1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 48 rcu_read_lock(); 49 pag = xa_load(&mp->m_perags, agno); 50 if (pag) { 51 trace_xfs_perag_get(pag, _RET_IP_); 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 atomic_inc(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 return pag; 57 } 58 59 /* Get a passive reference to the given perag. */ 60 struct xfs_perag * 61 xfs_perag_hold( 62 struct xfs_perag *pag) 63 { 64 ASSERT(atomic_read(&pag->pag_ref) > 0 || 65 atomic_read(&pag->pag_active_ref) > 0); 66 67 trace_xfs_perag_hold(pag, _RET_IP_); 68 atomic_inc(&pag->pag_ref); 69 return pag; 70 } 71 72 void 73 xfs_perag_put( 74 struct xfs_perag *pag) 75 { 76 trace_xfs_perag_put(pag, _RET_IP_); 77 ASSERT(atomic_read(&pag->pag_ref) > 0); 78 atomic_dec(&pag->pag_ref); 79 } 80 81 /* 82 * Active references for perag structures. This is for short term access to the 83 * per ag structures for walking trees or accessing state. If an AG is being 84 * shrunk or is offline, then this will fail to find that AG and return NULL 85 * instead. 86 */ 87 struct xfs_perag * 88 xfs_perag_grab( 89 struct xfs_mount *mp, 90 xfs_agnumber_t agno) 91 { 92 struct xfs_perag *pag; 93 94 rcu_read_lock(); 95 pag = xa_load(&mp->m_perags, agno); 96 if (pag) { 97 trace_xfs_perag_grab(pag, _RET_IP_); 98 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 99 pag = NULL; 100 } 101 rcu_read_unlock(); 102 return pag; 103 } 104 105 void 106 xfs_perag_rele( 107 struct xfs_perag *pag) 108 { 109 trace_xfs_perag_rele(pag, _RET_IP_); 110 if (atomic_dec_and_test(&pag->pag_active_ref)) 111 wake_up(&pag->pag_active_wq); 112 } 113 114 /* 115 * xfs_initialize_perag_data 116 * 117 * Read in each per-ag structure so we can count up the number of 118 * allocated inodes, free inodes and used filesystem blocks as this 119 * information is no longer persistent in the superblock. Once we have 120 * this information, write it into the in-core superblock structure. 121 */ 122 int 123 xfs_initialize_perag_data( 124 struct xfs_mount *mp, 125 xfs_agnumber_t agcount) 126 { 127 xfs_agnumber_t index; 128 struct xfs_perag *pag; 129 struct xfs_sb *sbp = &mp->m_sb; 130 uint64_t ifree = 0; 131 uint64_t ialloc = 0; 132 uint64_t bfree = 0; 133 uint64_t bfreelst = 0; 134 uint64_t btree = 0; 135 uint64_t fdblocks; 136 int error = 0; 137 138 for (index = 0; index < agcount; index++) { 139 /* 140 * Read the AGF and AGI buffers to populate the per-ag 141 * structures for us. 142 */ 143 pag = xfs_perag_get(mp, index); 144 error = xfs_alloc_read_agf(pag, NULL, 0, NULL); 145 if (!error) 146 error = xfs_ialloc_read_agi(pag, NULL, 0, NULL); 147 if (error) { 148 xfs_perag_put(pag); 149 return error; 150 } 151 152 ifree += pag->pagi_freecount; 153 ialloc += pag->pagi_count; 154 bfree += pag->pagf_freeblks; 155 bfreelst += pag->pagf_flcount; 156 btree += pag->pagf_btreeblks; 157 xfs_perag_put(pag); 158 } 159 fdblocks = bfree + bfreelst + btree; 160 161 /* 162 * If the new summary counts are obviously incorrect, fail the 163 * mount operation because that implies the AGFs are also corrupt. 164 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 165 * will prevent xfs_repair from fixing anything. 166 */ 167 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 168 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 169 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 170 error = -EFSCORRUPTED; 171 goto out; 172 } 173 174 /* Overwrite incore superblock counters with just-read data */ 175 spin_lock(&mp->m_sb_lock); 176 sbp->sb_ifree = ifree; 177 sbp->sb_icount = ialloc; 178 sbp->sb_fdblocks = fdblocks; 179 spin_unlock(&mp->m_sb_lock); 180 181 xfs_reinit_percpu_counters(mp); 182 out: 183 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 184 return error; 185 } 186 187 /* 188 * Free up the per-ag resources within the specified AG range. 