1044 &busy_gen); 1045 acur->busy |= busy; 1046 if (busy) 1047 acur->busy_gen = busy_gen; 1048 /* deactivate a bnobt cursor outside of locality range */ 1049 if (bnoa < args->min_agbno || bnoa > args->max_agbno) { 1050 deactivate = isbnobt; 1051 goto out; 1052 } 1053 if (lena < args->minlen) 1054 goto out; 1055 1056 args->len = XFS_EXTLEN_MIN(lena, args->maxlen); 1057 xfs_alloc_fix_len(args); 1058 ASSERT(args->len >= args->minlen); 1059 if (args->len < acur->len) 1060 goto out; 1061 1062 /* 1063 * We have an aligned record that satisfies minlen and beats or matches 1064 * the candidate extent size. Compare locality for near allocation mode. 1065 */ 1066 diff = xfs_alloc_compute_diff(args->agbno, args->len, 1067 args->alignment, args->datatype, 1068 bnoa, lena, &bnew); 1069 if (bnew == NULLAGBLOCK) 1070 goto out; 1071 1072 /* 1073 * Deactivate a bnobt cursor with worse locality than the current best. 1074 */ 1075 if (diff > acur->diff) { 1076 deactivate = isbnobt; 1077 goto out; 1078 } 1079 1080 ASSERT(args->len > acur->len || 1081 (args->len == acur->len && diff <= acur->diff)); 1082 acur->rec_bno = bno; 1083 acur->rec_len = len; 1084 acur->bno = bnew; 1085 acur->len = args->len; 1086 acur->diff = diff; 1087 *new = 1; 1088 1089 /* 1090 * We're done if we found a perfect allocation. This only deactivates 1091 * the current cursor, but this is just an optimization to terminate a 1092 * cntbt search that otherwise runs to the edge of the tree. 1093 */ 1094 if (acur->diff == 0 && acur->len == args->maxlen) 1095 deactivate = true; 1096 out: 1097 if (deactivate) 1098 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 1099 trace_xfs_alloc_cur_check(cur, bno, len, diff, *new); 1100 return 0; 1101 } 1102 1103 /* 1104 * Complete an allocation of a candidate extent. Remove the extent from both 1105 * trees and update the args structure. 1106 */ 1107 STATIC int 1108 xfs_alloc_cur_finish( 1109 struct xfs_alloc_arg *args, 1110 struct xfs_alloc_cur *acur) 1111 { 1112 int error; 1113 1114 ASSERT(acur->cnt && acur->bnolt); 1115 ASSERT(acur->bno >= acur->rec_bno); 1116 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len); 1117 ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len)); 1118 1119 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno, 1120 acur->rec_len, acur->bno, acur->len, 0); 1121 if (error) 1122 return error; 1123 1124 args->agbno = acur->bno; 1125 args->len = acur->len; 1126 args->wasfromfl = 0; 1127 1128 trace_xfs_alloc_cur(args); 1129 return 0; 1130 } 1131 1132 /* 1133 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses 1134 * bno optimized lookup to search for extents with ideal size and locality. 1135 */ 1136 STATIC int 1137 xfs_alloc_cntbt_iter( 1138 struct xfs_alloc_arg *args, 1139 struct xfs_alloc_cur *acur) 1140 { 1141 struct xfs_btree_cur *cur = acur->cnt; 1142 xfs_agblock_t bno; 1143 xfs_extlen_t len, cur_len; 1144 int error; 1145 int i; 1146 1147 if (!xfs_alloc_cur_active(cur)) 1148 return 0; 1149 1150 /* locality optimized lookup */ 1151 cur_len = acur->cur_len; 1152 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i); 1153 if (error) 1154 return error; 1155 if (i == 0) 1156 return 0; 1157 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1158 if (error) 1159 return error; 1160 1161 /* check the current record and update search length from it */ 1162 error = xfs_alloc_cur_check(args, acur, cur, &i); 1163 if (error) 1164 return error; 1165 ASSERT(len >= acur->cur_len); 1166 acur->cur_len = len; 1167 1168 /* 1169 * We looked up the first record >= [agbno, len] above. The agbno is a 1170 * secondary key and so the current record may lie just before or after 1171 * agbno. If it is past agbno, check the previous record too so long as 1172 * the length matches as it may be closer. Don't check a smaller record 1173 * because that could deactivate our cursor. 1174 */ 1175 if (bno > args->agbno) { 1176 error = xfs_btree_decrement(cur, 0, &i); 1177 if (!error && i) { 1178 error = xfs_alloc_get_rec(cur, &bno, &len, &i); 1179 if (!error && i && len == acur->cur_len) 1180 error = xfs_alloc_cur_check(args, acur, cur, 1181 &i); 1182 } 1183 if (error) 1184 return error; 1185 } 1186 1187 /* 1188 * Increment the search key until we find at least one allocation 1189 * candidate or if the extent we found was larger. Otherwise, double the 1190 * search key to optimize the search. Efficiency is more important here 1191 * than absolute best locality. 1192 */ 1193 cur_len <<= 1; 1194 if (!acur->len || acur->cur_len >= cur_len) 1195 acur->cur_len++; 1196 else 1197 acur->cur_len = cur_len; 1198 1199 return error; 1200 } 1201 1202 /* 1203 * Deal with the case where only small freespaces remain. Either return the 1204 * contents of the last freespace record, or allocate space from the freelist if 1205 * there is nothing in the tree. 1206 */ 1207 STATIC int /* error */ 1208 xfs_alloc_ag_vextent_small( 1209 struct xfs_alloc_arg *args, /* allocation argument structure */ 1210 struct xfs_btree_cur *ccur, /* optional by-size cursor */ 1211 xfs_agblock_t *fbnop, /* result block number */ 1212 xfs_extlen_t *flenp, /* result length */ 1213 int *stat) /* status: 0-freelist, 1-normal/none */ 1214 { 1215 struct xfs_agf *agf = args->agbp->b_addr; 1216 int error = 0; 1217 xfs_agblock_t fbno = NULLAGBLOCK; 1218 xfs_extlen_t flen = 0; 1219 int i = 0; 1220 1221 /* 1222 * If a cntbt cursor is provided, try to allocate the largest record in 1223 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the 1224 * allocation. Make sure to respect minleft even when pulling from the 1225 * freelist. 1226 */ 1227 if (ccur) 1228 error = xfs_btree_decrement(ccur, 0, &i); 1229 if (error) 1230 goto error; 1231 if (i) { 1232 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i); 1233 if (error) 1234 goto error; 1235 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1236 xfs_btree_mark_sick(ccur); 1237 error = -EFSCORRUPTED; 1238 goto error; 1239 } 1240 goto out; 1241 } 1242 1243 if (args->minlen != 1 || args->alignment != 1 || 1244 args->resv == XFS_AG_RESV_AGFL || 1245 be32_to_cpu(agf->agf_flcount) <= args->minleft) 1246 goto out; 1247 1248 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp, 1249 &fbno, 0); 1250 if (error) 1251 goto error; 1252 if (fbno == NULLAGBLOCK) 1253 goto out; 1254 1255 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1, 1256 (args->datatype & XFS_ALLOC_NOBUSY)); 1257 1258 if (args->datatype & XFS_ALLOC_USERDATA) { 1259 struct xfs_buf *bp; 1260 1261 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp, 1262 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno), 1263 args->mp->m_bsize, 0, &bp); 1264 if (error) 1265 goto error; 1266 xfs_trans_binval(args->tp, bp); 1267 } 1268 *fbnop = args->agbno = fbno; 1269 *flenp = args->len = 1; 1270 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) { 1271 xfs_btree_mark_sick(ccur); 1272 error = -EFSCORRUPTED; 1273 goto error; 1274 } 1275 args->wasfromfl = 1; 1276 trace_xfs_alloc_small_freelist(args); 1277 1278 /* 1279 * If we're feeding an AGFL block to something that doesn't live in the 1280 * free space, we need to clear out the OWN_AG rmap. 1281 */ 1282 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1, 1283 &XFS_RMAP_OINFO_AG); 1284 if (error) 1285 goto error; 1286 1287 *stat = 0; 1288 return 0; 1289 1290 out: 1291 /* 1292 * Can't do the allocation, give up. 1293 */ 1294 if (flen < args->minlen) { 1295 args->agbno = NULLAGBLOCK; 1296 trace_xfs_alloc_small_notenough(args); 1297 flen = 0; 1298 } 1299 *fbnop = fbno; 1300 *flenp = flen; 1301 *stat = 1; 1302 trace_xfs_alloc_small_done(args); 1303 return 0; 1304 1305 error: 1306 trace_xfs_alloc_small_error(args); 1307 return error; 1308 } 1309 1310 /* 1311 * Allocate a variable extent at exactly agno/bno. 1312 * Extent's length (returned in *len) will be between minlen and maxlen, 1313 * and of the form k * prod + mod unless there's nothing that large. 1314 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. 1315 */ 1316 STATIC int /* error */ 1317 xfs_alloc_ag_vextent_exact( 1318 xfs_alloc_arg_t *args) /* allocation argument structure */ 1319 { 1320 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */ 1321 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */ 1322 int error; 1323 xfs_agblock_t fbno; /* start block of found extent */ 1324 xfs_extlen_t flen; /* length of found extent */ 1325 xfs_agblock_t tbno; /* start block of busy extent */ 1326 xfs_extlen_t tlen; /* length of busy extent */ 1327 xfs_agblock_t tend; /* end block of busy extent */ 1328 int i; /* success/failure of operation */ 1329 unsigned busy_gen; 1330 1331 ASSERT(args->alignment == 1); 1332 1333 /* 1334 * Allocate/initialize a cursor for the by-number freespace btree. 1335 */ 1336 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, 1337 args->pag); 1338 1339 /* 1340 * Lookup bno and minlen in the btree (minlen is irrelevant, really). 1341 * Look for the closest free block <= bno, it must contain bno 1342 * if any free block does. 1343 */ 1344 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); 1345 if (error) 1346 goto error0; 1347 if (!i) 1348 goto not_found; 1349 1350 /* 1351 * Grab the freespace record. 1352 */ 1353 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); 1354 if (error) 1355 goto error0; 1356 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1357 xfs_btree_mark_sick(bno_cur); 1358 error = -EFSCORRUPTED; 1359 goto error0; 1360 } 1361 ASSERT(fbno <= args->agbno); 1362 1363 /* 1364 * Check for overlapping busy extents. 1365 */ 1366 tbno = fbno; 1367 tlen = flen; 1368 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen); 1369 1370 /* 1371 * Give up if the start of the extent is busy, or the freespace isn't 1372 * long enough for the minimum request. 1373 */ 1374 if (tbno > args->agbno) 1375 goto not_found; 1376 if (tlen < args->minlen) 1377 goto not_found; 1378 tend = tbno + tlen; 1379 if (tend < args->agbno + args->minlen) 1380 goto not_found; 1381 1382 /* 1383 * End of extent will be smaller of the freespace end and the 1384 * maximal requested end. 1385 * 1386 * Fix the length according to mod and prod if given. 1387 */ 1388 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen) 1389 - args->agbno; 1390 xfs_alloc_fix_len(args); 1391 ASSERT(args->agbno + args->len <= tend); 1392 1393 /* 1394 * We are allocating agbno for args->len 1395 * Allocate/initialize a cursor for the by-size btree. 1396 */ 1397 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, 1398 args->pag); 1399 ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len)); 1400 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, 1401 args->len, XFSA_FIXUP_BNO_OK); 1402 if (error) { 1403 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 1404 goto error0; 1405 } 1406 1407 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1408 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1409 1410 args->wasfromfl = 0; 1411 trace_xfs_alloc_exact_done(args); 1412 return 0; 1413 1414 not_found: 1415 /* Didn't find it, return null. */ 1416 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 1417 args->agbno = NULLAGBLOCK; 1418 trace_xfs_alloc_exact_notfound(args); 1419 return 0; 1420 1421 error0: 1422 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 1423 trace_xfs_alloc_exact_error(args); 1424 return error; 1425 } 1426 1427 /* 1428 * Search a given number of btree records in a given direction. Check each 1429 * record against the good extent we've already found. 1430 */ 1431 STATIC int 1432 xfs_alloc_walk_iter( 1433 struct xfs_alloc_arg *args, 1434 struct xfs_alloc_cur *acur, 1435 struct xfs_btree_cur *cur, 1436 bool increment, 1437 bool find_one, /* quit on first candidate */ 1438 int count, /* rec count (-1 for infinite) */ 1439 int *stat) 1440 { 1441 int error; 1442 int i; 1443 1444 *stat = 0; 1445 1446 /* 1447 * Search so long as the cursor is active or we find a better extent. 