xref: /linux/fs/xfs/libxfs/xfs_ag.c (revision 9b2e5a234c89f097ec36f922763dfa1465dc06f8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2018 Red Hat, Inc.
5  * All rights reserved.
6  */
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33 
34 
35 /*
36  * Passive reference counting access wrappers to the perag structures.  If the
37  * per-ag structure is to be freed, the freeing code is responsible for cleaning
38  * up objects with passive references before freeing the structure. This is
39  * things like cached buffers.
40  */
41 struct xfs_perag *
42 xfs_perag_get(
43 	struct xfs_mount	*mp,
44 	xfs_agnumber_t		agno)
45 {
46 	struct xfs_perag	*pag;
47 
48 	rcu_read_lock();
49 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 	if (pag) {
51 		trace_xfs_perag_get(pag, _RET_IP_);
52 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 		atomic_inc(&pag->pag_ref);
54 	}
55 	rcu_read_unlock();
56 	return pag;
57 }
58 
59 /*
60  * search from @first to find the next perag with the given tag set.
61  */
62 struct xfs_perag *
63 xfs_perag_get_tag(
64 	struct xfs_mount	*mp,
65 	xfs_agnumber_t		first,
66 	unsigned int		tag)
67 {
68 	struct xfs_perag	*pag;
69 	int			found;
70 
71 	rcu_read_lock();
72 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 					(void **)&pag, first, 1, tag);
74 	if (found <= 0) {
75 		rcu_read_unlock();
76 		return NULL;
77 	}
78 	trace_xfs_perag_get_tag(pag, _RET_IP_);
79 	atomic_inc(&pag->pag_ref);
80 	rcu_read_unlock();
81 	return pag;
82 }
83 
84 /* Get a passive reference to the given perag. */
85 struct xfs_perag *
86 xfs_perag_hold(
87 	struct xfs_perag	*pag)
88 {
89 	ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90 	       atomic_read(&pag->pag_active_ref) > 0);
91 
92 	trace_xfs_perag_hold(pag, _RET_IP_);
93 	atomic_inc(&pag->pag_ref);
94 	return pag;
95 }
96 
97 void
98 xfs_perag_put(
99 	struct xfs_perag	*pag)
100 {
101 	trace_xfs_perag_put(pag, _RET_IP_);
102 	ASSERT(atomic_read(&pag->pag_ref) > 0);
103 	atomic_dec(&pag->pag_ref);
104 }
105 
106 /*
107  * Active references for perag structures. This is for short term access to the
108  * per ag structures for walking trees or accessing state. If an AG is being
109  * shrunk or is offline, then this will fail to find that AG and return NULL
110  * instead.
111  */
112 struct xfs_perag *
113 xfs_perag_grab(
114 	struct xfs_mount	*mp,
115 	xfs_agnumber_t		agno)
116 {
117 	struct xfs_perag	*pag;
118 
119 	rcu_read_lock();
120 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121 	if (pag) {
122 		trace_xfs_perag_grab(pag, _RET_IP_);
123 		if (!atomic_inc_not_zero(&pag->pag_active_ref))
124 			pag = NULL;
125 	}
126 	rcu_read_unlock();
127 	return pag;
128 }
129 
130 /*
131  * search from @first to find the next perag with the given tag set.
132  */
133 struct xfs_perag *
134 xfs_perag_grab_tag(
135 	struct xfs_mount	*mp,
136 	xfs_agnumber_t		first,
137 	int			tag)
138 {
139 	struct xfs_perag	*pag;
140 	int			found;
141 
142 	rcu_read_lock();
143 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144 					(void **)&pag, first, 1, tag);
145 	if (found <= 0) {
146 		rcu_read_unlock();
147 		return NULL;
148 	}
149 	trace_xfs_perag_grab_tag(pag, _RET_IP_);
150 	if (!atomic_inc_not_zero(&pag->pag_active_ref))
151 		pag = NULL;
152 	rcu_read_unlock();
153 	return pag;
154 }
155 
156 void
157 xfs_perag_rele(
158 	struct xfs_perag	*pag)
159 {
160 	trace_xfs_perag_rele(pag, _RET_IP_);
161 	if (atomic_dec_and_test(&pag->pag_active_ref))
162 		wake_up(&pag->pag_active_wq);
163 }
164 
165 /*
166  * xfs_initialize_perag_data
167  *
168  * Read in each per-ag structure so we can count up the number of
169  * allocated inodes, free inodes and used filesystem blocks as this
170  * information is no longer persistent in the superblock. Once we have
171  * this information, write it into the in-core superblock structure.