189 */ 190 void 191 xfs_free_perag_range( 192 struct xfs_mount *mp, 193 xfs_agnumber_t first_agno, 194 xfs_agnumber_t end_agno) 195 196 { 197 xfs_agnumber_t agno; 198 199 for (agno = first_agno; agno < end_agno; agno++) { 200 struct xfs_perag *pag = xa_erase(&mp->m_perags, agno); 201 202 ASSERT(pag); 203 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 204 xfs_defer_drain_free(&pag->pag_intents_drain); 205 206 cancel_delayed_work_sync(&pag->pag_blockgc_work); 207 xfs_buf_cache_destroy(&pag->pag_bcache); 208 209 /* drop the mount's active reference */ 210 xfs_perag_rele(pag); 211 XFS_IS_CORRUPT(pag->pag_mount, 212 atomic_read(&pag->pag_active_ref) != 0); 213 kfree_rcu_mightsleep(pag); 214 } 215 } 216 217 /* Find the size of the AG, in blocks. */ 218 static xfs_agblock_t 219 __xfs_ag_block_count( 220 struct xfs_mount *mp, 221 xfs_agnumber_t agno, 222 xfs_agnumber_t agcount, 223 xfs_rfsblock_t dblocks) 224 { 225 ASSERT(agno < agcount); 226 227 if (agno < agcount - 1) 228 return mp->m_sb.sb_agblocks; 229 return dblocks - (agno * mp->m_sb.sb_agblocks); 230 } 231 232 xfs_agblock_t 233 xfs_ag_block_count( 234 struct xfs_mount *mp, 235 xfs_agnumber_t agno) 236 { 237 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount, 238 mp->m_sb.sb_dblocks); 239 } 240 241 /* Calculate the first and last possible inode number in an AG. */ 242 static void 243 __xfs_agino_range( 244 struct xfs_mount *mp, 245 xfs_agblock_t eoag, 246 xfs_agino_t *first, 247 xfs_agino_t *last) 248 { 249 xfs_agblock_t bno; 250 251 /* 252 * Calculate the first inode, which will be in the first 253 * cluster-aligned block after the AGFL. 254 */ 255 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align); 256 *first = XFS_AGB_TO_AGINO(mp, bno); 257 258 /* 259 * Calculate the last inode, which will be at the end of the 260 * last (aligned) cluster that can be allocated in the AG. 261 */ 262 bno = round_down(eoag, M_IGEO(mp)->cluster_align); 263 *last = XFS_AGB_TO_AGINO(mp, bno) - 1; 264 } 265 266 void 267 xfs_agino_range( 268 struct xfs_mount *mp, 269 xfs_agnumber_t agno, 270 xfs_agino_t *first, 271 xfs_agino_t *last) 272 { 273 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last); 274 } 275 276 int 277 xfs_update_last_ag_size( 278 struct xfs_mount *mp, 279 xfs_agnumber_t prev_agcount) 280 { 281 struct xfs_perag *pag = xfs_perag_grab(mp, prev_agcount - 1); 282 283 if (!pag) 284 return -EFSCORRUPTED; 285 pag->block_count = __xfs_ag_block_count(mp, prev_agcount - 1, 286 mp->m_sb.sb_agcount, mp->m_sb.sb_dblocks); 287 __xfs_agino_range(mp, pag->block_count, &pag->agino_min, 288 &pag->agino_max); 289 xfs_perag_rele(pag); 290 return 0; 291 } 292 293 int 294 xfs_initialize_perag( 295 struct xfs_mount *mp, 296 xfs_agnumber_t old_agcount, 297 xfs_agnumber_t new_agcount, 298 xfs_rfsblock_t dblocks, 299 xfs_agnumber_t *maxagi) 300 { 301 struct xfs_perag *pag; 302 xfs_agnumber_t index; 303 int error; 304 305 for (index = old_agcount; index < new_agcount; index++) { 306 pag = kzalloc(sizeof(*pag), GFP_KERNEL); 307 if (!pag) { 308 error = -ENOMEM; 309 goto out_unwind_new_pags; 310 } 311 pag->pag_agno = index; 312 pag->pag_mount = mp; 313 314 error = xa_insert(&mp->m_perags, index, pag, GFP_KERNEL); 315 if (error) { 316 WARN_ON_ONCE(error == -EBUSY); 317 goto out_free_pag; 318 } 319 320 #ifdef __KERNEL__ 321 /* Place