1448 * The cursor is deactivated if it extends beyond the range of the 1449 * current allocation candidate. 1450 */ 1451 while (xfs_alloc_cur_active(cur) && count) { 1452 error = xfs_alloc_cur_check(args, acur, cur, &i); 1453 if (error) 1454 return error; 1455 if (i == 1) { 1456 *stat = 1; 1457 if (find_one) 1458 break; 1459 } 1460 if (!xfs_alloc_cur_active(cur)) 1461 break; 1462 1463 if (increment) 1464 error = xfs_btree_increment(cur, 0, &i); 1465 else 1466 error = xfs_btree_decrement(cur, 0, &i); 1467 if (error) 1468 return error; 1469 if (i == 0) 1470 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE; 1471 1472 if (count > 0) 1473 count--; 1474 } 1475 1476 return 0; 1477 } 1478 1479 /* 1480 * Search the by-bno and by-size btrees in parallel in search of an extent with 1481 * ideal locality based on the NEAR mode ->agbno locality hint. 1482 */ 1483 STATIC int 1484 xfs_alloc_ag_vextent_locality( 1485 struct xfs_alloc_arg *args, 1486 struct xfs_alloc_cur *acur, 1487 int *stat) 1488 { 1489 struct xfs_btree_cur *fbcur = NULL; 1490 int error; 1491 int i; 1492 bool fbinc; 1493 1494 ASSERT(acur->len == 0); 1495 1496 *stat = 0; 1497 1498 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i); 1499 if (error) 1500 return error; 1501 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i); 1502 if (error) 1503 return error; 1504 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i); 1505 if (error) 1506 return error; 1507 1508 /* 1509 * Search the bnobt and cntbt in parallel. Search the bnobt left and 1510 * right and lookup the closest extent to the locality hint for each 1511 * extent size key in the cntbt. The entire search terminates 1512 * immediately on a bnobt hit because that means we've found best case 1513 * locality. Otherwise the search continues until the cntbt cursor runs 1514 * off the end of the tree. If no allocation candidate is found at this 1515 * point, give up on locality, walk backwards from the end of the cntbt 1516 * and take the first available extent. 1517 * 1518 * The parallel tree searches balance each other out to provide fairly 1519 * consistent performance for various situations. The bnobt search can 1520 * have pathological behavior in the worst case scenario of larger 1521 * allocation requests and fragmented free space. On the other hand, the 1522 * bnobt is able to satisfy most smaller allocation requests much more 1523 * quickly than the cntbt. The cntbt search can sift through fragmented 1524 * free space and sets of free extents for larger allocation requests 1525 * more quickly than the bnobt. Since the locality hint is just a hint 1526 * and we don't want to scan the entire bnobt for perfect locality, the 1527 * cntbt search essentially bounds the bnobt search such that we can 1528 * find good enough locality at reasonable performance in most cases. 1529 */ 1530 while (xfs_alloc_cur_active(acur->bnolt) || 1531 xfs_alloc_cur_active(acur->bnogt) || 1532 xfs_alloc_cur_active(acur->cnt)) { 1533 1534 trace_xfs_alloc_cur_lookup(args); 1535 1536 /* 1537 * Search the bnobt left and right. In the case of a hit, finish 1538 * the search in the opposite direction and we're done. 1539 */ 1540 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false, 1541 true, 1, &i); 1542 if (error) 1543 return error; 1544 if (i == 1) { 1545 trace_xfs_alloc_cur_left(args); 1546 fbcur = acur->bnogt; 1547 fbinc = true; 1548 break; 1549 } 1550 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true, 1551 1, &i); 1552 if (error) 1553 return error; 1554 if (i == 1) { 1555 trace_xfs_alloc_cur_right(args); 1556 fbcur = acur->bnolt; 1557 fbinc = false; 1558 break; 1559 } 1560 1561 /* 1562 * Check the extent with best locality based on the current 1563 * extent size search key and keep track of the best candidate. 1564 */ 1565 error = xfs_alloc_cntbt_iter(args, acur); 1566 if (error) 1567 return error; 1568 if (!xfs_alloc_cur_active(acur->cnt)) { 1569 trace_xfs_alloc_cur_lookup_done(args); 1570 break; 1571 } 1572 } 1573 1574 /* 1575 * If we failed to find anything due to busy extents, return empty 1576 * handed so the caller can flush and retry. If no busy extents were 1577 * found, walk backwards from the end of the cntbt as a last resort. 1578 */ 1579 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) { 1580 error = xfs_btree_decrement(acur->cnt, 0, &i); 1581 if (error) 1582 return error; 1583 if (i) { 1584 acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE; 1585 fbcur = acur->cnt; 1586 fbinc = false; 1587 } 1588 } 1589 1590 /* 1591 * Search in the opposite direction for a better entry in the case of 1592 * a bnobt hit or walk backwards from the end of the cntbt. 1593 */ 1594 if (fbcur) { 1595 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1, 1596 &i); 1597 if (error) 1598 return error; 1599 } 1600 1601 if (acur->len) 1602 *stat = 1; 1603 1604 return 0; 1605 } 1606 1607 /* Check the last block of the cnt btree for allocations. */ 1608 static int 1609 xfs_alloc_ag_vextent_lastblock( 1610 struct xfs_alloc_arg *args, 1611 struct xfs_alloc_cur *acur, 1612 xfs_agblock_t *bno, 1613 xfs_extlen_t *len, 1614 bool *allocated) 1615 { 1616 int error; 1617 int i; 1618 1619 #ifdef DEBUG 1620 /* Randomly don't execute the first algorithm. */ 1621 if (get_random_u32_below(2)) 1622 return 0; 1623 #endif 1624 1625 /* 1626 * Start from the entry that lookup found, sequence through all larger 1627 * free blocks. If we're actually pointing at a record smaller than 1628 * maxlen, go to the start of this block, and skip all those smaller 1629 * than minlen. 1630 */ 1631 if (*len || args->alignment > 1) { 1632 acur->cnt->bc_levels[0].ptr = 1; 1633 do { 1634 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i); 1635 if (error) 1636 return error; 1637 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1638 xfs_btree_mark_sick(acur->cnt); 1639 return -EFSCORRUPTED; 1640 } 1641 if (*len >= args->minlen) 1642 break; 1643 error = xfs_btree_increment(acur->cnt, 0, &i); 1644 if (error) 1645 return error; 1646 } while (i); 1647 ASSERT(*len >= args->minlen); 1648 if (!i) 1649 return 0; 1650 } 1651 1652 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i); 1653 if (error) 1654 return error; 1655 1656 /* 1657 * It didn't work. We COULD be in a case where there's a good record 1658 * somewhere, so try again. 1659 */ 1660 if (acur->len == 0) 1661 return 0; 1662 1663 trace_xfs_alloc_near_first(args); 1664 *allocated = true; 1665 return 0; 1666 } 1667 1668 /* 1669 * Allocate a variable extent near bno in the allocation group agno. 1670 * Extent's length (returned in len) will be between minlen and maxlen, 1671 * and of the form k * prod + mod unless there's nothing that large. 1672 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1673 */ 1674 STATIC int 1675 xfs_alloc_ag_vextent_near( 1676 struct xfs_alloc_arg *args, 1677 uint32_t alloc_flags) 1678 { 1679 struct xfs_alloc_cur acur = {}; 1680 int error; /* error code */ 1681 int i; /* result code, temporary */ 1682 xfs_agblock_t bno; 1683 xfs_extlen_t len; 1684 1685 /* handle uninitialized agbno range so caller doesn't have to */ 1686 if (!args->min_agbno && !args->max_agbno) 1687 args->max_agbno = args->mp->m_sb.sb_agblocks - 1; 1688 ASSERT(args->min_agbno <= args->max_agbno); 1689 1690 /* clamp agbno to the range if it's outside */ 1691 if (args->agbno < args->min_agbno) 1692 args->agbno = args->min_agbno; 1693 if (args->agbno > args->max_agbno) 1694 args->agbno = args->max_agbno; 1695 1696 /* Retry once quickly if we find busy extents before blocking. */ 1697 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1698 restart: 1699 len = 0; 1700 1701 /* 1702 * Set up cursors and see if there are any free extents as big as 1703 * maxlen. If not, pick the last entry in the tree unless the tree is 1704 * empty. 1705 */ 1706 error = xfs_alloc_cur_setup(args, &acur); 1707 if (error == -ENOSPC) { 1708 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno, 1709 &len, &i); 1710 if (error) 1711 goto out; 1712 if (i == 0 || len == 0) { 1713 trace_xfs_alloc_near_noentry(args); 1714 goto out; 1715 } 1716 ASSERT(i == 1); 1717 } else if (error) { 1718 goto out; 1719 } 1720 1721 /* 1722 * First algorithm. 1723 * If the requested extent is large wrt the freespaces available 1724 * in this a.g., then the cursor will be pointing to a btree entry 1725 * near the right edge of the tree. If it's in the last btree leaf 1726 * block, then we just examine all the entries in that block 1727 * that are big enough, and pick the best one. 1728 */ 1729 if (xfs_btree_islastblock(acur.cnt, 0)) { 1730 bool allocated = false; 1731 1732 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len, 1733 &allocated); 1734 if (error) 1735 goto out; 1736 if (allocated) 1737 goto alloc_finish; 1738 } 1739 1740 /* 1741 * Second algorithm. Combined cntbt and bnobt search to find ideal 1742 * locality. 1743 */ 1744 error = xfs_alloc_ag_vextent_locality(args, &acur, &i); 1745 if (error) 1746 goto out; 1747 1748 /* 1749 * If we couldn't get anything, give up. 1750 */ 1751 if (!acur.len) { 1752 if (acur.busy) { 1753 /* 1754 * Our only valid extents must have been busy. Flush and 1755 * retry the allocation again. If we get an -EAGAIN 1756 * error, we're being told that a deadlock was avoided 1757 * and the current transaction needs committing before 1758 * the allocation can be retried. 1759 */ 1760 trace_xfs_alloc_near_busy(args); 1761 error = xfs_extent_busy_flush(args->tp, args->pag, 1762 acur.busy_gen, alloc_flags); 1763 if (error) 1764 goto out; 1765 1766 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1767 goto restart; 1768 } 1769 trace_xfs_alloc_size_neither(args); 1770 args->agbno = NULLAGBLOCK; 1771 goto out; 1772 } 1773 1774 alloc_finish: 1775 /* fix up btrees on a successful allocation */ 1776 error = xfs_alloc_cur_finish(args, &acur); 1777 1778 out: 1779 xfs_alloc_cur_close(&acur, error); 1780 return error; 1781 } 1782 1783 /* 1784 * Allocate a variable extent anywhere in the allocation group agno. 1785 * Extent's length (returned in len) will be between minlen and maxlen, 1786 * and of the form k * prod + mod unless there's nothing that large. 1787 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. 1788 */ 1789 static int 1790 xfs_alloc_ag_vextent_size( 1791 struct xfs_alloc_arg *args, 1792 uint32_t alloc_flags) 1793 { 1794 struct xfs_agf *agf = args->agbp->b_addr; 1795 struct xfs_btree_cur *bno_cur; 1796 struct xfs_btree_cur *cnt_cur; 1797 xfs_agblock_t fbno; /* start of found freespace */ 1798 xfs_extlen_t flen; /* length of found freespace */ 1799 xfs_agblock_t rbno; /* returned block number */ 1800 xfs_extlen_t rlen; /* length of returned extent */ 1801 bool busy; 1802 unsigned busy_gen; 1803 int error; 1804 int i; 1805 1806 /* Retry once quickly if we find busy extents before blocking. */ 1807 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH; 1808 restart: 1809 /* 1810 * Allocate and initialize a cursor for the by-size btree. 1811 */ 1812 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp, 1813 args->pag); 1814 bno_cur = NULL; 1815 1816 /* 1817 * Look for an entry >= maxlen+alignment-1 blocks. 1818 */ 1819 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, 1820 args->maxlen + args->alignment - 1, &i))) 1821 goto error0; 1822 1823 /* 1824 * If none then we have to settle for a smaller extent. In the case that 1825 * there are no large extents, this will return the last entry in the 1826 * tree unless the tree is empty. In the case that there are only busy 1827 * large extents, this will return the largest small extent unless there 1828 * are no smaller extents available. 