172  */
173 int
174 xfs_initialize_perag_data(
175 	struct xfs_mount	*mp,
176 	xfs_agnumber_t		agcount)
177 {
178 	xfs_agnumber_t		index;
179 	struct xfs_perag	*pag;
180 	struct xfs_sb		*sbp = &mp->m_sb;
181 	uint64_t		ifree = 0;
182 	uint64_t		ialloc = 0;
183 	uint64_t		bfree = 0;
184 	uint64_t		bfreelst = 0;
185 	uint64_t		btree = 0;
186 	uint64_t		fdblocks;
187 	int			error = 0;
188 
189 	for (index = 0; index < agcount; index++) {
190 		/*
191 		 * Read the AGF and AGI buffers to populate the per-ag
192 		 * structures for us.
193 		 */
194 		pag = xfs_perag_get(mp, index);
195 		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196 		if (!error)
197 			error = xfs_ialloc_read_agi(pag, NULL, NULL);
198 		if (error) {
199 			xfs_perag_put(pag);
200 			return error;
201 		}
202 
203 		ifree += pag->pagi_freecount;
204 		ialloc += pag->pagi_count;
205 		bfree += pag->pagf_freeblks;
206 		bfreelst += pag->pagf_flcount;
207 		btree += pag->pagf_btreeblks;
208 		xfs_perag_put(pag);
209 	}
210 	fdblocks = bfree + bfreelst + btree;
211 
212 	/*
213 	 * If the new summary counts are obviously incorrect, fail the
214 	 * mount operation because that implies the AGFs are also corrupt.
215 	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216 	 * will prevent xfs_repair from fixing anything.
217 	 */
218 	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219 		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220 		error = -EFSCORRUPTED;
221 		goto out;
222 	}
223 
224 	/* Overwrite incore superblock counters with just-read data */
225 	spin_lock(&mp->m_sb_lock);
226 	sbp->sb_ifree = ifree;
227 	sbp->sb_icount = ialloc;
228 	sbp->sb_fdblocks = fdblocks;
229 	spin_unlock(&mp->m_sb_lock);
230 
231 	xfs_reinit_percpu_counters(mp);
232 out:
233 	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
234 	return error;
235 }
236 
237 STATIC void
238 __xfs_free_perag(
239 	struct rcu_head	*head)
240 {
241 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
242 
243 	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
244 	kmem_free(pag);
245 }
246 
247 /*
248  * Free up the per-ag resources associated with the mount structure.
249  */
250 void
251 xfs_free_perag(
252 	struct xfs_mount	*mp)
253 {
254 	struct xfs_perag	*pag;
255 	xfs_agnumber_t		agno;
256 
257 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
258 		spin_lock(&mp->m_perag_lock);
259 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
260 		spin_unlock(&mp->m_perag_lock);
261 		ASSERT(pag);
262 		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
263 
264 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
265 		xfs_buf_hash_destroy(pag);
266 
267 		/* drop the mount's active reference */
268 		xfs_perag_rele(pag);
269 		XFS_IS_CORRUPT(pag->pag_mount,
270 				atomic_read(&pag->pag_active_ref) != 0);
271 		call_rcu(&pag->rcu_head, __xfs_free_perag);
272 	}
273 }
274 
275 /* Find the size of the AG, in blocks. */
276 static xfs_agblock_t
277 __xfs_ag_block_count(
278 	struct xfs_mount	*mp,
279 	xfs_agnumber_t		agno,
280 	xfs_agnumber_t		agcount,
281 	xfs_rfsblock_t		dblocks)
282 {
283 	ASSERT(agno < agcount);
284 
285 	if (agno < agcount - 1)
286 		return mp->m_sb.sb_agblocks;
287 	return dblocks - (agno * mp->m_sb.sb_agblocks);
288 }
289 
290 xfs_agblock_t
291 xfs_ag_block_count(
292 	struct xfs_mount	*mp,
293 	xfs_agnumber_t		agno)
294 {
295 	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
296 			mp->m_sb.sb_dblocks);
297 }
298 
299 /* Calculate the first and last possible inode number in an AG. */
300 static void
301 __xfs_agino_range(
302 	struct xfs_mount	*mp,
303 	xfs_agblock_t		eoag,
304 	xfs_agino_t		*first,
305 	xfs_agino_t		*last)
306 {
307 	xfs_agblock_t		bno;
308 
309 	/*
310 	 * Calculate the first inode, which will be in the first
311 	 * cluster-aligned block after the AGFL.