kernel structure only init below this point. */ 322 spin_lock_init(&pag->pag_ici_lock); 323 spin_lock_init(&pag->pagb_lock); 324 spin_lock_init(&pag->pag_state_lock); 325 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 326 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 327 xfs_defer_drain_init(&pag->pag_intents_drain); 328 init_waitqueue_head(&pag->pagb_wait); 329 init_waitqueue_head(&pag->pag_active_wq); 330 pag->pagb_count = 0; 331 pag->pagb_tree = RB_ROOT; 332 xfs_hooks_init(&pag->pag_rmap_update_hooks); 333 #endif /* __KERNEL__ */ 334 335 error = xfs_buf_cache_init(&pag->pag_bcache); 336 if (error) 337 goto out_remove_pag; 338 339 /* Active ref owned by mount indicates AG is online. */ 340 atomic_set(&pag->pag_active_ref, 1); 341 342 /* 343 * Pre-calculated geometry 344 */ 345 pag->block_count = __xfs_ag_block_count(mp, index, new_agcount, 346 dblocks); 347 pag->min_block = XFS_AGFL_BLOCK(mp); 348 __xfs_agino_range(mp, pag->block_count, &pag->agino_min, 349 &pag->agino_max); 350 } 351 352 index = xfs_set_inode_alloc(mp, new_agcount); 353 354 if (maxagi) 355 *maxagi = index; 356 357 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 358 return 0; 359 360 out_remove_pag: 361 xfs_defer_drain_free(&pag->pag_intents_drain); 362 pag = xa_erase(&mp->m_perags, index); 363 out_free_pag: 364 kfree(pag); 365 out_unwind_new_pags: 366 xfs_free_perag_range(mp, old_agcount, index); 367 return error; 368 } 369 370 static int 371 xfs_get_aghdr_buf( 372 struct xfs_mount *mp, 373 xfs_daddr_t blkno, 374 size_t numblks, 375 struct xfs_buf **bpp, 376 const struct xfs_buf_ops *ops) 377 { 378 struct xfs_buf *bp; 379 int error; 380 381 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 382 if (error) 383 return error; 384 385 bp->b_maps[0].bm_bn = blkno; 386 bp->b_ops = ops; 387 388 *bpp = bp; 389 return 0; 390 } 391 392 /* 393 * Generic btree root block init function 394 */ 395 static void 396 xfs_btroot_init( 397 struct xfs_mount *mp, 398 struct xfs_buf *bp, 399 struct aghdr_init_data *id) 400 { 401 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); 402 } 403 404 /* Finish initializing a free space btree. */ 405 static void 406 xfs_freesp_init_recs( 407 struct xfs_mount *mp, 408 struct xfs_buf *bp, 409 struct aghdr_init_data *id) 410 { 411 struct xfs_alloc_rec *arec; 412 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 413 414 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 415 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 416 417 if (xfs_ag_contains_log(mp, id->agno)) { 418 struct xfs_alloc_rec *nrec; 419 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 420 mp->m_sb.sb_logstart); 421 422 ASSERT(start >= mp->m_ag_prealloc_blocks); 423 if (start != mp->m_ag_prealloc_blocks) { 424 /* 425 * Modify first record to pad stripe align of log and 426 * bump the record count. 427 */ 428 arec->ar_blockcount = cpu_to_be32(start - 429 mp->m_ag_prealloc_blocks); 430 be16_add_cpu(&block->bb_numrecs, 1); 431 nrec = arec + 1; 432 433 /* 434 * Insert second record at start of internal log 435 * which then gets trimmed. 436 */ 437 nrec->ar_startblock = cpu_to_be32( 438 be32_to_cpu(arec->ar_startblock) + 439 be32_to_cpu(arec->ar_blockcount)); 440 arec = nrec; 441 } 442 /* 443 * Change record start to after the internal log 444 */ 445 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 446 } 447 448 /* 449 * Calculate the block count of this record; if it is nonzero, 450 * increment the record count. 