1829 */ 1830 if (!i) { 1831 error = xfs_alloc_ag_vextent_small(args, cnt_cur, 1832 &fbno, &flen, &i); 1833 if (error) 1834 goto error0; 1835 if (i == 0 || flen == 0) { 1836 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1837 trace_xfs_alloc_size_noentry(args); 1838 return 0; 1839 } 1840 ASSERT(i == 1); 1841 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno, 1842 &rlen, &busy_gen); 1843 } else { 1844 /* 1845 * Search for a non-busy extent that is large enough. 1846 */ 1847 for (;;) { 1848 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i); 1849 if (error) 1850 goto error0; 1851 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1852 xfs_btree_mark_sick(cnt_cur); 1853 error = -EFSCORRUPTED; 1854 goto error0; 1855 } 1856 1857 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1858 &rbno, &rlen, &busy_gen); 1859 1860 if (rlen >= args->maxlen) 1861 break; 1862 1863 error = xfs_btree_increment(cnt_cur, 0, &i); 1864 if (error) 1865 goto error0; 1866 if (i) 1867 continue; 1868 1869 /* 1870 * Our only valid extents must have been busy. Flush and 1871 * retry the allocation again. If we get an -EAGAIN 1872 * error, we're being told that a deadlock was avoided 1873 * and the current transaction needs committing before 1874 * the allocation can be retried. 1875 */ 1876 trace_xfs_alloc_size_busy(args); 1877 error = xfs_extent_busy_flush(args->tp, args->pag, 1878 busy_gen, alloc_flags); 1879 if (error) 1880 goto error0; 1881 1882 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1883 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1884 goto restart; 1885 } 1886 } 1887 1888 /* 1889 * In the first case above, we got the last entry in the 1890 * by-size btree. Now we check to see if the space hits maxlen 1891 * once aligned; if not, we search left for something better. 1892 * This can't happen in the second case above. 1893 */ 1894 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1895 if (XFS_IS_CORRUPT(args->mp, 1896 rlen != 0 && 1897 (rlen > flen || 1898 rbno + rlen > fbno + flen))) { 1899 xfs_btree_mark_sick(cnt_cur); 1900 error = -EFSCORRUPTED; 1901 goto error0; 1902 } 1903 if (rlen < args->maxlen) { 1904 xfs_agblock_t bestfbno; 1905 xfs_extlen_t bestflen; 1906 xfs_agblock_t bestrbno; 1907 xfs_extlen_t bestrlen; 1908 1909 bestrlen = rlen; 1910 bestrbno = rbno; 1911 bestflen = flen; 1912 bestfbno = fbno; 1913 for (;;) { 1914 if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) 1915 goto error0; 1916 if (i == 0) 1917 break; 1918 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, 1919 &i))) 1920 goto error0; 1921 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1922 xfs_btree_mark_sick(cnt_cur); 1923 error = -EFSCORRUPTED; 1924 goto error0; 1925 } 1926 if (flen <= bestrlen) 1927 break; 1928 busy = xfs_alloc_compute_aligned(args, fbno, flen, 1929 &rbno, &rlen, &busy_gen); 1930 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); 1931 if (XFS_IS_CORRUPT(args->mp, 1932 rlen != 0 && 1933 (rlen > flen || 1934 rbno + rlen > fbno + flen))) { 1935 xfs_btree_mark_sick(cnt_cur); 1936 error = -EFSCORRUPTED; 1937 goto error0; 1938 } 1939 if (rlen > bestrlen) { 1940 bestrlen = rlen; 1941 bestrbno = rbno; 1942 bestflen = flen; 1943 bestfbno = fbno; 1944 if (rlen == args->maxlen) 1945 break; 1946 } 1947 } 1948 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, 1949 &i))) 1950 goto error0; 1951 if (XFS_IS_CORRUPT(args->mp, i != 1)) { 1952 xfs_btree_mark_sick(cnt_cur); 1953 error = -EFSCORRUPTED; 1954 goto error0; 1955 } 1956 rlen = bestrlen; 1957 rbno = bestrbno; 1958 flen = bestflen; 1959 fbno = bestfbno; 1960 } 1961 args->wasfromfl = 0; 1962 /* 1963 * Fix up the length. 1964 */ 1965 args->len = rlen; 1966 if (rlen < args->minlen) { 1967 if (busy) { 1968 /* 1969 * Our only valid extents must have been busy. Flush and 1970 * retry the allocation again. If we get an -EAGAIN 1971 * error, we're being told that a deadlock was avoided 1972 * and the current transaction needs committing before 1973 * the allocation can be retried. 1974 */ 1975 trace_xfs_alloc_size_busy(args); 1976 error = xfs_extent_busy_flush(args->tp, args->pag, 1977 busy_gen, alloc_flags); 1978 if (error) 1979 goto error0; 1980 1981 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH; 1982 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 1983 goto restart; 1984 } 1985 goto out_nominleft; 1986 } 1987 xfs_alloc_fix_len(args); 1988 1989 rlen = args->len; 1990 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) { 1991 xfs_btree_mark_sick(cnt_cur); 1992 error = -EFSCORRUPTED; 1993 goto error0; 1994 } 1995 /* 1996 * Allocate and initialize a cursor for the by-block tree. 1997 */ 1998 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp, 1999 args->pag); 2000 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, 2001 rbno, rlen, XFSA_FIXUP_CNT_OK))) 2002 goto error0; 2003 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2004 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2005 cnt_cur = bno_cur = NULL; 2006 args->len = rlen; 2007 args->agbno = rbno; 2008 if (XFS_IS_CORRUPT(args->mp, 2009 args->agbno + args->len > 2010 be32_to_cpu(agf->agf_length))) { 2011 xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT); 2012 error = -EFSCORRUPTED; 2013 goto error0; 2014 } 2015 trace_xfs_alloc_size_done(args); 2016 return 0; 2017 2018 error0: 2019 trace_xfs_alloc_size_error(args); 2020 if (cnt_cur) 2021 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2022 if (bno_cur) 2023 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2024 return error; 2025 2026 out_nominleft: 2027 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2028 trace_xfs_alloc_size_nominleft(args); 2029 args->agbno = NULLAGBLOCK; 2030 return 0; 2031 } 2032 2033 /* 2034 * Free the extent starting at agno/bno for length. 2035 */ 2036 int 2037 xfs_free_ag_extent( 2038 struct xfs_trans *tp, 2039 struct xfs_buf *agbp, 2040 xfs_agnumber_t agno, 2041 xfs_agblock_t bno, 2042 xfs_extlen_t len, 2043 const struct xfs_owner_info *oinfo, 2044 enum xfs_ag_resv_type type) 2045 { 2046 struct xfs_mount *mp; 2047 struct xfs_btree_cur *bno_cur; 2048 struct xfs_btree_cur *cnt_cur; 2049 xfs_agblock_t gtbno; /* start of right neighbor */ 2050 xfs_extlen_t gtlen; /* length of right neighbor */ 2051 xfs_agblock_t ltbno; /* start of left neighbor */ 2052 xfs_extlen_t ltlen; /* length of left neighbor */ 2053 xfs_agblock_t nbno; /* new starting block of freesp */ 2054 xfs_extlen_t nlen; /* new length of freespace */ 2055 int haveleft; /* have a left neighbor */ 2056 int haveright; /* have a right neighbor */ 2057 int i; 2058 int error; 2059 struct xfs_perag *pag = agbp->b_pag; 2060 bool fixup_longest = false; 2061 2062 bno_cur = cnt_cur = NULL; 2063 mp = tp->t_mountp; 2064 2065 if (!xfs_rmap_should_skip_owner_update(oinfo)) { 2066 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo); 2067 if (error) 2068 goto error0; 2069 } 2070 2071 /* 2072 * Allocate and initialize a cursor for the by-block btree. 2073 */ 2074 bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); 2075 /* 2076 * Look for a neighboring block on the left (lower block numbers) 2077 * that is contiguous with this space. 2078 */ 2079 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) 2080 goto error0; 2081 if (haveleft) { 2082 /* 2083 * There is a block to our left. 2084 */ 2085 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) 2086 goto error0; 2087 if (XFS_IS_CORRUPT(mp, i != 1)) { 2088 xfs_btree_mark_sick(bno_cur); 2089 error = -EFSCORRUPTED; 2090 goto error0; 2091 } 2092 /* 2093 * It's not contiguous, though. 2094 */ 2095 if (ltbno + ltlen < bno) 2096 haveleft = 0; 2097 else { 2098 /* 2099 * If this failure happens the request to free this 2100 * space was invalid, it's (partly) already free. 2101 * Very bad. 2102 */ 2103 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) { 2104 xfs_btree_mark_sick(bno_cur); 2105 error = -EFSCORRUPTED; 2106 goto error0; 2107 } 2108 } 2109 } 2110 /* 2111 * Look for a neighboring block on the right (higher block numbers) 2112 * that is contiguous with this space. 2113 */ 2114 if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) 2115 goto error0; 2116 if (haveright) { 2117 /* 2118 * There is a block to our right. 2119 */ 2120 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) 2121 goto error0; 2122 if (XFS_IS_CORRUPT(mp, i != 1)) { 2123 xfs_btree_mark_sick(bno_cur); 2124 error = -EFSCORRUPTED; 2125 goto error0; 2126 } 2127 /* 2128 * It's not contiguous, though. 2129 */ 2130 if (bno + len < gtbno) 2131 haveright = 0; 2132 else { 2133 /* 2134 * If this failure happens the request to free this 2135 * space was invalid, it's (partly) already free. 2136 * Very bad. 2137 */ 2138 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) { 2139 xfs_btree_mark_sick(bno_cur); 2140 error = -EFSCORRUPTED; 2141 goto error0; 2142 } 2143 } 2144 } 2145 /* 2146 * Now allocate and initialize a cursor for the by-size tree. 2147 */ 2148 cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); 2149 /* 2150 * Have both left and right contiguous neighbors. 2151 * Merge all three into a single free block. 2152 */ 2153 if (haveleft && haveright) { 2154 /* 2155 * Delete the old by-size entry on the left. 2156 */ 2157 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2158 goto error0; 2159 if (XFS_IS_CORRUPT(mp, i != 1)) { 2160 xfs_btree_mark_sick(cnt_cur); 2161 error = -EFSCORRUPTED; 2162 goto error0; 2163 } 2164 if ((error = xfs_btree_delete(cnt_cur, &i))) 2165 goto error0; 2166 if (XFS_IS_CORRUPT(mp, i != 1)) { 2167 xfs_btree_mark_sick(cnt_cur); 2168 error = -EFSCORRUPTED; 2169 goto error0; 2170 } 2171 /* 2172 * Delete the old by-size entry on the right. 2173 */ 2174 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2175 goto error0; 2176 if (XFS_IS_CORRUPT(mp, i != 1)) { 2177 xfs_btree_mark_sick(cnt_cur); 2178 error = -EFSCORRUPTED; 2179 goto error0; 2180 } 2181 if ((error = xfs_btree_delete(cnt_cur, &i))) 2182 goto error0; 2183 if (XFS_IS_CORRUPT(mp, i != 1)) { 2184 xfs_btree_mark_sick(cnt_cur); 2185 error = -EFSCORRUPTED; 2186 goto error0; 2187 } 2188 /* 2189 * Delete the old by-block entry for the right block. 2190 */ 2191 if ((error = xfs_btree_delete(bno_cur, &i))) 2192 goto error0; 2193 if (XFS_IS_CORRUPT(mp, i != 1)) { 2194 xfs_btree_mark_sick(bno_cur); 2195 error = -EFSCORRUPTED; 2196 goto error0; 2197 } 2198 /* 2199 * Move the by-block cursor back to the left neighbor. 2200 */ 2201 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2202 goto error0; 2203 if (XFS_IS_CORRUPT(mp, i != 1)) { 2204 xfs_btree_mark_sick(bno_cur); 2205 error = -EFSCORRUPTED; 2206 goto error0; 2207 } 2208 #ifdef DEBUG 2209 /* 2210 * Check that this is the right record: delete didn't 2211 * mangle the cursor. 2212 */ 2213 { 2214 xfs_agblock_t xxbno; 2215 xfs_extlen_t xxlen; 2216 2217 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, 2218 &i))) 2219 goto error0; 2220 if (XFS_IS_CORRUPT(mp, 2221 i != 1 || 2222 xxbno != ltbno || 2223 xxlen != ltlen)) { 2224 xfs_btree_mark_sick(bno_cur); 2225 error = -EFSCORRUPTED; 2226 goto error0; 2227 } 2228 } 2229 #endif 2230 /* 2231 * Update remaining by-block entry to the new, joined block. 2232 */ 2233 nbno = ltbno; 2234 nlen = len + ltlen + gtlen; 2235 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2236 goto error0; 2237 } 2238 /* 2239 * Have only a left contiguous neighbor. 2240 * Merge it together with the new freespace. 2241 */ 2242 else if (haveleft) { 2243 /* 2244 * Delete the old by-size entry on the left. 2245 */ 2246 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) 2247 goto error0; 2248 if (XFS_IS_CORRUPT(mp, i != 1)) { 2249 xfs_btree_mark_sick(cnt_cur); 2250 error = -EFSCORRUPTED; 2251 goto error0; 2252 } 2253 if ((error = xfs_btree_delete(cnt_cur, &i))) 2254 goto error0; 2255 if (XFS_IS_CORRUPT(mp, i != 1)) { 2256 xfs_btree_mark_sick(cnt_cur); 2257 error = -EFSCORRUPTED; 2258 goto error0; 2259 } 2260 /* 2261 * Back up the by-block cursor to the left neighbor, and 2262 * update its length. 