xref: /linux/fs/xfs/libxfs/xfs_ag.c (revision c83b49383b595be50647f0c764a48c78b5f3c4f8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2018 Red Hat, Inc.
5  * All rights reserved.
6  */
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33 
34 
35 /*
36  * Passive reference counting access wrappers to the perag structures.  If the
37  * per-ag structure is to be freed, the freeing code is responsible for cleaning
38  * up objects with passive references before freeing the structure. This is
39  * things like cached buffers.
40  */
41 struct xfs_perag *
42 xfs_perag_get(
43 	struct xfs_mount	*mp,
44 	xfs_agnumber_t		agno)
45 {
46 	struct xfs_perag	*pag;
47 
48 	rcu_read_lock();
49 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 	if (pag) {
51 		trace_xfs_perag_get(pag, _RET_IP_);
52 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 		atomic_inc(&pag->pag_ref);
54 	}
55 	rcu_read_unlock();
56 	return pag;
57 }
58 
59 /*
60  * search from @first to find the next perag with the given tag set.
61  */
62 struct xfs_perag *
63 xfs_perag_get_tag(
64 	struct xfs_mount	*mp,
65 	xfs_agnumber_t		first,
66 	unsigned int		tag)
67 {
68 	struct xfs_perag	*pag;
69 	int			found;
70 
71 	rcu_read_lock();
72 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 					(void **)&pag, first, 1, tag);
74 	if (found <= 0) {
75 		rcu_read_unlock();
76 		return NULL;
77 	}
78 	trace_xfs_perag_get_tag(pag, _RET_IP_);
79 	atomic_inc(&pag->pag_ref);
80 	rcu_read_unlock();
81 	return pag;
82 }
83 
84 /* Get a passive reference to the given perag. */
85 struct xfs_perag *
86 xfs_perag_hold(
87 	struct xfs_perag	*pag)
88 {
89 	ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90 	       atomic_read(&pag->pag_active_ref) > 0);
91 
92 	trace_xfs_perag_hold(pag, _RET_IP_);
93 	atomic_inc(&pag->pag_ref);
94 	return pag;
95 }
96 
97 void
98 xfs_perag_put(
99 	struct xfs_perag	*pag)
100 {
101 	trace_xfs_perag_put(pag, _RET_IP_);
102 	ASSERT(atomic_read(&pag->pag_ref) > 0);
103 	atomic_dec(&pag->pag_ref);
104 }
105 
106 /*
107  * Active references for perag structures. This is for short term access to the
108  * per ag structures for walking trees or accessing state. If an AG is being
109  * shrunk or is offline, then this will fail to find that AG and return NULL
110  * instead.
111  */
112 struct xfs_perag *
113 xfs_perag_grab(
114 	struct xfs_mount	*mp,
115 	xfs_agnumber_t		agno)
116 {
117 	struct xfs_perag	*pag;
118 
119 	rcu_read_lock();
120 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121 	if (pag) {
122 		trace_xfs_perag_grab(pag, _RET_IP_);
123 		if (!atomic_inc_not_zero(&pag->pag_active_ref))
124 			pag = NULL;
125 	}
126 	rcu_read_unlock();
127 	return pag;
128 }
129 
130 /*
131  * search from @first to find the next perag with the given tag set.
132  */
133 struct xfs_perag *
134 xfs_perag_grab_tag(
135 	struct xfs_mount	*mp,
136 	xfs_agnumber_t		first,
137 	int			tag)
138 {
139 	struct xfs_perag	*pag;
140 	int			found;
141 
142 	rcu_read_lock();
143 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144 					(void **)&pag, first, 1, tag);
145 	if (found <= 0) {
146 		rcu_read_unlock();
147 		return NULL;
148 	}
149 	trace_xfs_perag_grab_tag(pag, _RET_IP_);
150 	if (!atomic_inc_not_zero(&pag->pag_active_ref))
151 		pag = NULL;
152 	rcu_read_unlock();
153 	return pag;
154 }
155 
156 void
157 xfs_perag_rele(
158 	struct xfs_perag	*pag)
159 {
160 	trace_xfs_perag_rele(pag, _RET_IP_);
161 	if (atomic_dec_and_test(&pag->pag_active_ref))
162 		wake_up(&pag->pag_active_wq);
163 }
164 
165 /*
166  * xfs_initialize_perag_data
167  *
168  * Read in each per-ag structure so we can count up the number of
169  * allocated inodes, free inodes and used filesystem blocks as this
170  * information is no longer persistent in the superblock. Once we have
171  * this information, write it into the in-core superblock structure.