451 */ 452 arec->ar_blockcount = cpu_to_be32(id->agsize - 453 be32_to_cpu(arec->ar_startblock)); 454 if (arec->ar_blockcount) 455 be16_add_cpu(&block->bb_numrecs, 1); 456 } 457 458 /* 459 * bnobt/cntbt btree root block init functions 460 */ 461 static void 462 xfs_bnoroot_init( 463 struct xfs_mount *mp, 464 struct xfs_buf *bp, 465 struct aghdr_init_data *id) 466 { 467 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); 468 xfs_freesp_init_recs(mp, bp, id); 469 } 470 471 /* 472 * Reverse map root block init 473 */ 474 static void 475 xfs_rmaproot_init( 476 struct xfs_mount *mp, 477 struct xfs_buf *bp, 478 struct aghdr_init_data *id) 479 { 480 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 481 struct xfs_rmap_rec *rrec; 482 483 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno); 484 485 /* 486 * mark the AG header regions as static metadata The BNO 487 * btree block is the first block after the headers, so 488 * it's location defines the size of region the static 489 * metadata consumes. 490 * 491 * Note: unlike mkfs, we never have to account for log 492 * space when growing the data regions 493 */ 494 rrec = XFS_RMAP_REC_ADDR(block, 1); 495 rrec->rm_startblock = 0; 496 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 497 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 498 rrec->rm_offset = 0; 499 500 /* account freespace btree root blocks */ 501 rrec = XFS_RMAP_REC_ADDR(block, 2); 502 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 503 rrec->rm_blockcount = cpu_to_be32(2); 504 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 505 rrec->rm_offset = 0; 506 507 /* account inode btree root blocks */ 508 rrec = XFS_RMAP_REC_ADDR(block, 3); 509 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 510 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 511 XFS_IBT_BLOCK(mp)); 512 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 513 rrec->rm_offset = 0; 514 515 /* account for rmap btree root */ 516 rrec = XFS_RMAP_REC_ADDR(block, 4); 517 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 518 rrec->rm_blockcount = cpu_to_be32(1); 519 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 520 rrec->rm_offset = 0; 521 522 /* account for refc btree root */ 523 if (xfs_has_reflink(mp)) { 524 rrec = XFS_RMAP_REC_ADDR(block, 5); 525 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 526 rrec->rm_blockcount = cpu_to_be32(1); 527 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 528 rrec->rm_offset = 0; 529 be16_add_cpu(&block->bb_numrecs, 1); 530 } 531 532 /* account for the log space */ 533 if (xfs_ag_contains_log(mp, id->agno)) { 534 rrec = XFS_RMAP_REC_ADDR(block, 535 be16_to_cpu(block->bb_numrecs) + 1); 536 rrec->rm_startblock = cpu_to_be32( 537 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 538 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 539 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 540 rrec->rm_offset = 0; 541 be16_add_cpu(&block->bb_numrecs, 1); 542 } 543 } 544 545 /* 546 * Initialise new secondary superblocks with the pre-grow geometry, but mark 547 * them as "in progress" so we know they haven't yet been activated. This will 548 * get cleared when the update with the new geometry information is done after 549 * changes to the primary are committed. This isn't strictly necessary, but we 550 * get it for free with the delayed buffer write lists and it means we can tell 551 * if a grow operation didn't complete properly after the fact. 552 */ 553 static void 554 xfs_sbblock_init( 555 struct xfs_mount *mp, 556 struct xfs_buf *bp, 557 struct aghdr_init_data *id) 558 { 559 struct xfs_dsb *dsb = bp->b_addr; 560 561 xfs_sb_to_disk(dsb, &mp->m_sb); 562 dsb->sb_inprogress = 1; 563 } 564 565 static void 566 xfs_agfblock_init( 567 struct xfs_mount *mp, 568 struct xfs_buf *bp, 569 struct aghdr_init_data *id) 570 { 571 struct xfs_agf *agf = bp->b_addr; 572 xfs_extlen_t tmpsize; 573 574 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 575 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 576 agf->agf_seqno = cpu_to_be32(id->agno); 577 agf->agf_length = cpu_to_be32(id->agsize); 578 agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp)); 579 agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp)); 580 agf->agf_bno_level = cpu_to_be32(1); 581 agf->agf_cnt_level = cpu_to_be32(1); 582 if (xfs_has_rmapbt(mp)) { 583 agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 584 agf->agf_rmap_level = cpu_to_be32(1); 585 agf->agf_rmap_blocks = cpu_to_be32(1); 586 } 587 588 agf->agf_flfirst = cpu_to_be32(1); 589 agf->agf_fllast = 0; 590 agf->agf_flcount = 0; 591 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 592 agf->agf_freeblks = cpu_to_be32(tmpsize); 593 agf->agf_longest = cpu_to_be32(tmpsize); 594 if (xfs_has_crc(mp)) 595 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 596 if (xfs_has_reflink(mp)) { 597 agf->agf_refcount_root = cpu_to_be32( 598 xfs_refc_block(mp)); 599 agf->agf_refcount_level = cpu_to_be32(1); 600 agf->agf_refcount_blocks = cpu_to_be32(1); 601 } 602 603 if (xfs_ag_contains_log(mp, id->agno)) { 604 int64_t logblocks = mp->m_sb.sb_logblocks; 605 606 be32_add_cpu(&agf->agf_freeblks, -logblocks); 607 agf->agf_longest = cpu_to_be32(id->agsize - 608 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 609 } 610 } 611 612 static void 613 xfs_agflblock_init( 614 struct xfs_mount *mp, 615 struct xfs_buf *bp, 616 struct aghdr_init_data *id) 617 { 618 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 619 __be32 *agfl_bno; 620 int bucket; 621 622 if (xfs_has_crc(mp)) { 623 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 624 agfl->agfl_seqno = cpu_to_be32(id->agno); 625 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 626 } 627 628 agfl_bno = xfs_buf_to_agfl_bno(bp); 629 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 630 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 631 } 632 633 static void 634 xfs_agiblock_init( 635 struct xfs_mount *mp, 636 struct xfs_buf *bp, 637 struct aghdr_init_data *id) 638 { 639 struct xfs_agi *agi = bp->b_addr; 640 int bucket; 641 642 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 643 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 644 agi->agi_seqno = cpu_to_be32(id->agno); 645 agi->agi_length = cpu_to_be32(id->agsize); 646 agi->agi_count = 0; 647 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 648 agi->agi_level = cpu_to_be32(1); 649 agi->agi_freecount = 0; 650 agi->agi_newino = cpu_to_be32(NULLAGINO); 651 agi->agi_dirino = cpu_to_be32(NULLAGINO); 652 if (xfs_has_crc(mp)) 653 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 654 if (xfs_has_finobt(mp)) { 655 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 656 agi->agi_free_level = cpu_to_be32(1); 657 } 658 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 659 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 660 if (xfs_has_inobtcounts(mp)) { 661 agi->agi_iblocks = cpu_to_be32(1); 662 if (xfs_has_finobt(mp)) 663 agi->agi_fblocks = cpu_to_be32(1); 664 } 665 } 666 667 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 668 struct aghdr_init_data *id); 669 static int 670 xfs_ag_init_hdr( 671 struct xfs_mount *mp, 672 struct aghdr_init_data *id, 673 aghdr_init_work_f work, 674 const struct xfs_buf_ops *ops) 675 { 676 struct