312 	 */
313 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
314 	*first = XFS_AGB_TO_AGINO(mp, bno);
315 
316 	/*
317 	 * Calculate the last inode, which will be at the end of the
318 	 * last (aligned) cluster that can be allocated in the AG.
319 	 */
320 	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
321 	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
322 }
323 
324 void
325 xfs_agino_range(
326 	struct xfs_mount	*mp,
327 	xfs_agnumber_t		agno,
328 	xfs_agino_t		*first,
329 	xfs_agino_t		*last)
330 {
331 	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
332 }
333 
334 int
335 xfs_initialize_perag(
336 	struct xfs_mount	*mp,
337 	xfs_agnumber_t		agcount,
338 	xfs_rfsblock_t		dblocks,
339 	xfs_agnumber_t		*maxagi)
340 {
341 	struct xfs_perag	*pag;
342 	xfs_agnumber_t		index;
343 	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
344 	int			error;
345 
346 	/*
347 	 * Walk the current per-ag tree so we don't try to initialise AGs
348 	 * that already exist (growfs case). Allocate and insert all the
349 	 * AGs we don't find ready for initialisation.
350 	 */
351 	for (index = 0; index < agcount; index++) {
352 		pag = xfs_perag_get(mp, index);
353 		if (pag) {
354 			xfs_perag_put(pag);
355 			continue;
356 		}
357 
358 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
359 		if (!pag) {
360 			error = -ENOMEM;
361 			goto out_unwind_new_pags;
362 		}
363 		pag->pag_agno = index;
364 		pag->pag_mount = mp;
365 
366 		error = radix_tree_preload(GFP_NOFS);
367 		if (error)
368 			goto out_free_pag;
369 
370 		spin_lock(&mp->m_perag_lock);
371 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
372 			WARN_ON_ONCE(1);
373 			spin_unlock(&mp->m_perag_lock);
374 			radix_tree_preload_end();
375 			error = -EEXIST;
376 			goto out_free_pag;
377 		}
378 		spin_unlock(&mp->m_perag_lock);
379 		radix_tree_preload_end();
380 
381 #ifdef __KERNEL__
382 		/* Place kernel structure only init below this point. */
383 		spin_lock_init(&pag->pag_ici_lock);
384 		spin_lock_init(&pag->pagb_lock);
385 		spin_lock_init(&pag->pag_state_lock);
386 		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
387 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
388 		init_waitqueue_head(&pag->pagb_wait);
389 		init_waitqueue_head(&pag->pag_active_wq);
390 		pag->pagb_count = 0;
391 		pag->pagb_tree = RB_ROOT;
392 #endif /* __KERNEL__ */
393 
394 		error = xfs_buf_hash_init(pag);
395 		if (error)
396 			goto out_remove_pag;
397 
398 		/* Active ref owned by mount indicates AG is online. */
399 		atomic_set(&pag->pag_active_ref, 1);
400 
401 		/* first new pag is fully initialized */
402 		if (first_initialised == NULLAGNUMBER)
403 			first_initialised = index;
404 
405 		/*
406 		 * Pre-calculated geometry
407 		 */
408 		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
409 				dblocks);
410 		pag->min_block = XFS_AGFL_BLOCK(mp);
411 		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
412 				&pag->agino_max);
413 	}
414 
415 	index = xfs_set_inode_alloc(mp, agcount);
416 
417 	if (maxagi)
418 		*maxagi = index;
419 
420 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
421 	return 0;
422 
423 out_remove_pag:
424 	radix_tree_delete(&mp->m_perag_tree, index);
425 out_free_pag:
426 	kmem_free(pag);
427 out_unwind_new_pags:
428 	/* unwind any prior newly initialized pags */
429 	for (index = first_initialised; index < agcount; index++) {
430 		pag = radix_tree_delete(&mp->m_perag_tree, index);
431 		if (!pag)
432 			break;
433 		xfs_buf_hash_destroy(pag);
434 		kmem_free(pag);
435 	}