172  */
173 int
174 xfs_initialize_perag_data(
175 	struct xfs_mount	*mp,
176 	xfs_agnumber_t		agcount)
177 {
178 	xfs_agnumber_t		index;
179 	struct xfs_perag	*pag;
180 	struct xfs_sb		*sbp = &mp->m_sb;
181 	uint64_t		ifree = 0;
182 	uint64_t		ialloc = 0;
183 	uint64_t		bfree = 0;
184 	uint64_t		bfreelst = 0;
185 	uint64_t		btree = 0;
186 	uint64_t		fdblocks;
187 	int			error = 0;
188 
189 	for (index = 0; index < agcount; index++) {
190 		/*
191 		 * Read the AGF and AGI buffers to populate the per-ag
192 		 * structures for us.
193 		 */
194 		pag = xfs_perag_get(mp, index);
195 		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196 		if (!error)
197 			error = xfs_ialloc_read_agi(pag, NULL, NULL);
198 		if (error) {
199 			xfs_perag_put(pag);
200 			return error;
201 		}
202 
203 		ifree += pag->pagi_freecount;
204 		ialloc += pag->pagi_count;
205 		bfree += pag->pagf_freeblks;
206 		bfreelst += pag->pagf_flcount;
207 		btree += pag->pagf_btreeblks;
208 		xfs_perag_put(pag);
209 	}
210 	fdblocks = bfree + bfreelst + btree;
211 
212 	/*
213 	 * If the new summary counts are obviously incorrect, fail the
214 	 * mount operation because that implies the AGFs are also corrupt.
215 	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216 	 * will prevent xfs_repair from fixing anything.
217 	 */
218 	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219 		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220 		error = -EFSCORRUPTED;
221 		goto out;
222 	}
223 
224 	/* Overwrite incore superblock counters with just-read data */
225 	spin_lock(&mp->m_sb_lock);
226 	sbp->sb_ifree = ifree;
227 	sbp->sb_icount = ialloc;
228 	sbp->sb_fdblocks = fdblocks;
229 	spin_unlock(&mp->m_sb_lock);
230 
231 	xfs_reinit_percpu_counters(mp);
232 out:
233 	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
234 	return error;
235 }
236 
237 STATIC void
238 __xfs_free_perag(
239 	struct rcu_head	*head)
240 {
241 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
242 
243 	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
244 	kmem_free(pag);
245 }
246 
247 /*
248  * Free up the per-ag resources associated with the mount structure.
249  */
250 void
251 xfs_free_perag(
252 	struct xfs_mount	*mp)
253 {
254 	struct xfs_perag	*pag;
255 	xfs_agnumber_t		agno;
256 
257 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
258 		spin_lock(&mp->m_perag_lock);
259 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
260 		spin_unlock(&mp->m_perag_lock);
261 		ASSERT(pag);
262 		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
263 		xfs_defer_drain_free(&pag->pag_intents_drain);
264 
265 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
266 		xfs_buf_hash_destroy(pag);
267 
268 		/* drop the mount's active reference */
269 		xfs_perag_rele(pag);
270 		XFS_IS_CORRUPT(pag->pag_mount,
271 				atomic_read(&pag->pag_active_ref) != 0);
272 		call_rcu(&pag->rcu_head, __xfs_free_perag);
273 	}
274 }
275 
276 /* Find the size of the AG, in blocks. */
277 static xfs_agblock_t
278 __xfs_ag_block_count(
279 	struct xfs_mount	*mp,
280 	xfs_agnumber_t		agno,
281 	xfs_agnumber_t		agcount,
282 	xfs_rfsblock_t		dblocks)
283 {
284 	ASSERT(agno < agcount);
285 
286 	if (agno < agcount - 1)
287 		return mp->m_sb.sb_agblocks;
288 	return dblocks - (agno * mp->m_sb.sb_agblocks);
289 }
290 
291 xfs_agblock_t
292 xfs_ag_block_count(
293 	struct xfs_mount	*mp,
294 	xfs_agnumber_t		agno)
295 {
296 	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
297 			mp->m_sb.sb_dblocks);
298 }
299 
300 /* Calculate the first and last possible inode number in an AG. */
301 static void
302 __xfs_agino_range(
303 	struct xfs_mount	*mp,
304 	xfs_agblock_t		eoag,
305 	xfs_agino_t		*first,
306 	xfs_agino_t		*last)
307 {
308 	xfs_agblock_t		bno;
309 
310 	/*
311 	 * Calculate the first inode, which will be in the first
312 	 * cluster-aligned block after the AGFL.