2263 */ 2264 if ((error = xfs_btree_decrement(bno_cur, 0, &i))) 2265 goto error0; 2266 if (XFS_IS_CORRUPT(mp, i != 1)) { 2267 xfs_btree_mark_sick(bno_cur); 2268 error = -EFSCORRUPTED; 2269 goto error0; 2270 } 2271 nbno = ltbno; 2272 nlen = len + ltlen; 2273 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2274 goto error0; 2275 } 2276 /* 2277 * Have only a right contiguous neighbor. 2278 * Merge it together with the new freespace. 2279 */ 2280 else if (haveright) { 2281 /* 2282 * Delete the old by-size entry on the right. 2283 */ 2284 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) 2285 goto error0; 2286 if (XFS_IS_CORRUPT(mp, i != 1)) { 2287 xfs_btree_mark_sick(cnt_cur); 2288 error = -EFSCORRUPTED; 2289 goto error0; 2290 } 2291 if ((error = xfs_btree_delete(cnt_cur, &i))) 2292 goto error0; 2293 if (XFS_IS_CORRUPT(mp, i != 1)) { 2294 xfs_btree_mark_sick(cnt_cur); 2295 error = -EFSCORRUPTED; 2296 goto error0; 2297 } 2298 /* 2299 * Update the starting block and length of the right 2300 * neighbor in the by-block tree. 2301 */ 2302 nbno = bno; 2303 nlen = len + gtlen; 2304 if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) 2305 goto error0; 2306 } 2307 /* 2308 * No contiguous neighbors. 2309 * Insert the new freespace into the by-block tree. 2310 */ 2311 else { 2312 nbno = bno; 2313 nlen = len; 2314 if ((error = xfs_btree_insert(bno_cur, &i))) 2315 goto error0; 2316 if (XFS_IS_CORRUPT(mp, i != 1)) { 2317 xfs_btree_mark_sick(bno_cur); 2318 error = -EFSCORRUPTED; 2319 goto error0; 2320 } 2321 } 2322 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); 2323 bno_cur = NULL; 2324 2325 /* 2326 * In all cases we need to insert the new freespace in the by-size tree. 2327 * 2328 * If this new freespace is being inserted in the block that contains 2329 * the largest free space in the btree, make sure we also fix up the 2330 * agf->agf-longest tracker field. 2331 */ 2332 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) 2333 goto error0; 2334 if (XFS_IS_CORRUPT(mp, i != 0)) { 2335 xfs_btree_mark_sick(cnt_cur); 2336 error = -EFSCORRUPTED; 2337 goto error0; 2338 } 2339 if (xfs_alloc_cursor_at_lastrec(cnt_cur)) 2340 fixup_longest = true; 2341 if ((error = xfs_btree_insert(cnt_cur, &i))) 2342 goto error0; 2343 if (XFS_IS_CORRUPT(mp, i != 1)) { 2344 xfs_btree_mark_sick(cnt_cur); 2345 error = -EFSCORRUPTED; 2346 goto error0; 2347 } 2348 if (fixup_longest) { 2349 error = xfs_alloc_fixup_longest(cnt_cur); 2350 if (error) 2351 goto error0; 2352 } 2353 2354 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); 2355 cnt_cur = NULL; 2356 2357 /* 2358 * Update the freespace totals in the ag and superblock. 2359 */ 2360 error = xfs_alloc_update_counters(tp, agbp, len); 2361 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len); 2362 if (error) 2363 goto error0; 2364 2365 XFS_STATS_INC(mp, xs_freex); 2366 XFS_STATS_ADD(mp, xs_freeb, len); 2367 2368 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright); 2369 2370 return 0; 2371 2372 error0: 2373 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1); 2374 if (bno_cur) 2375 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); 2376 if (cnt_cur) 2377 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); 2378 return error; 2379 } 2380 2381 /* 2382 * Visible (exported) allocation/free functions. 2383 * Some of these are used just by xfs_alloc_btree.c and this file. 2384 */ 2385 2386 /* 2387 * Compute and fill in value of m_alloc_maxlevels. 2388 */ 2389 void 2390 xfs_alloc_compute_maxlevels( 2391 xfs_mount_t *mp) /* file system mount structure */ 2392 { 2393 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr, 2394 (mp->m_sb.sb_agblocks + 1) / 2); 2395 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk()); 2396 } 2397 2398 /* 2399 * Find the length of the longest extent in an AG. The 'need' parameter 2400 * specifies how much space we're going to need for the AGFL and the 2401 * 'reserved' parameter tells us how many blocks in this AG are reserved for 2402 * other callers. 2403 */ 2404 xfs_extlen_t 2405 xfs_alloc_longest_free_extent( 2406 struct xfs_perag *pag, 2407 xfs_extlen_t need, 2408 xfs_extlen_t reserved) 2409 { 2410 xfs_extlen_t delta = 0; 2411 2412 /* 2413 * If the AGFL needs a recharge, we'll have to subtract that from the 2414 * longest extent. 2415 */ 2416 if (need > pag->pagf_flcount) 2417 delta = need - pag->pagf_flcount; 2418 2419 /* 2420 * If we cannot maintain others' reservations with space from the 2421 * not-longest freesp extents, we'll have to subtract /that/ from 2422 * the longest extent too. 2423 */ 2424 if (pag->pagf_freeblks - pag->pagf_longest < reserved) 2425 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest); 2426 2427 /* 2428 * If the longest extent is long enough to satisfy all the 2429 * reservations and AGFL rules in place, we can return this extent. 2430 */ 2431 if (pag->pagf_longest > delta) 2432 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable, 2433 pag->pagf_longest - delta); 2434 2435 /* Otherwise, let the caller try for 1 block if there's space. */ 2436 return pag->pagf_flcount > 0 || pag->pagf_longest > 0; 2437 } 2438 2439 /* 2440 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL, 2441 * return the largest possible minimum length. 2442 */ 2443 unsigned int 2444 xfs_alloc_min_freelist( 2445 struct xfs_mount *mp, 2446 struct xfs_perag *pag) 2447 { 2448 /* AG btrees have at least 1 level. */ 2449 const unsigned int bno_level = pag ? pag->pagf_bno_level : 1; 2450 const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1; 2451 const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1; 2452 unsigned int min_free; 2453 2454 ASSERT(mp->m_alloc_maxlevels > 0); 2455 2456 /* 2457 * For a btree shorter than the maximum height, the worst case is that 2458 * every level gets split and a new level is added, then while inserting 2459 * another entry to refill the AGFL, every level under the old root gets 2460 * split again. This is: 2461 * 2462 * (full height split reservation) + (AGFL refill split height) 2463 * = (current height + 1) + (current height - 1) 2464 * = (new height) + (new height - 2) 2465 * = 2 * new height - 2 2466 * 2467 * For a btree of maximum height, the worst case is that every level 2468 * under the root gets split, then while inserting another entry to 2469 * refill the AGFL, every level under the root gets split again. This is 2470 * also: 2471 * 2472 * 2 * (current height - 1) 2473 * = 2 * (new height - 1) 2474 * = 2 * new height - 2 2475 */ 2476 2477 /* space needed by-bno freespace btree */ 2478 min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2; 2479 /* space needed by-size freespace btree */ 2480 min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2; 2481 /* space needed reverse mapping used space btree */ 2482 if (xfs_has_rmapbt(mp)) 2483 min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2; 2484 return min_free; 2485 } 2486 2487 /* 2488 * Check if the operation we are fixing up the freelist for should go ahead or 2489 * not. If we are freeing blocks, we always allow it, otherwise the allocation 2490 * is dependent on whether the size and shape of free space available will 2491 * permit the requested allocation to take place. 2492 */ 2493 static bool 2494 xfs_alloc_space_available( 2495 struct xfs_alloc_arg *args, 2496 xfs_extlen_t min_free, 2497 int flags) 2498 { 2499 struct xfs_perag *pag = args->pag; 2500 xfs_extlen_t alloc_len, longest; 2501 xfs_extlen_t reservation; /* blocks that are still reserved */ 2502 int available; 2503 xfs_extlen_t agflcount; 2504 2505 if (flags & XFS_ALLOC_FLAG_FREEING) 2506 return true; 2507 2508 reservation = xfs_ag_resv_needed(pag, args->resv); 2509 2510 /* do we have enough contiguous free space for the allocation? */ 2511 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop; 2512 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation); 2513 if (longest < alloc_len) 2514 return false; 2515 2516 /* 2517 * Do we have enough free space remaining for the allocation? Don't 2518 * account extra agfl blocks because we are about to defer free them, 2519 * making them unavailable until the current transaction commits. 2520 */ 2521 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free); 2522 available = (int)(pag->pagf_freeblks + agflcount - 2523 reservation - min_free - args->minleft); 2524 if (available < (int)max(args->total, alloc_len)) 2525 return false; 2526 2527 /* 2528 * Clamp maxlen to the amount of free space available for the actual 2529 * extent allocation. 2530 */ 2531 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) { 2532 args->maxlen = available; 2533 ASSERT(args->maxlen > 0); 2534 ASSERT(args->maxlen >= args->minlen); 2535 } 2536 2537 return true; 2538 } 2539 2540 /* 2541 * Check the agfl fields of the agf for inconsistency or corruption. 2542 * 2543 * The original purpose was to detect an agfl header padding mismatch between 2544 * current and early v5 kernels. This problem manifests as a 1-slot size 2545 * difference between the on-disk flcount and the active [first, last] range of 2546 * a wrapped agfl. 2547 * 2548 * However, we need to use these same checks to catch agfl count corruptions 2549 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either 2550 * way, we need to reset the agfl and warn the user. 2551 * 2552 * Return true if a reset is required before the agfl can be used, false 2553 * otherwise. 2554 */ 2555 static bool 2556 xfs_agfl_needs_reset( 2557 struct xfs_mount *mp, 2558 struct xfs_agf *agf) 2559 { 2560 uint32_t f = be32_to_cpu(agf->agf_flfirst); 2561 uint32_t l = be32_to_cpu(agf->agf_fllast); 2562 uint32_t c = be32_to_cpu(agf->agf_flcount); 2563 int agfl_size = xfs_agfl_size(mp); 2564 int active; 2565 2566 /* 2567 * The agf read verifier catches severe corruption of these fields. 2568 * Repeat some sanity checks to cover a packed -> unpacked mismatch if 2569 * the verifier allows it. 2570 */ 2571 if (f >= agfl_size || l >= agfl_size) 2572 return true; 2573 if (c > agfl_size) 2574 return true; 2575 2576 /* 2577 * Check consistency between the on-disk count and the active range. An 2578 * agfl padding mismatch manifests as an inconsistent flcount. 2579 */ 2580 if (c && l >= f) 2581 active = l - f + 1; 2582 else if (c) 2583 active = agfl_size - f + l + 1; 2584 else 2585 active = 0; 2586 2587 return active != c; 2588 } 2589 2590 /* 2591 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the 2592 * agfl content cannot be trusted. Warn the user that a repair is required to 2593 * recover leaked blocks. 2594 * 2595 * The purpose of this mechanism is to handle filesystems affected by the agfl 2596 * header padding mismatch problem. A reset keeps the filesystem online with a 2597 * relatively minor free space accounting inconsistency rather than suffer the 2598 * inevitable crash from use of an invalid agfl block. 2599 */ 2600 static void 2601 xfs_agfl_reset( 2602 struct xfs_trans *tp, 2603 struct xfs_buf *agbp, 2604 struct xfs_perag *pag) 2605 { 2606 struct xfs_mount *mp = tp->t_mountp; 2607 struct xfs_agf *agf = agbp->b_addr; 2608 2609 ASSERT(xfs_perag_agfl_needs_reset(pag)); 2610 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_); 2611 2612 xfs_warn(mp, 2613 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. " 2614 "Please unmount and run xfs_repair.", 2615 pag->pag_agno, pag->pagf_flcount); 2616 2617 agf->agf_flfirst = 0; 2618 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1); 2619 agf->agf_flcount = 0; 2620 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | 2621 XFS_AGF_FLCOUNT); 2622 2623 pag->pagf_flcount = 0; 2624 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 2625 } 2626 2627 /* 2628 * Add the extent to the list of extents to be free at transaction end. 2629 * The list is maintained sorted (by block number). 