436 	return error;
437 }
438 
439 static int
440 xfs_get_aghdr_buf(
441 	struct xfs_mount	*mp,
442 	xfs_daddr_t		blkno,
443 	size_t			numblks,
444 	struct xfs_buf		**bpp,
445 	const struct xfs_buf_ops *ops)
446 {
447 	struct xfs_buf		*bp;
448 	int			error;
449 
450 	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
451 	if (error)
452 		return error;
453 
454 	bp->b_maps[0].bm_bn = blkno;
455 	bp->b_ops = ops;
456 
457 	*bpp = bp;
458 	return 0;
459 }
460 
461 /*
462  * Generic btree root block init function
463  */
464 static void
465 xfs_btroot_init(
466 	struct xfs_mount	*mp,
467 	struct xfs_buf		*bp,
468 	struct aghdr_init_data	*id)
469 {
470 	xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
471 }
472 
473 /* Finish initializing a free space btree. */
474 static void
475 xfs_freesp_init_recs(
476 	struct xfs_mount	*mp,
477 	struct xfs_buf		*bp,
478 	struct aghdr_init_data	*id)
479 {
480 	struct xfs_alloc_rec	*arec;
481 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
482 
483 	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
484 	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
485 
486 	if (xfs_ag_contains_log(mp, id->agno)) {
487 		struct xfs_alloc_rec	*nrec;
488 		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
489 							mp->m_sb.sb_logstart);
490 
491 		ASSERT(start >= mp->m_ag_prealloc_blocks);
492 		if (start != mp->m_ag_prealloc_blocks) {
493 			/*
494 			 * Modify first record to pad stripe align of log
495 			 */
496 			arec->ar_blockcount = cpu_to_be32(start -
497 						mp->m_ag_prealloc_blocks);
498 			nrec = arec + 1;
499 
500 			/*
501 			 * Insert second record at start of internal log
502 			 * which then gets trimmed.
503 			 */
504 			nrec->ar_startblock = cpu_to_be32(
505 					be32_to_cpu(arec->ar_startblock) +
506 					be32_to_cpu(arec->ar_blockcount));
507 			arec = nrec;
508 			be16_add_cpu(&block->bb_numrecs, 1);
509 		}
510 		/*
511 		 * Change record start to after the internal log
512 		 */
513 		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
514 	}
515 
516 	/*
517 	 * Calculate the record block count and check for the case where
518 	 * the log might have consumed all available space in the AG. If
519 	 * so, reset the record count to 0 to avoid exposure of an invalid
520 	 * record start block.
521 	 */
522 	arec->ar_blockcount = cpu_to_be32(id->agsize -
523 					  be32_to_cpu(arec->ar_startblock));
524 	if (!arec->ar_blockcount)
525 		block->bb_numrecs = 0;
526 }
527 
528 /*
529  * Alloc btree root block init functions
530  */
531 static void
532 xfs_bnoroot_init(
533 	struct xfs_mount	*mp,
534 	struct xfs_buf		*bp,
535 	struct aghdr_init_data	*id)
536 {
537 	xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
538 	xfs_freesp_init_recs(mp, bp, id);
539 }
540 
541 static void
542 xfs_cntroot_init(
543 	struct xfs_mount	*mp,
544 	struct xfs_buf		*bp,
545 	struct aghdr_init_data	*id)
546 {
547 	xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
548 	xfs_freesp_init_recs(mp, bp, id);
549 }
550 
551 /*
552  * Reverse map root block init
553  */
554 static void
555 xfs_rmaproot_init(
556 	struct xfs_mount	*mp,
557 	struct xfs_buf		*bp,
558 	struct aghdr_init_data	*id)
559 {
560 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
561 	struct xfs_rmap_rec	*rrec;
562 
563 	xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
564 
565 	/*
566 	 * mark the AG header regions as static metadata The BNO
567 	 * btree block is the first block after the headers, so
568 	 * it's location defines the size of region the static
569 	 * metadata consumes.