313 	 */
314 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
315 	*first = XFS_AGB_TO_AGINO(mp, bno);
316 
317 	/*
318 	 * Calculate the last inode, which will be at the end of the
319 	 * last (aligned) cluster that can be allocated in the AG.
320 	 */
321 	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
322 	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
323 }
324 
325 void
326 xfs_agino_range(
327 	struct xfs_mount	*mp,
328 	xfs_agnumber_t		agno,
329 	xfs_agino_t		*first,
330 	xfs_agino_t		*last)
331 {
332 	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
333 }
334 
335 int
336 xfs_initialize_perag(
337 	struct xfs_mount	*mp,
338 	xfs_agnumber_t		agcount,
339 	xfs_rfsblock_t		dblocks,
340 	xfs_agnumber_t		*maxagi)
341 {
342 	struct xfs_perag	*pag;
343 	xfs_agnumber_t		index;
344 	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
345 	int			error;
346 
347 	/*
348 	 * Walk the current per-ag tree so we don't try to initialise AGs
349 	 * that already exist (growfs case). Allocate and insert all the
350 	 * AGs we don't find ready for initialisation.
351 	 */
352 	for (index = 0; index < agcount; index++) {
353 		pag = xfs_perag_get(mp, index);
354 		if (pag) {
355 			xfs_perag_put(pag);
356 			continue;
357 		}
358 
359 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
360 		if (!pag) {
361 			error = -ENOMEM;
362 			goto out_unwind_new_pags;
363 		}
364 		pag->pag_agno = index;
365 		pag->pag_mount = mp;
366 
367 		error = radix_tree_preload(GFP_NOFS);
368 		if (error)
369 			goto out_free_pag;
370 
371 		spin_lock(&mp->m_perag_lock);
372 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
373 			WARN_ON_ONCE(1);
374 			spin_unlock(&mp->m_perag_lock);
375 			radix_tree_preload_end();
376 			error = -EEXIST;
377 			goto out_free_pag;
378 		}
379 		spin_unlock(&mp->m_perag_lock);
380 		radix_tree_preload_end();
381 
382 #ifdef __KERNEL__
383 		/* Place kernel structure only init below this point. */
384 		spin_lock_init(&pag->pag_ici_lock);
385 		spin_lock_init(&pag->pagb_lock);
386 		spin_lock_init(&pag->pag_state_lock);
387 		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
388 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
389 		xfs_defer_drain_init(&pag->pag_intents_drain);
390 		init_waitqueue_head(&pag->pagb_wait);
391 		init_waitqueue_head(&pag->pag_active_wq);
392 		pag->pagb_count = 0;
393 		pag->pagb_tree = RB_ROOT;
394 #endif /* __KERNEL__ */
395 
396 		error = xfs_buf_hash_init(pag);
397 		if (error)
398 			goto out_remove_pag;
399 
400 		/* Active ref owned by mount indicates AG is online. */
401 		atomic_set(&pag->pag_active_ref, 1);
402 
403 		/* first new pag is fully initialized */
404 		if (first_initialised == NULLAGNUMBER)
405 			first_initialised = index;
406 
407 		/*
408 		 * Pre-calculated geometry
409 		 */
410 		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
411 				dblocks);
412 		pag->min_block = XFS_AGFL_BLOCK(mp);
413 		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
414 				&pag->agino_max);
415 	}
416 
417 	index = xfs_set_inode_alloc(mp, agcount);
418 
419 	if (maxagi)
420 		*maxagi = index;
421 
422 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
423 	return 0;
424 
425 out_remove_pag:
426 	xfs_defer_drain_free(&pag->pag_intents_drain);
427 	radix_tree_delete(&mp->m_perag_tree, index);
428 out_free_pag:
429 	kmem_free(pag);
430 out_unwind_new_pags:
431 	/* unwind any prior newly initialized pags */
432 	for (index = first_initialised; index < agcount; index++) {
433 		pag = radix_tree_delete(&mp->m_perag_tree, index);
434 		if (!pag)
435 			break;
436 		xfs_buf_hash_destroy(pag);