2630 */ 2631 static int 2632 xfs_defer_extent_free( 2633 struct xfs_trans *tp, 2634 xfs_fsblock_t bno, 2635 xfs_filblks_t len, 2636 const struct xfs_owner_info *oinfo, 2637 enum xfs_ag_resv_type type, 2638 unsigned int free_flags, 2639 struct xfs_defer_pending **dfpp) 2640 { 2641 struct xfs_extent_free_item *xefi; 2642 struct xfs_mount *mp = tp->t_mountp; 2643 2644 ASSERT(len <= XFS_MAX_BMBT_EXTLEN); 2645 ASSERT(!isnullstartblock(bno)); 2646 ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS)); 2647 2648 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len))) 2649 return -EFSCORRUPTED; 2650 2651 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 2652 GFP_KERNEL | __GFP_NOFAIL); 2653 xefi->xefi_startblock = bno; 2654 xefi->xefi_blockcount = (xfs_extlen_t)len; 2655 xefi->xefi_agresv = type; 2656 if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD) 2657 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD; 2658 if (oinfo) { 2659 ASSERT(oinfo->oi_offset == 0); 2660 2661 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) 2662 xefi->xefi_flags |= XFS_EFI_ATTR_FORK; 2663 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) 2664 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK; 2665 xefi->xefi_owner = oinfo->oi_owner; 2666 } else { 2667 xefi->xefi_owner = XFS_RMAP_OWN_NULL; 2668 } 2669 2670 xfs_extent_free_defer_add(tp, xefi, dfpp); 2671 return 0; 2672 } 2673 2674 int 2675 xfs_free_extent_later( 2676 struct xfs_trans *tp, 2677 xfs_fsblock_t bno, 2678 xfs_filblks_t len, 2679 const struct xfs_owner_info *oinfo, 2680 enum xfs_ag_resv_type type, 2681 unsigned int free_flags) 2682 { 2683 struct xfs_defer_pending *dontcare = NULL; 2684 2685 return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags, 2686 &dontcare); 2687 } 2688 2689 /* 2690 * Set up automatic freeing of unwritten space in the filesystem. 2691 * 2692 * This function attached a paused deferred extent free item to the 2693 * transaction. Pausing means that the EFI will be logged in the next 2694 * transaction commit, but the pending EFI will not be finished until the 2695 * pending item is unpaused. 2696 * 2697 * If the system goes down after the EFI has been persisted to the log but 2698 * before the pending item is unpaused, log recovery will find the EFI, fail to 2699 * find the EFD, and free the space. 2700 * 2701 * If the pending item is unpaused, the next transaction commit will log an EFD 2702 * without freeing the space. 2703 * 2704 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the 2705 * @args structure are set to the relevant values. 2706 */ 2707 int 2708 xfs_alloc_schedule_autoreap( 2709 const struct xfs_alloc_arg *args, 2710 unsigned int free_flags, 2711 struct xfs_alloc_autoreap *aarp) 2712 { 2713 int error; 2714 2715 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len, 2716 &args->oinfo, args->resv, free_flags, &aarp->dfp); 2717 if (error) 2718 return error; 2719 2720 xfs_defer_item_pause(args->tp, aarp->dfp); 2721 return 0; 2722 } 2723 2724 /* 2725 * Cancel automatic freeing of unwritten space in the filesystem. 2726 * 2727 * Earlier, we created a paused deferred extent free item and attached it to 2728 * this transaction so that we could automatically roll back a new space 2729 * allocation if the system went down. Now we want to cancel the paused work 2730 * item by marking the EFI stale so we don't actually free the space, unpausing 2731 * the pending item and logging an EFD. 2732 * 2733 * The caller generally should have already mapped the space into the ondisk 2734 * filesystem. If the reserved space was partially used, the caller must call 2735 * xfs_free_extent_later to create a new EFI to free the unused space. 2736 */ 2737 void 2738 xfs_alloc_cancel_autoreap( 2739 struct xfs_trans *tp, 2740 struct xfs_alloc_autoreap *aarp) 2741 { 2742 struct xfs_defer_pending *dfp = aarp->dfp; 2743 struct xfs_extent_free_item *xefi; 2744 2745 if (!dfp) 2746 return; 2747 2748 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list) 2749 xefi->xefi_flags |= XFS_EFI_CANCELLED; 2750 2751 xfs_defer_item_unpause(tp, dfp); 2752 } 2753 2754 /* 2755 * Commit automatic freeing of unwritten space in the filesystem. 2756 * 2757 * This unpauses an earlier _schedule_autoreap and commits to freeing the 2758 * allocated space. Call this if none of the reserved space was used. 2759 */ 2760 void 2761 xfs_alloc_commit_autoreap( 2762 struct xfs_trans *tp, 2763 struct xfs_alloc_autoreap *aarp) 2764 { 2765 if (aarp->dfp) 2766 xfs_defer_item_unpause(tp, aarp->dfp); 2767 } 2768 2769 /* 2770 * Check if an AGF has a free extent record whose length is equal to 2771 * args->minlen. 2772 */ 2773 STATIC int 2774 xfs_exact_minlen_extent_available( 2775 struct xfs_alloc_arg *args, 2776 struct xfs_buf *agbp, 2777 int *stat) 2778 { 2779 struct xfs_btree_cur *cnt_cur; 2780 xfs_agblock_t fbno; 2781 xfs_extlen_t flen; 2782 int error = 0; 2783 2784 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp, 2785 args->pag); 2786 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat); 2787 if (error) 2788 goto out; 2789 2790 if (*stat == 0) { 2791 xfs_btree_mark_sick(cnt_cur); 2792 error = -EFSCORRUPTED; 2793 goto out; 2794 } 2795 2796 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat); 2797 if (error) 2798 goto out; 2799 2800 if (*stat == 1 && flen != args->minlen) 2801 *stat = 0; 2802 2803 out: 2804 xfs_btree_del_cursor(cnt_cur, error); 2805 2806 return error; 2807 } 2808 2809 /* 2810 * Decide whether to use this allocation group for this allocation. 2811 * If so, fix up the btree freelist's size. 2812 */ 2813 int /* error */ 2814 xfs_alloc_fix_freelist( 2815 struct xfs_alloc_arg *args, /* allocation argument structure */ 2816 uint32_t alloc_flags) 2817 { 2818 struct xfs_mount *mp = args->mp; 2819 struct xfs_perag *pag = args->pag; 2820 struct xfs_trans *tp = args->tp; 2821 struct xfs_buf *agbp = NULL; 2822 struct xfs_buf *agflbp = NULL; 2823 struct xfs_alloc_arg targs; /* local allocation arguments */ 2824 xfs_agblock_t bno; /* freelist block */ 2825 xfs_extlen_t need; /* total blocks needed in freelist */ 2826 int error = 0; 2827 2828 /* deferred ops (AGFL block frees) require permanent transactions */ 2829 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 2830 2831 if (!xfs_perag_initialised_agf(pag)) { 2832 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2833 if (error) { 2834 /* Couldn't lock the AGF so skip this AG. */ 2835 if (error == -EAGAIN) 2836 error = 0; 2837 goto out_no_agbp; 2838 } 2839 } 2840 2841 /* 2842 * If this is a metadata preferred pag and we are user data then try 2843 * somewhere else if we are not being asked to try harder at this 2844 * point 2845 */ 2846 if (xfs_perag_prefers_metadata(pag) && 2847 (args->datatype & XFS_ALLOC_USERDATA) && 2848 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) { 2849 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING)); 2850 goto out_agbp_relse; 2851 } 2852 2853 need = xfs_alloc_min_freelist(mp, pag); 2854 if (!xfs_alloc_space_available(args, need, alloc_flags | 2855 XFS_ALLOC_FLAG_CHECK)) 2856 goto out_agbp_relse; 2857 2858 /* 2859 * Get the a.g. freespace buffer. 2860 * Can fail if we're not blocking on locks, and it's held. 2861 */ 2862 if (!agbp) { 2863 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp); 2864 if (error) { 2865 /* Couldn't lock the AGF so skip this AG. */ 2866 if (error == -EAGAIN) 2867 error = 0; 2868 goto out_no_agbp; 2869 } 2870 } 2871 2872 /* reset a padding mismatched agfl before final free space check */ 2873 if (xfs_perag_agfl_needs_reset(pag)) 2874 xfs_agfl_reset(tp, agbp, pag); 2875 2876 /* If there isn't enough total space or single-extent, reject it. */ 2877 need = xfs_alloc_min_freelist(mp, pag); 2878 if (!xfs_alloc_space_available(args, need, alloc_flags)) 2879 goto out_agbp_relse; 2880 2881 if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) { 2882 int stat; 2883 2884 error = xfs_exact_minlen_extent_available(args, agbp, &stat); 2885 if (error || !stat) 2886 goto out_agbp_relse; 2887 } 2888 2889 /* 2890 * Make the freelist shorter if it's too long. 2891 * 2892 * Note that from this point onwards, we will always release the agf and 2893 * agfl buffers on error. This handles the case where we error out and 2894 * the buffers are clean or may not have been joined to the transaction 2895 * and hence need to be released manually. If they have been joined to 2896 * the transaction, then xfs_trans_brelse() will handle them 2897 * appropriately based on the recursion count and dirty state of the 2898 * buffer. 2899 * 2900 * XXX (dgc): When we have lots of free space, does this buy us 2901 * anything other than extra overhead when we need to put more blocks 2902 * back on the free list? Maybe we should only do this when space is 2903 * getting low or the AGFL is more than half full? 2904 * 2905 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too 2906 * big; the NORMAP flag prevents AGFL expand/shrink operations from 2907 * updating the rmapbt. Both flags are used in xfs_repair while we're 2908 * rebuilding the rmapbt, and neither are used by the kernel. They're 2909 * both required to ensure that rmaps are correctly recorded for the 2910 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and 2911 * repair/rmap.c in xfsprogs for details. 2912 */ 2913 memset(&targs, 0, sizeof(targs)); 2914 /* struct copy below */ 2915 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP) 2916 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE; 2917 else 2918 targs.oinfo = XFS_RMAP_OINFO_AG; 2919 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) && 2920 pag->pagf_flcount > need) { 2921 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0); 2922 if (error) 2923 goto out_agbp_relse; 2924 2925 /* 2926 * Defer the AGFL block free. 2927 * 2928 * This helps to prevent log reservation overruns due to too 2929 * many allocation operations in a transaction. AGFL frees are 2930 * prone to this problem because for one they are always freed 2931 * one at a time. Further, an immediate AGFL block free can 2932 * cause a btree join and require another block free before the 2933 * real allocation can proceed. 2934 * Deferring the free disconnects freeing up the AGFL slot from 2935 * freeing the block. 2936 */ 2937 error = xfs_free_extent_later(tp, 2938 XFS_AGB_TO_FSB(mp, args->agno, bno), 1, 2939 &targs.oinfo, XFS_AG_RESV_AGFL, 0); 2940 if (error) 2941 goto out_agbp_relse; 2942 } 2943 2944 targs.tp = tp; 2945 targs.mp = mp; 2946 targs.agbp = agbp; 2947 targs.agno = args->agno; 2948 targs.alignment = targs.minlen = targs.prod = 1; 2949 targs.pag = pag; 2950 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 2951 if (error) 2952 goto out_agbp_relse; 2953 2954 /* Make the freelist longer if it's too short. */ 2955 while (pag->pagf_flcount < need) { 2956 targs.agbno = 0; 2957 targs.maxlen = need - pag->pagf_flcount; 2958 targs.resv = XFS_AG_RESV_AGFL; 2959 2960 /* Allocate as many blocks as possible at once. */ 2961 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags); 2962 if (error) 2963 goto out_agflbp_relse; 2964 2965 /* 2966 * Stop if we run out. Won't happen if callers are obeying 2967 * the restrictions correctly. Can happen for free calls 2968 * on a completely full ag. 2969 */ 2970 if (targs.agbno == NULLAGBLOCK) { 2971 if (alloc_flags & XFS_ALLOC_FLAG_FREEING) 2972 break; 2973 goto out_agflbp_relse; 2974 } 2975 2976 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) { 2977 error = xfs_rmap_alloc(tp, agbp, pag, 2978 targs.agbno, targs.len, &targs.oinfo); 2979 if (error) 2980 goto out_agflbp_relse; 2981 } 2982 error = xfs_alloc_update_counters(tp, agbp, 2983 -((long)(targs.len))); 2984 if (error) 2985 goto out_agflbp_relse; 2986 2987 /* 2988 * Put each allocated block on the list. 2989 */ 2990 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { 2991 error = xfs_alloc_put_freelist(pag, tp, agbp, 2992 agflbp, bno, 0); 2993 if (error) 2994 goto out_agflbp_relse; 2995 } 2996 } 2997 xfs_trans_brelse(tp, agflbp); 2998 args->agbp = agbp; 2999 return 0; 3000 3001 out_agflbp_relse: 3002 xfs_trans_brelse(tp, agflbp); 3003 out_agbp_relse: 3004 if (agbp) 3005 xfs_trans_brelse(tp, agbp); 3006 out_no_agbp: 3007 args->agbp = NULL; 3008 return error; 3009 } 3010 3011 /* 3012 * Get a block from the freelist. 