xfs_buf *bp; 677 int error; 678 679 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 680 if (error) 681 return error; 682 683 (*work)(mp, bp, id); 684 685 xfs_buf_delwri_queue(bp, &id->buffer_list); 686 xfs_buf_relse(bp); 687 return 0; 688 } 689 690 struct xfs_aghdr_grow_data { 691 xfs_daddr_t daddr; 692 size_t numblks; 693 const struct xfs_buf_ops *ops; 694 aghdr_init_work_f work; 695 const struct xfs_btree_ops *bc_ops; 696 bool need_init; 697 }; 698 699 /* 700 * Prepare new AG headers to be written to disk. We use uncached buffers here, 701 * as it is assumed these new AG headers are currently beyond the currently 702 * valid filesystem address space. Using cached buffers would trip over EOFS 703 * corruption detection alogrithms in the buffer cache lookup routines. 704 * 705 * This is a non-transactional function, but the prepared buffers are added to a 706 * delayed write buffer list supplied by the caller so they can submit them to 707 * disk and wait on them as required. 708 */ 709 int 710 xfs_ag_init_headers( 711 struct xfs_mount *mp, 712 struct aghdr_init_data *id) 713 714 { 715 struct xfs_aghdr_grow_data aghdr_data[] = { 716 { /* SB */ 717 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 718 .numblks = XFS_FSS_TO_BB(mp, 1), 719 .ops = &xfs_sb_buf_ops, 720 .work = &xfs_sbblock_init, 721 .need_init = true 722 }, 723 { /* AGF */ 724 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 725 .numblks = XFS_FSS_TO_BB(mp, 1), 726 .ops = &xfs_agf_buf_ops, 727 .work = &xfs_agfblock_init, 728 .need_init = true 729 }, 730 { /* AGFL */ 731 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 732 .numblks = XFS_FSS_TO_BB(mp, 1), 733 .ops = &xfs_agfl_buf_ops, 734 .work = &xfs_agflblock_init, 735 .need_init = true 736 }, 737 { /* AGI */ 738 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 739 .numblks = XFS_FSS_TO_BB(mp, 1), 740 .ops = &xfs_agi_buf_ops, 741 .work = &xfs_agiblock_init, 742 .need_init = true 743 }, 744 { /* BNO root block */ 745 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 746 .numblks = BTOBB(mp->m_sb.sb_blocksize), 747 .ops = &xfs_bnobt_buf_ops, 748 .work = &xfs_bnoroot_init, 749 .bc_ops = &xfs_bnobt_ops, 750 .need_init = true 751 }, 752 { /* CNT root block */ 753 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 754 .numblks = BTOBB(mp->m_sb.sb_blocksize), 755 .ops = &xfs_cntbt_buf_ops, 756 .work = &xfs_bnoroot_init, 757 .bc_ops = &xfs_cntbt_ops, 758 .need_init = true 759 }, 760 { /* INO root block */ 761 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 762 .numblks = BTOBB(mp->m_sb.sb_blocksize), 763 .ops = &xfs_inobt_buf_ops, 764 .work = &xfs_btroot_init, 765 .bc_ops = &xfs_inobt_ops, 766 .need_init = true 767 }, 768 { /* FINO root block */ 769 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 770 .numblks = BTOBB(mp->m_sb.sb_blocksize), 771 .ops = &xfs_finobt_buf_ops, 772 .work = &xfs_btroot_init, 773 .bc_ops = &xfs_finobt_ops, 774 .need_init = xfs_has_finobt(mp) 775 }, 776 { /* RMAP root block */ 777 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 778 .numblks = BTOBB(mp->m_sb.sb_blocksize), 779 .ops = &xfs_rmapbt_buf_ops, 780 .work = &xfs_rmaproot_init, 781 .bc_ops = &xfs_rmapbt_ops, 782 .need_init = xfs_has_rmapbt(mp) 783 }, 784 { /* REFC root block */ 785 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 786 .numblks = BTOBB(mp->m_sb.sb_blocksize), 787 .ops = &xfs_refcountbt_buf_ops, 788 .work = &xfs_btroot_init, 789 .bc_ops = &xfs_refcountbt_ops, 790 .need_init = xfs_has_reflink(mp) 791 }, 792 { /* NULL terminating block */ 793 .daddr = XFS_BUF_DADDR_NULL, 