437 		xfs_defer_drain_free(&pag->pag_intents_drain);
438 		kmem_free(pag);
439 	}
440 	return error;
441 }
442 
443 static int
444 xfs_get_aghdr_buf(
445 	struct xfs_mount	*mp,
446 	xfs_daddr_t		blkno,
447 	size_t			numblks,
448 	struct xfs_buf		**bpp,
449 	const struct xfs_buf_ops *ops)
450 {
451 	struct xfs_buf		*bp;
452 	int			error;
453 
454 	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
455 	if (error)
456 		return error;
457 
458 	bp->b_maps[0].bm_bn = blkno;
459 	bp->b_ops = ops;
460 
461 	*bpp = bp;
462 	return 0;
463 }
464 
465 /*
466  * Generic btree root block init function
467  */
468 static void
469 xfs_btroot_init(
470 	struct xfs_mount	*mp,
471 	struct xfs_buf		*bp,
472 	struct aghdr_init_data	*id)
473 {
474 	xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
475 }
476 
477 /* Finish initializing a free space btree. */
478 static void
479 xfs_freesp_init_recs(
480 	struct xfs_mount	*mp,
481 	struct xfs_buf		*bp,
482 	struct aghdr_init_data	*id)
483 {
484 	struct xfs_alloc_rec	*arec;
485 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
486 
487 	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
488 	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
489 
490 	if (xfs_ag_contains_log(mp, id->agno)) {
491 		struct xfs_alloc_rec	*nrec;
492 		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
493 							mp->m_sb.sb_logstart);
494 
495 		ASSERT(start >= mp->m_ag_prealloc_blocks);
496 		if (start != mp->m_ag_prealloc_blocks) {
497 			/*
498 			 * Modify first record to pad stripe align of log
499 			 */
500 			arec->ar_blockcount = cpu_to_be32(start -
501 						mp->m_ag_prealloc_blocks);
502 			nrec = arec + 1;
503 
504 			/*
505 			 * Insert second record at start of internal log
506 			 * which then gets trimmed.
507 			 */
508 			nrec->ar_startblock = cpu_to_be32(
509 					be32_to_cpu(arec->ar_startblock) +
510 					be32_to_cpu(arec->ar_blockcount));
511 			arec = nrec;
512 			be16_add_cpu(&block->bb_numrecs, 1);
513 		}
514 		/*
515 		 * Change record start to after the internal log
516 		 */
517 		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
518 	}
519 
520 	/*
521 	 * Calculate the record block count and check for the case where
522 	 * the log might have consumed all available space in the AG. If
523 	 * so, reset the record count to 0 to avoid exposure of an invalid
524 	 * record start block.
525 	 */
526 	arec->ar_blockcount = cpu_to_be32(id->agsize -
527 					  be32_to_cpu(arec->ar_startblock));
528 	if (!arec->ar_blockcount)
529 		block->bb_numrecs = 0;
530 }
531 
532 /*
533  * Alloc btree root block init functions
534  */
535 static void
536 xfs_bnoroot_init(
537 	struct xfs_mount	*mp,
538 	struct xfs_buf		*bp,
539 	struct aghdr_init_data	*id)
540 {
541 	xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
542 	xfs_freesp_init_recs(mp, bp, id);
543 }
544 
545 static void
546 xfs_cntroot_init(
547 	struct xfs_mount	*mp,
548 	struct xfs_buf		*bp,
549 	struct aghdr_init_data	*id)
550 {
551 	xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
552 	xfs_freesp_init_recs(mp, bp, id);
553 }
554 
555 /*
556  * Reverse map root block init
557  */
558 static void
559 xfs_rmaproot_init(
560 	struct xfs_mount	*mp,
561 	struct xfs_buf		*bp,
562 	struct aghdr_init_data	*id)
563 {
564 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
565 	struct xfs_rmap_rec	*rrec;
566 
567 	xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
568 
569 	/*
570 	 * mark the AG header regions as static metadata The BNO
571 	 * btree block is the first block after the headers, so
572 	 * it's location defines the size of region the static
573 	 * metadata consumes.