570 	 *
571 	 * Note: unlike mkfs, we never have to account for log
572 	 * space when growing the data regions
573 	 */
574 	rrec = XFS_RMAP_REC_ADDR(block, 1);
575 	rrec->rm_startblock = 0;
576 	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
577 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
578 	rrec->rm_offset = 0;
579 
580 	/* account freespace btree root blocks */
581 	rrec = XFS_RMAP_REC_ADDR(block, 2);
582 	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
583 	rrec->rm_blockcount = cpu_to_be32(2);
584 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
585 	rrec->rm_offset = 0;
586 
587 	/* account inode btree root blocks */
588 	rrec = XFS_RMAP_REC_ADDR(block, 3);
589 	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
590 	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
591 					  XFS_IBT_BLOCK(mp));
592 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
593 	rrec->rm_offset = 0;
594 
595 	/* account for rmap btree root */
596 	rrec = XFS_RMAP_REC_ADDR(block, 4);
597 	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
598 	rrec->rm_blockcount = cpu_to_be32(1);
599 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
600 	rrec->rm_offset = 0;
601 
602 	/* account for refc btree root */
603 	if (xfs_has_reflink(mp)) {
604 		rrec = XFS_RMAP_REC_ADDR(block, 5);
605 		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
606 		rrec->rm_blockcount = cpu_to_be32(1);
607 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
608 		rrec->rm_offset = 0;
609 		be16_add_cpu(&block->bb_numrecs, 1);
610 	}
611 
612 	/* account for the log space */
613 	if (xfs_ag_contains_log(mp, id->agno)) {
614 		rrec = XFS_RMAP_REC_ADDR(block,
615 				be16_to_cpu(block->bb_numrecs) + 1);
616 		rrec->rm_startblock = cpu_to_be32(
617 				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
618 		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
619 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
620 		rrec->rm_offset = 0;
621 		be16_add_cpu(&block->bb_numrecs, 1);
622 	}
623 }
624 
625 /*
626  * Initialise new secondary superblocks with the pre-grow geometry, but mark
627  * them as "in progress" so we know they haven't yet been activated. This will
628  * get cleared when the update with the new geometry information is done after
629  * changes to the primary are committed. This isn't strictly necessary, but we
630  * get it for free with the delayed buffer write lists and it means we can tell
631  * if a grow operation didn't complete properly after the fact.
632  */
633 static void
634 xfs_sbblock_init(
635 	struct xfs_mount	*mp,
636 	struct xfs_buf		*bp,
637 	struct aghdr_init_data	*id)
638 {
639 	struct xfs_dsb		*dsb = bp->b_addr;
640 
641 	xfs_sb_to_disk(dsb, &mp->m_sb);
642 	dsb->sb_inprogress = 1;
643 }
644 
645 static void
646 xfs_agfblock_init(
647 	struct xfs_mount	*mp,
648 	struct xfs_buf		*bp,
649 	struct aghdr_init_data	*id)
650 {
651 	struct xfs_agf		*agf = bp->b_addr;
652 	xfs_extlen_t		tmpsize;
653 
654 	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
655 	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
656 	agf->agf_seqno = cpu_to_be32(id->agno);
657 	agf->agf_length = cpu_to_be32(id->agsize);
658 	agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
659 	agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
660 	agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
661 	agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
662 	if (xfs_has_rmapbt(mp)) {
663 		agf->agf_roots[XFS_BTNUM_RMAPi] =
664 					cpu_to_be32(XFS_RMAP_BLOCK(mp));
665 		agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
666 		agf->agf_rmap_blocks = cpu_to_be32(1);
667 	}
668 
669 	agf->agf_flfirst = cpu_to_be32(1);
670 	agf->agf_fllast = 0;
671 	agf->agf_flcount = 0;
672 	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
673 	agf->agf_freeblks = cpu_to_be32(tmpsize);
674 	agf->agf_longest = cpu_to_be32(tmpsize);
675 	if (xfs_has_crc(mp))
676 		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
677 	if (xfs_has_reflink(mp)) {
678 		agf->agf_refcount_root = cpu_to_be32(
679 				xfs_refc_block(mp));
680 		agf->agf_refcount_level = cpu_to_be32(1);
681 		agf->agf_refcount_blocks = cpu_to_be32(1);
682 	}
683 
684 	if (xfs_ag_contains_log(mp, id->agno)) {
685 		int64_t	logblocks = mp->m_sb.sb_logblocks;
686 
687 		be32_add_cpu(&agf->agf_freeblks, -logblocks);