794 } 795 }; 796 struct xfs_aghdr_grow_data *dp; 797 int error = 0; 798 799 /* Account for AG free space in new AG */ 800 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 801 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 802 if (!dp->need_init) 803 continue; 804 805 id->daddr = dp->daddr; 806 id->numblks = dp->numblks; 807 id->bc_ops = dp->bc_ops; 808 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 809 if (error) 810 break; 811 } 812 return error; 813 } 814 815 int 816 xfs_ag_shrink_space( 817 struct xfs_perag *pag, 818 struct xfs_trans **tpp, 819 xfs_extlen_t delta) 820 { 821 struct xfs_mount *mp = pag->pag_mount; 822 struct xfs_alloc_arg args = { 823 .tp = *tpp, 824 .mp = mp, 825 .pag = pag, 826 .minlen = delta, 827 .maxlen = delta, 828 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 829 .resv = XFS_AG_RESV_NONE, 830 .prod = 1 831 }; 832 struct xfs_buf *agibp, *agfbp; 833 struct xfs_agi *agi; 834 struct xfs_agf *agf; 835 xfs_agblock_t aglen; 836 int error, err2; 837 838 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1); 839 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agibp); 840 if (error) 841 return error; 842 843 agi = agibp->b_addr; 844 845 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp); 846 if (error) 847 return error; 848 849 agf = agfbp->b_addr; 850 aglen = be32_to_cpu(agi->agi_length); 851 /* some extra paranoid checks before we shrink the ag */ 852 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) { 853 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); 854 return -EFSCORRUPTED; 855 } 856 if (delta >= aglen) 857 return -EINVAL; 858 859 /* 860 * Make sure that the last inode cluster cannot overlap with the new 861 * end of the AG, even if it's sparse. 862 */ 863 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta); 864 if (error) 865 return error; 866 867 /* 868 * Disable perag reservations so it doesn't cause the allocation request 869 * to fail. We'll reestablish reservation before we return. 870 */ 871 xfs_ag_resv_free(pag); 872 873 /* internal log shouldn't also show up in the free space btrees */ 874 error = xfs_alloc_vextent_exact_bno(&args, 875 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta)); 876 if (!error && args.agbno == NULLAGBLOCK) 877 error = -ENOSPC; 878 879 if (error) { 880 /* 881 * If extent allocation fails, need to roll the transaction to 882 * ensure that the AGFL fixup has been committed anyway. 883 * 884 * We need to hold the AGF across the roll to ensure nothing can 885 * access the AG for allocation until the shrink is fully 886 * cleaned up. And due to the resetting of the AG block 887 * reservation space needing to lock the AGI, we also have to 888 * hold that so we don't get AGI/AGF lock order inversions in 889 * the error handling path. 890 */ 891 xfs_trans_bhold(*tpp, agfbp); 892 xfs_trans_bhold(*tpp, agibp); 893 err2 = xfs_trans_roll(tpp); 894 if (err2) 895 return err2; 896 xfs_trans_bjoin(*tpp, agfbp); 897 xfs_trans_bjoin(*tpp, agibp); 898 goto resv_init_out; 899 } 900 901 /* 902 * if successfully deleted from freespace btrees, need to confirm 903 * per-AG reservation works as expected. 904 */ 905 be32_add_cpu(&agi->agi_length, -delta); 906 be32_add_cpu(&agf->agf_length, -delta); 907 908 err2 = xfs_ag_resv_init(pag, *tpp); 909 if (err2) { 910 be32_add_cpu(&agi->agi_length, delta); 911 be32_add_cpu(&agf->agf_length, delta); 912 if (err2 != -ENOSPC) 913 goto resv_err; 914 915 err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, 916 XFS_AG_RESV_NONE, XFS_FREE_EXTENT_SKIP_DISCARD); 917 if (err2) 918 goto resv_err; 919 920 /* 921 * Roll the transaction before trying to re-init the per-ag 922 * reservation. The new transaction is clean so it will cancel 923 * without any side effects. 