574 	 *
575 	 * Note: unlike mkfs, we never have to account for log
576 	 * space when growing the data regions
577 	 */
578 	rrec = XFS_RMAP_REC_ADDR(block, 1);
579 	rrec->rm_startblock = 0;
580 	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
581 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
582 	rrec->rm_offset = 0;
583 
584 	/* account freespace btree root blocks */
585 	rrec = XFS_RMAP_REC_ADDR(block, 2);
586 	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
587 	rrec->rm_blockcount = cpu_to_be32(2);
588 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
589 	rrec->rm_offset = 0;
590 
591 	/* account inode btree root blocks */
592 	rrec = XFS_RMAP_REC_ADDR(block, 3);
593 	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
594 	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
595 					  XFS_IBT_BLOCK(mp));
596 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
597 	rrec->rm_offset = 0;
598 
599 	/* account for rmap btree root */
600 	rrec = XFS_RMAP_REC_ADDR(block, 4);
601 	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
602 	rrec->rm_blockcount = cpu_to_be32(1);
603 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
604 	rrec->rm_offset = 0;
605 
606 	/* account for refc btree root */
607 	if (xfs_has_reflink(mp)) {
608 		rrec = XFS_RMAP_REC_ADDR(block, 5);
609 		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
610 		rrec->rm_blockcount = cpu_to_be32(1);
611 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
612 		rrec->rm_offset = 0;
613 		be16_add_cpu(&block->bb_numrecs, 1);
614 	}
615 
616 	/* account for the log space */
617 	if (xfs_ag_contains_log(mp, id->agno)) {
618 		rrec = XFS_RMAP_REC_ADDR(block,
619 				be16_to_cpu(block->bb_numrecs) + 1);
620 		rrec->rm_startblock = cpu_to_be32(
621 				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
622 		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
623 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
624 		rrec->rm_offset = 0;
625 		be16_add_cpu(&block->bb_numrecs, 1);
626 	}
627 }
628 
629 /*
630  * Initialise new secondary superblocks with the pre-grow geometry, but mark
631  * them as "in progress" so we know they haven't yet been activated. This will
632  * get cleared when the update with the new geometry information is done after
633  * changes to the primary are committed. This isn't strictly necessary, but we
634  * get it for free with the delayed buffer write lists and it means we can tell
635  * if a grow operation didn't complete properly after the fact.
636  */
637 static void
638 xfs_sbblock_init(
639 	struct xfs_mount	*mp,
640 	struct xfs_buf		*bp,
641 	struct aghdr_init_data	*id)
642 {
643 	struct xfs_dsb		*dsb = bp->b_addr;
644 
645 	xfs_sb_to_disk(dsb, &mp->m_sb);
646 	dsb->sb_inprogress = 1;
647 }
648 
649 static void
650 xfs_agfblock_init(
651 	struct xfs_mount	*mp,
652 	struct xfs_buf		*bp,
653 	struct aghdr_init_data	*id)
654 {
655 	struct xfs_agf		*agf = bp->b_addr;
656 	xfs_extlen_t		tmpsize;
657 
658 	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
659 	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
660 	agf->agf_seqno = cpu_to_be32(id->agno);
661 	agf->agf_length = cpu_to_be32(id->agsize);
662 	agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
663 	agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
664 	agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
665 	agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
666 	if (xfs_has_rmapbt(mp)) {
667 		agf->agf_roots[XFS_BTNUM_RMAPi] =
668 					cpu_to_be32(XFS_RMAP_BLOCK(mp));
669 		agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
670 		agf->agf_rmap_blocks = cpu_to_be32(1);
671 	}
672 
673 	agf->agf_flfirst = cpu_to_be32(1);
674 	agf->agf_fllast = 0;
675 	agf->agf_flcount = 0;