688 		agf->agf_longest = cpu_to_be32(id->agsize -
689 			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
690 	}
691 }
692 
693 static void
694 xfs_agflblock_init(
695 	struct xfs_mount	*mp,
696 	struct xfs_buf		*bp,
697 	struct aghdr_init_data	*id)
698 {
699 	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
700 	__be32			*agfl_bno;
701 	int			bucket;
702 
703 	if (xfs_has_crc(mp)) {
704 		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
705 		agfl->agfl_seqno = cpu_to_be32(id->agno);
706 		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
707 	}
708 
709 	agfl_bno = xfs_buf_to_agfl_bno(bp);
710 	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
711 		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
712 }
713 
714 static void
715 xfs_agiblock_init(
716 	struct xfs_mount	*mp,
717 	struct xfs_buf		*bp,
718 	struct aghdr_init_data	*id)
719 {
720 	struct xfs_agi		*agi = bp->b_addr;
721 	int			bucket;
722 
723 	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
724 	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
725 	agi->agi_seqno = cpu_to_be32(id->agno);
726 	agi->agi_length = cpu_to_be32(id->agsize);
727 	agi->agi_count = 0;
728 	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
729 	agi->agi_level = cpu_to_be32(1);
730 	agi->agi_freecount = 0;
731 	agi->agi_newino = cpu_to_be32(NULLAGINO);
732 	agi->agi_dirino = cpu_to_be32(NULLAGINO);
733 	if (xfs_has_crc(mp))
734 		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
735 	if (xfs_has_finobt(mp)) {
736 		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
737 		agi->agi_free_level = cpu_to_be32(1);
738 	}
739 	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
740 		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
741 	if (xfs_has_inobtcounts(mp)) {
742 		agi->agi_iblocks = cpu_to_be32(1);
743 		if (xfs_has_finobt(mp))
744 			agi->agi_fblocks = cpu_to_be32(1);
745 	}
746 }
747 
748 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
749 				  struct aghdr_init_data *id);
750 static int
751 xfs_ag_init_hdr(
752 	struct xfs_mount	*mp,
753 	struct aghdr_init_data	*id,
754 	aghdr_init_work_f	work,
755 	const struct xfs_buf_ops *ops)
756 {
757 	struct xfs_buf		*bp;
758 	int			error;
759 
760 	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
761 	if (error)
762 		return error;
763 
764 	(*work)(mp, bp, id);
765 
766 	xfs_buf_delwri_queue(bp, &id->buffer_list);
767 	xfs_buf_relse(bp);
768 	return 0;
769 }
770 
771 struct xfs_aghdr_grow_data {
772 	xfs_daddr_t		daddr;
773 	size_t			numblks;
774 	const struct xfs_buf_ops *ops;
775 	aghdr_init_work_f	work;
776 	xfs_btnum_t		type;
777 	bool			need_init;
778 };
779 
780 /*
781  * Prepare new AG headers to be written to disk. We use uncached buffers here,
782  * as it is assumed these new AG headers are currently beyond the currently
783  * valid filesystem address space. Using cached buffers would trip over EOFS
784  * corruption detection alogrithms in the buffer cache lookup routines.
785  *
786  * This is a non-transactional function, but the prepared buffers are added to a
787  * delayed write buffer list supplied by the caller so they can submit them to
788  * disk and wait on them as required.
789  */
790 int
791 xfs_ag_init_headers(
792 	struct xfs_mount	*mp,
793 	struct aghdr_init_data	*id)
794 
795 {
796 	struct xfs_aghdr_grow_data aghdr_data[] = {
797 	{ /* SB */
798 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
799 		.numblks = XFS_FSS_TO_BB(mp, 1),
800 		.ops = &xfs_sb_buf_ops,
801 		.work = &xfs_sbblock_init,
802 		.need_init = true
803 	},
804 	{ /* AGF */
805 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
806 		.numblks = XFS_FSS_TO_BB(mp, 1),
807 		.ops = &xfs_agf_buf_ops,
808 		.work = &xfs_agfblock_init,
809 		.need_init = true
810 	},
811 	{ /* AGFL */
812 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
813 		.numblks = XFS_FSS_TO_BB(mp, 1),
814 		.ops = &xfs_agfl_buf_ops,
815 		.work = &xfs_agflblock_init,
816 		.need_init = true
817 	},
818 	{ /* AGI */
819 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
820 		.numblks = XFS_FSS_TO_BB(mp, 1),
821 		.ops = &xfs_agi_buf_ops,
822 		.work = &xfs_agiblock_init,
823 		.need_init = true
824 	},
825 	{ /* BNO root block */
826 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
827 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