3013 * Returns with the buffer for the block gotten. 3014 */ 3015 int 3016 xfs_alloc_get_freelist( 3017 struct xfs_perag *pag, 3018 struct xfs_trans *tp, 3019 struct xfs_buf *agbp, 3020 xfs_agblock_t *bnop, 3021 int btreeblk) 3022 { 3023 struct xfs_agf *agf = agbp->b_addr; 3024 struct xfs_buf *agflbp; 3025 xfs_agblock_t bno; 3026 __be32 *agfl_bno; 3027 int error; 3028 uint32_t logflags; 3029 struct xfs_mount *mp = tp->t_mountp; 3030 3031 /* 3032 * Freelist is empty, give up. 3033 */ 3034 if (!agf->agf_flcount) { 3035 *bnop = NULLAGBLOCK; 3036 return 0; 3037 } 3038 /* 3039 * Read the array of free blocks. 3040 */ 3041 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 3042 if (error) 3043 return error; 3044 3045 3046 /* 3047 * Get the block number and update the data structures. 3048 */ 3049 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3050 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]); 3051 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno))) 3052 return -EFSCORRUPTED; 3053 3054 be32_add_cpu(&agf->agf_flfirst, 1); 3055 xfs_trans_brelse(tp, agflbp); 3056 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp)) 3057 agf->agf_flfirst = 0; 3058 3059 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 3060 be32_add_cpu(&agf->agf_flcount, -1); 3061 pag->pagf_flcount--; 3062 3063 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; 3064 if (btreeblk) { 3065 be32_add_cpu(&agf->agf_btreeblks, 1); 3066 pag->pagf_btreeblks++; 3067 logflags |= XFS_AGF_BTREEBLKS; 3068 } 3069 3070 xfs_alloc_log_agf(tp, agbp, logflags); 3071 *bnop = bno; 3072 3073 return 0; 3074 } 3075 3076 /* 3077 * Log the given fields from the agf structure. 3078 */ 3079 void 3080 xfs_alloc_log_agf( 3081 struct xfs_trans *tp, 3082 struct xfs_buf *bp, 3083 uint32_t fields) 3084 { 3085 int first; /* first byte offset */ 3086 int last; /* last byte offset */ 3087 static const short offsets[] = { 3088 offsetof(xfs_agf_t, agf_magicnum), 3089 offsetof(xfs_agf_t, agf_versionnum), 3090 offsetof(xfs_agf_t, agf_seqno), 3091 offsetof(xfs_agf_t, agf_length), 3092 offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */ 3093 offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */ 3094 offsetof(xfs_agf_t, agf_flfirst), 3095 offsetof(xfs_agf_t, agf_fllast), 3096 offsetof(xfs_agf_t, agf_flcount), 3097 offsetof(xfs_agf_t, agf_freeblks), 3098 offsetof(xfs_agf_t, agf_longest), 3099 offsetof(xfs_agf_t, agf_btreeblks), 3100 offsetof(xfs_agf_t, agf_uuid), 3101 offsetof(xfs_agf_t, agf_rmap_blocks), 3102 offsetof(xfs_agf_t, agf_refcount_blocks), 3103 offsetof(xfs_agf_t, agf_refcount_root), 3104 offsetof(xfs_agf_t, agf_refcount_level), 3105 /* needed so that we don't log the whole rest of the structure: */ 3106 offsetof(xfs_agf_t, agf_spare64), 3107 sizeof(xfs_agf_t) 3108 }; 3109 3110 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_); 3111 3112 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF); 3113 3114 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); 3115 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); 3116 } 3117 3118 /* 3119 * Put the block on the freelist for the allocation group. 3120 */ 3121 int 3122 xfs_alloc_put_freelist( 3123 struct xfs_perag *pag, 3124 struct xfs_trans *tp, 3125 struct xfs_buf *agbp, 3126 struct xfs_buf *agflbp, 3127 xfs_agblock_t bno, 3128 int btreeblk) 3129 { 3130 struct xfs_mount *mp = tp->t_mountp; 3131 struct xfs_agf *agf = agbp->b_addr; 3132 __be32 *blockp; 3133 int error; 3134 uint32_t logflags; 3135 __be32 *agfl_bno; 3136 int startoff; 3137 3138 if (!agflbp) { 3139 error = xfs_alloc_read_agfl(pag, tp, &agflbp); 3140 if (error) 3141 return error; 3142 } 3143 3144 be32_add_cpu(&agf->agf_fllast, 1); 3145 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp)) 3146 agf->agf_fllast = 0; 3147 3148 ASSERT(!xfs_perag_agfl_needs_reset(pag)); 3149 be32_add_cpu(&agf->agf_flcount, 1); 3150 pag->pagf_flcount++; 3151 3152 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; 3153 if (btreeblk) { 3154 be32_add_cpu(&agf->agf_btreeblks, -1); 3155 pag->pagf_btreeblks--; 3156 logflags |= XFS_AGF_BTREEBLKS; 3157 } 3158 3159 xfs_alloc_log_agf(tp, agbp, logflags); 3160 3161 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)); 3162 3163 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 3164 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)]; 3165 *blockp = cpu_to_be32(bno); 3166 startoff = (char *)blockp - (char *)agflbp->b_addr; 3167 3168 xfs_alloc_log_agf(tp, agbp, logflags); 3169 3170 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF); 3171 xfs_trans_log_buf(tp, agflbp, startoff, 3172 startoff + sizeof(xfs_agblock_t) - 1); 3173 return 0; 3174 } 3175 3176 /* 3177 * Check that this AGF/AGI header's sequence number and length matches the AG 3178 * number and size in fsblocks. 3179 */ 3180 xfs_failaddr_t 3181 xfs_validate_ag_length( 3182 struct xfs_buf *bp, 3183 uint32_t seqno, 3184 uint32_t length) 3185 { 3186 struct xfs_mount *mp = bp->b_mount; 3187 /* 3188 * During growfs operations, the perag is not fully initialised, 3189 * so we can't use it for any useful checking. growfs ensures we can't 3190 * use it by using uncached buffers that don't have the perag attached 3191 * so we can detect and avoid this problem. 3192 */ 3193 if (bp->b_pag && seqno != bp->b_pag->pag_agno) 3194 return __this_address; 3195 3196 /* 3197 * Only the last AG in the filesystem is allowed to be shorter 3198 * than the AG size recorded in the superblock. 3199 */ 3200 if (length != mp->m_sb.sb_agblocks) { 3201 /* 3202 * During growfs, the new last AG can get here before we 3203 * have updated the superblock. Give it a pass on the seqno 3204 * check. 3205 */ 3206 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1) 3207 return __this_address; 3208 if (length < XFS_MIN_AG_BLOCKS) 3209 return __this_address; 3210 if (length > mp->m_sb.sb_agblocks) 3211 return __this_address; 3212 } 3213 3214 return NULL; 3215 } 3216 3217 /* 3218 * Verify the AGF is consistent. 3219 * 3220 * We do not verify the AGFL indexes in the AGF are fully consistent here 3221 * because of issues with variable on-disk structure sizes. Instead, we check 3222 * the agfl indexes for consistency when we initialise the perag from the AGF 3223 * information after a read completes. 3224 * 3225 * If the index is inconsistent, then we mark the perag as needing an AGFL 3226 * reset. The first AGFL update performed then resets the AGFL indexes and 3227 * refills the AGFL with known good free blocks, allowing the filesystem to 3228 * continue operating normally at the cost of a few leaked free space blocks. 3229 */ 3230 static xfs_failaddr_t 3231 xfs_agf_verify( 3232 struct xfs_buf *bp) 3233 { 3234 struct xfs_mount *mp = bp->b_mount; 3235 struct xfs_agf *agf = bp->b_addr; 3236 xfs_failaddr_t fa; 3237 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno); 3238 uint32_t agf_length = be32_to_cpu(agf->agf_length); 3239 3240 if (xfs_has_crc(mp)) { 3241 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid)) 3242 return __this_address; 3243 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn))) 3244 return __this_address; 3245 } 3246 3247 if (!xfs_verify_magic(bp, agf->agf_magicnum)) 3248 return __this_address; 3249 3250 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum))) 3251 return __this_address; 3252 3253 /* 3254 * Both agf_seqno and agf_length need to validated before anything else 3255 * block number related in the AGF or AGFL can be checked. 3256 */ 3257 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length); 3258 if (fa) 3259 return fa; 3260 3261 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp)) 3262 return __this_address; 3263 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp)) 3264 return __this_address; 3265 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp)) 3266 return __this_address; 3267 3268 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) || 3269 be32_to_cpu(agf->agf_freeblks) > agf_length) 3270 return __this_address; 3271 3272 if (be32_to_cpu(agf->agf_bno_level) < 1 || 3273 be32_to_cpu(agf->agf_cnt_level) < 1 || 3274 be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels || 3275 be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels) 3276 return __this_address; 3277 3278 if (xfs_has_lazysbcount(mp) && 3279 be32_to_cpu(agf->agf_btreeblks) > agf_length) 3280 return __this_address; 3281 3282 if (xfs_has_rmapbt(mp)) { 3283 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length) 3284 return __this_address; 3285 3286 if (be32_to_cpu(agf->agf_rmap_level) < 1 || 3287 be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels) 3288 return __this_address; 3289 } 3290 3291 if (xfs_has_reflink(mp)) { 3292 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length) 3293 return __this_address; 3294 3295 if (be32_to_cpu(agf->agf_refcount_level) < 1 || 3296 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels) 3297 return __this_address; 3298 } 3299 3300 return NULL; 3301 } 3302 3303 static void 3304 xfs_agf_read_verify( 3305 struct xfs_buf *bp) 3306 { 3307 struct xfs_mount *mp = bp->b_mount; 3308 xfs_failaddr_t fa; 3309 3310 if (xfs_has_crc(mp) && 3311 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF)) 3312 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 3313 else { 3314 fa = xfs_agf_verify(bp); 3315 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF)) 3316 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3317 } 3318 } 3319 3320 static void 3321 xfs_agf_write_verify( 3322 struct xfs_buf *bp) 3323 { 3324 struct xfs_mount *mp = bp->b_mount; 3325 struct xfs_buf_log_item *bip = bp->b_log_item; 3326 struct xfs_agf *agf = bp->b_addr; 3327 xfs_failaddr_t fa; 3328 3329 fa = xfs_agf_verify(bp); 3330 if (fa) { 3331 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 3332 return; 3333 } 3334 3335 if (!xfs_has_crc(mp)) 3336 return; 3337 3338 if (bip) 3339 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn); 3340 3341 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF); 3342 } 3343 3344 const struct xfs_buf_ops xfs_agf_buf_ops = { 3345 .name = "xfs_agf", 3346 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) }, 3347 .verify_read = xfs_agf_read_verify, 3348 .verify_write = xfs_agf_write_verify, 3349 .verify_struct = xfs_agf_verify, 3350 }; 3351 3352 /* 3353 * Read in the allocation group header (free/alloc section). 