676 	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
677 	agf->agf_freeblks = cpu_to_be32(tmpsize);
678 	agf->agf_longest = cpu_to_be32(tmpsize);
679 	if (xfs_has_crc(mp))
680 		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
681 	if (xfs_has_reflink(mp)) {
682 		agf->agf_refcount_root = cpu_to_be32(
683 				xfs_refc_block(mp));
684 		agf->agf_refcount_level = cpu_to_be32(1);
685 		agf->agf_refcount_blocks = cpu_to_be32(1);
686 	}
687 
688 	if (xfs_ag_contains_log(mp, id->agno)) {
689 		int64_t	logblocks = mp->m_sb.sb_logblocks;
690 
691 		be32_add_cpu(&agf->agf_freeblks, -logblocks);
692 		agf->agf_longest = cpu_to_be32(id->agsize -
693 			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
694 	}
695 }
696 
697 static void
698 xfs_agflblock_init(
699 	struct xfs_mount	*mp,
700 	struct xfs_buf		*bp,
701 	struct aghdr_init_data	*id)
702 {
703 	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
704 	__be32			*agfl_bno;
705 	int			bucket;
706 
707 	if (xfs_has_crc(mp)) {
708 		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
709 		agfl->agfl_seqno = cpu_to_be32(id->agno);
710 		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
711 	}
712 
713 	agfl_bno = xfs_buf_to_agfl_bno(bp);
714 	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
715 		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
716 }
717 
718 static void
719 xfs_agiblock_init(
720 	struct xfs_mount	*mp,
721 	struct xfs_buf		*bp,
722 	struct aghdr_init_data	*id)
723 {
724 	struct xfs_agi		*agi = bp->b_addr;
725 	int			bucket;
726 
727 	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
728 	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
729 	agi->agi_seqno = cpu_to_be32(id->agno);
730 	agi->agi_length = cpu_to_be32(id->agsize);
731 	agi->agi_count = 0;
732 	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
733 	agi->agi_level = cpu_to_be32(1);
734 	agi->agi_freecount = 0;
735 	agi->agi_newino = cpu_to_be32(NULLAGINO);
736 	agi->agi_dirino = cpu_to_be32(NULLAGINO);
737 	if (xfs_has_crc(mp))
738 		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
739 	if (xfs_has_finobt(mp)) {
740 		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
741 		agi->agi_free_level = cpu_to_be32(1);
742 	}
743 	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
744 		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
745 	if (xfs_has_inobtcounts(mp)) {
746 		agi->agi_iblocks = cpu_to_be32(1);
747 		if (xfs_has_finobt(mp))
748 			agi->agi_fblocks = cpu_to_be32(1);
749 	}
750 }
751 
752 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
753 				  struct aghdr_init_data *id);
754 static int
755 xfs_ag_init_hdr(
756 	struct xfs_mount	*mp,
757 	struct aghdr_init_data	*id,
758 	aghdr_init_work_f	work,
759 	const struct xfs_buf_ops *ops)
760 {
761 	struct xfs_buf		*bp;
762 	int			error;
763 
764 	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
765 	if (error)
766 		return error;
767 
768 	(*work)(mp, bp, id);
769 
770 	xfs_buf_delwri_queue(bp, &id->buffer_list);
771 	xfs_buf_relse(bp);
772 	return 0;
773 }
774 
775 struct xfs_aghdr_grow_data {
776 	xfs_daddr_t		daddr;
777 	size_t			numblks;
778 	const struct xfs_buf_ops *ops;
779 	aghdr_init_work_f	work;
780 	xfs_btnum_t		type;
781 	bool			need_init;
782 };
783 
784 /*
785  * Prepare new AG headers to be written to disk. We use uncached buffers here,
786  * as it is assumed these new AG headers are currently beyond the currently
787  * valid filesystem address space. Using cached buffers would trip over EOFS
788  * corruption detection alogrithms in the buffer cache lookup routines.
789  *
790  * This is a non-transactional function, but the prepared buffers are added to a
791  * delayed write buffer list supplied by the caller so they can submit them to
792  * disk and wait on them as required.