828 		.ops = &xfs_bnobt_buf_ops,
829 		.work = &xfs_bnoroot_init,
830 		.need_init = true
831 	},
832 	{ /* CNT root block */
833 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
834 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
835 		.ops = &xfs_cntbt_buf_ops,
836 		.work = &xfs_cntroot_init,
837 		.need_init = true
838 	},
839 	{ /* INO root block */
840 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
841 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
842 		.ops = &xfs_inobt_buf_ops,
843 		.work = &xfs_btroot_init,
844 		.type = XFS_BTNUM_INO,
845 		.need_init = true
846 	},
847 	{ /* FINO root block */
848 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
849 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
850 		.ops = &xfs_finobt_buf_ops,
851 		.work = &xfs_btroot_init,
852 		.type = XFS_BTNUM_FINO,
853 		.need_init =  xfs_has_finobt(mp)
854 	},
855 	{ /* RMAP root block */
856 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
857 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
858 		.ops = &xfs_rmapbt_buf_ops,
859 		.work = &xfs_rmaproot_init,
860 		.need_init = xfs_has_rmapbt(mp)
861 	},
862 	{ /* REFC root block */
863 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
864 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
865 		.ops = &xfs_refcountbt_buf_ops,
866 		.work = &xfs_btroot_init,
867 		.type = XFS_BTNUM_REFC,
868 		.need_init = xfs_has_reflink(mp)
869 	},
870 	{ /* NULL terminating block */
871 		.daddr = XFS_BUF_DADDR_NULL,
872 	}
873 	};
874 	struct  xfs_aghdr_grow_data *dp;
875 	int			error = 0;
876 
877 	/* Account for AG free space in new AG */
878 	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
879 	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
880 		if (!dp->need_init)
881 			continue;
882 
883 		id->daddr = dp->daddr;
884 		id->numblks = dp->numblks;
885 		id->type = dp->type;
886 		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
887 		if (error)
888 			break;
889 	}
890 	return error;
891 }
892 
893 int
894 xfs_ag_shrink_space(
895 	struct xfs_perag	*pag,
896 	struct xfs_trans	**tpp,
897 	xfs_extlen_t		delta)
898 {
899 	struct xfs_mount	*mp = pag->pag_mount;
900 	struct xfs_alloc_arg	args = {
901 		.tp	= *tpp,
902 		.mp	= mp,
903 		.pag	= pag,
904 		.minlen = delta,
905 		.maxlen = delta,
906 		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
907 		.resv	= XFS_AG_RESV_NONE,
908 		.prod	= 1
909 	};
910 	struct xfs_buf		*agibp, *agfbp;
911 	struct xfs_agi		*agi;
912 	struct xfs_agf		*agf;
913 	xfs_agblock_t		aglen;
914 	int			error, err2;
915 
916 	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
917 	error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
918 	if (error)
919 		return error;
920 
921 	agi = agibp->b_addr;
922 
923 	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
924 	if (error)
925 		return error;
926 
927 	agf = agfbp->b_addr;
928 	aglen = be32_to_cpu(agi->agi_length);
929 	/* some extra paranoid checks before we shrink the ag */
930 	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
931 		return -EFSCORRUPTED;
932 	if (delta >= aglen)
933 		return -EINVAL;
934 
935 	/*
936 	 * Make sure that the last inode cluster cannot overlap with the new
937 	 * end of the AG, even if it's sparse.
938 	 */
939 	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
940 	if (error)
941 		return error;
942 
943 	/*
944 	 * Disable perag reservations so it doesn't cause the allocation request
945 	 * to fail. We'll reestablish reservation before we return.
946 	 */
947 	error = xfs_ag_resv_free(pag);
948 	if (error)
949 		return error;
950 
951 	/* internal log shouldn't also show up in the free space btrees */
952 	error = xfs_alloc_vextent_exact_bno(&args,
953 			XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
954 	if (!error && args.agbno == NULLAGBLOCK)
955 		error = -ENOSPC;
956 
957 	if (error) {
958 		/*
959 		 * if extent allocation fails, need to roll the transaction to
960 		 * ensure that the AGFL fixup has been committed anyway.
961 		 */
962 		xfs_trans_bhold(*tpp, agfbp);
963 		err2 = xfs_trans_roll(tpp);
964 		if (err2)
965 			return err2;
966 		xfs_trans_bjoin(*tpp, agfbp);
967 		goto resv_init_out;
968 	}
969 
970 	/*
971 	 * if successfully deleted from freespace btrees, need to confirm
972 	 * per-AG reservation works as expected.