3354 */ 3355 int 3356 xfs_read_agf( 3357 struct xfs_perag *pag, 3358 struct xfs_trans *tp, 3359 int flags, 3360 struct xfs_buf **agfbpp) 3361 { 3362 struct xfs_mount *mp = pag->pag_mount; 3363 int error; 3364 3365 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno); 3366 3367 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3368 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)), 3369 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops); 3370 if (xfs_metadata_is_sick(error)) 3371 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); 3372 if (error) 3373 return error; 3374 3375 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF); 3376 return 0; 3377 } 3378 3379 /* 3380 * Read in the allocation group header (free/alloc section) and initialise the 3381 * perag structure if necessary. If the caller provides @agfbpp, then return the 3382 * locked buffer to the caller, otherwise free it. 3383 */ 3384 int 3385 xfs_alloc_read_agf( 3386 struct xfs_perag *pag, 3387 struct xfs_trans *tp, 3388 int flags, 3389 struct xfs_buf **agfbpp) 3390 { 3391 struct xfs_buf *agfbp; 3392 struct xfs_agf *agf; 3393 int error; 3394 int allocbt_blks; 3395 3396 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno); 3397 3398 /* We don't support trylock when freeing. */ 3399 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) != 3400 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)); 3401 error = xfs_read_agf(pag, tp, 3402 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, 3403 &agfbp); 3404 if (error) 3405 return error; 3406 3407 agf = agfbp->b_addr; 3408 if (!xfs_perag_initialised_agf(pag)) { 3409 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 3410 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 3411 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); 3412 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 3413 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level); 3414 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level); 3415 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level); 3416 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 3417 if (xfs_agfl_needs_reset(pag->pag_mount, agf)) 3418 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3419 else 3420 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate); 3421 3422 /* 3423 * Update the in-core allocbt counter. Filter out the rmapbt 3424 * subset of the btreeblks counter because the rmapbt is managed 3425 * by perag reservation. Subtract one for the rmapbt root block 3426 * because the rmap counter includes it while the btreeblks 3427 * counter only tracks non-root blocks. 3428 */ 3429 allocbt_blks = pag->pagf_btreeblks; 3430 if (xfs_has_rmapbt(pag->pag_mount)) 3431 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1; 3432 if (allocbt_blks > 0) 3433 atomic64_add(allocbt_blks, 3434 &pag->pag_mount->m_allocbt_blks); 3435 3436 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 3437 } 3438 #ifdef DEBUG 3439 else if (!xfs_is_shutdown(pag->pag_mount)) { 3440 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); 3441 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); 3442 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); 3443 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); 3444 ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level)); 3445 ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level)); 3446 } 3447 #endif 3448 if (agfbpp) 3449 *agfbpp = agfbp; 3450 else 3451 xfs_trans_brelse(tp, agfbp); 3452 return 0; 3453 } 3454 3455 /* 3456 * Pre-proces allocation arguments to set initial state that we don't require 3457 * callers to set up correctly, as well as bounds check the allocation args 3458 * that are set up. 3459 */ 3460 static int 3461 xfs_alloc_vextent_check_args( 3462 struct xfs_alloc_arg *args, 3463 xfs_fsblock_t target, 3464 xfs_agnumber_t *minimum_agno) 3465 { 3466 struct xfs_mount *mp = args->mp; 3467 xfs_agblock_t agsize; 3468 3469 args->fsbno = NULLFSBLOCK; 3470 3471 *minimum_agno = 0; 3472 if (args->tp->t_highest_agno != NULLAGNUMBER) 3473 *minimum_agno = args->tp->t_highest_agno; 3474 3475 /* 3476 * Just fix this up, for the case where the last a.g. is shorter 3477 * (or there's only one a.g.) and the caller couldn't easily figure 3478 * that out (xfs_bmap_alloc). 3479 */ 3480 agsize = mp->m_sb.sb_agblocks; 3481 if (args->maxlen > agsize) 3482 args->maxlen = agsize; 3483 if (args->alignment == 0) 3484 args->alignment = 1; 3485 3486 ASSERT(args->minlen > 0); 3487 ASSERT(args->maxlen > 0); 3488 ASSERT(args->alignment > 0); 3489 ASSERT(args->resv != XFS_AG_RESV_AGFL); 3490 3491 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount); 3492 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize); 3493 ASSERT(args->minlen <= args->maxlen); 3494 ASSERT(args->minlen <= agsize); 3495 ASSERT(args->mod < args->prod); 3496 3497 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount || 3498 XFS_FSB_TO_AGBNO(mp, target) >= agsize || 3499 args->minlen > args->maxlen || args->minlen > agsize || 3500 args->mod >= args->prod) { 3501 trace_xfs_alloc_vextent_badargs(args); 3502 return -ENOSPC; 3503 } 3504 3505 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) { 3506 trace_xfs_alloc_vextent_skip_deadlock(args); 3507 return -ENOSPC; 3508 } 3509 return 0; 3510 3511 } 3512 3513 /* 3514 * Prepare an AG for allocation. If the AG is not prepared to accept the 3515 * allocation, return failure. 3516 * 3517 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are 3518 * modified to hold their own perag references. 3519 */ 3520 static int 3521 xfs_alloc_vextent_prepare_ag( 3522 struct xfs_alloc_arg *args, 3523 uint32_t alloc_flags) 3524 { 3525 bool need_pag = !args->pag; 3526 int error; 3527 3528 if (need_pag) 3529 args->pag = xfs_perag_get(args->mp, args->agno); 3530 3531 args->agbp = NULL; 3532 error = xfs_alloc_fix_freelist(args, alloc_flags); 3533 if (error) { 3534 trace_xfs_alloc_vextent_nofix(args); 3535 if (need_pag) 3536 xfs_perag_put(args->pag); 3537 args->agbno = NULLAGBLOCK; 3538 return error; 3539 } 3540 if (!args->agbp) { 3541 /* cannot allocate in this AG at all */ 3542 trace_xfs_alloc_vextent_noagbp(args); 3543 args->agbno = NULLAGBLOCK; 3544 return 0; 3545 } 3546 args->wasfromfl = 0; 3547 return 0; 3548 } 3549 3550 /* 3551 * Post-process allocation results to account for the allocation if it succeed 3552 * and set the allocated block number correctly for the caller. 3553 * 3554 * XXX: we should really be returning ENOSPC for ENOSPC, not 3555 * hiding it behind a "successful" NULLFSBLOCK allocation. 3556 */ 3557 static int 3558 xfs_alloc_vextent_finish( 3559 struct xfs_alloc_arg *args, 3560 xfs_agnumber_t minimum_agno, 3561 int alloc_error, 3562 bool drop_perag) 3563 { 3564 struct xfs_mount *mp = args->mp; 3565 int error = 0; 3566 3567 /* 3568 * We can end up here with a locked AGF. If we failed, the caller is 3569 * likely going to try to allocate again with different parameters, and 3570 * that can widen the AGs that are searched for free space. If we have 3571 * to do BMBT block allocation, we have to do a new allocation. 3572 * 3573 * Hence leaving this function with the AGF locked opens up potential 3574 * ABBA AGF deadlocks because a future allocation attempt in this 3575 * transaction may attempt to lock a lower number AGF. 3576 * 3577 * We can't release the AGF until the transaction is commited, so at 3578 * this point we must update the "first allocation" tracker to point at 3579 * this AG if the tracker is empty or points to a lower AG. This allows 3580 * the next allocation attempt to be modified appropriately to avoid 3581 * deadlocks. 3582 */ 3583 if (args->agbp && 3584 (args->tp->t_highest_agno == NULLAGNUMBER || 3585 args->agno > minimum_agno)) 3586 args->tp->t_highest_agno = args->agno; 3587 3588 /* 3589 * If the allocation failed with an error or we had an ENOSPC result, 3590 * preserve the returned error whilst also marking the allocation result 3591 * as "no extent allocated". This ensures that callers that fail to 3592 * capture the error will still treat it as a failed allocation. 3593 */ 3594 if (alloc_error || args->agbno == NULLAGBLOCK) { 3595 args->fsbno = NULLFSBLOCK; 3596 error = alloc_error; 3597 goto out_drop_perag; 3598 } 3599 3600 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); 3601 3602 ASSERT(args->len >= args->minlen); 3603 ASSERT(args->len <= args->maxlen); 3604 ASSERT(args->agbno % args->alignment == 0); 3605 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); 3606 3607 /* if not file data, insert new block into the reverse map btree */ 3608 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) { 3609 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag, 3610 args->agbno, args->len, &args->oinfo); 3611 if (error) 3612 goto out_drop_perag; 3613 } 3614 3615 if (!args->wasfromfl) { 3616 error = xfs_alloc_update_counters(args->tp, args->agbp, 3617 -((long)(args->len))); 3618 if (error) 3619 goto out_drop_perag; 3620 3621 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno, 3622 args->len)); 3623 } 3624 3625 xfs_ag_resv_alloc_extent(args->pag, args->resv, args); 3626 3627 XFS_STATS_INC(mp, xs_allocx); 3628 XFS_STATS_ADD(mp, xs_allocb, args->len); 3629 3630 trace_xfs_alloc_vextent_finish(args); 3631 3632 out_drop_perag: 3633 if (drop_perag && args->pag) { 3634 xfs_perag_rele(args->pag); 3635 args->pag = NULL; 3636 } 3637 return error; 3638 } 3639 3640 /* 3641 * Allocate within a single AG only. This uses a best-fit length algorithm so if 3642 * you need an exact sized allocation without locality constraints, this is the 3643 * fastest way to do it. 3644 * 3645 * Caller is expected to hold a perag reference in args->pag. 3646 */ 3647 int 3648 xfs_alloc_vextent_this_ag( 3649 struct xfs_alloc_arg *args, 3650 xfs_agnumber_t agno) 3651 { 3652 struct xfs_mount *mp = args->mp; 3653 xfs_agnumber_t minimum_agno; 3654 uint32_t alloc_flags = 0; 3655 int error; 3656 3657 ASSERT(args->pag != NULL); 3658 ASSERT(args->pag->pag_agno == agno); 3659 3660 args->agno = agno; 3661 args->agbno = 0; 3662 3663 trace_xfs_alloc_vextent_this_ag(args); 3664 3665 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0), 3666 &minimum_agno); 3667 if (error) { 3668 if (error == -ENOSPC) 3669 return 0; 3670 return error; 3671 } 3672 3673 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3674 if (!error && args->agbp) 3675 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3676 3677 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3678 } 3679 3680 /* 3681 * Iterate all AGs trying to allocate an extent starting from @start_ag. 3682 * 3683 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the 3684 * allocation attempts in @start_agno have locality information. If we fail to 3685 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs 3686 * we attempt to allocation in as there is no locality optimisation possible for 3687 * those allocations. 3688 * 3689 * On return, args->pag may be left referenced if we finish before the "all 3690 * failed" return point. The allocation finish still needs the perag, and 3691 * so the caller will release it once they've finished the allocation. 3692 * 3693 * When we wrap the AG iteration at the end of the filesystem, we have to be 3694 * careful not to wrap into AGs below ones we already have locked in the 3695 * transaction if we are doing a blocking iteration. This will result in an 3696 * out-of-order locking of AGFs and hence can cause deadlocks. 3697 */ 3698 static int 3699 xfs_alloc_vextent_iterate_ags( 3700 struct xfs_alloc_arg *args, 3701 xfs_agnumber_t minimum_agno, 3702 xfs_agnumber_t start_agno, 3703 xfs_agblock_t target_agbno, 3704 uint32_t alloc_flags) 3705 { 3706 struct xfs_mount *mp = args->mp; 3707 xfs_agnumber_t restart_agno = minimum_agno; 3708 xfs_agnumber_t agno; 3709 int error = 0; 3710 3711 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) 3712 restart_agno = 0; 3713 restart: 3714 for_each_perag_wrap_range(mp, start_agno, restart_agno, 3715 mp->m_sb.sb_agcount, agno, args->pag) { 3716 args->agno = agno; 3717 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3718 if (error) 3719 break; 3720 if (!args->agbp) { 3721 trace_xfs_alloc_vextent_loopfailed(args); 3722 continue; 3723 } 3724 3725 /* 3726 * Allocation is supposed to succeed now, so break out of the 3727 * loop regardless of whether we succeed or not. 3728 */ 3729 if (args->agno == start_agno && target_agbno) { 3730 args->agbno = target_agbno; 3731 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3732 } else { 3733 args->agbno = 0; 3734 error = xfs_alloc_ag_vextent_size(args, alloc_flags); 3735 } 3736 break; 3737 } 3738 if (error) { 3739 xfs_perag_rele(args->pag); 3740 args->pag = NULL; 3741 return error; 3742 } 3743 if (args->agbp) 3744 return 0; 3745 3746 /* 3747 * We didn't find an AG we can alloation from. If we were given 3748 * constraining flags by the caller, drop them and retry the allocation 3749 * without any constraints being set. 3750 */ 3751 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) { 3752 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK; 3753 restart_agno = minimum_agno; 3754 goto restart; 3755 } 3756 3757 ASSERT(args->pag == NULL); 3758 trace_xfs_alloc_vextent_allfailed(args); 3759 return 0; 3760 } 3761 3762 /* 3763 * Iterate from the AGs from the start AG to the end of the filesystem, trying 3764 * to allocate blocks. It starts with a near allocation attempt in the initial 3765 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap 3766 * back to zero if allowed by previous allocations in this transaction, 3767 * otherwise will wrap back to the start AG and run a second blocking pass to 3768 * the end of the filesystem. 