793  */
794 int
795 xfs_ag_init_headers(
796 	struct xfs_mount	*mp,
797 	struct aghdr_init_data	*id)
798 
799 {
800 	struct xfs_aghdr_grow_data aghdr_data[] = {
801 	{ /* SB */
802 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
803 		.numblks = XFS_FSS_TO_BB(mp, 1),
804 		.ops = &xfs_sb_buf_ops,
805 		.work = &xfs_sbblock_init,
806 		.need_init = true
807 	},
808 	{ /* AGF */
809 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
810 		.numblks = XFS_FSS_TO_BB(mp, 1),
811 		.ops = &xfs_agf_buf_ops,
812 		.work = &xfs_agfblock_init,
813 		.need_init = true
814 	},
815 	{ /* AGFL */
816 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
817 		.numblks = XFS_FSS_TO_BB(mp, 1),
818 		.ops = &xfs_agfl_buf_ops,
819 		.work = &xfs_agflblock_init,
820 		.need_init = true
821 	},
822 	{ /* AGI */
823 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
824 		.numblks = XFS_FSS_TO_BB(mp, 1),
825 		.ops = &xfs_agi_buf_ops,
826 		.work = &xfs_agiblock_init,
827 		.need_init = true
828 	},
829 	{ /* BNO root block */
830 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
831 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
832 		.ops = &xfs_bnobt_buf_ops,
833 		.work = &xfs_bnoroot_init,
834 		.need_init = true
835 	},
836 	{ /* CNT root block */
837 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
838 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
839 		.ops = &xfs_cntbt_buf_ops,
840 		.work = &xfs_cntroot_init,
841 		.need_init = true
842 	},
843 	{ /* INO root block */
844 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
845 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
846 		.ops = &xfs_inobt_buf_ops,
847 		.work = &xfs_btroot_init,
848 		.type = XFS_BTNUM_INO,
849 		.need_init = true
850 	},
851 	{ /* FINO root block */
852 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
853 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
854 		.ops = &xfs_finobt_buf_ops,
855 		.work = &xfs_btroot_init,
856 		.type = XFS_BTNUM_FINO,
857 		.need_init =  xfs_has_finobt(mp)
858 	},
859 	{ /* RMAP root block */
860 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
861 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
862 		.ops = &xfs_rmapbt_buf_ops,
863 		.work = &xfs_rmaproot_init,
864 		.need_init = xfs_has_rmapbt(mp)
865 	},
866 	{ /* REFC root block */
867 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
868 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
869 		.ops = &xfs_refcountbt_buf_ops,
870 		.work = &xfs_btroot_init,
871 		.type = XFS_BTNUM_REFC,
872 		.need_init = xfs_has_reflink(mp)
873 	},
874 	{ /* NULL terminating block */
875 		.daddr = XFS_BUF_DADDR_NULL,
876 	}
877 	};
878 	struct  xfs_aghdr_grow_data *dp;
879 	int			error = 0;
880 
881 	/* Account for AG free space in new AG */
882 	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
883 	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
884 		if (!dp->need_init)
885 			continue;
886 
887 		id->daddr = dp->daddr;
888 		id->numblks = dp->numblks;
889 		id->type = dp->type;
890 		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
891 		if (error)
892 			break;
893 	}
894 	return error;
895 }
896 
897 int
898 xfs_ag_shrink_space(
899 	struct xfs_perag	*pag,
900 	struct xfs_trans	**tpp,
901 	xfs_extlen_t		delta)
902 {
903 	struct xfs_mount	*mp = pag->pag_mount;
904 	struct xfs_alloc_arg	args = {
905 		.tp	= *tpp,
906 		.mp	= mp,
907 		.pag	= pag,
908 		.minlen = delta,
909 		.maxlen = delta,
910 		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
911 		.resv	= XFS_AG_RESV_NONE,
912 		.prod	= 1
913 	};
914 	struct xfs_buf		*agibp, *agfbp;
915 	struct xfs_agi		*agi;
916 	struct xfs_agf		*agf;
917 	xfs_agblock_t		aglen;
918 	int			error, err2;
919 
920 	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
921 	error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
922 	if (error)
923 		return error;
924 
925 	agi = agibp->b_addr;
926 
927 	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
928 	if (error)
929 		return error;
930 
931 	agf = agfbp->b_addr;
932 	aglen = be32_to_cpu(agi->agi_length);
933 	/* some extra paranoid checks before we shrink the ag */
934 	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
935 		return -EFSCORRUPTED;
936 	if (delta >= aglen)
937 		return -EINVAL;
938 
939 	/*
940 	 * Make sure that the last inode cluster cannot overlap with the new
941 	 * end of the AG, even if it's sparse.
942 	 */
943 	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
944 	if (error)
945 		return error;
946 
947 	/*
948 	 * Disable perag reservations so it doesn't cause the allocation request
949 	 * to fail. We'll reestablish reservation before we return.
950 	 */
951 	error = xfs_ag_resv_free(pag);
952 	if (error)
953 		return error;
954 
955 	/* internal log shouldn't also show up in the free space btrees */
956 	error = xfs_alloc_vextent_exact_bno(&args,
957 			XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
958 	if (!error && args.agbno == NULLAGBLOCK)
959 		error = -ENOSPC;
960 
961 	if (error) {
962 		/*
963 		 * if extent allocation fails, need to roll the transaction to
964 		 * ensure that the AGFL fixup has been committed anyway.
965 		 */
966 		xfs_trans_bhold(*tpp, agfbp);
967 		err2 = xfs_trans_roll(tpp);
968 		if (err2)
969 			return err2;
970 		xfs_trans_bjoin(*tpp, agfbp);
971 		goto resv_init_out;
972 	}
973 
974 	/*
975 	 * if successfully deleted from freespace btrees, need to confirm
976 	 * per-AG reservation works as expected.