924 */ 925 error = xfs_defer_finish(tpp); 926 if (error) 927 return error; 928 929 error = -ENOSPC; 930 goto resv_init_out; 931 } 932 933 /* Update perag geometry */ 934 pag->block_count -= delta; 935 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 936 &pag->agino_max); 937 938 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 939 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 940 return 0; 941 942 resv_init_out: 943 err2 = xfs_ag_resv_init(pag, *tpp); 944 if (!err2) 945 return error; 946 resv_err: 947 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 948 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 949 return err2; 950 } 951 952 /* 953 * Extent the AG indicated by the @id by the length passed in 954 */ 955 int 956 xfs_ag_extend_space( 957 struct xfs_perag *pag, 958 struct xfs_trans *tp, 959 xfs_extlen_t len) 960 { 961 struct xfs_buf *bp; 962 struct xfs_agi *agi; 963 struct xfs_agf *agf; 964 int error; 965 966 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1); 967 968 error = xfs_ialloc_read_agi(pag, tp, 0, &bp); 969 if (error) 970 return error; 971 972 agi = bp->b_addr; 973 be32_add_cpu(&agi->agi_length, len); 974 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 975 976 /* 977 * Change agf length. 978 */ 979 error = xfs_alloc_read_agf(pag, tp, 0, &bp); 980 if (error) 981 return error; 982 983 agf = bp->b_addr; 984 be32_add_cpu(&agf->agf_length, len); 985 ASSERT(agf->agf_length == agi->agi_length); 986 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 987 988 /* 989 * Free the new space. 990 * 991 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 992 * this doesn't actually exist in the rmap btree. 993 */ 994 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len, 995 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 996 if (error) 997 return error; 998 999 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len, 1000 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE); 1001 if (error) 1002 return error; 1003 1004 /* Update perag geometry */ 1005 pag->block_count = be32_to_cpu(agf->agf_length); 1006 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 1007 &pag->agino_max); 1008 return 0; 1009 } 1010 1011 /* Retrieve AG geometry. */ 1012 int 1013 xfs_ag_get_geometry( 1014 struct xfs_perag *pag, 1015 struct xfs_ag_geometry *ageo) 1016 { 1017 struct xfs_buf *agi_bp; 1018 struct xfs_buf *agf_bp; 1019 struct xfs_agi *agi; 1020 struct xfs_agf *agf; 1021 unsigned int freeblks; 1022 int error; 1023 1024 /* Lock the AG headers. */ 1025 error = xfs_ialloc_read_agi(pag, NULL, 0, &agi_bp); 1026 if (error) 1027 return error; 1028 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp); 1029 if (error) 1030 goto out_agi; 1031 1032 /* Fill out form. */ 1033 memset(ageo, 0, sizeof(*ageo)); 1034 ageo->ag_number = pag->pag_agno; 1035 1036 agi = agi_bp->b_addr; 1037 ageo->ag_icount = be32_to_cpu(agi->agi_count); 1038 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 1039 1040 agf = agf_bp->b_addr; 1041 ageo->ag_length = be32_to_cpu(agf->agf_length); 1042 freeblks = pag->pagf_freeblks + 1043 pag->pagf_flcount + 1044 pag->pagf_btreeblks - 1045 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 1046 ageo->ag_freeblks = freeblks; 1047 xfs_ag_geom_health(pag, ageo); 1048 1049 /* Release resources. */ 1050 xfs_buf_relse(agf_bp); 1051 out_agi: 1052 xfs_buf_relse(agi_bp); 1053 return error; 1054 } 1055