3769 */ 3770 int 3771 xfs_alloc_vextent_start_ag( 3772 struct xfs_alloc_arg *args, 3773 xfs_fsblock_t target) 3774 { 3775 struct xfs_mount *mp = args->mp; 3776 xfs_agnumber_t minimum_agno; 3777 xfs_agnumber_t start_agno; 3778 xfs_agnumber_t rotorstep = xfs_rotorstep; 3779 bool bump_rotor = false; 3780 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3781 int error; 3782 3783 ASSERT(args->pag == NULL); 3784 3785 args->agno = NULLAGNUMBER; 3786 args->agbno = NULLAGBLOCK; 3787 3788 trace_xfs_alloc_vextent_start_ag(args); 3789 3790 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3791 if (error) { 3792 if (error == -ENOSPC) 3793 return 0; 3794 return error; 3795 } 3796 3797 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) && 3798 xfs_is_inode32(mp)) { 3799 target = XFS_AGB_TO_FSB(mp, 3800 ((mp->m_agfrotor / rotorstep) % 3801 mp->m_sb.sb_agcount), 0); 3802 bump_rotor = 1; 3803 } 3804 3805 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3806 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3807 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3808 3809 if (bump_rotor) { 3810 if (args->agno == start_agno) 3811 mp->m_agfrotor = (mp->m_agfrotor + 1) % 3812 (mp->m_sb.sb_agcount * rotorstep); 3813 else 3814 mp->m_agfrotor = (args->agno * rotorstep + 1) % 3815 (mp->m_sb.sb_agcount * rotorstep); 3816 } 3817 3818 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3819 } 3820 3821 /* 3822 * Iterate from the agno indicated via @target through to the end of the 3823 * filesystem attempting blocking allocation. This does not wrap or try a second 3824 * pass, so will not recurse into AGs lower than indicated by the target. 3825 */ 3826 int 3827 xfs_alloc_vextent_first_ag( 3828 struct xfs_alloc_arg *args, 3829 xfs_fsblock_t target) 3830 { 3831 struct xfs_mount *mp = args->mp; 3832 xfs_agnumber_t minimum_agno; 3833 xfs_agnumber_t start_agno; 3834 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK; 3835 int error; 3836 3837 ASSERT(args->pag == NULL); 3838 3839 args->agno = NULLAGNUMBER; 3840 args->agbno = NULLAGBLOCK; 3841 3842 trace_xfs_alloc_vextent_first_ag(args); 3843 3844 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3845 if (error) { 3846 if (error == -ENOSPC) 3847 return 0; 3848 return error; 3849 } 3850 3851 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target)); 3852 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno, 3853 XFS_FSB_TO_AGBNO(mp, target), alloc_flags); 3854 return xfs_alloc_vextent_finish(args, minimum_agno, error, true); 3855 } 3856 3857 /* 3858 * Allocate at the exact block target or fail. Caller is expected to hold a 3859 * perag reference in args->pag. 3860 */ 3861 int 3862 xfs_alloc_vextent_exact_bno( 3863 struct xfs_alloc_arg *args, 3864 xfs_fsblock_t target) 3865 { 3866 struct xfs_mount *mp = args->mp; 3867 xfs_agnumber_t minimum_agno; 3868 int error; 3869 3870 ASSERT(args->pag != NULL); 3871 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3872 3873 args->agno = XFS_FSB_TO_AGNO(mp, target); 3874 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3875 3876 trace_xfs_alloc_vextent_exact_bno(args); 3877 3878 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3879 if (error) { 3880 if (error == -ENOSPC) 3881 return 0; 3882 return error; 3883 } 3884 3885 error = xfs_alloc_vextent_prepare_ag(args, 0); 3886 if (!error && args->agbp) 3887 error = xfs_alloc_ag_vextent_exact(args); 3888 3889 return xfs_alloc_vextent_finish(args, minimum_agno, error, false); 3890 } 3891 3892 /* 3893 * Allocate an extent as close to the target as possible. If there are not 3894 * viable candidates in the AG, then fail the allocation. 3895 * 3896 * Caller may or may not have a per-ag reference in args->pag. 3897 */ 3898 int 3899 xfs_alloc_vextent_near_bno( 3900 struct xfs_alloc_arg *args, 3901 xfs_fsblock_t target) 3902 { 3903 struct xfs_mount *mp = args->mp; 3904 xfs_agnumber_t minimum_agno; 3905 bool needs_perag = args->pag == NULL; 3906 uint32_t alloc_flags = 0; 3907 int error; 3908 3909 if (!needs_perag) 3910 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target)); 3911 3912 args->agno = XFS_FSB_TO_AGNO(mp, target); 3913 args->agbno = XFS_FSB_TO_AGBNO(mp, target); 3914 3915 trace_xfs_alloc_vextent_near_bno(args); 3916 3917 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno); 3918 if (error) { 3919 if (error == -ENOSPC) 3920 return 0; 3921 return error; 3922 } 3923 3924 if (needs_perag) 3925 args->pag = xfs_perag_grab(mp, args->agno); 3926 3927 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags); 3928 if (!error && args->agbp) 3929 error = xfs_alloc_ag_vextent_near(args, alloc_flags); 3930 3931 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag); 3932 } 3933 3934 /* Ensure that the freelist is at full capacity. */ 3935 int 3936 xfs_free_extent_fix_freelist( 3937 struct xfs_trans *tp, 3938 struct xfs_perag *pag, 3939 struct xfs_buf **agbp) 3940 { 3941 struct xfs_alloc_arg args; 3942 int error; 3943 3944 memset(&args, 0, sizeof(struct xfs_alloc_arg)); 3945 args.tp = tp; 3946 args.mp = tp->t_mountp; 3947 args.agno = pag->pag_agno; 3948 args.pag = pag; 3949 3950 /* 3951 * validate that the block number is legal - the enables us to detect 3952 * and handle a silent filesystem corruption rather than crashing. 3953 */ 3954 if (args.agno >= args.mp->m_sb.sb_agcount) 3955 return -EFSCORRUPTED; 3956 3957 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); 3958 if (error) 3959 return error; 3960 3961 *agbp = args.agbp; 3962 return 0; 3963 } 3964 3965 /* 3966 * Free an extent. 3967 * Just break up the extent address and hand off to xfs_free_ag_extent 3968 * after fixing up the freelist. 3969 */ 3970 int 3971 __xfs_free_extent( 3972 struct xfs_trans *tp, 3973 struct xfs_perag *pag, 3974 xfs_agblock_t agbno, 3975 xfs_extlen_t len, 3976 const struct xfs_owner_info *oinfo, 3977 enum xfs_ag_resv_type type, 3978 bool skip_discard) 3979 { 3980 struct xfs_mount *mp = tp->t_mountp; 3981 struct xfs_buf *agbp; 3982 struct xfs_agf *agf; 3983 int error; 3984 unsigned int busy_flags = 0; 3985 3986 ASSERT(len != 0); 3987 ASSERT(type != XFS_AG_RESV_AGFL); 3988 3989 if (XFS_TEST_ERROR(false, mp, 3990 XFS_ERRTAG_FREE_EXTENT)) 3991 return -EIO; 3992 3993 error = xfs_free_extent_fix_freelist(tp, pag, &agbp); 3994 if (error) { 3995 if (xfs_metadata_is_sick(error)) 3996 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 3997 return error; 3998 } 3999 4000 agf = agbp->b_addr; 4001 4002 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) { 4003 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 4004 error = -EFSCORRUPTED; 4005 goto err_release; 4006 } 4007 4008 /* validate the extent size is legal now we have the agf locked */ 4009 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) { 4010 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT); 4011 error = -EFSCORRUPTED; 4012 goto err_release; 4013 } 4014 4015 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo, 4016 type); 4017 if (error) 4018 goto err_release; 4019 4020 if (skip_discard) 4021 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD; 4022 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags); 4023 return 0; 4024 4025 err_release: 4026 xfs_trans_brelse(tp, agbp); 4027 return error; 4028 } 4029 4030 struct xfs_alloc_query_range_info { 4031 xfs_alloc_query_range_fn fn; 4032 void *priv; 4033 }; 4034 4035 /* Format btree record and pass to our callback. */ 4036 STATIC int 4037 xfs_alloc_query_range_helper( 4038 struct xfs_btree_cur *cur, 4039 const union xfs_btree_rec *rec, 4040 void *priv) 4041 { 4042 struct xfs_alloc_query_range_info *query = priv; 4043 struct xfs_alloc_rec_incore irec; 4044 xfs_failaddr_t fa; 4045 4046 xfs_alloc_btrec_to_irec(rec, &irec); 4047 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec); 4048 if (fa) 4049 return xfs_alloc_complain_bad_rec(cur, fa, &irec); 4050 4051 return query->fn(cur, &irec, query->priv); 4052 } 4053 4054 /* Find all free space within a given range of blocks. */ 4055 int 4056 xfs_alloc_query_range( 4057 struct xfs_btree_cur *cur, 4058 const struct xfs_alloc_rec_incore *low_rec, 4059 const struct xfs_alloc_rec_incore *high_rec, 4060 xfs_alloc_query_range_fn fn, 4061 void *priv) 4062 { 4063 union xfs_btree_irec low_brec = { .a = *low_rec }; 4064 union xfs_btree_irec high_brec = { .a = *high_rec }; 4065 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn }; 4066 4067 ASSERT(xfs_btree_is_bno(cur->bc_ops)); 4068 return xfs_btree_query_range(cur, &low_brec, &high_brec, 4069 xfs_alloc_query_range_helper, &query); 4070 } 4071 4072 /* Find all free space records. */ 4073 int 4074 xfs_alloc_query_all( 4075 struct xfs_btree_cur *cur, 4076 xfs_alloc_query_range_fn fn, 4077 void *priv) 4078 { 4079 struct xfs_alloc_query_range_info query; 4080 4081 ASSERT(xfs_btree_is_bno(cur->bc_ops)); 4082 query.priv = priv; 4083 query.fn = fn; 4084 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query); 4085 } 4086 4087 /* 4088 * Scan part of the keyspace of the free space and tell us if the area has no 4089 * records, is fully mapped by records, or is partially filled. 4090 */ 4091 int 4092 xfs_alloc_has_records( 4093 struct xfs_btree_cur *cur, 4094 xfs_agblock_t bno, 4095 xfs_extlen_t len, 4096 enum xbtree_recpacking *outcome) 4097 { 4098 union xfs_btree_irec low; 4099 union xfs_btree_irec high; 4100 4101 memset(&low, 0, sizeof(low)); 4102 low.a.ar_startblock = bno; 4103 memset(&high, 0xFF, sizeof(high)); 4104 high.a.ar_startblock = bno + len - 1; 4105 4106 return xfs_btree_has_records(cur, &low, &high, NULL, outcome); 4107 } 4108 4109 /* 4110 * Walk all the blocks in the AGFL. The @walk_fn can return any negative 4111 * error code or XFS_ITER_*. 4112 */ 4113 int 4114 xfs_agfl_walk( 4115 struct xfs_mount *mp, 4116 struct xfs_agf *agf, 4117 struct xfs_buf *agflbp, 4118 xfs_agfl_walk_fn walk_fn, 4119 void *priv) 4120 { 4121 __be32 *agfl_bno; 4122 unsigned int i; 4123 int error; 4124 4125 agfl_bno = xfs_buf_to_agfl_bno(agflbp); 4126 i = be32_to_cpu(agf->agf_flfirst); 4127 4128 /* Nothing to walk in an empty AGFL. */ 4129 if (agf->agf_flcount == cpu_to_be32(0)) 4130 return 0; 4131 4132 /* Otherwise, walk from first to last, wrapping as needed. */ 4133 for (;;) { 4134 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv); 4135 if (error) 4136 return error; 4137 if (i == be32_to_cpu(agf->agf_fllast)) 4138 break; 4139 if (++i == xfs_agfl_size(mp)) 4140 i = 0; 4141 } 4142 4143 return 0; 4144 } 4145 4146 int __init 4147 xfs_extfree_intent_init_cache(void) 4148 { 4149 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent", 4150 sizeof(struct xfs_extent_free_item), 4151 0, 0, NULL); 4152 4153 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM; 4154 } 4155 4156 void 4157 xfs_extfree_intent_destroy_cache(void) 4158 { 4159 kmem_cache_destroy(xfs_extfree_item_cache); 4160 xfs_extfree_item_cache = NULL; 4161 } 4162