977 	 */
978 	be32_add_cpu(&agi->agi_length, -delta);
979 	be32_add_cpu(&agf->agf_length, -delta);
980 
981 	err2 = xfs_ag_resv_init(pag, *tpp);
982 	if (err2) {
983 		be32_add_cpu(&agi->agi_length, delta);
984 		be32_add_cpu(&agf->agf_length, delta);
985 		if (err2 != -ENOSPC)
986 			goto resv_err;
987 
988 		__xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
989 
990 		/*
991 		 * Roll the transaction before trying to re-init the per-ag
992 		 * reservation. The new transaction is clean so it will cancel
993 		 * without any side effects.
994 		 */
995 		error = xfs_defer_finish(tpp);
996 		if (error)
997 			return error;
998 
999 		error = -ENOSPC;
1000 		goto resv_init_out;
1001 	}
1002 	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1003 	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1004 	return 0;
1005 
1006 resv_init_out:
1007 	err2 = xfs_ag_resv_init(pag, *tpp);
1008 	if (!err2)
1009 		return error;
1010 resv_err:
1011 	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1012 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1013 	return err2;
1014 }
1015 
1016 /*
1017  * Extent the AG indicated by the @id by the length passed in
1018  */
1019 int
1020 xfs_ag_extend_space(
1021 	struct xfs_perag	*pag,
1022 	struct xfs_trans	*tp,
1023 	xfs_extlen_t		len)
1024 {
1025 	struct xfs_buf		*bp;
1026 	struct xfs_agi		*agi;
1027 	struct xfs_agf		*agf;
1028 	int			error;
1029 
1030 	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1031 
1032 	error = xfs_ialloc_read_agi(pag, tp, &bp);
1033 	if (error)
1034 		return error;
1035 
1036 	agi = bp->b_addr;
1037 	be32_add_cpu(&agi->agi_length, len);
1038 	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1039 
1040 	/*
1041 	 * Change agf length.
1042 	 */
1043 	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1044 	if (error)
1045 		return error;
1046 
1047 	agf = bp->b_addr;
1048 	be32_add_cpu(&agf->agf_length, len);
1049 	ASSERT(agf->agf_length == agi->agi_length);
1050 	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1051 
1052 	/*
1053 	 * Free the new space.
1054 	 *
1055 	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1056 	 * this doesn't actually exist in the rmap btree.
1057 	 */
1058 	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1059 				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1060 	if (error)
1061 		return error;
1062 
1063 	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1064 			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1065 	if (error)
1066 		return error;
1067 
1068 	/* Update perag geometry */
1069 	pag->block_count = be32_to_cpu(agf->agf_length);
1070 	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1071 				&pag->agino_max);
1072 	return 0;
1073 }
1074 
1075 /* Retrieve AG geometry. */
1076 int
1077 xfs_ag_get_geometry(
1078 	struct xfs_perag	*pag,
1079 	struct xfs_ag_geometry	*ageo)
1080 {
1081 	struct xfs_buf		*agi_bp;
1082 	struct xfs_buf		*agf_bp;
1083 	struct xfs_agi		*agi;
1084 	struct xfs_agf		*agf;
1085 	unsigned int		freeblks;
1086 	int			error;
1087 
1088 	/* Lock the AG headers. */
1089 	error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1090 	if (error)
1091 		return error;
1092 	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1093 	if (error)
1094 		goto out_agi;
1095 
1096 	/* Fill out form. */
1097 	memset(ageo, 0, sizeof(*ageo));
1098 	ageo->ag_number = pag->pag_agno;
1099 
1100 	agi = agi_bp->b_addr;
1101 	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1102 	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1103 
1104 	agf = agf_bp->b_addr;
1105 	ageo->ag_length = be32_to_cpu(agf->agf_length);
1106 	freeblks = pag->pagf_freeblks +
1107 		   pag->pagf_flcount +
1108 		   pag->pagf_btreeblks -
1109 		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1110 	ageo->ag_freeblks = freeblks;
1111 	xfs_ag_geom_health(pag, ageo);
1112 
1113 	/* Release resources. */
1114 	xfs_buf_relse(agf_bp);
1115 out_agi:
1116 	xfs_buf_relse(agi_bp);
1117 	return error;
1118 }
1119