973 	 */
974 	be32_add_cpu(&agi->agi_length, -delta);
975 	be32_add_cpu(&agf->agf_length, -delta);
976 
977 	err2 = xfs_ag_resv_init(pag, *tpp);
978 	if (err2) {
979 		be32_add_cpu(&agi->agi_length, delta);
980 		be32_add_cpu(&agf->agf_length, delta);
981 		if (err2 != -ENOSPC)
982 			goto resv_err;
983 
984 		__xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
985 
986 		/*
987 		 * Roll the transaction before trying to re-init the per-ag
988 		 * reservation. The new transaction is clean so it will cancel
989 		 * without any side effects.
990 		 */
991 		error = xfs_defer_finish(tpp);
992 		if (error)
993 			return error;
994 
995 		error = -ENOSPC;
996 		goto resv_init_out;
997 	}
998 	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
999 	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1000 	return 0;
1001 
1002 resv_init_out:
1003 	err2 = xfs_ag_resv_init(pag, *tpp);
1004 	if (!err2)
1005 		return error;
1006 resv_err:
1007 	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1008 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1009 	return err2;
1010 }
1011 
1012 /*
1013  * Extent the AG indicated by the @id by the length passed in
1014  */
1015 int
1016 xfs_ag_extend_space(
1017 	struct xfs_perag	*pag,
1018 	struct xfs_trans	*tp,
1019 	xfs_extlen_t		len)
1020 {
1021 	struct xfs_buf		*bp;
1022 	struct xfs_agi		*agi;
1023 	struct xfs_agf		*agf;
1024 	int			error;
1025 
1026 	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1027 
1028 	error = xfs_ialloc_read_agi(pag, tp, &bp);
1029 	if (error)
1030 		return error;
1031 
1032 	agi = bp->b_addr;
1033 	be32_add_cpu(&agi->agi_length, len);
1034 	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1035 
1036 	/*
1037 	 * Change agf length.
1038 	 */
1039 	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1040 	if (error)
1041 		return error;
1042 
1043 	agf = bp->b_addr;
1044 	be32_add_cpu(&agf->agf_length, len);
1045 	ASSERT(agf->agf_length == agi->agi_length);
1046 	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1047 
1048 	/*
1049 	 * Free the new space.
1050 	 *
1051 	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1052 	 * this doesn't actually exist in the rmap btree.
1053 	 */
1054 	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1055 				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1056 	if (error)
1057 		return error;
1058 
1059 	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1060 			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1061 	if (error)
1062 		return error;
1063 
1064 	/* Update perag geometry */
1065 	pag->block_count = be32_to_cpu(agf->agf_length);
1066 	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1067 				&pag->agino_max);
1068 	return 0;
1069 }
1070 
1071 /* Retrieve AG geometry. */
1072 int
1073 xfs_ag_get_geometry(
1074 	struct xfs_perag	*pag,
1075 	struct xfs_ag_geometry	*ageo)
1076 {
1077 	struct xfs_buf		*agi_bp;
1078 	struct xfs_buf		*agf_bp;
1079 	struct xfs_agi		*agi;
1080 	struct xfs_agf		*agf;
1081 	unsigned int		freeblks;
1082 	int			error;
1083 
1084 	/* Lock the AG headers. */
1085 	error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1086 	if (error)
1087 		return error;
1088 	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1089 	if (error)
1090 		goto out_agi;
1091 
1092 	/* Fill out form. */
1093 	memset(ageo, 0, sizeof(*ageo));
1094 	ageo->ag_number = pag->pag_agno;
1095 
1096 	agi = agi_bp->b_addr;
1097 	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1098 	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1099 
1100 	agf = agf_bp->b_addr;
1101 	ageo->ag_length = be32_to_cpu(agf->agf_length);
1102 	freeblks = pag->pagf_freeblks +
1103 		   pag->pagf_flcount +
1104 		   pag->pagf_btreeblks -
1105 		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1106 	ageo->ag_freeblks = freeblks;
1107 	xfs_ag_geom_health(pag, ageo);
1108 
1109 	/* Release resources. */
1110 	xfs_buf_relse(agf_bp);
1111 out_agi:
1112 	xfs_buf_relse(agi_bp);
1113 	return error;
1114 }
1115